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Abstract

We present the system that we submitted to
the 3rd Pascal Recognizing Textual Entail-
ment Challenge. It uses four Support Vector
Machines, one for each subtask of the chal-
lenge, with features that correspond to string
similarity measures operating at the lexical
and shallow syntactic level.

1 Introduction

Textual Entailment is desirable in many natural lan-
guage processing areas, such as question answer-
ing, information extraction, information retrieval,
and multi-document summarization. In the Pascal
Recognizing Textual Entailment Challenge (RTE), it
is defined as the task of deciding whether or not the
meaning of a hypothesis text (H) can be inferred
from the meaning of another text (T ).1 For instance:

T : The drugs that slow down or halt Alzheimer’s disease
work best the earlier you administer them.

H: Alzheimer’s disease is treated using drugs.

is a correct entailment pair, but the following is not:

T : Drew Walker, NHS Tayside’s public health director, said:
“It is important to stress that this is not a confirmed case
of rabies.”

H: A case of rabies was confirmed.

In previous RTE challenges (Dagan et al., 2006;
Bar-Haim et al., 2006), several machine-learning ap-
proaches appeared, but their results showed that sig-
nificant improvements were still necessary. In this
paper, we present the system we used in the third

1See http://www.pascal-network.org/.

RTE challenge. The latter had four different devel-
opment and test sets (QA, IR, IE, SUM), intended to
evaluate textual entailment recognition in the four
natural language processing areas mentioned above.

2 System overview

Our system uses SVMs (Vapnik, 1998) to determine
whether each T–H pair constitutes a correct tex-
tual entailment or not. In particular, it employs four
SVMs, each trained on the development dataset of
the corresponding RTE subtask (QA, IR, IE, SUM)
and used on the corresponding test dataset. Pre-
liminary experiments indicated that training a single
SVM on all four subsets leads to worse results, de-
spite the increased size of the training set, presum-
ably because of differences in how the pairs were
constructed in each subtask, which do not allow a
single SVM to generalize well over all four.

The system is based on the assumption that string
similarity at the lexical and shallow syntactic level
can be used to identify textual entailment reason-
ably well, at least in question answering, the main
area we are interested in. We, therefore, try to cap-
ture different kinds of similarity by employing 10
different string similarity measures, to be discussed
below. In each T–H case, every measure is applied
to the following 8 pairs of strings, producing a total
of 80 measurements:

pair 1: two strings with the original words of T and
H , respectively; although we refer to ‘words’,
this and the following string pairs also contain
non-word tokens, such as punctuation.2

2We use OPENNLP’s tokenizer, POS-tagger, and chunker (see
http://opennlp.sourceforge.net/), and our own
implementation of Porter’s stemmer.
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pair 2: two strings containing the corresponding
stems of the words of T and H , respectively;

pair 3: two strings containing the part-of-speech
(POS) tags of the words of T and H;

pair 4: two strings containing the chunk tags (see
below) of the words of T and H;

pair 5: two strings containing only the nouns of T
and H , as identified by a POS-tagger;

pair 6: two strings containing only the stems of the
nouns of T and H;

pair 7: two strings containing only the verbs of T
and H , as identified by a POS-tagger;

pair 8: two strings containing only the stems of the
verbs of T and H .

Chunk tags are of the form B-x, I-x or O, were B and
I indicate the initial and other words of the chunks,
respectively, whereas O indicates words outside all
chunks; x can be NP, VP, or PP, for noun phrase,
verb phrase, and prepositional phrase chunks.

Partial matches: When applying the string simi-
larity measures, one problem is that T may be much
longer than H , or vice versa. Consider, for exam-
ple, the following T–H pair. The difference in the
lengths of T and H may mislead many similarity
measures to indicate that the two texts are very dis-
similar, even though H is included verbatim in T .

T : Charles de Gaulle died in 1970 at the age of eighty. He
was thus fifty years old when, as an unknown officer re-
cently promoted to the (temporary) rank of brigadier gen-
eral, he made his famous broadcast from London reject-
ing the capitulation of France to the Nazis after the deba-
cle of May-June 1940.

