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Abstract 

 
Unsupervised Data-Oriented Parsing models 

(U-DOP) represent a class of structure 

bootstrapping models that have achieved 

some of the best unsupervised parsing results 

in the literature. While U-DOP was 

originally proposed as an engineering 

approach to language learning (Bod 2005, 

2006a), it turns out that the model has a 

number of properties that may also be of 

linguistic and cognitive interest. In this paper 

we will focus on the original U-DOP model 

proposed in Bod (2005) which computes the 

most probable tree from among the shortest 

derivations of sentences. We will show that 

this U-DOP model can learn both rule-based 

and exemplar-based aspects of language, 

ranging from agreement and movement 

phenomena to discontiguous contructions, 

provided that productive units of arbitrary 

size are allowed. We argue that our results 

suggest a rapprochement between nativism 

and empiricism. 
 

1  Introduction 

 
This paper investigates a number of linguistic and 

cognitive aspects of the unsupervised data-oriented 

parsing framework, known as U-DOP (Bod 2005, 

2006a, 2007). U-DOP is a generalization of the DOP 

model which was originally proposed for supervised 

language processing (Bod 1998). DOP produces and 

analyzes new sentences out of largest and most 

probable subtrees from previously analyzed 

sentences. DOP maximizes what has been called the 

‘structural analogy’ between a sentence and a corpus 

of previous sentence-structures (Bod 2006b). While 

DOP has been successful in some areas, e.g. in 

ambiguity resolution, there is also a serious 

shortcoming to the approach: it does not account for 

the acquisition of initial structures. That is, DOP 

assumes that the structures of previous linguistic 

experiences are already given and stored in a corpus. 

As such, DOP can at best account for adult language 

use and has nothing to say about language acquisition. 

In Bod (2005, 2006a), DOP was extended to 

unsupervised parsing in a rather straightforward way. 

This new model, termed U-DOP, again starts with the 

notion of tree. But since in language learning we do 

not yet know which trees should be assigned to initial 

sentences, it is assumed that a language learner will 

initially allow (implicitly) for all possible trees and let 

linguistic experience decide which trees are actually 

learned. That is, U-DOP generates a new sentence by 

reconstructing it out of the largest possible and most 

frequent subtrees from all possible (binary) trees of 

previous sentences. This has resulted in state-of-the-

art performance for English, German and Chinese 

corpora (Bod 2007). 

Although we do not claim that U-DOP provides 

any near-to-complete theory of language acquisition, 

we intend to show in this paper that it can learn a 

variety of linguistic phenomena, some of which are 

exemplar-based, such as idiosyncratic constructions, 

others of which are typically viewed as rule-based, 

such as auxiliary fronting and subject-verb agreement. 

We argue that U-DOP can be seen as a 

rapprochement between nativism and empiricism. In 

particular, we argue that there is a fallacy in the 

argument that for syntactic facets to be learned they 

must be either innate or in the input data: they can just 

as well emerge from an analogical process without 

ever hearing the particular facet and without assuming 

that it is hard-wired in the mind.  

In the following section, we will start by 

reviewing the original DOP framework in Bod 

(1998). In section 3 we will show how DOP can be 
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generalized to language learning, resulting in U-DOP. 

Next, in section 4, we show that the approach can 

learn idiosyncratic constructions. In section 5 we 

discuss how U-DOP can learn agreement phenomena, 

and in section 6 we extend our argument to auxiliary 

movement. We end with a conclusion. 

 

2  Review of ‘supervised’ DOP 
 

In its original version, DOP derives new sentences by 

combining subtrees from previously derived sentences. 

One of the main motivations behind the DOP 

framework was to integrate rule-based and exemplar-

based aspects of language processing (Bod 1998). A 

simple example may illustrate the approach. Consider 

an extremely small corpus of only two phrase-structure 

trees that are labeled by traditional categories, shown in 

figure 1. 
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Figure 1. An extremely small corpus of two trees 

 

A new sentence can be derived by combining subtrees 

from the trees in the corpus. The combination 

operation between subtrees is called label 

substitution, indicated as °. Starting out with the 

corpus of figure 1, for instance, the sentence She saw 

the dress with the telescope may be derived as shown 

in figure 2. 
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Figure 2. Analyzing a new sentence by combining subtrees 

from figure 1 

 

