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Abstract 

In this paper, we present a Bayesian Learn-
ing based method to train word dependent 
transition models for HMM based word 
alignment. We present word alignment re-
sults on the Canadian Hansards corpus as 
compared to the conventional HMM and 
IBM model 4. We show that this method 
gives consistent and significant alignment 
error rate (AER) reduction. We also con-
ducted machine translation (MT) experi-
ments on the Europarl corpus. MT results 
show that word alignment based on this 
method can be used in a phrase-based ma-
chine translation system to yield up to 1% 
absolute improvement in BLEU score, 
compared to a conventional HMM, and 
0.8% compared to a IBM model 4 based 
word alignment. 

1 Introduction 

Word alignment is an important step of most 
modern approaches to statistical machine 
translation (Koehn et al., 2003). The classical 
approaches to word alignment are based on IBM 
models 1-5 (Brown et al., 1994) and the HMM 
based alignment model (Vogel et al., 1996) (Och 
and Ney, 2000a, 2000b), while recently 
discriminative approaches (Moore, 2006) and 
syntax based approaches (Zhang and Gildea, 2005) 
for word alignment are also studied. In this paper, 
we present improvements to the HMM based 
alignment model originally proposed by (Vogel et 
al., 1996, Och and Ney, 2000a).  

Although HMM based word alignment ap-
proaches give good performance, one weakness of 
it is the coarse transition models. In the HMM 
based alignment model (Vogel et al., 1996), it is 
assumed that the HMM transition probabilities de-
pend only on the jump width from the last state to 
the next state. Therefore, the knowledge of transi-
tion probabilities given a particular source word e 
is not sufficiently modeled. 

In order to improve transition models in the 
HMM based alignment, Och and Ney (2000a) ex-
tended the transition models to be word-class de-
pendent. In that approach, words of the source lan-
guage are first clustered into a number of word 
classes, and then a set of transition parameters is 
estimated for each word class. In (2002), Toutano-
va et al. modeled self-transition (i.e., jump width is 
zero) probability separately from other transition 
probabilities. A word dependent self-transition 
model P(stay|e) is introduced to decide whether to 
stay at the current source word e at the next step, or 
jump to a different word. It was also shown that 
with the assumption that a source word with fertili-
ty greater than one generates consecutive words in 
the target language, this probability approximates 
fertility modeling. Deng and Byrne in (2005) im-
proved this idea. They proposed a word-to-phrase 
HMM in which a source word dependent phrase 
length model is used to model the approximate 
fertility, i.e., the length of consecutive target words 
generated by the source word. It provides more 
powerful modeling of approximate fertility than 
the single P(stay|e) parameter.  

However, these methods only model the proba-
bility of state occupancy rather than a full set of 
transition probabilities. Important knowledge of 
jumping from e to another position, e.g., jumping 
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forward (monotonic alignment) or jumping back-
ward (non-monotonic alignment), is not modeled.  

In this paper, we present a method to further im-
prove the transition models for HMM alignment 
model. For each source word e, we not only model 
its self-transition probability, but also the probabil-
ity of jumping from word e to a different word. For 
this purpose, we estimate a full transition model 
for each source word.  

A key problem for detailed word-dependent 
transition modeling is data sparsity. In (Toutanova 
et al., 2002), the word dependent self-transition 
probability P(stay|e) is interpolated with the global 
HMM self-transition probability to alleviate the 
data sparsity problem, where an interpolation 
weight is used for all words and that weight is 
tuned on a hold-out set. In the proposed word de-
pendent transition model, because there are a large 
number of parameters to estimate, the data sparsity 
problem is even more severe. Moreover, since the 
sparsity of different words are very different, it is 
difficult to find a one-size-fits-all interpolation 
weight, and therefore simple linear interpolation is 
not optimal. In order to address this problem, we 
use Bayesian learning so that the transition model 
parameters are estimated by maximum a posteriori 
(MAP) training. With the help of the prior distribu-
tion of the model, the training is regularized and 
results in robust models.  