H: Charles de Gaulle died in 1970.

To address this problem, when we consider a pair
of strings (s1, s2), if s1 is longer than s2, we also
compute the ten values fi(s′1, s2), where fi (1 ≤ i ≤
10) are the string similarity measures, for every s′1
that is a substring of s1 of the same length as s2. We
then locate the s′1 with the best average similarity to
s2, shown below as s′∗1 :

s′∗1 = arg max
s′
1

10∑
i=1

fi(s′1, s2)

and we keep the ten fi(s′∗1 , s2) values and their aver-
age as 11 additional measurements. Similarly, if s2

is longer than s1, we keep the ten fi(s1, s
′∗
2 ) values

and their average. This process could be applied to
all pairs 1–8 above, but the system we submitted ap-
plied it only to pairs 1–4; hence, there is a total of 44
additional measurements in each T–H case.

The 124 measurements discussed above provide
124 candidate numeric features that can be used by
the SVMs.3 To those, we add the following four:

Negation: Two Boolean features, showing if T or
H , respectively, contain negation, identified by
looking for words like “not”, “won’t”, etc.

Length ratio: This is min(LT ,LH)
max(LT ,LH) , were LT and

LH are the lengths, in words, of T and H .

Text length: Binary feature showing if the markup
of the dataset flags T as ‘long’ or ‘short’.

Hence, there are 128 candidate features in total.
From those, we select a different subset for the
SVM of each subtask, as will be discussed in fol-
lowing sections. Note that similarity measures have
also been used in previous RTE systems as fea-
tures in machine learning algorithms; see, for ex-
ample, Kozareva and Montoyo (2006), Newman et
al. (2006). However, the results of those systems in-
dicate that improvements are still necessary, and we
believe that one possible improvement is the use of
more and different similarity measures.

We did not use similarity measures that operate
on parse trees or semantic representations, as we are
interested in RTE methods that can also be applied to
less spoken languages, where reliable parsers, fact
extractors, etc. are often difficult to obtain.

2.1 String similarity measures
We now describe the ten string similarity measures
that we use.4 The reader is reminded that the mea-
sures are applied to string pairs (s1, s2), where s1

and s2 derive from T and H , respectively.

Levenshtein distance: This is the minimum num-
ber of operations (edit distance) needed to transform
one string (in our case, s1) into the other one (s2),

3All feature values are normalized in [−1, 1].
4We use the SIMMETRICS library; see http://www.

dcs.shef.ac.uk/∼sam/simmetrics.html.
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where an operation is an insertion, deletion, or sub-
stitution of a single character. In pairs of strings that
contain POS or chunk tags, it would be better to con-
sider operations that insert, delete, or substitute en-
tire tags, instead of characters, but the system we
submitted did not do this; we addressed this issue in
subsequent work, as will be discussed below.

Jaro-Winkler distance: The Jaro-Winkler dis-
tance (Winkler, 1999) is a variation of the Jaro dis-
tance (Jaro, 1995), which we describe first. The Jaro
distance dj of s1 and s2 is defined as:

dj(s1, s2) =
m

3 · l1
+

m

3 · l2
+

m − t

3 · m
,

where l1 and l2 are the lengths (in characters) of s1

and s2, respectively. The value m is the number of
characters of s1 that match characters of s2. Two
characters from s1 and s2, respectively, are taken to
match if they are identical and the difference in their
positions does not exceed max(l1,l2)

2 − 1. Finally, to
compute t (‘transpositions’), we remove from s1 and
s2 all characters that do not have matching charac-
ters in the other string, and we count the number of
positions in the resulting two strings that do not con-
tain the same character; t is half that number.

The Jaro-Winkler distance dw emphasizes prefix
similarity between the two strings. It is defined as:

dw(s1, s2) = dj(s1, s2) + l · p · [1 − dj(s1, s2)],

where l is the length of the longest common prefix
of s1 and s2, and p is a constant scaling factor that
also controls the emphasis placed on prefix similar-
ity. The implementation we used considers prefixes
up to 6 characters long, and sets p = 0.1.

