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Abstract 

Gene names and symbols are important 
biomedical entities, but are highly 
ambiguous. This ambiguity affects the 
performance of both information extraction 
and information retrieval systems in the 
biomedical domain. Existing knowledge 
sources contain different types of 
information about genes and could be used 
to disambiguate gene symbols. In this 
paper, we applied an information retrieval 
(IR) based method for human gene symbol 
disambiguation and studied different 
methods to combine various types of 
information from available knowledge 
sources. Results showed that a combination 
of evidence usually improved performance. 
The combination method using coefficients 
obtained from a logistic regression model 
reached the highest precision of 92.2% on a 
testing set of ambiguous human gene 
symbols.         

1 Introduction 

In the past decade, biomedical discoveries and 
publications have increased exponentially due to 
high-throughput technologies such as automated 
genomic sequencing, and therefore, it is impossible 
for researchers to keep up-to-date with the most 
recent knowledge by manually reading the litera-
ture. Therefore, automated text mining tools, such 
as information retrieval and information extraction 
systems, have received great amounts of interest 
(Erhardt et al., 2006; Krallinger and Valencia, 
2005). Biomedical entity recognition is a  first cru-

cial step for text mining tools in this domain, but is 
a very challenging task, partially due to the ambi-
guity (one name referring to different entities) of 
names in the biomedical field.  

Genes are among the most important biological 
entities for understanding biological functions and 
processes, but gene names and symbols are highly 
ambiguous. Chen et al. (2005) obtained gene in-
formation from 21 organisms and found that ambi-
guities within species, across species, with English 
words and with medical terms were 5.02%, 
13.43%, 1.10%, 2.99%, respectively, when both 
official gene symbols and aliases were considered. 
When mining MEDLINE abstracts, they found that 
85.1% of mouse genes in the articles were am-
biguous with other gene names. Recently, Fundel 
and Zimmer (2006) studied gene/protein nomen-
clature in 5 public databases. Their results showed 
that the ambiguity problem was not trivial. The 
degree of ambiguity also varied among different 
organisms. Unlike other abbreviations in the litera-
ture, which usually are accompanied by their cor-
responding long forms, many gene symbols occur 
alone without any mention of their long forms. Ac-
cording to Schuemie et al. (2004), only 30% of 
gene symbols in abstracts and 18% in full text 
were accompanied by their corresponding full 
names, which makes the task of gene symbol nor-
malization much harder.  

Gene symbol disambiguation (GSD) is a par-
ticular case of word sense disambiguation (WSD), 
which has been extensively studied in the domain 
of general English. One type of method for WSD 
uses established knowledge bases, such as a ma-
chine readable dictionary (Lesk, 1986; Harley and 
Glennon, 1997). Another type of WSD method 
uses supervised machine learning (ML) technolo-
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gies (Bruce and Wiebe, 1994; Lee and Ng, 2002; 
Liu et al., 2002).  

In the biomedical domain, there are many gene 
related knowledge sources, such as Entrez Gene 
(Maglott et al., 2005), developed at NCBI (Na-
tional Center for Biotechnology Information), 
which have been used for gene symbol disam-
biguation. Podowski et al. (2004) used MEDLINE 
references in the LocusLink and SwissProt data-
bases to build Bayesian classifiers for GSD. A 
validation on MEDLINE documents for a set of 66 
human genes showed most accuracies were greater 
than 90% if there was enough training data (more 
than 20 abstracts for each gene sense). 