We can also derive an alternative tree structure for 

this sentence, namely by combining three (rather than 

two) subtrees from figure 1, as shown in figure 3. We 

will write (t ° u) ° v  as t ° u ° v with the convention 

that ° is left-associative. 
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Figure 3. A different derivation for the same sentence 

 

DOP’s subtrees can be of arbitrary size: they 

can range from context-free rewrite rules to entire 

sentence-analyses. This makes the model sensitive to 

multi-word units, idioms and other idiosyncratic 

constructions, while still maintaining full 

productivity. DOP is consonant with the view, as 

expressed by certain usage-based and constructionist 

accounts in linguistics, that any string of words can 

function as a construction (Croft 2001; Tomasello 

2003; Goldberg 2006; Bybee 2006). In DOP such 

constructions are formalized as lexicalized subtrees, 

which form the productive units of a Stochastic Tree-

Substitution Grammar or STSG. 

Note that an unlimited number of sentences 

can be derived by combining subtrees from the corpus 

in figure 1. However, virtually every sentence 

generated in this way is highly ambiguous, yielding 

several syntactic analyses. Yet, most of these analyses 

do not correspond to the structure humans perceive. 

Initial DOP models proposed an exclusively 

probabilistic metric to rank different candidates, 

where the ‘best’ tree was computed from the 

frequencies of subtrees in the corpus (see Bod 1998). 

 While it is well known that the frequency of a 

structure is a very important factor in language 

comprehension and production (Jurafsky 2003), it is 

not the only factor. Discourse context, semantics and 

recency also play an important role. DOP can 

straightforwardly take into account discourse and 

semantic information if we have corpora with such 

information from which we take our subtrees, and the 

notion of recency can be incorporated by a frequency-

adjustment function (Bod 1998). There is, however, 

an important other factor which does not correspond 

to the notion of frequency: this is the simplicity of a 

structure (cf. Frazier 1978; Chater 1999). In Bod 

(2002), the simplest structure was formalized by the 

shortest derivation of a sentence consisting of the 

fewest subtrees from the corpus. Note that the shortest 

derivation will include the largest possible subtrees 

from the corpus, thereby maximizing the structural 

overlap between a sentence and previous sentence-
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structures. Only in case the shortest derivation is not 

unique, the frequencies of the subtrees are used to 

break ties among the shortest derivations. This DOP 

model assumes that language users maximize what 

has been called the structural analogy between a 

sentence and previous sentence-structures by 

computing the most probable tree with largest 

structural overlaps between a sentence and a corpus. 

We will use this DOP  model from Bod (2002) as the 

basis for our investigation of unsupervised DOP. 

 We can illustrate DOP’s notion of structural 

analogy with the examples given in the figures above. 

DOP predicts that the tree structure in figure 2 is 

preferred because it can be generated by just two 

subtrees from the corpus. Any other tree structure, 

such as in figure 3, would need at least three subtrees 

from the training set in figure 1. Note that the tree 

generated by the shortest derivation indeed tends to be 

structurally more similar to the corpus (i.e. having a 

larger overlap with one of the corpus trees) than the 

tree generated by the longer derivation. Had we 

restricted the subtrees to smaller sizes -- for example 

to depth-1 subtrees, which makes DOP equivalent to a 

(probabilistic) context-free grammar -- the shortest 

derivation would not be able to distinguish between 

the two trees in figures 2 and 3 as they would both be 

generated by 9 rewrite rules. 

When the shortest derivation is not unique, we 

use the subtree frequencies to break ties. The ‘best 

tree’ of a sentence is defined as the most probable tree 

generated by a shortest derivation of the sentence, 

also referred to as ‘MPSD’. The probability of a tree 

can be computed from the relative frequencies of its 

subtrees, and the definitions are standard for 

Stochastic Tree-Substitution Grammars (STSGs), see 

e.g. Manning and Schütze (1999) or Bod (2002). 

Interestingly, we will see that the exact computation 

of probabilities is not necessary for our arguments in 

this paper. 

 

3  U-DOP: from sentences to structures 
 

DOP can be generalized to language learning by using 

the same principle as before: language users 

maximize the structural analogy between a new 

sentence and previous sentence-structures by 

computing the most probable shortest derivation. 

