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Preface

This volume contains the papers accepted for presentation at the ACL 2007 Workshop on Cognitive
Aspects of Computational Language Acquisition, held in Prague, Czech Republic on the 29th of June,
2007.

The past decades have seen a massive expansion in the application of statistical and machine learning
methods to natural language processing (NLP). This work has yielded impressive results in numerous
speech and language processing tasks including speech recognition, morphological analysis, parsing,
lexical acquisition, semantic interpretation, and dialogue management.

Advances in these areas are generally viewed as engineering achievements but recently researchers have
begun to investigate the relevance of computational learning techniques to research on human language
acquisition. These investigations could have double significance since an improved understanding of
human language acquisition will not only benefit cognitive sciences in general but may also feed back
to the NLP community, placing researchers in a better position to develop new language models and/or
techniques.

Success in this type of research requires close collaboration between NLP and cognitive scientists. The
aim of this workshop is thus to bring together researchers from the diverse fields of NLP, machine
learning, artificial intelligence, linguistics, psycho-linguistics, etc. who are interested in the relevance
of computational techniques for understanding human language learning. The workshop is intended to
bridge the gap between the computational and cognitive communities, promote knowledge and resource
sharing, and help initiate interdisciplinary research projects.

In the call for papers we solicited papers describing cognitive aspects of computational language
acquisition including:

• Computational learning theory and analysis of language learning

• Computational models of human (first, second and bilingual) language acquisition

• Computational models of various components of the language faculty and their impact on the
acquisition task

• Computational models of the evolution of language

• Data resources and tools for investigating computational models of human language acquisition

• Empirical and theoretical comparisons of the learning environment and its impact on the
acquisition task

• Computational methods for acquiring various linguistic information (related to e.g. speech,
morphology, lexicon, syntax, semantics, and discourse) and their relevance to research on human
language acquisition

• Investigations and comparisons of supervised, unsupervised and weakly-supervised methods
for learning (e.g. machine learning, statistical, symbolic, biologically-inspired, active learning,
various hybrid models) from the cognitive aspect
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Of the 22 papers submitted, the programme committee selected 12 papers for publication that are
representative of the state-of-the-art in this interdisciplinary area. Each full-length submission was
independently reviewed by three members of the program committee, who then collectively faced
the difficult task of selecting a subset of papers for publication from a very strong field. Among the
accepted papers we see proposed techniques for creating, analysing and annotating data resources for
research on language acquisition. We also see presentations of computational models for first and
second language acquisition. These models investigate the acquisition of both syntactic and semantic
phenomena, adopting different linguistic theories and formalisms, using varying levels of supervision.

We would like to thank all the authors who submitted papers, as well as the members of the programme
committee for the time and effort they contributed in reviewing the papers. Our thanks go also to
the organisers of the main conference, the publication chairs, and the conference workshop committee
headed by Simone Teufel.

Paula Buttery, Aline Villavicencio, Anna Korhonen
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Abstract 

 
Unsupervised Data-Oriented Parsing models 

(U-DOP) represent a class of structure 

bootstrapping models that have achieved 

some of the best unsupervised parsing results 

in the literature. While U-DOP was 

originally proposed as an engineering 

approach to language learning (Bod 2005, 

2006a), it turns out that the model has a 

number of properties that may also be of 

linguistic and cognitive interest. In this paper 

we will focus on the original U-DOP model 

proposed in Bod (2005) which computes the 

most probable tree from among the shortest 

derivations of sentences. We will show that 

this U-DOP model can learn both rule-based 

and exemplar-based aspects of language, 

ranging from agreement and movement 

phenomena to discontiguous contructions, 

provided that productive units of arbitrary 

size are allowed. We argue that our results 

suggest a rapprochement between nativism 

and empiricism. 
 

