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Abstract
We consider the diagnostic utility of vari-
ous syntactic complexity measures when ex-
tracted from spoken language samples of
healthy and cognitively impaired subjects.
We examine measures calculated from man-
ually built parse trees, as well as the same
measures calculated from automatic parses.
We show statistically significant differences
between clinical subject groups for a num-
ber of syntactic complexity measures, and
these differences are preserved with auto-
matic parsing. Different measures show dif-
ferent patterns for our data set, indicating
that using multiple, complementary mea-
sures is important for such an application.

1 Introduction
Natural language processing (NLP) techniques are
often applied to electronic health records and other
clinical datasets. Another potential clinical use of
NLP is for processing patient language samples,
which can be used to assess language development
(Sagae et al., 2005) or the impact of neurodegenera-
tive impairments on speech and language (Roark et
al., 2007). In this paper, we present methods for au-
tomatically measuring syntactic complexity of spo-
ken language samples elicited during neuropsycho-
logical exams of elderly subjects, and examine the
utility of these measures for discriminating between
clinically defined groups.

Mild Cognitive Impairment (MCI), and in par-
ticular amnestic MCI, the earliest clinically de-
fined stage of Alzheimer’s-related dementia, often
goes undiagnosed due to the inadequacy of com-
mon screening tests such as the Mini-Mental State
Examination (MMSE) for reliably detecting rela-
tively subtle impairments. Linguistic memory tests,
such as word list and narrative recall, are more ef-
fective than the MMSE in detecting MCI, yet are
still individually insufficient for adequate discrimi-

nation between healthy and impaired subjects. Be-
cause of this, a battery of examinations is typically
used to improve psychometric classification. Yet the
summary recall scores derived from these linguistic
memory tests (total correctly recalled) ignore poten-
tially useful information in the characteristics of the
spoken language itself.

Narrative retellings provide a natural, conversa-
tional speech sample that can be analyzed for many
of the characteristics of speech and language that
have been shown to discriminate between healthy
and impaired subjects, including syntactic complex-
ity (Kemper et al., 1993; Lyons et al., 1994) and
mean pause duration (Singh et al., 2001). These
measures go beyond simply measuring fidelity to
the narrative, thus providing key additional dimen-
sions for improved diagnosis of impairment. Recent
work (Roark et al., 2007) has shown significant dif-
ferences between healthy and MCI groups for both
pause related and syntactic complexity measures de-
rived from transcripts and audio of narrative recall
tests. In this paper, we look more closely at syntac-
tic complexity measures.

There are two key considerations when choos-
ing how to measure syntactic complexity of spoken
language samples for the purpose of psychometric
evaluation. First and most importantly, the syntactic
complexity measures will be used for discrimination
between groups, hence high discriminative utility is
desired. It has been demonstrated in past studies
(Cheung and Kemper, 1992) that many competing
measures are in fact very highly correlated, so it may
be the case that many measures are equally discrimi-
native. For this reason, previous results (Roark et al.,
2007) have focused on a single syntactic complexity
metric, that of Yngve (1960).

A second key consideration, however, is the fi-
delity of the measure when derived from transcripts
via automatic parsing. Different syntactic complex-
ity measures rely on varying levels of detail from
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the parse tree. Some syntactic complexity measures,
such as that of Yngve (1960), make use of unla-
beled tree structures to derive their scores; others,
such as that of Frazier (1985), rely on labels within
the tree, in addition to the tree structure, to pro-
vide the scores. Given these different uses of detail,
some measures may be less reliable with automa-
tion, hence dis-preferred in the context of automated
evaluation. Ideally, simple, easy-to-automate mea-
sures with high discriminative utility are preferred.

In the current paper, we demonstrate that various
syntactic complexity measures capture complemen-
tary systematic differences between subject groups,
suggesting that the best approach to discriminating
between healthy and impaired subjects is to collect
various measures, as a way of capturing language
“signatures” of the impairment.

For many measures of syntactic complexity, the
nature of the syntactic annotation is critical – differ-
ent conventions of structural annotation will yield
different scores. We will thus spend the next sec-
tion briefly detailing the syntactic annotation con-
ventions that were followed for this work. This is
followed by a section describing a range of complex-
ity measures to be derived from these annotations.
Finally, we present empirical results on the samples
of spoken narrative retellings.