More recently, information retrieval (IR) based 
approaches have been applied to resolve gene am-
biguity using existing knowledge sources. Typi-
cally, a profile vector for each gene sense is built 
from available knowledge source(s) and a context 
vector is derived from the context where the am-
biguous gene occurs. Then similarities between the 
context vector and candidate gene profile vectors 
are calculated, and the gene corresponding to the 
gene profile vector that has the highest similarity 
score to the context vector is selected as the correct 
sense. Schijvenaars et al. (2005) reported on an IR-
based method for human GSD. It utilized informa-
tion from either Online Mendelian Inheritance in 
Man (OMIM) annotation or MEDLINE abstracts.  
The system achieved an accuracy rate of 92.7% on 
an automatically generated testing set when five 
abstracts were used for the gene profile. Xu et al. 
(2007) studied the performance of an IR-based ap-
proach for GSD for mouse, fly and yeast organ-
isms when different types of information from dif-
ferent knowledge sources were used. They also 
used a simple method to combine different types of 
information and reported that a highest precision of 
93.9% was reached for a testing set of mouse genes 
using multiple types of information.  

In the field of IR, it has been shown that com-
bining heterogeneous evidence improves retrieval 
effectiveness. Studies on combining multiple rep-
resentations of document content (Katzer et al., 
1982), combining results from different queries 
(Xu and Croft, 1996), different ranking algorithms 
(Lee, 1995), and different search systems (Lee, 
1997) have shown improved performance of re-
trieval systems. Different methods have also been 
developed to combine different evidence for IR 
tasks. The inference-network-based framework, 

developed by Turtle and Croft (1991), was able to 
combine different document representations and 
retrieval algorithms into an overall estimate of the 
probability of relevance. Fox et al. (1988) extended 
the vector space model to use sub-vectors to de-
scribe different representations derived from 
documents. An overall similarity between a docu-
ment and a query is defined as a weighted linear 
combination of similarities of sub-vectors. A linear 
regression analysis was used to determine the 
value of the coefficients. 

 Though previous related efforts (Schijvenaars et 
al., 2005, Xu et al., 2007) have explored the use of 
multiple types of information from different 
knowledge sources, none have focused on devel-
opment of formal methods for combining multiple 
evidence for the GSD problem to optimize per-
formance of an IR-based method. In this study, we 
adapted various IR-based combination models spe-
cifically for the GSD problem. Our motivation for 
this work is that there are diverse knowledge 
sources containing different types of information 
about genes, and the amount of such information is 
continuously increasing. A primary source contain-
ing gene information is MEDLINE articles, which 
could be linked to specific genes through annota-
tion databases. For example, Entrez Gene contains 
an annotated file called “gene2pubmed”, which 
lists the PMIDs (PubMed ID) of articles associated 
with a particular gene. From related MEDLINE 
articles, words and different ontological concepts 
can be obtained and then be used as information 
associated with a gene. However they could be 
noisy, because one article could mention multiple 
genes. Another type of source contains summa-
rized annotation of genes, which are more specific 
to certain aspects of genes. For example, Entrez 
Gene contains a file called “gene2go”. This file 
lists genes and their associated Gene Ontology 
(GO) (Ashburner et al., 2000) codes, which include 
concepts related to biological processes, molecular 
functions, and cellular components of genes. 
Therefore, methods that are able to efficiently 
combine the different types of information from 
the different sources are important to explore for 
the purpose of improving performance of GSD 
systems. In this paper, we describe various models 
for combining different types of information from 
MEDLINE abstracts for IR-based GSD systems. 
We also evaluated the combination models using 
two data sets containing ambiguous human genes. 
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Figure 1 Overview of an IR combination-based gene symbol disambiguation approach using different 
types of information.

2 Methods 

In this paper, we extend the IR vector space model 
to be capable of combining different types of gene 
related information in a flexible manner, thus im-
proving the performance of an IR-based GSD sys-
tem. Figure 1 shows an overview of the IR combi-
nation-based approach. We generated three differ-
ent sub-vectors for the context and three for the 
profile, so that each sub-vector corresponded to a 
different type of information. The similarity scores 
between context and profile were measured for 
each type of sub-vector and then combined to gen-
erate the overall similarity scores to determine the 
correct sense. We explored five different combina-
tion methods using two testing sets. 

