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Abstract

Many approaches for named entity recogni-
tion rely on dictionaries gathered from cu-
rated databases (such as Entrez Gene for
gene names.) Strategies for matching entries
in a dictionary against arbitrary text use ei-
ther inexact string matching that allows for
known deviations, dictionaries enriched ac-
cording to some observed rules, or a com-
bination of both. Such refined dictionar-
ies cover potential structural, lexical, ortho-
graphical, or morphological variations. In
this paper, we present an approach to au-
tomatically analyze dictionaries to discover
how names are composed and which varia-
tions typically occur. This knowledge can
be constructed by looking at single entries
(names and synonyms for one gene), and
then be transferred to entries that show simi-
lar patterns in one or more synonyms. For
instance, knowledge about words that are
frequently missing in (or added to) a name
(“antigen”, “protein”, “human”) could au-
tomatically be extracted from dictionaries.
This paper should be seen as a vision paper,
though we implemented most of the ideas
presented and show results for the task of
gene name recognition. The automatically
extracted name composition rules can eas-
ily be included in existing approaches, and
provide valuable insights into the biomedi-
cal sub-language.
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1 Introduction

Recognition of named entities (NER), such as names
referring to genes and proteins, forms a major build-
ing block for text mining systems. Especially in
the life sciences, a large amount of different entity
types and their instances exist. Two basic strategies
for NER are classification- and dictionary-based ap-
proaches. Classifiers learn (or are given) models to
decide whether a sequence of tokens refers to an
entity or not. Such decisions are based on various
forms of input, for instance, tokens and their se-
quence in a sentence, part-of-speech tags, charac-
teristic suffixes, and trigger keywords' (Hakenberg
et al., 2005). Models can be learned from a given
training sample. Dictionary-based approaches rely
on curated word lists containing (all known) repre-
sentatives of an entity type. Manual or automated
refinement of the dictionary and inexact matching
strategies allow to cover a broad spectrum of name
variations (Hanisch et al., 2005). Classification-
based approaches have proven to be very robust to-
wards unseen tokens and names, because they also
incorporate knowledge on names of the given class
in general’ (Crim et al., 2005). Dictionaries, on
the other hand, reflect the knowledge about an en-
tity class at a given time, and such approaches can-
not find instances unknown to them. However, the
main advantage of dictionary-based NER is that they
bring the explicit possibility to map recognized en-
tities to the source of the entries (most times, a
database.) This alleviates the task of named entity

"For example, a protein name often is/has a proper noun;
many enzymes end with ‘—ase’; ‘domain of” is often followed
by a protein name.
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identification (NEI) that is needed to annotate texts
properly or link text-mined facts to database entries.

In this paper, we want to concentrate on
dictionary-based approaches and present ideas of
how these could be automatically refined and en-
riched. In such a setting, named entity recognition
functions as a method of ‘spotting’ entities in a text,
after which further identification (disambiguation)
is needed. NER components thus should guarantee
very high recall rates with a reasonable precision.
NEI then refines the predictions of NER, eliminat-
ing false positive annotations and identifying names.
That such a setup would perform quite well is re-
flected, for example, in a study presented by Xu et
al. (2007). They showed that sophisticated disam-
biguation strategies currently yield up to 93.9% pre-
cision (for mouse genes; yeast: 89.5%, fly: 77.8%.)
Participants in the BioCreAtIVE 2 challenge showed
similar values for human genes (up to 84.1% preci-
sion, 87.5% recall, or 81.1% F1), see Morgan and
Hirschman (2007) for a summary.

Hand-coded rules for creating spelling variations
have been proposed before, see section on Related
Work. Such rules are applied to synonyms to gen-
erate morphological and orthographical variations
(“Fas ligand” — “Fas ligands” and “Ifn gamma” —
“Ifn-v”, respectively). In the same manner, systems
use known patterns for structural changes of names
and mappings for lexical variations to enrich exist-
ing dictionaries (“CD95R” — “receptor of CD95”
and “gastric alcohol dehydrogenase” — ‘“‘stomach
alcohol dehydrogenase™). Our research question in
this paper is, how such rules can be learned automat-
ically from dictionaries that contain entries of the
same entity class with multiple, typical synonyms
each. Learning about the composition of names
comes down to an analysis of known names. A
human, given the same task, would look through a
lot of examples to derive term formation patterns.
Questions to ask are:

e What are frequent orthographical and morpho-
logical variations?