2 Syntactic annotation
For manual syntactic annotation of collected data
(see Section 4), we followed the syntactic annota-
tion conventions of the well-known Penn Treebank
(Marcus et al., 1993). This provides several key ben-
efits. First, there is an extensive annotation guide
that has been developed, not just for written but also
for spoken language, so that consistent annotation
was facilitated. Second, the large out-of-domain
corpora, in particular the 1 million words of syn-
tactically annotated Switchboard telephone conver-
sations, provide a good starting point for training
domain adapted parsing models. Finally, we can use
multiple domains for evaluating the correlations be-
tween various syntactic complexity measures.

There are characteristics of Penn Treebank anno-
tation that can impact syntactic complexity scoring.
First, prenominal modifiers are typically grouped in
a flat constituent with no internal structure. This an-
notation choice can result in very long noun phrases
(NPs) which pose very little difficulty in terms of
human processing performance, but can inflate com-

plexity measures that measure deviation from right-
branching structures, such as that of Yngve (1960).
Second, in spoken language annotations, a reparan-
dum1 is denoted with a special non-terminal cate-
gory EDITED. For this paper, we remove from the
tree these non-terminals, and the structures under-
neath them, prior to evaluating syntactic complexity.

3 Syntactic complexity
There is no single agreed-upon measurement of
syntactic complexity. A range of measures have
been proposed, with different primary considera-
tions driving the notion of complexity for each.
Many measures focus on the order in which vari-
ous constructions are acquired by children learning
the syntax of their native language – later acquisi-
tions being taken as higher complexity. Examples
of this sort of complexity measure are: mean length
of utterance (MLU), which is typically measured
in morphemes (Miller and Chapman, 1981); the
Index of Productive Syntax (Scarborough, 1990),
a multi-point scale which has recently been auto-
mated for child-language transcript analysis (Sagae
et al., 2005); and Developmental Level (Rosenberg
and Abbeduto, 1987), a 7-point scale of complex-
ity based on the presence of specific grammatical
constructions. Other approaches have relied upon
the right-branching nature of English syntactic trees
(Yngve, 1960; Frazier, 1985), under the assump-
tion that deviations from that correspond to more
complexity in the language. Finally, there are ap-
proaches focused on the memory demands imposed
by “distance” between dependent words (Lin, 1996;
Gibson, 1998).

3.1 Yngve scoring
The scoring approach taken in Yngve (1960) is re-
lated to the size of a “first in/last out” stack at each
word in a top-down, left-to-right parse derivation.
Consider the tree in Figure 1. If we knew exactly
which productions to use, the parse would begin
with an S category on the stack and advance as
follows: pop the S and push VP and NP onto the
stack; pop NP and push PRP onto the stack; pop
PRP from the stack; pop VP from the stack and
push NP and VBD onto the stack; and so on. At
the point when the word ‘she’ is encountered, only
VP remains on the stack of the parser. When ‘was’

1A reparandum is a sequence of words that are aborted by
the speaker, then repaired within the same utterance.
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Figure 1: Parse tree with branch scores for Yngve scoring.

is reached, just NP is on the stack. Thus, the Yn-
gve score for these two words is 1. When the next
word ‘a’ is reached, however, there are two cate-
gories on the stack: PP and NN, so this word re-
ceives an Yngve score of 2. Stack size has been re-
lated by some (Resnik, 1992) to working memory
demands, although it most directly measures devia-
tion from right-branching trees.

To calculate the size of the stack at each word,
we can use the following simple algorithm. At each
node in the tree, label the branches from that node
to each of its children, beginning with zero at the
rightmost child and continuing to the leftmost child,
incrementing the score by one for each child. Hence,
each rightmost branch in the tree of Figure 1 is la-
beled with 0, the leftmost branch in all binary nodes
is labeled with 1, and the leftmost branch in the
ternary node is labeled with 2. Then the score for
each word is the sum of the branch scores from the
root of the tree to the word.

Given the score for each word, we can then de-
rive an overall complexity score by summing them
or taking the maximum or mean. For this paper,
we report mean scores for this and other word-based
measures, since we have found these means to pro-
vide better performing scores than either total sum
or maximum. For the tree in Figure 1, the maximum
is 2, the total is 9 and the mean over 8 words is 11

8 .