Again, in pairs of strings (s1, s2) that contain POS

tags or chunk tags, it would be better to apply this
measure to the corresponding lists of tags in s1 and
s2, instead of treating s1 and s2 as strings of char-
acters, but the system we submitted did not do this;
this issue was also addressed in subsequent work.

Soundex: Soundex is an algorithm intended to
map each English name to an alphanumeric code,
so that names whose pronunciations are the same
are mapped to the same code, despite spelling dif-
ferences.5 Although Soundex is intended to be used

5See http://en.wikipedia.org/wiki/Soundex.

on names, and in effect considers only the first let-
ter and the first few consonants of each name, we
applied it to s1 and s2, in an attempt to capture simi-
larity at the beginnings of the two strings; the strings
were first stripped of all white spaces and non-letter
characters. We then computed similarity between
the two resulting codes using the Jaro-Winkler dis-
tance. A better approach would be to apply Soundex
to all words in T and H , forming a 9th pair (s1, s2),
on which other distance measures would then be ap-
plied; we did this in subsequent work.

Manhattan distance: Also known as City Block
distance or L1, this is defined for any two vectors
~x = 〈x1, . . . , xn〉 and ~y = 〈y1, . . . , yn〉 in an n-
dimensional vector space as:

L1(~x, ~y) =
n∑

i=1

|xi − yi|.

In our case, n is the number of distinct words (or
tags) that occur in s1 and s2 (in any of the two);
and xi, yi show how many times each one of these
distinct words occurs in s1 and s2, respectively.

Euclidean distance: This is defined as follows:

L2(~x, ~y) =

√√√√ n∑
i=1

(xi − yi)2.

In our case, ~x and ~y correspond to s1 and s2, respec-
tively, as in the previous measure.

Cosine similarity: The definition follows:

cos(~x, ~y) =
~x · ~y

‖~x‖ · ‖~y‖
.

In our system ~x and ~y are as above, except that they
are binary, i.e., xi and yi are 1 or 0, depending on
whether or not the corresponding word (or tag) oc-
curs in s1 or s2, respectively.

N-gram distance: This is the same as L1, but in-
stead of words we use all the (distinct) character n-
grams in s1 and s2; we used n = 3.

Matching coefficient: This is |X ∩ Y |, where X
and Y are the sets of (unique) words (or tags) of s1

and s2, respectively; i.e., it counts how many com-
mon words s1 and s2 have.
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Dice coefficient: This is the following quantity; in
our case, X and Y are as in the previous measure.

2 · |X ∩ Y |
|X| + |Y |

Jaccard coefficient: This is defined as |X∩Y |
|X∪Y | ;

again X and Y are as in the matching coefficient.

2.2 SVM tuning and feature selection

As already noted, we employed four SVMs, one for
each subtask of the challenge (IR, IE, QA, SUM).6

In each subtask, feature selection was performed as
follows. We started with a set of 20 features, which
correspond to the ten similarity measures applied to
both words and stems (string pairs 1 and 2 of section
1); see table 1. We then added the 10 features that
correspond to the ten similarity measures applied to
POS tags (string pair 3). In IE and IR, this addi-
tion led to improved leave-one-out cross-validation
results on the corresponding development sets, and
we kept the additional features (denoted by ‘X’ in
table 1). In contrast, in QA and SUM the additional
10 features were discarded, because they led to no
improvement in the cross-validation. We then added
the 10 features that corresponded to the ten similar-
ity measures applied to chunk tags (string pair 4),
which were retained only in the IE SVM, and so on.

The order in which we considered the various ex-
tensions of the feature sets is the same as the order of
the rows of table 1, and it reflects the order in which
it occurred to us to consider the corresponding ad-
ditional features while preparing for the challenge.
We hope to investigate additional feature selection
schemes in further work; for instance, start with all
128 features and explore if pruning any groups of
features improves the cross-validation results.