Which parts of a name get abbreviated?
How are abbreviations formed?

Which identical abbreviations can be observed
in multiple names?
In which way can a name structurally and lexi-
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cally change?
e Which are the parts of a name that can be ex-
changed with other terms or skipped entirely?
e Which are the important parts of a name, which
are additional descriptive elements?

In this paper, we demonstrate methods to analyze
names in order to find the semantically important
parts. We map these parts to potential syntactic vari-
ations thereof observed within a name and its syn-
onyms. We assess the frequency of such mappings
(exchange of tokens, different ordering of tokens,
etc.) and transfer this knowledge to all other names
in the same dictionary. In this setup, understanding
a name results in a structured decomposition of the
name. Such decompositions provide knowledge on
how to find (and identify) the name in arbitrary text,
as they give insights into its mandatory, unique, and

ambiguous? parts.
This paper should be seen as a vision paper,

though we implemented most of the ideas presented
herein and show first results. We first explain the
idea behind learning name composition rules, mo-
tivated by manual curation as described in Related
Work. We then explain the basic techniques needed
for our analysis. We show how single entries (a
name and all its synonyms) can be analyzed to find
composition rules, and how these can be transferred
to other entries. Preliminary results using some of
the ideas presented here are also given. We con-
clude this paper with a discussion of the experimen-
tal methodology and an outlook.

1.1 Related Work

Current survey articles cover the spectrum of re-
cent methods and results for biomedical named en-
tity recognition and identification (Cohen and Hersh,
2005; Leser and Hakenberg, 2005). A recent as-
sessment of named entity recognition and identifi-
cation was done during the BioCreAtIvE 2 evalua-
tion’. Official results will be available in April 2007.
Naturally, a number of systems proposed before are
highly related to the method presented in this paper.
Hanisch et al. (2005) proposed the ProMiner system
to recognize and identify protein names in text. They
observed that the ordering of tokens in a name oc-
cur quite frequently, but do not change the seman-

2The latter two as compared to the whole dictionary.
3See http://biocreative.sourceforge.net .



tics of the overall name. They presented a model for
protein names, partitioning tokens into token classes
according to their semantic significance: modifiers
(“receptor”), specifiers (“alpha”), non-descriptive
tokens (“fragment”), standard tokens (“TNF”), plus
common English words and interpunctuation. To
evaluate the significance of tokens, they count their
respective frequencies in a dictionary. Hanisch et al.
extract a dictionary using various knowledge source
(HGNC etc.) and expand and prune it afterwards.
Expansion and pruning are based on manually de-
fined rules (separating numbers and words, expand-
ing known unambiguous synonyms with known syn-
onyms, applying curation lists maintained by biolog-
ical experts, predefined regular expressions). The fi-
nal matching procedure found names by comparing
(expanded) tokens and their classes to arbitrary text,
where some token classes were mandatory for the
identification and others could be missing. ProMiner
yielded results between 78 and 90% F1-measure on
the BioCreAtIvE 1 (Task 1B), depending on the
organism-specific sub-task. The highest recall was
found to be 84.1% for fly, 81.4% for mouse, and
84.8% for yeast genes.

We used a similar method, relying entirely on
manually defined rules for name variations, for the
BioCreAtIvE 2 GN task (Hakenberg et al., 2007).
We expanded the dictionary applying these rules to
every synonym (treating abbreviations and spelled-
out names slightly different). This yielded a recall of
92.7 and 87.5% on the training and test sets, respec-
tively (F1: 81.1%). In the aftermath of BioCre AtIlvE
2, we now try to improve this high recall values fur-
ther, by automatically analyzing the whole dictio-
nary of gene names instead of manually composing
useful rules in a trial-and—error approach.