3.2 Frazier scoring
Frazier (1985) proposed an approach to scoring syn-
tactic complexity that traces a path from a word up
the tree until reaching either the root of the tree or
the lowest node which is not the leftmost child of its
parent.2 For example, Figure 2 shows the tree from

2An exception is made for empty subject NPs, in which case
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Figure 2: Parse tree fragments with scores for Frazier scoring.

Figure 1 broken into distinct paths for each word
in the string. The first word has a path up to the
root, while the second word just up to the VP, since
the VP has an NP sibling to its left. The word is
then scored, as in the Yngve measure, by summing
the scores on the links along the path. Each non-
terminal node in the path contributes a score of 1,
except for sentence nodes and sentence-complement
nodes,3 which score 1.5 rather than 1. Thus em-
bedded clauses contribute more to the complexity
measure than other embedded categories, as an ex-
plicit acknowledgment of sentence embeddings as a
source of syntactic complexity.

As with the Yngve score, we can calculate the
total and the mean of these word scores. In con-
trast to the maximum score calculated for the Yngve
measure, Frazier proposed summing the word scores
for each 3-word sequence in the sentence, then tak-
ing the maximum of these sums as a measure of
highly-localized concentrations of grammatical con-
stituents. For the example in Figure 2, the maximum
is 2.5, the maximum 3-word sum is 5.5, and the total
is 7.5, yielding a mean of 15

16 .

3.3 Dependency distance
Rather than examining the tree structure itself, one
might also extract measures from lexical depen-
dency structures. These dependencies can be de-
rived from the tree using standard rules for estab-
lishing head children for constituents, originally at-

the succeeding verb receives an additional score of 1 (for the
deleted NP), and its path continues up the tree. Empty NPs are
annotated in our manual parse trees but not in the automatic
parses, which may result in a small disagreement in the Frazier
scores for manual and automatic trees.

3Every non-terminal node beginning with an S, including
SQ and SINV, were counted as sentence nodes. Sequences of
sentence nodes, i.e. an SBAR appearing directly under an S
node, were only counted as a single sentence node and thus only
contributed to the score once.
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she was a cook in a school cafeteria

1

Figure 3: Dependency graph for the example string.

tributed to Magerman (1995), to percolate lexical
heads up the tree. Figure 3 shows the dependency
graph that results from this head percolation ap-
proach, where each link in the graph represents a de-
pendency relation from the modifier to the head. For
example, conventional head percolation rules spec-
ify the VP as the head of the S, so ‘was’, as the head
of the VP, is thus the lexical head of the entire sen-
tence. The lexical heads of the other children of the
S node are called modifiers of the head of the S node;
thus, since ‘she’ is the head of the subject NP, there
is a dependency relation between ‘she’ and ‘was’.

Lin (1996) argued for the use of this sort of depen-
dency structure to measure the difficulty in process-
ing, given the memory overhead of very long dis-
tance dependencies. Both Lin (1996) and Gibson
(1998) showed that human performance on sentence
processing tasks could be predicted with measures
of this sort. While details may differ – e.g., how
to measure distance, what counts as a dependency –
we can make use of the general approach given Tree-
bank style parses and head percolation, resulting in
graphs of the sort in Figure 3. For the current paper,
we count the distance between words for each de-
pendency link. For Figure 3, there are 7 dependency
links, a distance total of 11, and a mean of 14
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3.4 Developmental level (D-Level)
D-Level defines eight levels of sentence complex-
ity, from 0-7, based on the development of complex
sentences in normal-development children. Each
level is defined by the presence of specific grammat-
ical constructions (Rosenberg and Abbeduto, 1987);
we follow Cheung and Kemper (1992) in assigning
scores equivalent to the defined level of complex-
ity. A score of zero corresponds to simple, single-
clause sentences; embedded infinitival clauses get
a score of 1 (She needs to pay the rent); conjoined
clauses (She worked all day and worried all night),
compound subjects (The woman and her four chil-
dren had not eaten for two days), and wh-predicate
complements score 2. Object noun phrase rela-
tive clauses or complements score 3 (The police
caught the man who robbed the woman), whereas
the same constructs in subject noun phrases score

5 (The woman who worked in the cafeteria was
robbed). Gerundive complements and comparatives
(They were hungrier than her) receive a score of 4;
subordinating conjunctions (if, before, as soon as)
score 6. Finally, a score of 7 is used as a catch-all
category for sentences containing more than one of
any of these grammatical constructions.