In the next section we briefly review modeling 
of transition probabilities in a conventional HMM 
alignment model (Vogel et al., 1996, Och and Ney, 
2000a). Then we describe the equations of MAP 
training for word dependent transition models. In 
section 5, we present word alignment results that 
show significant alignment error rate reductions 
compared to the baseline HMM and IBM model 4. 
We also conducted phrase-based machine transla-
tion experiments on the Europarl corpus, English – 
French track, and shown that the proposed method 
can lead to significant BLEU score improvement 
compared to the HMM and IBM model 4.  

2 Baseline HMM alignment model 

We briefly review the HMM based word alignment 
models (Vogel, 1996, Och and Ney, 2000a). Let’s 
denote by 1 1( ,..., )J

Jf f f=  as the French sentence, 

1 1( ,..., )I
Ie e e=  as the English sentence, and 

1 1( ,..., )J
Ja a a= as the alignment that specifies the 

position of the English word aligned to each 
French word. In the HMM based word alignment, 
a HMM is built at English side, i.e., each (position, 
word) pair, ( , )

jj aa e , is a HMM state, which emits 

the French word fj. In order to mitigate the sparse 
data problem, it is assumed that the emission prob-
ability only depends on the English word, i.e., 

( | , ) ( | )
j jj j a j ap f a e p f e= , and the transition prob-

ability only  depends on the position of the last 
state and the length of the English sentence, i.e., 

11 1( | , , ) ( | , )
jj j a j jp a a e I p a a I
−− −= . Then, Vogel et 

al. (1996) give 
 

 
1

1 1 1
1

( | ) ( | , ) ( | )
j

J

J
J I

j j j a
ja

p f e p a a I p f e−
=

⎡ ⎤= ⎣ ⎦∑∏  (1) 

 
In the HMM of (Vogel et al., 1996), it is further 

assumed these transition probabilities 

1( | , )− ′= =j jp a i a i I  depend only on the jump 

width (i - i'), i.e.,   
 

1

( )
( | , )

( )
I

l

c i i
p i i I

c l i
=

′−′ =
′−∑

             (2) 

 
Therefore, the transition probability 

1( | , )j jp a a I−  depends on aj-1 but only through the 

distortion set {c(i - i')}. 
In (Och and Ney, 2000a), the word null is intro-

duced to generate the French words that don't align 
to any English words. If we denote by j_ the posi-
tion of the last French word before j that aligns to a 
non-null English word, the transition probabilities 

1( | , )j jp a i a i I− ′= =  in (1) is computed as 

_( | , ) ( | , )j jp a i a i I p i i I′ ′= = = % , where 

 

0

0

                            if    0
( | , )

(1 ) ( | , )  otherwise

p i
p i i I

p p i i I

=⎧′ = ⎨ ′− ⋅⎩
%  

 
state i=0 denotes the state of a null word at the 
English side, and p0 is the probability of jumping 
to state 0, which is estimated from hold-out data.  

For convenience, we denote by 

{ }( | , ), ( | )j ip i i I p f e′Λ =  the HMM parameter set. 
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In the training stage, Λ are usually estimated 
through maximum likelihood (ML) training, i.e.,  

 

1 1arg max ( | , )J I
ML p f e

Λ
Λ = Λ   (3) 

 
and the efficient Expectation-Maximization al-

gorithm can be used to optimize Λ iteratively until 
convergence (Rabiner 1989).  

For the interest of this paper, we elaborate tran-
sition parameter estimation with more details. 
These transition probabilities { }( | , )p i i I′  is a mul-

tinomial distribution estimated according to (2), 
where at each iteration the distortion set {c(i - i')} 
is the fractional count of transitions with jump 
width d = i - i', i.e.,  