2.1 Knowledge Sources and Available Infor-
mation 

The “gene2pubmed” file in Entrez Gene was 
downloaded in January 2006. A profile was then 
built for each gene using information derived from 
the related articles. We used the following three 
types of information: 1) Words in the related 
MEDLINE articles (title and abstract). This is the 
simplest type of information about a gene. General 
English stop words were removed and all other 
words were stemmed using the Porter stemming 
algorithm (Porter, 1980). 2) UMLS (Unified 
Medical Language System) (Bodenreider 2004) 
CUIs (Concept Unique Identifier), which were 
obtained from titles and abstracts of MEDLINE 
articles using an NLP system called MetaMap 
(Aronson 2001). 3) MeSH (Medical Subject 
Headings) terms, which are manually annotated by 
curators based on full-text articles at the National 
Library of Medicine (NLM) of the United States. 

2.2 Document Set and Testing Sets 

Using the “gene2pubmed” file, we downloaded the 
MEDLINE abstracts that were known to be related 
to human genes. Articles associated with more than 
25 genes (as determined by our observation) were 
excluded, since they mostly discussed high-
throughput technologies and provided less valuable 
information for GSD. This excluded 168 articles 
and yielded a collection of 116,929 abstracts, 
which were used to generate gene profiles and one 
of the test sets. Two test sets were obtained for 
evaluating the combination methods: testing set 1 
was based on the “gene2pubmed” file, and testing 
set 2 was based on the BioCreAtIvE II evaluation. 
  Testing set 1 was automatically generated from 
the 116,929 abstracts, using the following 3 steps:  

1) Identifying ambiguous gene symbols in the 
abstracts. This involved processing the entire col-
lection of abstracts using an NLP system called 
BioMedLEE (Biomedical Language Extracting and 
Encoding System) (Lussier et al. 2006), which was 
shown to identify gene names/symbols with high 
precision when used in conjunction with GO anno-
tations. When an ambiguous gene was identified in 
an article, the candidate gene identifiers (GeneID 
from Entrez Gene) were listed by the NLP system, 
but not disambiguated. For each ambiguous gene 
that was detected, a pair was created consisting of 
the PMID of the article and the gene symbol, so 
that each pair would be considered a possible test-
ing sample. Repeated gene symbols in the same 
article were ignored, because we assumed only one 
sense per gene symbol in the same article. Using 
this method, 69,111 PMID and ambiguous human 
gene symbol pairs were identified from the above 
collection of abstracts. 
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2) Tagging the correct sense of the ambiguous 
gene symbols. The list of candidate PMID/gene 
symbol pairs generated from the articles was then 
compared with the list of gene identifiers known to 
be associated with the articles based on 
“gene2pubmed”. If one of the candidate gene 
senses matched, that gene sense was assumed to be 
the correct sense. Then the PMID/gene-symbol 
pair was tagged with that sense and set aside as a 
testing sample. We identified a pool of 12,289 test-
ing samples, along with the corresponding tagged 
senses. 

3) Selecting testing set 1. We randomly selected 
2,000 testing samples from the above pool to form 
testing set 1. 

Testing set 2 was derived using the training and 
evaluation sets of the BioCreAtIvE II Gene Nor-
malization (GN) task (Morgan 2007). The Bio-
CreAtIvE II GN task involved mapping human 
gene mentions in MEDLINE abstracts to gene 
identifiers (Entrez Gene ID), which is a broader 
task than the GSD task. However, these abstracts 
were useful for creating a testing set for GSD, be-
cause whenever a gene mention mapped to more 
than one identifier, disambiguation was required. 
Therefore, it was possible to derive a list of am-
biguous gene symbols based on data that was pro-
vided by BioCreAtIvE. We combined both manu-
ally annotated training (281 abstracts) and evalua-
tion (262 abstracts) sets provided by BioCreAtIvE. 
Using the same process as described in step 1 of 
testing set 1, we processed the abstracts and identi-
fied 217 occurrences of ambiguous gene symbols 
from the combined set. Following a similar proce-
dure as was used for step 2 in the testing set 1 (ex-
cept that the reference standard in this case was the 
manually annotated results obtained from Bio-
CreAtIvE instead of “gene2pubmed”), we obtained 
124 PMID/gene-symbol pairs with the correspond-
ing tagged senses, which formed testing set 2. 