3.5 POS-tag sequence cross entropy
One possible approach for detecting rich syntactic
structure is to look for infrequent or surprising com-
binations of parts-of-speech (POS). We can measure
this over an utterance by building a simple bi-gram
model over POS tags, then measuring the cross en-
tropy of each utterance.4

Given a bi-gram model over POS-tags, we can
calculate the probability of the sequence as a whole.
Let τi be the POS-tag of word wi in a sequence of
words w1 . . . wn, and assume that τ0 is a special start
symbol, and that τn+1 is a special stop symbol. Then
the probability of the POS-tag sequence is

P(τ1 . . . τn) =
n+1∏
i=1

P(τi | τi−1) (1)

The cross entropy is then calculated as

H(τ1 . . . τn) = − 1
n

log P(τ1 . . . τn) (2)

With this formulation, this basically boils down to
the mean negative log probability of each tag given
the previous tag.

4 Data
4.1 Subjects
We collected audio recordings of 55 neuropsycho-
logical examinations administered at the Layton Ag-
ing & Alzheimer’s Disease Center, an NIA-funded
Alzheimer’s center for research at OHSU. For this
study, we partitioned subjects into two groups: those
who were assigned a Clinical Dementia Rating
(CDR) of 0 (healthy) and those who were assigned
a CDR of 0.5 (Mild Cognitive Impairment; MCI).
The CDR (Morris, 1993) is assigned with access to
clinical and cognitive test information, independent
of performance on the battery of neuropsychologi-
cal tests used for this research study, and has been
shown to have high expert inter-annotator reliability
(Morris et al., 1997).

4For each test domain, we used cross-validation techniques
to build POS-tag bi-gram models and evaluate with them in that
domain.
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CDR = 0 CDR = 0.5
(n=29) (n=18)

Measure M SD M SD t(45)
Age 88.1 9.0 91.9 4.4 −1.65
Education (Y) 15.0 2.2 14.3 2.8 1.04
MMSE 28.4 1.4 25.9 2.6 4.29***

Word List (A) 20.0 4.0 15.4 3.3 4.06***

Word List (R) 6.8 2.0 3.9 1.7 5.12***

Wechsler LM I 17.2 4.0 10.9 4.2 5.20***

Wechsler LM II 15.8 4.3 9.5 5.4 4.45***

Cat.Fluency (A) 17.2 4.1 13.9 4.2 2.59*

Cat.Fluency (V) 12.8 4.5 9.6 3.6 2.57*

Digits (F) 6.6 1.4 6.1 1.2 1.11
Digits (B) 4.7 1.0 4.7 1.1 −0.04

Table 1: Neuropsychological test results for subjects.
***p < 0.001; **p < 0.01 ; *p < 0.05

Of the collected recordings, three subjects were
recorded twice; for the current study only one
recording was used for each subject. Three subjects
were assigned a CDR of 1.0 and were excluded from
the study; two further subjects were excluded for er-
rors in the recording that resulted in missing audio.
Of the remaining 47 subjects, 29 had CDR = 0, and
18 had CDR = 0.5.

4.2 Neuropsychological tests
Table 1 presents means and standard deviations for
age, years of education and the manually-calculated
scores of a number of standard neuropsychological
tests that were administered during the recorded ses-
sion. These tests include: the Mini Mental State Ex-
amination (MMSE); the CERAD Word List Acqui-
sition (A) and Recall (R) tests; the Wechsler Logical
Memory (LM) I (immediate) and II (delayed) narra-
tive recall tests; Category Fluency, Animals (A) and
Vegetables (V); and Digit Span (WAIS-R) forward
(F) and backward (B).

The Wechsler Logical Memory I/II tests are the
basis of our study on syntactic complexity measures.
The original narrative is a short, 3 sentence story:

Anna Thompson of South Boston, employed as a cook in a
school cafeteria, reported at the police station that she had
been held up on State Street the night before and robbed of
fifty-six dollars. She had four small children, the rent was
due, and they had not eaten for two days. The police, touched
by the woman’s story, took up a collection for her.