However, in language learning we cannot assume that 

the correct phrase-structures of previously heard 

sentences are already known. Bod (2005) therefore 

proposed the following generalization of DOP, which 

we will simply refer to as U-DOP: if a language 

learner does not know which syntactic tree should be 

assigned to a sentence, s/he initially allows 

(implicitly) for all possible trees and let linguistic 

experience decide which is the ‘best’ tree by 

maximizing structural analogy (i.e. the MPSD). 

Although several alternative versions of U-

DOP have been proposed (e.g. Bod 2006a, 2007), we 

will stick to the computation of the MPSD for the 

current paper. Due to its use of the shortest derivation, 

the model’s working can often be predicted without 

any probabilistic computations, which makes it 

especially apt to investigate linguistic facets such as 

auxiliary fronting (see section 6). 

From a conceptual perspective we can 

distinguish three learning phases under U-DOP, 

which we shall discuss in more detail below. 

 

(i) Assign all unlabeled binary trees to a set of 

sentences  
Suppose that a language learner hears the following 

two (‘Childes-like’) sentences: watch the dog and the 

dog barks. How could a rational learner figure out the 

appropriate tree structures for these sentences? U-

DOP conjectures that a learner does so by allowing 

any fragment of the heard sentences to form a 

productive unit and to try to reconstruct these 

sentences out of most probable shortest combinations.  

 Consider the set of all unlabeled binary trees for 

the sentences watch the dog and the dog barks given 

in figure 4. Each node in each tree is assigned the 

same category label X, since we do not (yet) know 

what label each phrase will receive.  

 

watch the dog

X

X

     

X

watch the dog

X

 
 

 the dog

X

X

barks      

X

X

the dog barks  
 

Figure 4. The unlabeled binary tree set for watch the dog 

and the dog barks 

 

Although the number of possible binary trees for a 

sentence grows exponentially with sentence length, 

these binary trees can be efficiently represented by 

means of a chart or tabular diagram. By adding 

pointers between the nodes we obtain a structure 
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known as a shared parse forest (Billot and Lang 

1989).  

 

(ii) Divide the binary trees into all subtrees  

Figure 5 exhaustively lists the subtrees that can be 

extracted from the trees in figure 4. The first subtree 

in each row represents the whole sentence as a chunk, 

while the second and the third are ‘proper’ subtrees.  
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Figure 5. The subtree set for the binary trees in figure 4. 

 

Note that while most subtrees occur once, the subtree 

[the dog]X occurs twice. There exist efficient 

algorithms to convert all subtrees into a compact 

representation (Goodman 2003) such that standard 

best-first parsing algorithms can be applied to the 

model (see Bod 2007). 

 

 (iii) Compute the ‘best’ tree for each sentence 
Given the subtrees in figure 5, the language learner 

can now induce analyses for a sentence such as the 

dog barks in various ways. The phrase structure [the 

[dog barks]X]X can be produced by two different 

derivations, either by selecting the large subtree that 

spans the whole sentence or by combining two 

smaller subtrees: 

 
X

X

the dog barks  or     

X

X

the

X

dog barks

o

 
 

Figure 6. Deriving the dog barks from figure 5 
 

Analogously, the competing phrase structure [[the 

dog]X barks]X  can also produced by two derivations: 

 

the dog

X

X

barks

  

or   

X

X

barks

  

the dog

Xo

 
 

Figure 7. Other derivations for the dog barks  
 

Note that the shortest derivation is not unique: the 

sentence the dog barks can be trivially parsed by any 

of its fully spanning trees. Such a situation does not 

usually occur when structures for new sentences are 

learned, i.e. when we induce structures for a held-out 

test set  using all subtrees from all possible trees 

assigned to a training set. For example, the shortest 

derivation for the new ‘sentence’ watch dog barks is 

unique, given the set of subtrees in figure 5. But in the 

example above we need subtree frequencies to break 

ties, i.e. U-DOP computes the most probable tree 

from among the shortest derivations, the MPSD. The 

probability of a tree is compositionally computed 

from the frequencies of its subtrees, in the same way 

as in the supervised version of DOP (see Bod 1998, 

2002). Since the subtree [the dog]X is the only subtree 

that occurs more than once, we can predict that the 

most probable tree corresponds to the structure [[the 

dog]X barks]X in figure 7 where the dog is a 

constituent. This can also be shown formally, but a 

precise computation is unnecessary for this example.  

 
4  Learning constructions by U-DOP 
 

For the sake of simplicity, we have only considered 

subtrees without lexical labels in the previous section. 

