A Task-based Comparison of Information Extraction Pattern Models

Mark A. Greenwood and Mark Stevenson
Department of Computer Science
University of Sheffield
Sheffield, S1 4DP, UK
{m greenwood, marks}@lcs. shef. ac. uk

Abstract al., 2000; Stevenson and Greenwood, 2005; Sudo et
al., 2001; Sudo et al., 2003; Yangarber, 2003). In
Several recent approaches to Information these approaches extraction patterns are essentially
Extraction (IE) have used dependency trees parts of the dependency tree. To perform extraction
as the basis for an extraction pattern repre- they are compared against the dependency analysis
sentation. These approaches have used a va- of a sentence to determine whether it contains the
riety of pattern models (schemes which de-  pattern.

fine the parts of the dependency tree which Each of these approaches relies orpattern
can be used to form extraction patterns). modelto define which parts of the dependency tree
Previous comparisons of these pattern mod-  can he used to form the extraction patterns. A vari-
els are limited by the fact that they have used ety of pattern models have been proposed. For ex-
indirect tasks to evaluate each model. This ample the patterns used by Yangarber et al. (2000)
limitation is addressed here in an experiment  gre the subject-verb-object tuples from the depen-
which compares four pattern models using  gency tree (the remainder of the dependency parse is
an unsupervised learning algorithm and a gjiscarded) while Sudo et al. (2003) allow any sub-
standard |IE scenario. It is found that there  {ee within the dependency parse to act as an ex-
is a wide variation between the models’ per-  {raction pattern. Stevenson and Greenwood (2006)
formance and suggests that one model is the - showed that the choice of pattern model has impor-
most useful for IE. tant implications for IE algorithms including signifi-
cant differences between the various models in terms

1 Introduction of their ability to identify information of interest in

A common approach to Information Extraction (IE)teXt-

is to (manually or automatically) create a set of pat- However, there has been little comparison be-
terns which match against text to identify informaiween the various pattern models. Those which have

tion of interest. Muslea (1999) reviewed the apbeen carried out have been limited by the fact that
proaches which were used at the time and fouri#ey used indirect tasks to evaluate the various mod-
that the most common techniques relied on lexiccels and did not compare them in an IE scenario.

syntactic patterns being applied to text which ha¥v/e address this limitation here by presenting a di-

undergone relatively shallow linguistic processingrect comparison of four previously described pattern

For example, the extraction rules used by Soderlarfiodels using an unsupervised learning method ap-
(1999) and Riloff (1996) match text in which syn-plied to a commonly used IE scenario.

tactic chunks have been identified. More recently The remainder of the paper is organised as fol-
researchers have begun to employ deeper syntachkiovs. The next section presents four pattern models
analysis, such as dependency parsing (Yangarbervetich have been previously introduced in the litera-
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ture. Section 3 describes two previous studies whidh the dependency tree shown in Figure 1. How-
compared these models and their limitations. Seever, the SVO model cannot represent information
tion 4 describes an experiment which compares ttaescribed using other linguistic constructions such
four models on an IE task, the results of which aras nominalisations or prepositional phrases. For ex-
described in Section 5. Finally, Section 6 discussemmple the SVO model would not be able to recog-
the conclusions which may be drawn from this worknise that Smith’s new job title is CEO since these

patterns ignore the part of the dependency tree con-
2 |E Pattern Models taining that information.

In dependency analysis (Mel'€uk, 1987) the syntax Chains. A pattern is defined_ as a path between a

of a sentence is represented by a set of directed BErP Node and any other node in the dependency tree
nary links between a word (the head) and one of iigassing through zero or more intermediate nodes
modifiers. These links may be labelled to indicatéSudo et al., 2001). Figure 2 shows examples of the
the relation between the head and modifier (e.g. sufhains which can be extracted from the tree in Figure

ject, object). An example dependency analysis fot-

the sentencéAcme hired Smith as their new CEO, Chains provide a mechanism for encoding infor-
replacing Bloggsis shown Figure 1. mation beyond the direct arguments of predicates

and includes areas of the dependency tree ignored by

hire/v the SVO model. For example, they can represent in-
subj 53 vpsc_mod formation expressed as a nominalisation or within a
Acme/N Smith/N replace/V prepositional phrase, e.gThe resignation of Smith
. o5 from the board of Acme "..However, a potential
shortcoming of this model is that it cannot represent
CEO/N Bloggs/N the link between arguments of a verb. Patterns in the
gen rod chain model format are unable to represent even the