Subjects are asked to re-tell this story immediately
after it is told to them (LM I), as well as after ap-
proximately 30 minutes of unrelated activities (LM
II). We transcribed each retelling, and manually an-
notated syntactic parse trees according to the Penn
Treebank annotation guidelines. Algorithms for au-
tomatically extracting syntactic complexity markers
from parse trees were written to accept either man-

System LR LP F-measure
Out-of-domain (WSJ) 77.7 80.1 78.9
Out-of-domain (SWBD) 84.0 86.2 85.1
Domain adapted from SWBD 87.9 88.3 88.1

Table 2: Parser accuracy on Wechsler Logical Memory re-
sponses using just out-of-domain data (either from the Wall St.
Journal (WSJ) or Switchboard (SWBD) treebanks) versus using
a domain adapted system.

ually annotated trees or trees output from an auto-
matic parser, to demonstrate the plausibility of using
automatically generated parse trees.

4.3 Parsing
For automatic parsing, we made use of the well-
known Charniak parser (Charniak, 2000). Following
best practices (Charniak and Johnson, 2001), we re-
moved sequences covered by EDITED nodes in the
tree from the strings prior to parsing. For this pa-
per, EDITED nodes were identified from the manual
parse, not automatically. Table 2 shows parsing ac-
curacy of our annotated retellings under three pars-
ing model training conditions: 1) trained on approx-
imately 1 million words of Wall St. Journal (WSJ)
text; 2) trained on approximately 1 million words
of Switchboard (SWBD) corpus telephone conver-
sations; and 3) using domain adaptation techniques
starting from the SWBD Treebank. The SWBD out-
of-domain system reaches quite respectable accura-
cies, and domain adaptation achieves 3 percent ab-
solute improvement over that.

For domain adaptation, we used MAP adapta-
tion techniques (Bacchiani et al., 2006) via cross-
validation over the entire set of retellings. For
each subject, we trained a model using the SWBD
treebank as the out-of-domain treebank, and the
retellings of the other 46 subjects as in-domain train-
ing. We used a count merging approach, with the
in-domain counts scaled by 1000 relative to the out-
of-domain counts. See Bacchiani et al. (2006) for
more information on stochastic grammar adaptation
using these techniques.

5 Experimental results
5.1 Correlations
Our first set of experimental results regard correla-
tions between measures. Table 3 shows results for
five of our measures over all three treebanks that we
have been considering: Penn WSJ Treebank, Penn
SWBD Treebank, and the Wechsler LM retellings.
The correlations along the diagonal are between the
same measure when extracted from manually an-
notated trees and when extracted from automatic
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Penn WSJ Treebank Penn SWBD Treebank Wechsler LM Retellings
(a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

(a) Frazier 0.89 0.96 0.94
(b) Yngve -0.31 0.96 -0.72 0.96 -0.69 0.95
(c) Tree nodes 0.91 -0.16 0.92 0.58 -0.06 0.93 0.93 -0.48 0.85
(d) Dep len -0.29 0.75 -0.13 0.93 -0.74 0.97 -0.08 0.96 -0.72 0.96 -0.51 0.96
(e) Cross Ent 0.17 0.18 0.15 0.19 0.93 -0.55 0.76 0.09 0.76 0.98 -0.13 0.45 0.05 0.41 0.97
Table 3: Correlation matrices for several measures on an utterance-by-utterance basis. Correlations along the diagonal are between
the manual measures and the measures when automatically parsed. All other correlations are between measures when derived from
manual parse trees.

parses. All other correlations are between mea-
sures derived from manual trees. All correlations
are taken per utterance.

From this table, we can see that all of the mea-
sures derived from automatic parses have a high
correlation with the manually derived measures, in-
dicating that they may preserve any discriminative
utility of these markers. Interestingly, the num-
ber of nodes in the tree per word tends to corre-
late well with the Frazier score, while the depen-
dency length tends to correlate well with the Yngve
score. Cross entropy correlates with Yngve and de-
pendency length for the SWBD and Wechsler tree-
banks, but not for the WSJ treebank.

5.2 Manually derived measures
Table 4 presents means and standard deviations
for measures derived from the LM I and LM II
retellings, along with the t-value and level of sig-
nificance. The first three measures presented in the
table are available without syntactic annotation: to-
tal number of words, total number of utterances, and
words per utterance in the retelling. None of these
three measures on either retelling show statistically
significant differences between the groups.