With each feature set that we considered, we
actually performed multiple leave-one-out cross-
validations on the development dataset, for different
values of the parameters of the SVM and kernel, us-
ing a grid-search utility. Each feature set was eval-
uated by considering its best cross-validation result.
The best cross-validation results for the final feature
sets of the four SVMs are shown in table 2.

6We use LIBSVM (Chang and Lin, 2001), with a Radial Basis
Function kernel, including LIBSVM’s grid search tuning utility.

Subtask Accuracy (%)
QA 86.50 (90.00)
IR 80.00 (75.50)

SUM 73.00 (72.50)
IE 62.00 (61.50)
all 75.38 (74.88)

Table 2: Best cross-validation results of our system
on the development datasets. Results with subse-
quent improvements are shown in brackets.

Subtask Accuracy (%) Average Precision (%)
QA 73.50 (76.00) 81.03 (81.08)
IR 64.50 (63.50) 63.61 (67.28)

SUM 57.00 (60.50) 60.88 (61.58)
IE 52.00 (49.50) 58.16 (51.57)
all 61.75 (62.38) 68.08 (68.28)

Table 3: Official results of our system. Results with
subsequent improvements are shown in brackets.

3 Official results and discussion

We submitted only one run to the third RTE chal-
lenge. The official results of our system are shown
in table 3.7 They are worse than the best results we
had obtained in the cross-validations on the devel-
opment datasets (cf. table 2), but this was expected
to a large extent, since the SVMs were tuned on the
development datasets; to some extent, the lower of-
ficial results may also be due to different types of
entailment being present in the test datasets, which
had not been encountered in the training sets.

As in the cross-validation results, our system per-
formed best in the QA subtask; the second and third
best results of our system were obtained in IR and
SUM, while the worst results were obtained in IE.
Although a more thorough investigation is neces-
sary to account fully for these results, it appears that
they support our initial assumption that string simi-
larity at the lexical and shallow syntactic level can be
used to identify textual entailment reasonably well
in question answering systems. Some further reflec-
tions on the results of our system follow.

In the QA subtask of the challenge, it appears that
each T was a snippet returned by a question answer-
ing system for a particular question.8 We are not
aware of exactly how the T s were selected by the

7See the RTE Web site for a definition of ‘average precision’.
8Consult http://www.pascal-network.org/Chal

lenges/RTE3/Introduction/.
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Feature sets features IE IR QA SUM
similarity measures on words 10 X X X X
similarity measures on stems 10 X X X X
+ similarity measures on POS tags +10 X X
+ similarity measures on chunk tags +10 X X
+ average of sim. measures on words of best partial match +1 X
+ average of sim. measures on stems of best partial match +1 X X
+ average of sim. measures on POS tags of best partial match +1 X X
+ average of sim. measures on chunk tags of best partial match +1 X X
+ similarity measures on words of best partial match +10
+ similarity measures on stems of best partial match +10 X
+ similarity measures on POS tags of best partial match +10 X
+ similarity measures on chunk tags of best partial match +10
+ negation +2 X
+ length ratio +1 X
+ similarity measures on nouns +10 X
+ similarity measures on noun stems +10
+ similarity measures on verbs +10 X
+ similarity measures on verb stems +10
+ short/long T +1 X X
Total 128 64 31 23 54

Table 1: Feature sets considered and chosen in each subtask.

systems used, but QA systems typically return T s
that contain the expected answer type of the input
question; for instance, if the question is “When did
Charles de Gaulle die?”, T will typically contain a
temporal expression. Furthermore, QA systems typi-
cally prefer T s that contain many words of the ques-
tion, preferably in the same order, etc. (Radev et
al., 2000; Ng et al., 2001; Harabagiu et al., 2003).
Hence, if the answers are sought in a document col-
lection with high redundancy (e.g., the Web), i.e.,
a collection where each answer can be found with
many different phrasings, the T s (or parts of them)
that most QA systems return are often very similar,
in terms of phrasings, to the questions, provided that
the required answers exist in the collection.