 
1

1 1 1
1 1

( ) Pr( , | , , )
J I

J I
j j

j i

c d a i a i d f e
−

+
= =

′= = = + Λ∑∑ (4) 

 
where Λ' is the model obtained from the immediate 
previous iteration and these terms in (4) can be 
efficiently computed by using the Forward-
Backward algorithm (Rabiner 1989). In practice, 
we can bucket the distortion parameters {c(d)} into 
a few buckets as implemented in (Liang et al., 
2006). In our implementation, 15 buckets are used 
for c(≤-7), c(-6), ... c(0), ..., c(≥7). The probability 
mass for transitions with jump width larger than 6 
is uniformly divided. As suggested in (Liang et al., 
2006), we also use two separate sets of distortion 
parameters for transitioning into the first state, and 
for transitioning out of the last state, respectively. 
Finally, we further smooth transition probabilities 
with a uniform distribution as described in (Och 
and Ney, 2000a),   

_ _

1
( | , ) (1 ) ( | , )j j j jp a a I p a a I

I
α α′ = ⋅ + − ⋅ . 

After training, Viterbi decoding is used to find 
the best alignment sequence 1ˆ

Ja . i.e., 

1

1 _
1

ˆ arg max ( | , ) ( | )
jJ

J
J

j j j a
a j

a p a a I p f e
=

⎡ ⎤= ⎣ ⎦∏ . 

 

3 Word-dependent transition models in 
HMM based alignment model 

As discussed in the previous sections, conventional 
transition models that only depend on source word 

positions are not accurate enough. There are only 
limited distortion parameters to model the transi-
tion between HMM states for all English words, 
and the knowledge of transition probabilities given 
a particular source word is not represented. In or-
der to improve the transition model in HMM, we 
extend the transition probabilities to be word de-
pendent so that the probability of jumping from 
state aj_to aj not only depends on aj_, but also de-
pends on the English word at position aj_. This 
gives 

_

1

1 1 _
1

( | ) ( | , , ) ( | )
j j

J

J
J I

j j a j a
ja

p f e p a a e I p f e
=

⎡ ⎤= ⎣ ⎦∑∏ . 

Compared to (1), we need to estimate the transition 
parameter 

__( | , , )
jj j ap a a e I  which is

_jae  depen-

dent. Correspondingly, the HMM parameters we 

need to estimate are { }( | , , ), ( | )i j ip i i e I p f e′′Λ = , 

which provides a much richer set of free parame-
ters to model transition probabilities.   

4 Bayesian Learning for word-dependent 
transition models  

4.1 Maximum a posteriori training  

Using ML training, we can obtain the estimation 
formula for word dependent transition probabilities 

{ }( | , , )p i i e I′  similar as (2), i.e., 

1

( ; )
( | , , )

( ; )
ML I

l

c i i e
p i i e I

c l i e
=

′−′ =
′−∑

  (5) 

where at each training iteration the word dependent 
distortion set {c(i - i';e)} is computed by 

1

1 1 1
1 1

( ; )

( ) Pr( , | , , )
j

J I
J I

a j j
j i

c d e

e e a i a i d f eδ
−

+
= =

=

′= = = + Λ∑∑
     (6) 
where d = i - i' is the jump width, and ( )

jae eδ = is 

the Kronecker delta function that equals one if 

jae e= , and zero otherwise. 

However, for many non-frequent words, the 
data samples for c(d;e) is very limited and there-
fore may lead to a biased model that severely over-
fits to the sparse data. In order to address this issue, 
maximum a posteriori (MAP) framework is ap-
plied (Gauvain and Lee, 1994). In MAP training, 
an appropriate prior distribution is used to incorpo-
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rate prior knowledge into the model parameter es-
timation,   

1 1 1arg max ( | , ) ( | )J I I
MAP p f e g e

Λ
Λ = Λ Λ   (7) 

where the prior distribution 1( | )Ig eΛ  characterizes 
the distribution  of the model parameter set Λ giv-
en the English sentence. The relation between ML 
and MAP estimation is through the Bayes' theorem 
where the posterior distribution 

1 1 1 1 1( | , ) ( | , ) ( | )J I J I Ip f e p f e g eΛ ∝ Λ Λ , and 

1 1( | , )J Ip f e Λ is the likelihood function.  
In transition model estimation, the transition 

model { }( | , , )ip i i e I′′  is a multinomial distribution. 