The first measure to rely upon syntactic annota-
tions is words per clause. The number of clauses are
automatically extracted from the parses by counting
the number of S nodes in the tree.5 Normalizing the
number of words by the number of clauses rather
than the number of utterances (as in words per ut-
terance) results in statistically significant differences
between the groups for LM I though not for LM II.

The other measures are as described in Section
3. Interestingly, Frazier score per word, the number
of tree nodes per word, and POS-tag cross entropy
all show a significant negative t-value on the LM I
retellings, meaning the CDR 0.5 subjects had sig-
nificantly higher scores than the CDR 0 subjects for

5For coordinated S nodes, the root of the coordination,
which in Penn Treebank style annotation also has an S label,
does not count as an additional clause.

these measures on this task. These measures showed
no significant difference on the LM II retellings.

The Yngve score per word and the dependency
length per word showed no significant difference on
LM I retellings but a statistically significant differ-
ence on LM II, with the expected outcome of higher
scores for the CDR 0 subjects. The D-Level measure
showed no significant differences.

5.3 Automatically derived measures
In addition to manual-parse derived measures, Table
4 also presents the same measures when automatic,
rather than manual, parses are used. Given the rela-
tively high quality of the automatic parses, most of
the means and standard deviations are quite close,
and all of the patterns observed in the upper half of
Table 4 are preserved, except that the Yngve score
per word no longer shows a statistically significant
difference for the LM II retelling.

5.4 Left-corner trees
For the tree-based complexity metrics (Frazier and
Yngve), we also investigated alternative imple-
mentations that make use of the left-corner trans-
formation (Rosenkrantz and Lewis II, 1970) of
the tree from which the measures were extracted.
This transformation is widely known for remov-
ing left-recursion from a context-free grammar, and
it changes the tree shape by transforming left-
branching structures into right-branching structures,
while leaving center-embedded structures center-
embedded. This property led Resnik (1992) to pro-
pose left-corner processing as a plausible mecha-
nism for human sentence processing, since it is pre-
cisely these center-embedded structures, and not the
left- or right-branching structures, that are problem-
atic for humans to process.

Table 5 presents results using either manually an-
notated trees or automatic parses to extract the Yn-
gve and Frazier measures after a left-corner trans-
form has been applied to the tree. The Frazier
scores are very similar to those without the left-
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Logical Memory I Logical Memory II
CDR = 0 CDR = 0.5 CDR = 0 CDR = 0.5

Measure M SD M SD t(45) M SD M SD t(45)
Total words in retelling 71.0 26.0 58.1 31.9 1.49 70.6 21.5 58.5 36.7 1.43

Total utterances in retelling 8.86 4.16 7.72 3.28 0.99 8.17 2.77 7.06 4.86 1.01
Words per utterance in retelling 8.57 2.44 7.78 3.67 0.89 9.16 3.06 7.82 4.76 1.18

Manually extracted: Words per clause 6.33 1.39 5.25 1.25 2.68* 6.12 1.20 5.48 3.37 0.93
Frazier score per word 1.19 0.09 1.26 0.11 −2.68* 1.19 0.09 1.13 0.43 0.67

Tree nodes per word 1.96 0.07 2.01 0.10 −2.08* 1.96 0.07 1.80 0.66 1.36
Yngve score per word 1.44 0.23 1.39 0.30 0.61 1.53 0.27 1.26 0.62 2.01*

Dependency length per word 1.54 0.25 1.47 0.27 0.90 1.63 0.30 1.34 0.60 2.19*

POS-tag Cross Entropy 1.83 0.16 1.96 0.26 −2.18* 1.93 0.14 1.86 0.59 0.54
D-Level 1.07 0.75 1.03 1.23 0.14 1.23 0.81 1.68 1.41 −1.42

Auto extracted: Words per clause 6.42 1.53 5.10 1.16 3.13** 6.04 1.25 5.61 3.67 0.59
Frazier score per word 1.16 0.10 1.24 0.10 −2.92** 1.15 0.10 1.09 0.41 0.69

Tree nodes per word 1.96 0.07 2.03 0.10 −2.55* 1.96 0.08 1.79 0.66 1.38
Yngve score per word 1.41 0.23 1.37 0.29 0.54 1.50 0.27 1.28 0.64 1.70

Dependency length per word 1.51 0.25 1.47 0.28 0.54 1.61 0.28 1.35 0.61 2.04*

POS-tag Cross Entropy 1.83 0.17 1.96 0.26 −2.12* 1.92 0.14 1.86 0.58 0.53
D-Level 1.09 0.73 1.11 1.20 −0.08 1.28 0.77 1.61 1.22 −1.15

Table 4: Syntactic complexity measure group differences when measures are derived from either manual or automatic parse trees.
**p < 0.01 ; *p < 0.05

corner transform, while the Yngve scores are re-
duced across the board. With the left-corner trans-
formed tree, the automatically derived Yngve mea-
sure retains the statistically significant difference
shown by the manually derived measure.