In the QA datasets of the challenge, for each T ,
which was a snippet returned by a QA system for a
question (e.g., “When did Charle de Gaulle die?”),
an H was formed by “plugging into” the question
an expression of the expected answer type from T .
In effect, this converted all questions to propositions
(e.g., “Charle de Gaulle died in 1970.”) that require
a “yes” or “no” answer. Note that this plugging in
does not always produce a true proposition; T may
contain multiple expressions of the expected answer
type (e.g., “Charle de Gaulle died in 1970. In 1990,
a monument was erected. . . ”) and the wrong one
may be plugged into the question (H = “Charle de

Gaulle died in 1990.”).

Let us first consider the case where the proposi-
tion (H) is true. Assuming that the document collec-
tion is redundant and that the answer to the question
exists in the collection, T (or part of it) will often be
very similar to H , since it will be very similar to the
question that H was derived from. In fact, the simi-
larity between T and H may be greater than between
T and the question, since an expression from T has
been plugged into the question to form H . Being
very similar, T will very often entail H , and, hence,
the (affirmative) responses of our system, which are
based on similarity, will be correct.

Let us now consider the case where H is false. Al-
though the same arguments apply, and, hence, one
might again expect T to be very similar to H , this
is actually less likely now, because H is false and,
hence, it is more difficult to find a very similarly
phrased T in the presumed trustful document collec-
tion. The reduced similarity between T and H will
lead the similarity measures to suggest that the T–H
entailment does not hold; and in most cases, this is a
correct decision, because H is false and, thus, it can-
not be entailed by a (true) T that has been extracted
from a trustful document collection.

Similar arguments apply to the IR subtask, where
our system achieved its second best results. Our re-
sults in this subtask were lower than in the QA sub-
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task, presumably because the T s were no longer fil-
tered by the additional requirement that they must
contain an expression of the expected answer type.

We attribute the further deterioration of our re-
sults in the SUM subtask to the fact that, accord-
ing to the challenge’s documentation, all the T–H
pairs of that subtask, both true and false entailments,
were chosen to have high lexical similarity, which
does not allow the similarity measures of our system
to distinguish well between the two cases. Finally,
the lower results obtained in the IE subtask may be
due to the fact that the T–H pairs of that subtask
were intended to reflect entailments identified by in-
formation extraction systems, which specialize on
identifying particular semantic relations by employ-
ing more complicated machinery (e.g., named entity
recognizers and matchers, fact extractors, etc.) than
simple string similarity measures; the results may
also be partly due to the four different ways that
were used to construct the T–H pairs of that sub-
task. It is interesting to note (see table 1) that the
feature sets were larger in the subtasks where our
system scored worse, which may be an indication of
the difficulties the corresponding SVMs encountered.

4 Conclusions and further work

We presented a textual entailment recognition sys-
tem that relies on SVMs whose features correspond
to string similarity measures applied to the lexical
and shallow syntactic level. Experimental results in-
dicate that the system performs reasonably well in
question answering (QA), which was our main tar-
get, with results deteriorating as we move to infor-
mation retrieval (IR), multi-document summariza-
tion (SUM), and information extraction (IE).

In work carried out after the official submission
of our system, we incorporated two of the possible
improvements that were mentioned in previous sec-
tions: we treated strings containing POS or chunk
tags as lists of tags; and we applied Soundex to each
word of T and H , forming a 9th pair of strings, on
which all other similarity measures were applied;
feature selection was then repeated anew. The cor-
responding results are shown in brackets in tables
2 and 3. There was an overall improvement in all
tasks (QA, IR, SUM), except for IE, where textual en-
tailment is more difficult to capture via textual simi-

larity, as commented above. We have suggested two
additional possible improvements: applying partial
matching to all of the string pairs that we consider,
and investigating other feature selection schemes. In
future work, we also plan to exploit WordNet to cap-
ture synonyms, hypernyms, etc.
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