1  Introduction 

 
This paper investigates a number of linguistic and 

cognitive aspects of the unsupervised data-oriented 

parsing framework, known as U-DOP (Bod 2005, 

2006a, 2007). U-DOP is a generalization of the DOP 

model which was originally proposed for supervised 

language processing (Bod 1998). DOP produces and 

analyzes new sentences out of largest and most 

probable subtrees from previously analyzed 

sentences. DOP maximizes what has been called the 

‘structural analogy’ between a sentence and a corpus 

of previous sentence-structures (Bod 2006b). While 

DOP has been successful in some areas, e.g. in 

ambiguity resolution, there is also a serious 

shortcoming to the approach: it does not account for 

the acquisition of initial structures. That is, DOP 

assumes that the structures of previous linguistic 

experiences are already given and stored in a corpus. 

As such, DOP can at best account for adult language 

use and has nothing to say about language acquisition. 

In Bod (2005, 2006a), DOP was extended to 

unsupervised parsing in a rather straightforward way. 

This new model, termed U-DOP, again starts with the 

notion of tree. But since in language learning we do 

not yet know which trees should be assigned to initial 

sentences, it is assumed that a language learner will 

initially allow (implicitly) for all possible trees and let 

linguistic experience decide which trees are actually 

learned. That is, U-DOP generates a new sentence by 

reconstructing it out of the largest possible and most 

frequent subtrees from all possible (binary) trees of 

previous sentences. This has resulted in state-of-the-

art performance for English, German and Chinese 

corpora (Bod 2007). 

Although we do not claim that U-DOP provides 

any near-to-complete theory of language acquisition, 

we intend to show in this paper that it can learn a 

variety of linguistic phenomena, some of which are 

exemplar-based, such as idiosyncratic constructions, 

others of which are typically viewed as rule-based, 

such as auxiliary fronting and subject-verb agreement. 

We argue that U-DOP can be seen as a 

rapprochement between nativism and empiricism. In 

particular, we argue that there is a fallacy in the 

argument that for syntactic facets to be learned they 

must be either innate or in the input data: they can just 

as well emerge from an analogical process without 

ever hearing the particular facet and without assuming 

that it is hard-wired in the mind.  

In the following section, we will start by 

reviewing the original DOP framework in Bod 

(1998). In section 3 we will show how DOP can be 
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generalized to language learning, resulting in U-DOP. 

Next, in section 4, we show that the approach can 

learn idiosyncratic constructions. In section 5 we 

discuss how U-DOP can learn agreement phenomena, 

and in section 6 we extend our argument to auxiliary 

movement. We end with a conclusion. 

 

2  Review of ‘supervised’ DOP 
 

In its original version, DOP derives new sentences by 

combining subtrees from previously derived sentences. 

One of the main motivations behind the DOP 

framework was to integrate rule-based and exemplar-

based aspects of language processing (Bod 1998). A 

simple example may illustrate the approach. Consider 

an extremely small corpus of only two phrase-structure 

trees that are labeled by traditional categories, shown in 

figure 1. 

 
 

the

NPP

on rack

PP

the

NP

dress

NP

V

wanted

VP

NP

she

S

    the

NPP

with telescope

PP

the

NP

saw dog

VP

V

VP

NP

she

S

 
 

Figure 1. An extremely small corpus of two trees 

 

A new sentence can be derived by combining subtrees 

from the trees in the corpus. The combination 

operation between subtrees is called label 

substitution, indicated as °. Starting out with the 

corpus of figure 1, for instance, the sentence She saw 

the dress with the telescope may be derived as shown 

in figure 2. 

 

the

NPP

with telescope

PP

NP

saw

VP

V

VP

NP

she

S

the

NP

dress

=

the

NPP

with telescope

PP

the

NP

saw

VP

V

VP

NP

she

S
°

dress

 

Figure 2. Analyzing a new sentence by combining subtrees 

from figure 1 

 

We can also derive an alternative tree structure for 

this sentence, namely by combining three (rather than 

two) subtrees from figure 1, as shown in figure 3. We 

will write (t ° u) ° v  as t ° u ° v with the convention 

that ° is left-associative. 