2 Methods

We first want to present the overall idea of learning
name composition rules, guided by specific exam-
ples. We first show how comparison of synonyms
known for one gene name yields insights into the
‘meaning’ of the gene, and produces rules for struc-
tural and lexical variations of its name(s). After-
wards, we explain how such rules can be exchanged
between different genes and add to the understand-
ing of each genes ‘meaning.’
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2.1 Techniques

We apply several techniques to the analysis of
names. To detect abbreviations by pairwise compar-
ison of synonyms, we use the algorithm proposed by
Schwartz and Hearst (2003) as the core component4.
We changed some of the details so that, for instance,
the first letter of the potential abbreviation has to
match the first letter of the proposed long form. We
perform the detection of abbreviations not only on
whole synonyms, but also on parts of each name
(like for “TNF-alpha stimulated ABC protein”), so
that this property of Schwartz and Hearst’s algo-
rithm (S&H) is recovered. A trivial adaptation also
reveals which parts of an abbreviation (one or more
characters) map to which parts of the long form (one
token, one partial token.) As S&H allows for miss-
ing tokens in the long form, we can also add the pos-
sibility for (few) characters in the abbreviation not

being reflected in the long form.
To detect inexact matches (that is, slight vari-

ations in morphology or orthography), we use an
adaptation of the biological sequence alignment al-
gorithm (Needleman and Wunsch, 1970). Using the
computed alignment score, this yields an immediate
quantification of the similarity of two terms.

We compare the sequence of identified name parts
(parts of a name where a mapping from this part to
a part of the other synonym exists) in order to find
parts that can be skipped or exchanged with each
other. In addition, this yields insights into potential
permuations of all parts of a name, and shows where
certain parts typically do or do not occur.

2.2 Representation

Representation of information extracted by parsing
i) a synonym or i) all synonyms of a gene becomes
a crucial basic part of our approach. Concepts have
to be found in a name, for instance,

e substance: “serotonin”,

e type: “receptor”,

e function: “transcription factor”, or

o family-member: “family-member number 6”.

Also, for these concepts, rules have to be learned
that match them against text (or vice versa): an ‘R’
hints on a receptor, a ’6’ at the end of a name (for in-
stance, a noun phrase) hints on a family-member or

“The original algorithm decides whether a given short form
can be explained by a given long form.



Type | Example token

| Example name

Descriptor | antigen, ligand, inhibitor P-30 antigen

Modifier factor, family member, type | BRG1-associated factor
Specifier alpha, IX, A TNF alpha

Source d, HUMAN, p dHNF-4

Table 1: Types of tokens that frequently occur in gene names. Also see Hanisch et al. (2005), though they introduce different

conventions.

type. We rely on semantic types, which are defined
using descriptions automatically identified from the
syntax (lists of variations), rather than pure syntac-
tical ones. This helps during classification of identi-
fied concepts: a syntactical concept would map “s”
to “serotonin”; but additionally, we need to express
that the given gene demands any arbitrary form of
a reference to a substance, which is serotonin, in its
name. Whether this occurs as the substance’s name
itself, an abbreviation, or synonym of the substance,
and at which position in a text>, then becomes less
important concerning the matching strategy. Table 1
sums up some of the known types of tokens and ex-
amples we want to distinguish. Note that the proper
type definition cannot automatically be assigned to
a concept. Concepts can be identified as belong-
ing to the same type only because they share certain
properties (can be skipped, is a numerical entity, is a
mandatory tokens that occurs at the end of a name.)
In Table 1, the descriptors “antigen” and “ligand”,
for instance, appear to be of the same type, but anal-
ysis will reveal that while the mention of “antigen”
in a name is skipped frequently, “ligand” represents
a mandatory concept in many synonyms.