Because one article may contain multiple am-
biguous gene symbols, a total of 2,048 PMIDs 
were obtained from both testing sets 1 and 2. Arti-
cles with those PMIDs were excluded from the 
collection of 116,929 abstracts. We used the re-
maining document set to generate gene profiles, 
which were used for both testing sets. 

2.3 Profile and Context Vectors 

For each gene in “gene2pubmed” file, we created a 
profile. It consisted of three sub-vectors containing 

word, CUI, or MeSH, respectively, using the in-
formation derived from the related MEDLINE ab-
stracts. Similarly, a context vector was also formed 
for each testing sample, using three sub-vectors 
containing word, CUI, or MeSH, which were de-
rived from the abstract whose PMID was stated in 
the testing sample.  The tf-idf weighting schema 
(Salton and Buckley, 1988) was used to assign 
weights to index terms in the profile and context 
sub-vectors. Given a document d, the Term Fre-
quency (tf) of term t is defined as the frequency of 
t occurring in d. The Inverse Document Frequency 
(idf) of term t is defined as the logarithm of the 
number of all documents in the collection divided 
by the number of documents containing the term t. 
Then term t in document d is weighted as tf*idf. 

2.4 Similarity Measurement 

The similarity score between the same type of con-
text and profile sub-vectors were measured as co-
sine similarity of two vectors. The cosine similarity 
between two vectors a and b is defined as the inner 
product of a and b, normalized by the length of 
two vectors. See the formula below: 

Sim(a,b) = cosine ө = 
ba
ba ⋅

  where  

22
2

2
1 ... naaaa +++=    22

2
2

1 ... nbbbb +++=   
 
We built three basic classifiers that used only 

one type of sub-vector: word, CUI, or MeSH, re-
spectively, recorded three individual similarity 
scores of each sub-vector for each candidate gene 
of all testing samples. We implemented five meth-
ods to combine similarity scores from each basic 
classifier, which are described as follows: 
1) CombMax - Each individual similarity score 

from a basic classifier was normalized by di-
viding the sum of similarity scores of all 
candidate genes for that basic classifier. 
Then the decision made by the classifier with 
the highest normalized score was selected as 
the final decision of the combined method. 

2) CombSum - Each individual similarity score 
from a basic classifier was normalized by di-
viding the maximum similarity score of all 
candidate genes for that basic classifier. The 
overall similarity score of a candidate gene 
was considered to be the sum of the normal-
ized similarity scores from all three basic 
classifiers for that gene. The candidate gene 

44



with the highest overall similarity was se-
lected as the correct sense. 

3) CombSumVote - The overall similarity score 
was considered as the similarity score from 
CombSum, multiplied by the number of basic 
classifiers that voted for that gene as the cor-
rect sense.  

4) CombLR - The overall similarity score was 
defined as a predicted probability (P) of be-
ing the correct sense, given the coefficients 
obtained from a logistic regression model 
and similarity scores from all three basic 
classifiers for that gene. The relation be-
tween dependent variable (probability of be-
ing the correct sense) and independent vari-
ables (similarity scores from individual basic 
classifiers) of the logistic regression model is 
shown below, where Cs (Cword, Ccui, Cmesh and 
C) are the coefficients, and SIMs (SIMword, 
SIMcui, SIMmesh) are the individual similarity 
scores from the basic classifiers. To obtain 
the model, we divided 2,000 testing samples 
into a training set and a testing set, as de-
scribed in section 2.5. For samples in the 
training set, the correct gene senses were la-
beled as “1” and incorrect gene senses were 
labeled as “0”. Then logistic regression was 
applied, taking the binary labels as the value 
of the dependent variable and the similarities 
from the basic classifiers as the independent 
variables. In testing, coefficients obtained 
from training were used to predict each can-
didate gene’s probability of being the correct 
sense for a given ambiguous symbol. 