 

PP

the

NP

dress

NP

V

VP

NP

she

S

saw

V

the

NPP

with telescope

PP =
° °

PP

the

NP

dress

NP

V

VP

NP

she

S

saw the

NPP

with telescope

 

Figure 3. A different derivation for the same sentence 

 

DOP’s subtrees can be of arbitrary size: they 

can range from context-free rewrite rules to entire 

sentence-analyses. This makes the model sensitive to 

multi-word units, idioms and other idiosyncratic 

constructions, while still maintaining full 

productivity. DOP is consonant with the view, as 

expressed by certain usage-based and constructionist 

accounts in linguistics, that any string of words can 

function as a construction (Croft 2001; Tomasello 

2003; Goldberg 2006; Bybee 2006). In DOP such 

constructions are formalized as lexicalized subtrees, 

which form the productive units of a Stochastic Tree-

Substitution Grammar or STSG. 

Note that an unlimited number of sentences 

can be derived by combining subtrees from the corpus 

in figure 1. However, virtually every sentence 

generated in this way is highly ambiguous, yielding 

several syntactic analyses. Yet, most of these analyses 

do not correspond to the structure humans perceive. 

Initial DOP models proposed an exclusively 

probabilistic metric to rank different candidates, 

where the ‘best’ tree was computed from the 

frequencies of subtrees in the corpus (see Bod 1998). 

 While it is well known that the frequency of a 

structure is a very important factor in language 

comprehension and production (Jurafsky 2003), it is 

not the only factor. Discourse context, semantics and 

recency also play an important role. DOP can 

straightforwardly take into account discourse and 

semantic information if we have corpora with such 

information from which we take our subtrees, and the 

notion of recency can be incorporated by a frequency-

adjustment function (Bod 1998). There is, however, 

an important other factor which does not correspond 

to the notion of frequency: this is the simplicity of a 

structure (cf. Frazier 1978; Chater 1999). In Bod 

(2002), the simplest structure was formalized by the 

shortest derivation of a sentence consisting of the 

fewest subtrees from the corpus. Note that the shortest 

derivation will include the largest possible subtrees 

from the corpus, thereby maximizing the structural 

overlap between a sentence and previous sentence-
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structures. Only in case the shortest derivation is not 

unique, the frequencies of the subtrees are used to 

break ties among the shortest derivations. This DOP 

model assumes that language users maximize what 

has been called the structural analogy between a 

sentence and previous sentence-structures by 

computing the most probable tree with largest 

structural overlaps between a sentence and a corpus. 

We will use this DOP  model from Bod (2002) as the 

basis for our investigation of unsupervised DOP. 

 We can illustrate DOP’s notion of structural 

analogy with the examples given in the figures above. 

DOP predicts that the tree structure in figure 2 is 

preferred because it can be generated by just two 

subtrees from the corpus. Any other tree structure, 

such as in figure 3, would need at least three subtrees 

from the training set in figure 1. Note that the tree 

generated by the shortest derivation indeed tends to be 

structurally more similar to the corpus (i.e. having a 

larger overlap with one of the corpus trees) than the 

tree generated by the longer derivation. Had we 

restricted the subtrees to smaller sizes -- for example 

to depth-1 subtrees, which makes DOP equivalent to a 

(probabilistic) context-free grammar -- the shortest 

derivation would not be able to distinguish between 

the two trees in figures 2 and 3 as they would both be 

generated by 9 rewrite rules. 

When the shortest derivation is not unique, we 

use the subtree frequencies to break ties. The ‘best 

tree’ of a sentence is defined as the most probable tree 

generated by a shortest derivation of the sentence, 

also referred to as ‘MPSD’. The probability of a tree 

can be computed from the relative frequencies of its 

subtrees, and the definitions are standard for 

Stochastic Tree-Substitution Grammars (STSGs), see 

e.g. Manning and Schütze (1999) or Bod (2002). 

Interestingly, we will see that the exact computation 

of probabilities is not necessary for our arguments in 

this paper. 

 

3  U-DOP: from sentences to structures 
 

DOP can be generalized to language learning by using 

the same principle as before: language users 

maximize the structural analogy between a new 

sentence and previous sentence-structures by 

computing the most probable shortest derivation. 