simplest of sentences containing a transitive verb,

) e.g.“Smith left Acme”.
Figure 1: An example dependency tree. Linked Chains The

their/N new/A

linked chains model
(Greenwood et al., 2005) represents extraction pat-

The remainder of this section outlines four mOOI'terns as a pair of chains which share the same verb

els for representing extraction patterns which can br?ut no direct descendants. Example linked chains

derived from dependency trees. o .
. . _ are shown in Figure 2. This pattern representa-
Predicate-Argument Model (SVO): A simple tion encodes most of the information in the sen-

approach, used by Yangarber et al. (2000), Yangatrénce with the advantage of being able to link to-

ber (2003) and Stevenson and Greenwood (ZOOE%ether event participants which neither of the SVO

iS to use subject-verb-object tuples from the depe v chain model can, for example the relation be-

dency parse as extraction patterns. These consist 0f . «c it and“Bloggs” in Figure 1.

a verb and its subject and/or direct object. "Figure Subtrees: The final model to be considered is the
2 shows the two SVO patterhsvmch are produced subtree model (Sudo et al., 2003). In this model any

fothE_e dep;nldency dtreﬁ sho]\c/vn n :_:lgureh_l.h . subtree of a dependency tree can be used as an ex-
'S modet can iden ity information WhICh 1S €X* 4 ction pattern, where a subtree is any set of nodes

pressed using simple predicate-argument ConStruﬁ;{the tree which are connected to one another. Sin-

tions such as the relation betweAomeand Smith gle nodes are not considered to be subtrees. The
_ 1_Th|e fOfmﬁlism used fgr rerérisegtirég depﬁ“?;gg%’)pager@btree model is a richer representation than those

IS similar to the one introduce y Sudo et al. . achy:

node in the tree is represented in the forragib/ c] (e.g. Ialscussed so far and can represgnt any part of a de-
subj [ N Acne] ) wherec is the lexical item Acne), b its ~ pendency tree. Each of the previous models form a

grammatic_al tagN) anda_l the dependency relation between th.iSproper subset of the subtrees. By Choosing an appro-
node and its parens(ibj ). The relationship between nodes is__ . t bt it i ible to link t th .
represented a¥( A+B+C) which indicates that nodes, Band ~ Pr1até SUbree It 1S possible o link together any pair

Care direct descendents of node of nodes in a tree and consequently this model can
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SvVO
[V/ hire] (subj [N Acne] +obj [ N Smi t h])
[VIrepl ace] (obj [ N Bl oggs])

Chains

[ V/ hire] (subj [N Acne])

[V hire](obj[NSnith])

[V/hire] (obj[N/Snith](as[N CEQ))

[V/hire] (obj[N/Snmith](as[N CEQ (gen[N'their])))

Linked Chains

[V/ hire] (subj [N Acne] +obj [ N Smi th])

[ VI hire] (subj [N Acne] +obj [ N/ Smit h] (as[ N CEQ] ) )

[V/Ihire] (obj [N/ Smith]+vpscarod[ V/ repl ace] (obj [ N Bl oggs]))
Subtrees

[VIhire] (subj [ N Acre] +obj [ N Smi t h] +vpsc.nod[ V/ repl ace])
[V hire] (subj[ N Acne] +vpscod[ V/ r epl ace] (obj [ N Bl oggs]))
[N Smith](as[ N CEQ (gen[ Nt hei r] +nod[ A/ new] ))

Figure 2: Example patterns for four models

represent the relation between any set of items in thié&ely to cope with very large sets of candidate pat-

sentence. terns. The number of patterns generated therefore
has an effect on how practical computations using
3 Previous Comparisons that model may be. It was found that the number

of patterns generated for the SVO model is a lin-

There have been few direct comparisons of the vagar function of the size of the dependency tree. The
ious pattern models. Sudo et al. (2003) comparatumber of chains and linked chains is a polynomial
three models (SVO, chains and subtrees) on twlanction while the number of subtrees is exponen-
IE scenarios using a entity extraction task. Modtial.
els were evaluated in terms of their ability to iden- Stevenson and Greenwood (2006) also analysed
tify entities taking part in events and distinguishthe representational power of each model by measur-
them from those which did not. They found theing how many of the relations found in a standard IE
SVO model performed poorly in comparison withcorpus they are expressive enough to represent. (The
the other two models and that the performance afocuments used were taken from newswire texts and
the subtree model was generally the same as, biomedical journal articles.) They found that the
better than, the chain model. However, they digVvO and chain model could only represent a small
not attempt to determine whether the models coul@roportion of the relations in the corpora. The sub-
identify the relations between these entities, simplytee model could represent more of the relations than
whether they could identify the entities participatingany other model but that there was no statistical dif-
in relevant events. ference between those relations and the ones cov-