Now, if we also add an (abstract) label to each word 

in figure 4, then a possible subtree would the subtree 

in figure 9, which has a discontiguous yield watch X 

dog, and which we will therefore refer to as a 

“discontiguous subtree”. 
 

X

watch dog

X

X X X

 
 

Figure 9. A discontiguous subtree 
 

Thus lexical labels enlarge the space of dependencies 

covered by our subtree set. In order for U-DOP to 
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take into account both contiguous and non-contiguous 

patterns, we will define the total tree-set of a sentence 

as the set of all unlabeled trees that are unary at the 

word level and binary at all higher levels. 

 Discontiguous subtrees, like in figure 9, are 

important for acquiring a variety of constructions as 

in (1)-(4): 
 

(1) Show me the nearest airport to Leipzig. 

(2) BA carried more people than cargo in 2005. 

(3) What is this scratch doing on the table? 

(4) Don’t take him by surprise. 
 

These constructions have been discussed at various 

places in the literature, and all of them are 

discontiguous in that the constructions do not appear 

as contiguous word strings. Instead the words are 

separated by ‘holes’ which are sometimes represented 

by dots as in more … than …, or by variables as in 

What is X doing Y (cf. Kay and Fillmore 1999). In 

order to capture the syntactic structure of 

discontiguous constructions we need a model that 

allows for productive units that can be partially 

lexicalized, such as subtrees. For example, the 

construction more ... than … in (2) can be represented 

by a subtree as in figure 10.  

  

more than

XX

X X

X

X X

 
 

Figure 10. Discontiguous subtree for more...than... 
 

U-DOP can learn the structure in figure 10 from a few 

sentences only, using the mechanism described in 

section 3. While we will go into the details of learning 

discontiguous subtrees in section 5, it is easy to see 

that U-DOP will prefer the structure in figure 10 over 

a structure where e.g. [X than] forms a constituent. 

First note that the substring more X can occur at the 

end of a sentence (in e.g. Can I have more milk?), 

whereas the substring X than cannot occur at the end 

of a sentence. This means that [more X] will be 

preferred as a constituent in [more X than X]. The 

same is the case for than X in e.g. A is cheaper than 

B. Thus both [more X] and [than X] can appear 

separately from the construction and will win out in 

frequency, which means that U-DOP will learn the 

structure in figure 10 for the construction more … 

than …. 

 Once it is learned, (supervised) DOP enforces 

the application of the subtree in figure 10 whenever a 

new form using the construction more ... than ... is 

perceived or produced because the particular subtree 

will directly cover it and lead to the shortest 

derivation.  

 

5  Learning agreement by U-DOP 
 

Discontiguous context is important not only for 

learning constructions but also for learning various 

syntactic regularities. Consider the following sentence 

(5):  
 

(5) Swimming in rivers is dangerous 
 

How can U-DOP deal with the fact that human 

language learners will perceive an agreement relation 

between swimming and is, and not between rivers and 

is? We will rephrase this question as follows: which 

sentences must be perceived such that U-DOP can 

assign as the best structure for swimming in rivers is 

dangerous the tree 16(a) which attaches the 

constituent is dangerous to swimming in rivers, and 

not an incorrect tree like 16(b) which attaches is 

dangerous to rivers? Note that tree (a) correctly 

represents the dependency between swimming and is 

dangerous, while tree (b) misrepresents a dependency 

between rivers and is dangerous. 

 

 

swimming is 

X 
X 

X 
X 

X 

X X 
in rivers 
X X 

dangerous    swimming is

XX

X

X

X

X X

in rivers

X X

dangerous  
 

      (a)     (b) 
 

Figure 16. Two possible trees for Swimming in rivers is 

dangerous 
 

It turns out that we need to observe only one 

additional sentence to overrule tree (b), i.e. sentence 

(6):  
 

(6) Swimming together is fun  
 

The word together can be attached either to swimming 

or to is fun, as illustrated respectively by 17(a) and 

17(b) (of course, together can also be attached to is 

alone, and the resulting phrase together is to fun, but 

our argument still remains valid): 
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swimming is

X

X

X

X

X

X X

together fun  swimming is

XX

X

X

X

XX

together fun  
 

           (a)             (b) 

 
Figure 17. Two possible trees for Swimming together is fun 
 

First note that there is a large common subtree 

between 16(a) and 17(a), as shown in figure 18. 