 

CSIMmeshCmeshSIMcuiCcuiSIMwordCword

CSIMmeshCmeshSIMcuiCcuiSIMwordCword

e
eP +++

+++

+
= ***

***

1
 

 
5) CombRank – Instead of using the similarity 

scores, we ranked the similarity scores and 
used the rank to determine the combined 
output. Following a procedure called Borda 
count (Black, 1958), the top predicted gene 
sense was given a ranking score of N-1, the 
second top was given N-2, and so on, where 
N is the total number of candidate senses. 
After each sense was ranked for each basic 
classifier, the combined ranking score of a 
candidate gene was determined by the sum 
of ranking scores from all three basic classi-
fiers.  The sense with the highest combined 

ranking score was selected as the correct 
sense. 

2.5 Experiments and Evaluation 

In this study, we measured both precision and cov-
erage of IR-based GSD approaches. Precision was 
defined as the ratio between the number of cor-
rectly disambiguated samples and the number of 
total testing samples for which the disambiguation 
method yielded a decision. When a candidate gene 
had an empty profile or different candidate gene 
profiles had the same similarity scores (e.g. zero 
score) with a particular context vector, the disam-
biguation method was not able to make a decision. 
Therefore, we also reported on coverage, which 
was defined as the number of testing samples that 
could be disambiguated using the profile-based 
method over the total number of testing samples. 
We evaluated precision and coverage of different 
combined methods for gene symbol disambigua-
tion on both testing sets. 

Results of three basic classifiers that used a sin-
gle type of information were reported as well. We 
also defined a baseline method. It used the major-
ity sense of an ambiguous gene symbol as the cor-
rect sense. The majority sense is defined as the 
gene sense which was associated with the most 
MEDLINE articles based on the “gene2pubmed” 
file.  

To evaluate the CombLR, we used 10-fold cross 
validation. We divided the sense-tagged testing set 
into 10 equal partitions, which resulted in 200 test-
ing samples for each partition. When one partition 
was used for testing, the remaining nine partitions 
were combined and used for training, which also 
involved deriving coefficients for each round. To 
make other combination methods comparable with 
CombLR, we tested the performance of other com-
bination methods on the same partitions as well. 
Therefore, we had 10 measurements for each com-
bination method. Mean precision and mean cover-
age were reported for those 10 measurements. For 
testing set 2, we did not test the CombLR method 
because the set was too small to train a regression 
model. 

We used Friedman’s Test (Friedman, 1937) fol-
lowed by Dunn’s Test (Dunn, 1964), which are 
non-parametric tests, to assess whether there were 
significant differences in terms of median precision 
among the different single or combined methods. 
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3 Results 

Results of different combination methods for test-
ing set 1 are shown in Table 1, which contains the 
mean precision and coverage for 10-fold cross 
validation, as well as the standard errors in paren-
theses. All IR-based gene symbol disambiguation 
approaches showed large improvements when 
compared to the baseline method. All of the com-
bination methods showed improved performance 
when compared to results from any run that used a 
single type of information. Among the five differ-
ent combination methods, CombLR achieved the 
highest mean precision of 0.922 for testing set 1. 
CombSum, which is a simple combination method, 
also had a good mean precision of 0.920 on testing 
set 1. The third Column of Table 1 shows that cov-
erage was in a range of 0.936-0.938. 
 

Table 1. Results on testing set 1. 
 

Table 2. Results on testing set 2. 
 

We performed Friedman’s test followed by 
Dunn’s test on each single run: word, CUI or 
MeSH, with all combination runs respectively. 
Friedman tests showed that differences of median 
precisions among the different methods were sta-
tistically significant at α=0.05.  Dunn tests showed 

that combination runs CombSum, CombSumVote, 
CombLR, and CombRank were statistically signifi-
cantly better than single runs using word or CUI. 
For single run using MeSH, combination runs 
CombLR and CombSum were statistically signifi-
cantly better. 