Stevenson and Greenwood (2006) compared tleged by the linked chain model. They concluded
four pattern models described in Section 2 in termthat the linked chain model was optional since it is
of their complexity and ability to represent rela-expressive enough to represent the information of
tions found in text. The complexity of each modelinterest without introducing a potentially unwieldy
was analysed in terms of the number of patternsumber of patterns.
which would be generated from a given depen- There is some agreement between these two stud-
dency parse. This is important since several dés, for example that the SVO model performs
the algorithms which have been proposed to makgoorly in comparison with other models. However,
use of dependency-based IE patterns use iterati&evenson and Greenwood (2006) also found that
learning (e.g. (Yangarber et al., 2000; Yangarbethe coverage of the chain model was significantly
2003; Stevenson and Greenwood, 2005)) and are urnerse than the subtree model, although Sudo et al.
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(2003) found that in some cases their performancg2 Extraction Scenario

could not be dlstlngwsh.ed. n addltlgn'to these dIS1"he ranking process was applied to the IE scenario
agreements, these studies are also limited by the fact

that they are indirect; they do not evaluate the varil-JS‘eOI for the sixth Megsage U.nderstandmg qonfer—
' ence (MUC-6). The aim of this task was to iden-
ous pattern models on an |E task. tify management succession events from a corpus
of newswire texts. Relevant information describes
an executive entering or leaving a position within a
We compared each of the patterns models describé@mpany, for exampléLast month Smith resigned
in Section 2 using an unsupervised IE experimerﬂs CEO of Rooter Ltd.” This sentence described as
similar to one described by Sudo et al. (2003).  event involving three items: a perso8n(itt), po-

Let D be a corpus of documents arftia set of Sition (CEQ) and companyRooter LtJ. We made
documents which are relevant to a particular extra¢ise of a version of the MUC-6 corpus described by
tion task. In this context “relevant” means that theSoderland (1999) which consists of 598 documents.
document contains the information we are interested For these experiments relevant documents were
in identifying. D and R are such thaD = R U R identified using annotations in the corpus. However,
andRN R = (. As assumption behind this approactthis is not necessary since Sudo et al. (2003) showed
is that useful patterns will be far more likely to occurthat adequate knowledge about document relevance
in R thanD overall. could be obtained automatically using an IR system.

4 Experiments

4.1 Ranking Patterns 4.3 Pattern Generation

Patterns for each model are ranked using a techniglie texts used for these experiments were parsed
inspired by the tf-idf scoring commonly used in In-using the Stanford dependency parser (Klein and
formation Retrieval (Manning and Schutze, 1999)Manning, 2002). The dependency trees were pro-
The score for each patterp, is given by: cessed to replace the names of entities belonging
to specific semantic classes with a general token.
A Three of these classes were used for the manage-
score(p) = tfp x <J> (1) ment succession domaiPERSON, ORGANI SA-
P Tl ON and POST). For example, in the dependency
wheretf, is the number of times patteqm ap- analysis of“Smith will became CEO next year”
pears in relevant documentd] is the total number “Smith” is replaced byPERSON and “CEQ” by
of documents in the corpus anff, the number of POST. This process allows more general patterns to
documents in the collection containing the patterbe extracted from the dependency trees. For exam-
P. ple, [ V/ become] (subj [ N PERSON] +obj [ N/ POST] ) .
Equation 1 combines two factors: therm fre- Inthe MUC-6 corpus items belonging to the relevant
guency(in relevant documents) anidverse docu- semantic classes are already identified.
ment frequencyacross the corpus). Patterns which Patterns for each of the four models were ex-
occur frequently in relevant documents without betracted from the processed dependency trees. For
ing too prevalent in the corpus are preferred. Sudde SVO, chain and linked chain models this was
et al. (2003) found that it was important to find theachieved using depth-first search. However, the
appropriate balance between these two factors. Thepumeration of all subtrees is less straightforward
introduced the3 parameter as a way of controllingand has been shown to be#aP-complete prob-
the relative contribution of thverse document fre- lem (Goldberg and Jerrum, 2000). We made use of
quency f is tuned for each extraction task and patthe rightmost extensioalgorithm (Abe et al., 2002;
tern model combination. Zaki, 2002) which is an efficient way of enumerating
Although simple, this approach has the advantagal subtrees. This approach constructs subtrees iter-
that it can be applied to each of the four pattern modatively by combining together subtrees which have
els to provide a direct comparison. already been observed. The algorithm starts with a