Its conjugate prior distribution is a Dirichlet distri-
bution taking the following form (Bishop 2006), 

( ) , 1
1

1

( | , , ) | ( | , , ) i i

I
vI

i i
i

g p i i e I e p i i e I ′ −
′ ′

=

′ ′∝ ∏  (8) 

where{ },i iv ′  is the set of hyper-parameters of the 

prior distribution. Note that for mathematic tracta-
bility, ,i iv ′  needs to be greater than 1, which is 

usually the case in practice.  
Substitute (8) into (7) and using EM algorithm, 

we can obtain the iterative MAP training formula 
for transition models (Gauvain and Lee, 1994) 

,

,
1 1

( ; ) 1
( | , , )

( ; )

i i
MAP I I

i l
l l

c i i e v
p i i e I

c l i e v I

′

′
= =

′− + −
′ =

′− + −∑ ∑
 (9) 

4.2 Setting hyper-parameters for the prior 
distribution 

In Bayesian learning, the hyper-parameter set 

{ },i iv ′ of the prior distribution is assumed known 

based on a subjective knowledge about the model. 
In our method, we set the prior with word-
independent transition probabilities.  

 

, ( | , ) 1i iv p i i Iτ′ ′= ⋅ +     (10) 

 
where τ is a positive parameter that needs to tune 
on a hold-out data set. We will investigate the ef-
fect of τ with experimental results in later sections. 

Substituting (10) into (9), the MAP based transi-
tion model training formula becomes 

 

1

( ; ) ( | , )
( | , , )

( ; )
MAP I

l

c i i e p i i I
p i i e I

c l i e

τ

τ
=

′ ′− + ⋅′ =
′− +∑

 (11) 

 
Note that for frequent words that have a large 

amount of data samples for c(d;e), the sum of 

1,...,
( ; )

=
′−∑ l I

c l i e  is large, so that ( | , , )MAPp i i e I′ is 

dominated by the data distribution. For rare words 
that have low counts of c(d;e), ( | , , )MAPp i i e I′  will 
approach to the word independent model. On the 
other hand, for the same word, when a small τ is 
used, a weak prior is applied, and the transition 
probability is more dependent on the training data 
of that word. When τ becomes larger and larger, a 
stronger prior knowledge is applied, and the word 
dependent transition model will approach to the 
word-independent transition model. Therefore, we 
can vary the parameter τ to control the contribution 
of prior distribution in model training and tune the 
word alignment performance. 

5 Experimental Results  

5.1 Word alignment on the Canadian Han-
sards English-French corpus  

We evaluated our word dependent transition mod-
els for HMM based word alignment on the Eng-
lish-French Hansards corpus. Only a subset of 
500K sentence pairs was used in our experiments 
including 447 test sentence-pairs. Tests sentence-
pairs were manually aligned and were marked with 
both sure and possible alignments (Och and Ney 
2000a). Using this annotation, we report the word 
alignment performance in terms of alignment error 
rate (AER) as defined by Och and Ney (2000a): 

 
| | | |

1
| | | |

A S A P
AER

A S

∩ + ∩= −
+

   (12) 

 
where S denotes the set of sure gold alignments, P 
denotes the set of possible gold alignments, A de-
notes the set of alignments generated by the word 
alignment method under test.  

We first trained the IBM model 1 and then a 
baseline HMM model as described in section 2 on 
the Hansards corpus. As the common practice, we 
initialized the translation probabilities of model 1 
with uniform distribution over word pairs occur 
together in a same sentence pair. HMM was initia-

83



lized with uniform transition probabilities and 
model 1 translation probabilities. Both model 1 and 
HMM were trained with 5 iterations. For the pro-
posed word dependent transition model based 
HMM (WDHMM), we used the same settings as 
the HMM baseline except that the transition prob-
ability is computed according to (11). We also 
trained  IBM model 4 using GIZA++ provided by 
Och and Ney (2000c), where 5 iterations of  model 
4 training was performed after 5 iterations of mod-
el 1 plus 5 iterations of HMM. 