For the remainder of this paper, we subsequently
break down a gene into the basic concepts described
in one or more of its name. First, a gene is iden-
tified by a set of names (synonyms). Second, each
name consists of multiple parts; proper separation
and identification is a crucial step. Third, each part
of a name then represents a certain concept that is
typical for the gene. A gene is defined by all identi-
fied concepts. While a gene name part stores the in-
formation on where and if it occurs in the sequence
of parts that ultimately form the (or rather a) name
of the gene, concepts store information about vari-
ations. Knowledge about name parts and concepts
is then transferred within each respective level only.
Each such potential transfer we call a composition

SMaybe within a somewhat confined neighborhood, for in-
stance, in the current paragraph or in the abstract of the text.
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rule. An example, which we will also discuss in
the next section, is the gene FASLG. Is has multiple
synonyms, “FASLG” being one of those. This name
can be separated into the parts “FAS” and “LG”. The
first part has the concept “FAS”, which can appear
in the variations “Fas”, “fas”, or “CD95”, as we will
see later; the second part has the concept “LG”, a
possible variation is “ligand”:

FASLG

(from top to bottom, levels depict the name, parts,
concepts, and variations of each concept.)

2.3 Analysis of intra-gene variations

In this section we explain how we discover concepts
and their appearances (exact tokens) within a set of
synonyms under the assumption that they all belong
to the same gene. Basically, this means that we
can allow for more mismatches, lacking parts, or the

like, as for comparing names of different genes.
Reconsider the example of the aforementioned

FASLG gene (356)°. We show the synonyms known
according to Entrez Gene in Table 2. Pairwise anal-
ysis of the synonyms provides insights as shown in
Table 3.

Recombining the extracted concepts and using

different variations for either, we can achieve some
new potential names, for instance, FasL (capitaliza-
tion) and CD95 ligand (replaced L’ with identified

®In the following, we will always show each gene’s official
symbol first and then known synonyms. Numbers in brackets
refer to Entrez Gene IDs.



Apoptosis antigen ligand APTL apoptosis (APO-1) antigen ligand 1

Apoptosis (APO-1) ligand 1 APTI1LG1 FAS antigen ligand

Apoptosis ligand CD178 Fas ligand (TNF superfamily, member 6)

CD95L FASL TNFL6_.HUMAN

fas ligand FASLG TNFSF6

FAS ligand TNFL6 Tumor necrosis factor ligand superfamily member 6

Table 2: Synonyms of the FASLG gene that we use in our examples.

Synonyms | Composition rule learned | No.
FASL + FAS ligand L = ligand 1
FASLG + FAS ligand LG = ligand 2
FAS ligand + fas ligand FAS = fas 3
FASL + CD95L FAS = CD95 4
Tumor necrosis factor ligand superfamily member 6 + | T = Tumor, N = necrosis Sa,b
TNFSF6 F = factor, SF = superfamily Sc.d
“member” before a number can be left out Se

Apoptosis antigen ligand + Apoptosis ligand “antigen” can be left out 6
FAS antigen ligand + FAS ligand “antigen” can be left out 7
Apoptosis (APO-1) ligand 1 + Apoptosis ligand “1” at end can be left out 8
TNFL6 + TNFL6_HUMAN “_ HUMAN” can be added to a name 9
Fas ligand (TNF superfamily, member 6) + FAS ligand | Fas = FAS 10
Apoptosis ligand + APTL Apoptosis = APT 11
Apoptosis (APO-1) ligand 1 + APT1LG1 ligand 1 = LGl 12

Table 3: Pairwise analysis of some synonyms for FASLG and some insights gained. Conclusions shown in the bottom part can be
drawn using insights from the first part only. Rules like “X can be left out” imply that the opposite can also happen, “X can be
added”, and vice versa. Multiple detections of the same rule (no. 6 & 7) increase its support, so the application of rules could be

weighted accordingly.

long form) for the FASLG gene. In cases where nei-
ther part of a name can be mapped onto parts of an-
other name, then no rule should be generated: com-
paring “CD178 antigen” to “CD95 ligand” should
not result in the variation “CD178 ligand”. On the
other hand, after removal of “antigen” (rules no. 6
& 7 in Table 3), “CD178” represents a variation
of “CD95 ligand” (which in this case was already
known from Entrez Gene.) In the following sections,
we explain the detection of different kinds of varia-
tions in more detail and show examples.