The results of different runs on testing set 2 are 
shown in Table 2. Most combined methods, except 
CombRank, showed improved precision. The high-
est precision of 0.906 was reached when using 
CombSum and CombMax methods. Note that the 
logistic regression method was not applicable. The 
coverage for testing set 2 was 0.944 for all of the 
methods. 

4 Discussion 

4.1 Why Combine? 

As stated in Croft (2002), a Bayesian probabilistic 
framework could provide the theoretical justifica-
tion for evidence combination. Additional evidence 
with smaller errors can reduce the effect of large 
errors from one piece of evidence and lower the 
average error.  

The idea behind CombMax was to use the single 
classifier that had the most confidence, but it did 
not seem to improve performance very much be-
cause it ignored evidence from the other two basic 
classifiers. The CombSum was a simple combina-
tion method, but with reasonable performance, 
which was also observed by other studies for the 
IR task (Fox and Shaw, 1994).  CombSumVote was 
a variant of CombSum. It favors the candidate 
genes selected by more basic classifiers. In Lee 
(1997), a similar implementation of CombSumVote 
(named “CombMNZ”) also achieved better per-
formance in the IR task. CombLR, the combination 
method trained on a logistic regression model, 
achieved the best performance in this study. It used 
a set of coefficients derived from the training data 
when combining the similarities from individual 
basic classifiers. Therefore, it could be considered 
as a more complicated linear combination model 
than CombSum. In situations where training data is 
not available, CombSum or CombSumVote would 
be a good choice. CombRank did not perform as 
well as methods that used similarity scores, proba-
bly due to the loss of subtle probability information 
in the similarity scores. We explored ranking be-
cause it was independent of the weighting schema 
and could be valuable if it performed well. 

Run Precision Coverage 
Baseline 0.707 (0.032) 0.992 (0.005) 
Word 0.882 (0.023)  0.937 (0.017) 
CUI 0.887 (0.022) 0.938 (0.017) 
MeSH 0.900 (0.021) 0.936 (0.017) 
CombMax 0.909 (0.020) 0.938 (0.017) 
CombSum 0.920 (0.019) 0.937 (0.017) 
CombSumVote 0.917(0.019) 0.938 (0.017) 
CombLR 0.922 (0.019) 0.938 (0.017) 
CombRank 0.918 (0.020) 0.938 (0.017) 

Run Precision Coverage 
Baseline 0.593 0.991 
Word 0.872 0.944 
CUI 0.897 0.944 
MeSH 0.863 0.944 
CombMax 0.906 0.944 
CombSum 0.906 0.944 
CombSumVote 0.897 0.944 
CombRank 0.889 0.944 
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The typical scenario where combination should 
help is when a classifier based on one type of in-
formation made a wrong prediction, but the 
other(s), based on different types of information, 
made the correct predictions. In those cases, the 
overall prediction may be correct when an appro-
priate combination method applies. For example, 
an ambiguous gene symbol PDK1 (in the article 
with PMID 10856237), which has two possible 
gene senses (‘GeneID:5163 pyruvate dehydro-
genase kinase, isoenzyme 1’ and ‘GeneID:5170 3-
phosphoinositide dependent protein kinase-1’), 
was incorrectly predicted as ‘GeneID: 5163’ when 
only “word” was used. But the classifiers using 
“CUI” and “MeSH” predicted it correctly. When 
the CombSum method was used to combine the 
similarity scores from all three classifiers, the cor-
rect sense ‘GeneID: 5170’ was selected. When all 
three classifiers were incorrect in predicting a test-
ing sample, generally none of the combination 
methods would help in making the final decision 
correct. Therefore, there is an upper bound on the 
performance of the combined system. In our case, 
we detected that all three classifiers made incorrect 
predictions for 65 testing samples of the 2,000 
samples. Therefore, the upper bound would be 
1,935/2,000=96.7%. 