The effect of hyper-parameters in the prior dis-
tribution for WDHMM is shown in Figure 1. The 
horizontal dot line represents the AER given by the 
baseline HMM. The dash-line curve represents the 
AERs of WDHMM given different τ’s. We vary 
the value of τ in the range from 0 to 1E5 and 
present that range in a log-scale in the figure. Since 
τ = 0 is not a valid value in the log domain, we ac-
tually use the left-most point in the figure to 
represent the case of τ = 0. From Fig. 1 it is shown 
that when τ is zero, we actually use the ML trained 
word-dependent transition model. Due to the 
sparse data problem, the model is poorly estimated 
and lead to a high AER. When increase τ to a larg-
er value, a stronger prior is applied to give a more 
robust model. Then in a large range 
of [100,2000]τ ∈ , WDHMM outperforms baseline 
HMM significantly. When τ gets even larger, MAP 
model training becomes being over-dominated by 
the prior distribution, and that eventually results in 
a performance approaching to that of the baseline 
HMM. Fig. 1 only presents AER results that are 
calculated after combination of word alignments of 
both E→F and F→E directions based on a set of 
heuristics proposed by Och and Ney (2000b). We 
have observed the similar trend of AER change for 
the E→F and F→E alignment directions, respec-
tively. However, due to the limit of the space, we 
didn’t include them in this paper.  
In table 1-3, we give a detailed comparison be-
tween baseline HMM, WDHMM (with τ = 1000), 
and IBM model 4. Compared to the baseline 
HMM, the proposed WDHMM can reduce AER by 
more than 13%. It even outperforms IBM model 4 
after two direction word alignment combination. 
Meanwhile we noticed  that although IBM model 4 
gives superior performance over the baseline 
HMM on both of the two alignment directions, its 
AER after combination is almost the same as that 
of the baseline HMM.  We hypothesize that it may 

due to the modeling mechanism difference be-
tween HMM and model 4.  

0 1 2 3 4 5
8

8.5

9

9.5

10

10.5

11

log10(tau)

A
E

R
 %

 

 

WDHMM
HMM baseline

 
Figure 1: The AER of HMM baseline and the AER 

of WDHMM as the prior parameter τ is varied from 0 to 
1E5. Note that the x axis is in log scale and we use the 
left-most point in the figure to represent the case of τ = 
0. These results are calculated after combination of 
word alignments of both E→F and F→E directions.  

 
model E → F F → E combined 
baseline HMM  12.7 13.7 9.8 
WDHMM  
(τ = 1000) 

11.6 12.7 8.5 

IBM model 4 
(GIZA++) 

11.3 12.1 9.7 

Table 1: Comparison of test set AER between vari-
ous models trained on 500K sentence pairs. All numbers 
are in percentage. 

 
model E → F F → E combined 
baseline HMM  85.2 83.1 91.7 
WDHMM  
(τ = 1000) 

86.1 83.8 93.3 

IBM model 4 
(GIZA++) 

87.2 86.2 91.6 

Table 2: Comparison of test set Precision between 
various models trained on 500K sentence pairs. All 
numbers are in percentage. 

 
model E → F F → E combined 
baseline HMM  90.6 91.4 88.3 
WDHMM  
(τ = 1000) 

91.9 92.6 89.1 

IBM model 4 
(GIZA++) 

91.1 90.8 88.4 

Table 3: Comparison of test set Recall between vari-
ous models trained on 500K sentence pairs. All numbers 
are in percentage. 
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5.2 Machine translation on Europarl corpus 