Abbreviations

Detecting abbreviations is a crucial initial step in our
analyses. Many variations are explained only across
abbreviations and their long forms. More important,
comparing abbreviations and long forms identifies
the parts of either name, which can then be com-
pared to parts of other names. Taking HIF1A (3091)
as an example, we find the synonyms “HIF1 al-
pha”, “HIF-1 alpha”, “HIF-1alpha”, and “Hypoxia-
inducible factor 1 alpha”. Schwartz and Hearst’s al-
gorithm easily reveals that “1 alpha”, “lalpha”, and
“1A” all map to each other; “H” can be mapped to
“Hypoxia”, and so on. All in all, we learned that
“Hypoxia-inducible factor 1A” could be a potential
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synonym for HIF1A.

We now look at the OR1G1 gene (8390). Con-
sider two of its synonyms, “Olfactory receptor
1G1”, and “olfactory receptor, family 1, subfamily
G, member 1”. Comparing the official symbol with
the first synonym, it becomes clear that “OR” abbre-
viates “Olfactory receptor” using S&H. Comparing
the synonyms, we find direct correspondences be-
tween both “1”’s and “G”. AS we are still within one
gene, is is safe to assume that all in all, “1G1” ab-
breviates “family 1, subfamily G, member 1”. This
implies that concepts stating that we are within a
gene family (subfamily, members) can be missing
— whereas the respective values (“1”, “G”, “1”) are
mandatory.

Another abbreviation that commonly occurs in
gene names is the (abbreviated) mention of the or-
ganism (on the species level). For example, the
gene GIMAP4 (55303) has “HIMAP4”, “IMAP4”,
“TAN1”, “hIAN1”, and “human immune associated
nucleotide 1” as known synonyms. From synonyms
1 and 2 we can infer that an “H” can be added to a
name (just like “_ HUMAN?”, see Table 3.) The same
is true for “h” (synonyms 3 and 4.) Comparing syn-
onyms 1 or 4 to 5 leads to the conclusion that “H”



and “h” both abbreviate “human.”
Lexical variations

In the set of synonyms for ADHFE1 (137872), we
find “Fe-containing alcohol dehydrogenase 17 and
“alcohol dehydrogenase, iron containing, 1”. Split-
ting these synonyms into their respective parts and
then comparing both sets reveals that all but one part
each can be exactly mapped to a corresponding part
in the other synonym. From this almost exact match,
we can conclude that the parts “Fe” and “iron” are
synonyms of each other, potentially representing the

same concept, and easy to confirm for a human.
In the same manner, we will find that “1B” can be

sometimes expressed as “2”, and that “adaptor” and
“Adapter” are orthographic variations of each other,
by looking at some synonyms for AP1S2 (8905):

- Adapter-related protein complex 1 sigma 1B subunit
- adaptor-related protein complex 1 sigma 2 subunit
- adaptor-related protein complex 1, sigma 1B subunit

To detect these two changes, we first need to map
parts to each other and then compare the names
based on the sequence of the parts.

Structural variations

Changes in the structure of a name can be deduced
when a safe mapping between most parts of a name
exist. For the HMMR gene (3161), we find two ev-
idences for such a variation, which also lead to the
conclusion that “for” is an optional part. However,
in our system, we would retain information concern-
ing the positioning of “for” (at least, tendencies like
“not the first” and “not the last” part.)

- Receptor for hyaluronan-mediated motility

- hyaluronan-mediated motility receptor

- Hyaluronan mediated motility receptor

- intracellular hyaluronic acid binding protein

- hyaluronan-mediated motility receptor (RHAMM)

Analysis of this example also finds that “hyaluro-
nan” can start with an upper case letter (and that
this occurs only when it is the first part of the
name. “RHAMM” is the abbreviation for “Recep-
tor for hyaluronan-mediated motility”, as revealed
by S&H. This leads to the next conclusion, that ab-
breviations can immediately follow a gene name.

Descriptive elements

Comparing the sequence of identified name parts
(parts of a name where a mapping from this part to
a part of the other synonym exists) yields dissimi-
larities that result either from a dropped/added name

158

part, or from a lexical variation. Consider the fol-
lowing example:

Fas antigen ligand
N2

FASLG

Inexact matching immediately identifies the map-
ping from “Fas” to “FAS”; abbreviation detec-
tion and/or alignment yields “ligand” as a long
form/variation of “LG.” The sequence of name parts
if the same in both synonyms, with an added “anti-
gen” in the first synonym. An extracted composition
rule could thus be that “antigen” is of additional, de-
scriptive value only, and can be skipped. Knowing
this, the first synonym should also match the strings
“Fas ligand” and “FAS ligand” (in fact, both should.)