&4



set of trees, each of which consists of a single node. It can be seen that the various pattern models gen-
At each stage the known trees are extended by tleeate vastly different numbers of patterns and that
addition of a single node. In order to avoid dupli-the number of subtrees is significantly greater than
cation the extension is restricted to allowing nodethe other three models. Previous analysis (see Sec-
only to be added to the nodes on the rightmost pation 3) suggested that the number of subtrees which
of the tree. Applying the process recursively createsould be generated from a corpus could be difficult
a search space in which all subtrees are enumeratdprocess computationally and this is supported by
with minimal duplication. our findings here.

T'he.rightmost exten§ion algorithm. is m_ost suiteq,h4 Parameter Tuning
to finding subtrees which occur multiple times and, _ _ .
even using this efficient approach, we were unabl&N€ value off in equation 1 was set using a sep-
to generate subtrees which occurred fewer than fo@f@t€ corpus from which the patterns were gener-
times in the MUC-6 texts in a reasonable time. Sim@t€d, @ methodology suggested by Sudo etal. (2003).
ilar restrictions have been encountered within othe}© 9enerate this additional text we used the Reuters
approaches which have relied on the generation §forPus (Rose etal., 2002) which consists of a year's
a comprehensive set of subtrees from a parse foforth of newswire output. Each document in the
est. For example, Kudo et al. (2005) used subtredkUters corpus has been manually annotated with
for parse ranking but could only generate subtred§PIC codes indicating its general subject area(s).
which appear at least ten times in a 40,000 sentenf¥1€ Of these topic code<411) refers to man-
corpus. They comment that the size of their data s@gement succession events and was used to identify
meant that it would have been difficult to completélocuments which are relevant to the MUCE IE sce-
the experiments with less restrictive parameters. IRari0. A corpus consisting of 348 documents anno-
addition, Sudo et al. (2003) only generated subtreddted with codeC411 and 250 documents without
which appeared in at least three documents. Kudbat code, representing irrelevant documents, were
et al. (2005) and Sudo et al. (2003) both used in@ken from the Reuters corpus to create a corpus

rightmost extension algorithm to generate subtreedith the same distribution of relevant and irrelevant
documents as found in the MUC-6 corpus. Unlike

Tg Iprowdel a d'rSCt cotlampa_rlson ]?tfhthe tpattferr}he MUC-6 corpus, items belonging to the required
MOCEIS We alSo produced Versions of the Sets 0 IoaS'Iémantic classes are not annotated in the Reuters

terns ex_tract(-?'d for the SVO,_cham and linked Cha“@)orpus. They were identified automatically using
models in which patterns which occurred fewer tha named entity identifier

four times were removed. Table 1 shows the num- patterns generated from the MUC-6 texts

ber of patterns generated for each of the four mocé/(/ere ranked using formula 1 with a variety of val-

els when the patterns are both filtered and unf”l]es of 3. These sets of ranked patterns were then

tered. (Although the set of unfiltered subtree patflsed to carry out a document filtering task on the

:Erns wekr)e no;[c ge?terated E.'ShpOSS'IZIeth determt"geuters corpus - the aim of which is to differentiate
€ number of patterns which would be generateg, ., nonts pased on whether or not they contain a

using a process described by Stevenson and Gre?gl'ation of interest. The various values férwere

wood (2006).) compared by computing the area under the curve. It
was found that the optimal value fgrwas 2 for all

Model | Filtered  Unfiltered pattern models and this setting was used for the ex-
SVO | 9,189 23,128 periments.
Chains| 16,563 142,019
Linked chains| 23,452 493,463 4.5 Evaluation
Subtrees 369,453 1.69<10'2 Evaluation was carried out by comparing the ranked