We further tested our WDHMM on a phrase-based 
machine translation system to see whether our im-
provement on word alignment can also improve 
MT accuracy measured by BLEU score (Papineni 
et al., 2002). The machine translation experiment 
was conducted on the English-to-French track of 
NAACL 2006 Europarl evaluation workshop. The 
supplied training corpus contains 688K sentence 
pairs. Text data are already tokenized. In our expe-
riment, we first lower-cased all text, then word 
clustering was performed to cluster words of Eng-
lish and French into 32 word classes respectively 
using the tool provided by (J. Goodman). Then 
word alignment was performed. Both baseline 
HMM and IBM model 4 use word-class based 
transition models, and in WDHMM the word-class 
based transition model was used for prior distribu-
tion. The IBM model 4 is trained by GIZA++ with 
a regimen of 5 iterations of Model 1, 5 iterations of 
HMM, and 5 iterations of Model 4. Alignments of 
both directions are generated and then are com-
bined by heuristic rules described in (Och and Ney 
2000b). Then phrase table was extracted from the 
word aligned bilingual texts. The maximum phrase 
length was set to 7. In the phrase-based MT system, 
there are four channel models. They are direct 
maximum likelihood estimate of the probability of 
target phrase given source phrase, and the same 
estimate of source given target; we also compute 
the lexicon weighting features for source given 
target and target given source, respectively. Other 
models include word count and phrase count, and a 
3-gram language model provided by the workshop. 
These models are combined in a log-linear frame-
work with different weights (Och and Ney, 2002). 
The model weight vector is trained on a dev set 
with 2000 English sentences, each of which has 
one French translation reference. In the experiment, 
only the first 500 sentences were used to train the 
log-linear model weight vector, where minimum 
error rate (MER) training was used (Och, 2003). 
After MER training, the weight vector that gives 
the best accuracy on the development set was se-
lected. We then applied it to tests. There are 2000 
sentences in the development-test set devtest, 2000 
sentences in a test set test, and 1064 out-of-domain 
sentences called nc-test. The Pharaoh phrase-based 
decoder (Koehn 2004b) was used for decoding. 
The maximum re-ordering limit for decoding was 

set to 7. We used default settings for all other pa-
rameters. 

We present BLEU scores of MT systems using 
different word alignments on all three test sets, 
where Fig 2 shows BLEU scores of the two in-
domain tests, and Fig 3 shows MT results on the 
out-of-domain test set. In testing, the prior parame-
ter τ of WDHMM was varied in the range of [20, 
5000].  

In Fig. 2, the horizontal dash line and the hori-
zontal dot line represent BLEU scores of the base-
line HMM on devtest set and test set, respectively. 
The dash-line curve and dot-line curve represent 
the BLEU scores of WDHMM on these two tests. 
It is shown in the figure that WDHMM can 
achieve the best BLEU scores on both devtest and 
test when the prior parameter τ is set to 100. Fur-
thermore, WDHMM also gives considerable im-
provement on BLEU score over the baseline HMM 
in a broad range of τ from 50 to 1000, which indi-
cates that WDHMM works pretty stable within a 
reasonable range of prior distributions.  

In Fig. 3, the horizontal dash line represents the 
BLEU score of baseline HMM on nc-test set and 
the dash-line curve represents BLEU scores of 
WDHMM on the out-of-domain test. The best 
BLEU is obtained at τ = 500. It is interesting to see 
that the best τ for the out-of-domain test is larger 
than that of an in-domain test. One possible expla-
nation is that for out-of-domain data, we need 
more robust modeling for outliers other than more 
accurate (in-domain) modeling. However, since the 
difference between τ = 500 and τ = 100 are very 
small, further experiments are needed before we 
can draw a conclusion.  

We gives a detailed BLEU-wise comparison be-
tween baseline HMM and WDHMM in Table 4, 
where for WDHMM, τ =100 is used since it gives 
the best performance on the development-test set 
devtest. In the same table, we also provide BLEU 
results of using IBM model 4. Compared to base-
line HMM alignment model, WDHMM can im-
prove the BLEU score nearly 1% on in-domain test 
sets, and the improvement reduces to about 0.5% 
on the out-of-domain test. When compared to IBM 
model 4, WDHMM still gives higher BLEU 
scores, and outperform model 4 by about 0.8% on 
the test set. However the gain is reduced to 0.3% 
on devtest and 0.5% on the out-of-domain nc-test. 
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Figure 2: Machine translation results on Europarl, 

English to French track, devtest and test sets. The 
BLEU score of HMM baseline and the BLEU score of 
WDHMM as the prior parameter τ is varied from 20 to 
5000. Note that the x axis is in log scale.  
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Figure 3: Machine translation results on Europarl, 

English to French track, out-of-domain test sets. The 
BLEU score of HMM baseline and the BLEU score of 
WDHMM as the prior parameter τ is varied from 20 to 
5000. Note that the x axis is in log scale. 

 
model devtest test nc-test 
baseline HMM  29.69 29.65 20.51 
WDHMM (τ = 100) 30.59 30.65 20.96 
IBM model 4 30.29 29.86 20.51 

Table 4: Comparison of BLEU scores on devtest, test, 
and nc-test set between various word alignment models. 
All numbers are in percentage. 