Another example is ZG24P (259291) with its syn-
onym “uncharacterized gastric protein ZG24P”. As
the official symbol clearly is an abbreviation (single
word, upper case letters, numbers) and matches the
last part of the synonym, we can assume that the first
part is either another synonym or a mere descriptive
element that explains the real gene name. Indeed,
patterns like “uncharacterized ... protein” or “hypo-
thetical protein” appear frequently as first parts of
gene names.

2.4 Analysis of inter-gene variations

As we have so far analyzed synonyms of one and the
same gene to extract knowledge on name composi-
tion, we can now apply this knowledge to the whole
set of gene names. This means, that we add knowl-
edge gained by analyzing one gene to other genes,
wherever applicable. Essentially, this comes down
to finding corresponding concepts in two or more
genes’ names, and joining the information contained
in each concept. If within one gene name it became
clear that “L” and “ligand” represent the same con-
cept, and for another gene “L” and “LG” are vari-
ations of the same concept, then a combined con-
cept would have all three variations. The combined
concept then replaces the old concepts. We apply
the same idea to name parts, for which information
about their ordering etc. was extracted.

Inter-gene analysis also reveals the main distinc-
tive features of single gene names or groups of
names (for instance, families.) Some names dif-
fer only in Arabic/Roman numbers or in Greek let-



ters. Potentially they belong to the same group, as
different members or subtypes. Knowing how to
find one family member implicitly means knowing
how to find the others. Thus, it helps identify cru-
cial parts (for the family name) and distinctive parts
(for the exact member.) A matching strategy could
thus try to find the family name and then look for
any reference to a number. Knowledge about this
kind of relationships has to be encoded in the dictio-
nary, however. Spotting a gene family’s name with-
out any specific number could lead to the assign-
ment of the first member to the match, see Table 3,
rule no. 8 (or dismissing the name, depending on
user-specific demands). Such information can also
be used for disambiguating names. Analyzing the
names “CD95 ligand” and “CD95 receptor” of two
different genes, it can be concluded that “CD95” by
itself contains not enough information to justify the
identification of either gene directly. Finding other
“receptor”’s in the dictionary will also mark “recep-
tor” as a concept crucial, but not sufficient, for iden-
tifying a gene’s name in text. For “CD95”, on the
other hand, we have shown before that this token
might be exchanged with others.

Knowledge about (partial) abbreviations, like in
aforementioned “HIF” = “Hypoxia-inducible fac-
tor” and “OR” = “olfactory receptor”, can be trans-
ferred to all synonyms from other entries in the dic-
tionary that have the same long or short forms (but
possibly do not mention the respective other in any
synonym.) Similarly, presumed lexical variations
(“gastric” versus “stomach”) that have been found
for one gene name (one concept) can be included
in all corresponding concepts to spread the informa-
tion that “gastric” can appear as “stomach” in text.
This is necessary to detect the name ““stomach alco-
hol dehydrogenase”, where the corresponding En-
trez Gene entry (ADH7, 131) does have the token
“stomach” in any of its synonyms.

Also, synonyms mentioning the species (like
“hIAN1” to depict human) are not contained for
every entry. Learning that “h” can be added to a
gene name helps recognizing such a variation in text
for other names (the dictionary lacks the variation
“hFasL” of FASLG, which is sometimes used.)
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3 Evaluation and Conclusions

We evaluated some ideas presented in this paper on
the BioCreAtIvE 2 (BC2) dataset for the gene nor-
malization task. For the purpose of this study, we
were interested in how our method would perform
concerning the recall, as compared to methods based
on hand-curated dictionary refinement. We con-
ducted the following experiment: the BC2 GN gold
standard consists of references to abstracts (PubMed
IDs), genes identified in each abstract (Entrez Gene
IDs) and text snippets that comprise each gene’s
name. For one abstract, there could be multiple, dif-
ferent snippets representing the same gene, ADH7
(131): “stomach alcohol dehydrogenase”, “class IV
alcohol dehydrogenase”, or “sigma-ADH”, all in the
same abstract. For identification, it was sufficient in
BC2 to report the ID, regardless of number of occur-
rences or name variations.