lists of patterns against the dependency trees for the
Table 1: Number of patterns generated by eac{OIUC—6 texts. When a pattern is found to match
model against a tree the items which match any seman-
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tic classes in the pattern are extracted. These iterissvery low in this evaluation and part of the reason
are considered to be related and compared agaitfiet this is the fact that the patterns have been filtered
the gold standard data in the corpus to determine allow direct comparison with the subtree model.
whether they are in fact related. Figure 4 shows the results when the unfiltered SVO,
The precision of a set of patterns is computed aghain and linked chain patterns are used. (Perfor-
the proportion of the relations which were identifiednance of the filtered subtrees are also included in
that are listed in the gold standard data. The recall this graph for comparison.)
the proportion of relations in the gold standard data This result shows that the addition of extra pat-
which are identified by the set of patterns. terns for each model improves recall without effect-
The ranked set of patterns are evaluated incremeimg the maximum precision achieved. The chain
tally with the precision and recall of the first (highestmodel also performs badly in this experiment. Pre-
ranked) pattern computed. The next pattern is thetision of the SVO model is still high (again this is
added to the relations extracted by both are evalalue to the same three highly accurate patterns) how-
ated. This process continues until all patterns amver the maximum recall achieved by this model is

exhausted. not particularly increased by the addition of the un-
filtered patterns. The linked chain model benefits
5 Results most from the unfiltered patterns. The extra patterns

_ . lead to a maximum recall which is more than dou-
Figure 3 shows the results when the four filtered pagyje any of the other models without overly degrad-

tern models, ranked using equation 1, are comparefly precision. The fact that the linked chain model
A first observation is that the chain modelis aple to achieve such a high recall shows that it is
performs poorly in comparison to the othergple to represent the relations found in the MUC-6
three models. The highest precision achieved byt unlike the SVO and chain models. It is likely
this model is 19.9% and recall never increasefat the subtrees model would also produce a set of
beyond 9%. In comparison the SVO model inpatterns with high recall but the number of poten-

cludes patterns with extremely high precision bufia| patterns which are allowable within this model
the maximum recall achieved by this model isnakes this impractical.

low. Analysis showed that the first three SVO
patterns had very high precision. These werg piscussion and Conclusions
[ V/ succeed] (subj [ N PERSON] +obj [ N/ PERSON] ) ,
[ V/ be] (subj [ N PERSON] +obj [ N PCST] ) and Some of the results reported for each model in these
[ V/ becone] (subj [ N PERSON] +obj [ N PCST] ), experiments are low. Precision levels are generally
which have precision of 90.1%, 80.8% and 78.9%elow 40% (with the exception of the SVO model
respectively. If these high precision patterns areshich achieves high precision using a small number
removed the maximum precision of the SVO modebf patterns). One reason for this that the the patterns
is around 32%, which is comparable with the linkedvere ranked using a simple unsupervised learning
chain and subtree models. This suggests that, whigdgorithm which allowed direct comparison of four
the SVO model includes very useful extractiondifferent pattern models. This approach only made
patterns, the format is restrictive and is unable tase of information about the distribution of patterns
represent much of the information in this corpus. in the corpus and it is likely that results could be im-
The remaining two pattern models, linked chainproved for a particular pattern model by employing
and subtrees, have very similar performance arore sophisticated approaches which make use of
each achieves higher recall than the SVO model, akdditional information, for example the structure of
beit with lower precision. The maximum recall ob-the patterns.
tained by the linked chain model is slightly lower The results presented here provide insight into the
than the subtree model but it does maintain higharsefulness of the various pattern models by evaluat-
precision at higher recall levels. ing them on an actual IE task. It is found that SVO
The maximum recall achieved by all four modelgatterns are capable of high precision but that the
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Figure 3: Comparisons of filtered pattern models.
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Figure 4: Comparison of unfiltered models.
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restricted set of possible patterns leads to low re- workshop on Machine Learning for Information Ex-
call. The chain model was found to perform badly traction, Orlando, FL.

with low recall and precision regardless of whetheg)ien Riloff. 1996. Automatically Generating Extraction
the patterns were filtered. Performance of the linked Patterns from Untagged Text. Thirteenth National

chain and subtree models were similar when the pat- Conference on Artificial Intelligence (AAAI-9§ages
terns were filtered but unfiltered linked chains were 1044-1049, Portland, OR.

capable of achieving far higher recall than the filTony Rose, Mark Stevenson, and Miles Whitehead.
tered subtrees. 2002. The Reuters Corpus Volume 1 - from Yes-

; ; . terday’'s News to Tomorrow’s Language Resources.
These experiments suggest that the linked chain In Proceedings of the Third International Conference

model is a useful one for IE since itis simple enough | anguage Resources and Evaluation (LREG-02)
for an unfiltered set of patterns to be extracted and pages 827-832, La Palmas de Gran Canaria.

able to represent a wider range of information thagtephen Soderland. 1999. Learning Information Extrac-

the SVO and chain models. tion Rules for Semi-structured and Free TeMachine
Learning 31(1-3):233-272.
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