The methods for combining different types of 
information from biomedical knowledge sources 
described in this study, though targeted to the GSD 
problem, could be also applicable to other text 
mining tasks that are based on similarity measure-
ment, such as text categorization, clustering, and 
the IR task in the biomedical domain.  

4.2 Coverage of the Methods 

The IR-based gene symbol disambiguation method 
described in this paper aims to resolve intra-
species gene ambiguity. We focused on ambiguous 
gene symbols within the human species and used 
articles known to be associated with human genes. 
Fundel and Zimmer (2006) reported that the degree 
of ambiguity of the human gene symbols from En-
trez Gene was 3.16%–3.32%, which is substantial. 
However, this is only part of the gene ambiguity 
problem.  

Based on the “gene_info” file downloaded in 
January 2006 from Entrez Gene, there were a total 
of 32,852 human genes. Based on the 
“gene2pubmed” file, 24,170 (73.4%) out of 32,852 
human genes have at least one associated MED-

LINE article, which indicates that profiles could be 
generated for at least 73.4% of human genes. On 
average, there are 9.02 MEDLINE articles associ-
ated with a particular human gene. Coverage re-
ported in this study was relatively high because the 
testing samples were selected from annotated arti-
cles as listed in “gene2pubmed”, and not randomly 
from the collection of all MEDLINE abstracts. 

4.3 Evaluation Issues 

It would be interesting to compare our work with 
other related work, but that would require use of 
the same testing set. For example, it is not straight-
forward to compare our precision result (92.2%) 
with that (92.7%) reported by Schijvenaars et al. 
(2005), because they used a testing set that was 
generated by removing ambiguous genes with less 
than 6 associated articles for each of their senses, 
and they did not report on coverage. The data set 
from the BioCreAtIvE II GN task therefore is a 
valuable testing set that enables evaluation and 
comparison of other gene symbol disambiguation 
methods. From the BioCreAtIvE abstracts, we 
identified 217 occurrences of ambiguous gene 
symbols, but only 124 were annotated in the Bio-
CreAtIvE data set. There are a few possible expla-
nations for this. First, the version of the Entrez 
Gene database used by the NLP system was not the 
most recent one, so some new genes were not 
listed as possible candidate senses. The second is-
sue is related to gene families or genes/proteins 
with multiple sub-units. According to the 
‘gene_info’ file, the gene symbol “IL-1” is a syno-
nym for both “GeneID: 3552 interleukin 1, alpha” 
and “GeneID: 3553 interleukin 1, beta”. Therefore, 
the NLP system identified it as an ambiguous gene 
symbol.  When annotators in the BioCreAtIvE II 
task saw a gene family name that was not clearly 
mapped to a specific gene identifier in Entrez 
Gene, they may not have added it to the mapped 
list. In Morgan et al. (2007), it was suggested that 
mapping gene family mentions might be appropri-
ate for those entities. Testing set 2 was a small set 
and results from that set might not be statistically 
meaningful, but it is useful for comparing with 
others working on the same data set. 

In this paper, we focused on the study of im-
provements in precision of the gene symbol dis-
ambiguation system. When combining information 
from different knowledge sources, coverage may 
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also be increased by benefiting from the cross-
coverage of different knowledge sources.  

5 Conclusion and Future Work 

We applied an IR-based approach for human gene 
symbol disambiguation, focusing on a study of 
different methods for combining various types of 
information from available knowledge sources. 
Results showed that combination of multiple 
evidence usually improved the performance of 
gene symbol disambiguation. The combination 
method using coefficients obtained from a logistic 
regression model reached the highest precision of 
92.2% on an automatically generated testing set of 
ambiguous human gene symbols. On a testing set 
derived from BioCreAtIvE II GN task, the combi-
nation method that performed summation of indi-
vidual similarities reached the highest precision of 
90.6%. However, the regression-based method 
could not be used, because the testing sample was 
small.  

In the future, we will add information that is 
specifically related to genes, such as GO codes, 
into the combination model. Meanwhile, we will 
also study the performance gain in terms of 
coverage by integrating different knowledge 
sources.    
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