As the method presented in this paper lacks a
matching strategy for spotting of names, we per-
formed our initial evaluation on the text snippets
only. Finding the right ID for each snippet thus
ultimately yielded the recall performance. In the
above example, we would try to identify ID 131
three times, counting every miss as a false nega-
tive. The methods presented above were able to
yield a recall of 73.1%. With the original BC2 eval-
uation scheme, we achieve a recall of 84.2%. Com-
pared to the highest result for our system with a
manually refined dictionary, this figure is more than
8% lower. This shows that still, many name varia-
tions are not recognized. Some errors could be ac-
counted to ranges or enumerations of gene names
(“SMADs 1, 5 and 8”), others to not far enough
reaching analyses: for detecting “SMADS”, we only
had the synonyms “SMADSA”, “SMADS8B”, and
“SMAD9” for the correct gene in the dictionary (all
are synonyms for the same gene, according to Entrez
Gene). It should thus have been learned that the let-
ter “A” can be left out (similar to “1”, see rule no. 8
in Table 3.) Another undetected example is “G(olf)
alpha” (GNAL, 2774). Rules to restrict either of the
synonyms
- Guanine nucleotide-binding protein G(olf), alpha subunit
- guanine nucleotide binding protein (G protein),

alpha stimulating activity polypeptide, olfactory type

- Adenylate cyclase-stimulating G alpha protein, olfactory type
- Guanine nucleotide-binding protein, alpha-subunit, olfactory

type



to this mentioning in text could have been deduced
as follows:

(1) Learn in another gene: description before
“protein” can be left out = “G(olf), alpha subunit”
could be a name of its own.

(2) Learn in this or another gene: “alpha subunit”
can be expressed as “alpha” (or “subunit” skipped)
= “G(olf) alpha” could be a name.

We see that most orthographical and morpholog-
ical variations (Greek symbols/English words, sin-
gular/plural forms, capitalization) can be integrated
quite easily in matching techniques. The general
knowledge about such variations is far-reaching and
can be applied to most domains. In contrast, struc-
tural and lexical variations are much harder to pin-
point and express in general ways; mostly, such pos-
sible variations are specific to a sub-domain and thus
present the main challenge for our method.

The ideas discussed in this paper originated from
work on the aforementioned BioCreAtIvE 2 task.
In that work, we used manually designed rules to
generate variations of gene names. Hanisch et
al. (Hanisch et al., 2005) and other groups propose
similar methods all based on human observation and
experience leading to refined dictionaries. As many
causes for name variations are easy to spot and ex-
press, we concluded it was entirely possible to gain
such insights in an automated manner. Left undeter-
mined is the potential impact of composition rules
on machine-learning techniques that use dictionar-
ies as input for features.

However, the methodology should work for other
task using the same or similar initial observations
(This remains to be proven.) We are currently ap-
plying the method to the analysis of Gene Ontology
terms (Ashburner et al., 2000). There, many terms
are mere descriptions of concepts than precise la-
bels, and there are less additional synonyms (with
structural and lexical variations.) A good starting
point for assessing possible patterns in name com-
position could also be the MeSH controlled vocabu-
lary. Entries in MeSH typically contain many struc-
tural and lexical variations, a deeper understanding
of which bears more insights than of orthographical
or morphological variations.

Readers of this manuscript should either gain
more insights into name compositions of gene
names —in order to help refining dictionaries based
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on manual rule sets—, or be convinced that the idea
of learning composition rules can be tackled in auto-
mated ways, promising examples of and basic tech-
niques for which we discussed herein.

Supplementary information

The extracted set of rules for name variations and an
extended dictionary for human genes, originating from
Entrez Gene, are available at http://www.informatik.hu-
berlin.de/"hakenber/publ/suppl/ . The dictionary can directly be
used for matching entries against text and covers 32,980 genes.
The main Java classes are available on request from the authors.
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