 
In order to verify whether these gains from 

WDHMM are statistically significant, we imple-
mented paired bootstrap resampling method pro-
posed by Koehn (2004b) to compute statistical sig-
nificance of the above test results. In table 5, it is 
shown that BLEU gains of WDHMM over HMM 

and IBM-4 on different test sets, except the gain 
over IBM model 4 on the devtest set, are statistical-
ly significant with a significance level > 95%. 

 
significance level  devtest test nc-test 
WDHMM (τ=100) 
vs. HMM 

99.9% 99.9% 99.5% 

WDHMM (τ=100)  
vs. IBM model 4 

93.7% 99.9% 99.3% 

Table 5: Statistical significance test of the BLEU im-
provement of WDHMM  (τ = 100) vs. HMM baseline, 
and WDHMM  (τ = 100) vs. IBM model 4 on devtest, 
test, and nc-test sets. 

5.3 Runtime performance of WDHMM  

WDHMM runs as fast as a normal HMM, and 
the extra memory needed for the word dependent 
transition model is proportional to the vocabulary 
size of the source language given that the distortion 
sets of {c(d;e)}  are bucketed. Runtime speed of 
WDHMM and IBM-model 4 using GIZA++ is ta-
bulated in table 6. The results are based on Euro-
parl English to French alignment and these tests 
were conducted on a fast PC with 3.0GHz CPU 
and 16GB memory. In Table 6, WDHMM includes 
5 iterations of model 1 training followed by 5 itera-
tions of WDHMM, while "IBM model 4" includes 
5 iterations for model 1, 5 iterations for HMM, and 
5 iterations for model 4. It is shown in Table 6 that 
WDHMM is more than four times faster to pro-
duce the end-to-end word alignment. 

 
model   runtime 

(min) 
WDHMM   121 

IBM model 4    537 
Table 6: comparison of runtime performance bew-

teen WDHMM training and IBM model 4 training using 
GIZA++. 

6 Discussion 

Other works have been done to improve transition 
models in HMM based word alignment. Och and 
Ney (2000a) have suggested estimating word-class 
based transition models so as to provide more de-
tailed transition probabilities. However, due to the 
sparse data problem, only a small number of word 
classes are usually used and the many words in the 
same class still have to share the same transition 
model. Toutanova et al. (2002) has proposed to 
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estimate a word-dependent self-transition model 
P(stay|e) so that each word can have its own prob-
ability to decide whether to stay or jump to a dif-
ferent word. Later Deng and Byrne (2005) pro-
posed a word dependent phrase length model to 
better model state occupancy. However, these 
model can only model the probability of self-
jumping. Important knowledge of jumping from e 
to a different position should also be word depen-
dent but is not modeled.  

Another interesting comparison is between 
WDHMM and the fertility-based models, e.g., 
IBM model 3-5. Compared to these models, a ma-
jor disadvantage of HMM is the absence of a mod-
el of source word fertility. However, as discussed 
in (Toutanova et al. 2002),the word dependent self-
transition model can be viewed as an approxima-
tion of fertility model. i.e., it models the number of 
consecutive target words generated by the source 
word with a geometric distribution. Therefore, with 
a well estimated word dependent transition model, 
this weakness of HMM is alleviated. 

In this work, we proposed estimating a full 
word-dependent transition models in HMM based 
word alignment, and with Bayesian learning we 
can achieve robust model estimation under the 
sparse data condition. We have conducted a series 
of experiments to evaluate this method on word 
alignment and machine translation tests, and show 
significant improvement over baseline HMM in 
terms of AER and BLEU. It also performs better 
than the much more complicated IBM model 4 
based word alignment model on various word 
alignment and machine translation tasks.  
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