6 Discussion and future directions
The results presented in the last section demonstrate
that NLP techniques applied to clinically elicited
spoken language samples can be used to automat-
ically derive measures that may be useful for dis-
criminating between healthy and MCI subjects. In
addition, we see that different measures show differ-
ent patterns when applied to these language samples,
with Frazier scores and tree nodes per word giving
quite different results than Yngve scores and depen-
dency length. It would thus appear that, for Penn
Treebank style annotations at least, these measures
are quite complementary.

There are two surprising aspects of these results:
the significantly higher means of three measures on
LM I samples for MCI subjects, and the fact that one
set of measures show significant differences on LM
I while another shows differences on LM II. We do
not have definitive explanations for these phenom-
ena, but we can speculate about why such results
were obtained.

First, there is an important difference between the
manner of elicitation for LM I versus LM II. LM I
is an immediate recall, so there will likely be, for
unimpaired subjects, much higher verbatim recall of
the story than in the delayed recall of LM II. For

the MCI group, which exhibits memory impairment,
there will be little in the way of verbatim recall, and
potentially much more in the way of spoken lan-
guage phenomena such as filled pauses, parenthet-
icals and off-topic utterances. This may account for
the higher Frazier score per word for the MCI group
on LM I. Such differences will likely be lessened in
the delayed recall.

Second, the Frazier and Yngve metrics differ in
how they score long, flat phrases, such as typical
base NPs. Consider the ternary NP in Figure 1. The
first word in that NP (‘a’) receives an Yngve score
of 2, but a Frazier score of only 1 (Figure 2), while
the second word in the NP receives an Yngve score
of 1 and a Frazier score of 0. For a flat NP with
5 children, that difference would be 4 to 1 for the
first child, 3 to 0 for the second child, and so forth.
This difference in scoring relatively common syn-
tactic constructions, even those which may not affect
human memory load, may account for such different
scores achieved with these different measures.

In summary, we have demonstrated an important
clinical use for NLP techniques, where automatic
syntactic annotation provides sufficiently accurate
parse trees for use in automatic extraction of syntac-
tic complexity measures. Different syntactic com-
plexity measures appear to be measuring quite com-
plementary characteristics of the retellings, yielding
statistically significant differences from both imme-
diate and delayed retellings.

There are quite a number of questions that we will
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Logical Memory I Logical Memory II
CDR = 0 CDR = 0.5 CDR = 0 CDR = 0.5

Measure M SD M SD t(45) M SD M SD t(45)
Manually extracted: Left-corner Frazier 1.20 0.10 1.28 0.12 −2.60* 1.20 0.11 1.18 0.45 0.29

Left-corner Yngve 1.33 0.20 1.25 0.23 1.20 1.37 0.21 1.14 0.52 2.14*

Auto extracted: Left-corner Frazier 1.16 0.10 1.27 0.13 −3.02** 1.15 0.11 1.10 0.42 0.64
Left-corner Yngve 1.31 0.19 1.23 0.21 1.33 1.36 0.21 1.13 0.51 2.11*

Table 5: Syntactic complexity measure group differences when measures are derived from left-corner parse trees.
**p < 0.01 ; *p < 0.05

continue to pursue. Most importantly, we will con-
tinue to examine this data, to try to determine what
characteristics of the spoken language are leading to
the unexpected patterns in the results. In addition,
we will begin to explore composite measures, such
as differences in measures between LM I and LM II,
which promise to better capture some of the patterns
we have observed. Ultimately, we would like to
build classifiers making use of a range of measures
as features, although in order to demonstrate statisti-
cally significant differences between classifiers, we
will need much more data than we currently have.
Eventually, longitudinal tracking of subjects may be
the best application of such measures on clinically
elicited spoken language samples.
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