 

swimming is

X

X

X

X

X

X X

 
 

Figure 18. Common subtree in the trees 16(a) and 17(a) 
 

Next note that there is not such a large common 

subtree between 16(b) and 17(b). Since the shortest 

derivation is not unique (as both trees can be 

produced by directly using the largest tree from the 

binary tree set), we must rely on the frequencies of 

the subtrees. It is easy to see that the trees 16(a) and 

17(a) will overrule respectively 16(b) and 17(b), 

because 16(a) and 17(a) share the largest subtree. 

Although 16(b) and 17(b) also share subtrees, they 

cover a smaller part of the sentence than does the 

subtree in figure 18. Next note that for every common 

subtree between 16(a) and 17(a) there exists a 

corresponding common subtree between 16(b) and 

17(b) except for the common subtree in figure 18 (and 

one of its sub-subtrees by abstracting from 

swimming). Since the frequencies of all subtrees of a 

tree contribute to its probability, if follows that figure 

18 will be part of the most probable tree, and thus 

16(a) and 17(a) will overrule respectively 16(b) and 

17(b). 

 However, our argument is not yet complete: we 

have not yet ruled out another possible analysis for 

swimming in rivers is dangerous where in rivers 

forms a constituent together with is dangerous. 

Interestingly, it suffices to perceive a sentence like 

(7): He likes swimming in river. The occurrence of 

swimming in rivers at the end of this sentence will 

lead to a preference for 16(a) because it will get a 

higher frequency as a group. An implementation of 

U-DOP confirmed our informal argument. 

 We conclude that U-DOP only needs three 

sentences to learn the correct tree structure displaying 

the dependency between the subject swimming and 

the verb is, known otherwise as “agreement”. Once 

we have learned the correct structure for subject-verb 

agreement by the subtree in figure 18, (U-)DOP 

enforces agreement by the shortest derivation. 

It can also be shown that U-DOP still learns the 

correct agreement if sentences with incorrect 

agreement, like *Swimming in rivers are dangerous, 

are heard as long as the correct agreement has a 

higher frequency than the incorrect agreement during 

the learning process. 

 

6  Learning ‘movement’ by U-DOP  
 

We now come to what is often assumed to be the 

greatest challenge for models of language learning, 

and what Crain (1991) calls the “parade case of an 

innate constraint”: the problem of auxiliary 

movement, also known as auxiliary fronting or 

inversion. Let’s start with the typical examples, which 

are similar to those used in Crain (1991), 

MacWhinney (2005), Clark and Eyraud (2006) and 

many others:  
 

(8) The man is hungry 
 

If we turn sentence (8) into a (polar) interrogative, the 

auxiliary is is fronted, resulting in sentence (9). 
 

(9) Is the man hungry? 
 

A language learner might derive from these two 

sentences that the first occurring auxiliary is fronted. 

However, when the sentence also contains a relative 

clause with an auxiliary is, it should not be the first 

occurrence of is that is fronted but the one in the main 

clause, as shown in sentences (11) and (12). 
 

(11) The man who is eating is hungry 

(12) Is the man who is eating hungry? 
 

There is no reason that children should favor the 

correct auxiliary fronting. Yet children do produce the 

correct sentences of the form (12) and rarely if ever of 

the form (13) even if they have not heard the correct 

form before (see Crain and Nakayama 1987). 
 

 (13) *Is the man who eating is hungry? 
 

How can we account for this phenomenon? 

According to the nativist view, sentences of the type 
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in (12) are so rare that children must have innately 

specified knowledge that allows them to learn this 

facet of language without ever having seen it (Crain 

and Nakayama 1987). On the other hand, it has been 

claimed that this type of sentence is not rare at all and 

can thus be learned from experience (Pullum and 

Scholz 2002). We will not enter the controversy on 

this issue, but believe that both viewpoints overlook a 

very important alternative possibility, namely that 

auxiliary fronting needs neither be innate nor in the 

input data to be learned, but may simply be an 

emergent property of the underlying model. 

 How does (U-)DOP account for this 

phenomenon? We will show that the learning of 

auxiliary fronting can proceed with only two 

sentences: 
 

(14) The man who is eating is hungry  

(15) Is the boy hungry? 
 

Note that these sentences do not contain an example 

of the fact that an auxiliary should be fronted from the 

main clause rather than from the relative clause. 

 For reasons of space, we will have to skip the 

induction of the tree structures for (14) and (15), 

which can be derived from a total of six sentences 

using similar reasoning as in section 5, and which are 

given in figure 20a,b (see Bod forthcoming, for more 

details and a demonstration that the induction of these 

two tree structures is robust).  
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X

X

X

X

X

X

is eating

X X
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X

the man

X X

X
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X

    

X

X

X

X

X
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X X
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           (a)       (b) 
 

Figure 20. Tree structures for the man who is eating is 

hungry and is the boy hungry? learned by U-DOP 
 

Given the trees in figure 20, we can now easily show 

that U-DOP’s shortest derivation produces the correct 

auxiliary fronting, without relying on any probability 

calculations. That is, in order to produce the correct 

interrogative, Is the man who is eating hungry, we 

only need to combine the following two subtrees from 

the acquired structures in figure 20, as shown in 

figure 21 (note that the first subtree is discontiguous): 
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is hungry 
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is eating 

X X 

X 
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X 
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X 

o 

 

Figure 21. Producing the correct auxiliary fronting by 

combining two subtrees from figure 20 
 

On the other hand, to produce the sentence with 

incorrect auxiliary fronting *Is the man who eating is 

hungry? we need to combine many more subtrees 

from figure 20. Clearly the derivation in figure 21 is 

the shortest one and produces the correct sentence, 

thereby blocking the incorrect form.
1
 

Thus the phenomenon of auxiliary fronting 

needs neither be innate nor in the input data to be 

learned. By using the notion of shortest derivation, 

auxiliary fronting can be learned from just a couple 

sentences only. Arguments about frequency and 

“poverty of the stimulus” (cf. Crain 1991; 

MacWhinney 2005) are therefore irrelevant – 

provided that we allow our productive units to be of 

arbitrary size. (Moreover, learning may be further 

eased once the syntactic categories have been 

induced. Although we do not go into category 

induction in the current paper, once unlabeled 

structures have been found, category learning turns 

out to be a relatively easy problem). 

 Auxiliary fronting has been previously dealt 

with in other probabilistic models of structure 

learning. Perfors et al. (2006) show that Bayesian 

model selection can choose the right grammar for 

auxiliary fronting. Yet, their problem is different in 

that Perfors et al. start from a set of given grammars 

from which their selection model has to choose the 

correct one. Our approach is more congenial to Clark 

and Eyraud (2006) who show that by distributional 

analysis in the vein of Harris (1954) auxiliary fronting 

can be correctly predicted. However, different from 

Clark and Eyraud, we have shown that U-DOP can 

also learn complex, discontiguous constructions. In 

order to learn both rule-based phenomena like 

auxiliary inversion and exemplar-based phenomena 

like idiosyncratic constructions, we believe we need 

                                                 
1
  We are implicitly assuming here an extension of DOP 

which computes the most probable shortest derivation given 

a certain meaning to be conveyed. This semantic DOP 

model was worked out in Bonnema et al. (1997) where the 

meaning of a sentence was represented by its logical form. 
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the richness of a probabilistic tree grammar rather 

than a probabilistic context-free grammar. 

 

7  Conclusion 
 

We have shown that various syntactic phenomena can 

be learned by a model that only assumes (1) the 

notion of recursive tree structure, and (2) an 

analogical matching algorithm which reconstructs a 

new sentence out of largest and most frequent 

fragments from previous sentences. The major 

difference between our model and other 

computational learning models (such as Klein and 

Manning 2005 or Clark and Eyraud 2006) is that we 

start with trees. But since we do not know which trees 

are correct, we initially allow for all of them and let 

analogy decide. Thus we assume that the language 

faculty (or ‘Universal Grammar’) has knowledge 

about the notion of tree structure but no more than 

that. Although we do not claim that we have 

developed any near-to-complete theory of all 

language acquisition, our argument to use only 

recursive structure as the core of language knowledge 

has a surprising precursor. Hauser, Chomksy and 

Fitch (2002) claim that the core language faculty 

comprises just ‘recursion’ and nothing else. If one 

takes this idea seriously, then U-DOP is probably the 

first fully computational model that instantiates it: U-

DOP’s trees encode the ultimate notion of recursion 

where every label can be recursively substituted for 

any other label. All else is analogy. 
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