However, in language learning we cannot assume that 

the correct phrase-structures of previously heard 

sentences are already known. Bod (2005) therefore 

proposed the following generalization of DOP, which 

we will simply refer to as U-DOP: if a language 

learner does not know which syntactic tree should be 

assigned to a sentence, s/he initially allows 

(implicitly) for all possible trees and let linguistic 

experience decide which is the ‘best’ tree by 

maximizing structural analogy (i.e. the MPSD). 

Although several alternative versions of U-

DOP have been proposed (e.g. Bod 2006a, 2007), we 

will stick to the computation of the MPSD for the 

current paper. Due to its use of the shortest derivation, 

the model’s working can often be predicted without 

any probabilistic computations, which makes it 

especially apt to investigate linguistic facets such as 

auxiliary fronting (see section 6). 

From a conceptual perspective we can 

distinguish three learning phases under U-DOP, 

which we shall discuss in more detail below. 

 

(i) Assign all unlabeled binary trees to a set of 

sentences  
Suppose that a language learner hears the following 

two (‘Childes-like’) sentences: watch the dog and the 

dog barks. How could a rational learner figure out the 

appropriate tree structures for these sentences? U-

DOP conjectures that a learner does so by allowing 

any fragment of the heard sentences to form a 

productive unit and to try to reconstruct these 

sentences out of most probable shortest combinations.  

 Consider the set of all unlabeled binary trees for 

the sentences watch the dog and the dog barks given 

in figure 4. Each node in each tree is assigned the 

same category label X, since we do not (yet) know 

what label each phrase will receive.  

 

watch the dog

X

X

     

X

watch the dog

X

 
 

 the dog

X

X

barks      

X

X

the dog barks  
 

Figure 4. The unlabeled binary tree set for watch the dog 

and the dog barks 

 

Although the number of possible binary trees for a 

sentence grows exponentially with sentence length, 

these binary trees can be efficiently represented by 

means of a chart or tabular diagram. By adding 

pointers between the nodes we obtain a structure 
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known as a shared parse forest (Billot and Lang 

1989).  

 

(ii) Divide the binary trees into all subtrees  

Figure 5 exhaustively lists the subtrees that can be 

extracted from the trees in figure 4. The first subtree 

in each row represents the whole sentence as a chunk, 

while the second and the third are ‘proper’ subtrees.  

 

watch the dog

X

X

dog

X

X

watch the

X

 
 

X

watch the dog

X

X

watch

X the dog

X

 
 

the dog

X

X

barks

  

X

X

barks

  

the dog

X

 
 

X

X

the dog barks

X

X

the

X

dog barks

 
 

Figure 5. The subtree set for the binary trees in figure 4. 

 

Note that while most subtrees occur once, the subtree 

[the dog]X occurs twice. There exist efficient 

algorithms to convert all subtrees into a compact 

representation (Goodman 2003) such that standard 

best-first parsing algorithms can be applied to the 

model (see Bod 2007). 

 

 (iii) Compute the ‘best’ tree for each sentence 
Given the subtrees in figure 5, the language learner 

can now induce analyses for a sentence such as the 

dog barks in various ways. The phrase structure [the 

[dog barks]X]X can be produced by two different 

derivations, either by selecting the large subtree that 

spans the whole sentence or by combining two 

smaller subtrees: 

 
X

X

the dog barks  or     

X

X

the

X

dog barks

o

 
 

Figure 6. Deriving the dog barks from figure 5 
 

Analogously, the competing phrase structure [[the 

dog]X barks]X  can also produced by two derivations: 

 

the dog

X

X

barks

  

or   

X

X

barks

  

the dog

Xo

 
 

Figure 7. Other derivations for the dog barks  
 

Note that the shortest derivation is not unique: the 

sentence the dog barks can be trivially parsed by any 

of its fully spanning trees. Such a situation does not 

usually occur when structures for new sentences are 

learned, i.e. when we induce structures for a held-out 

test set  using all subtrees from all possible trees 

assigned to a training set. For example, the shortest 

derivation for the new ‘sentence’ watch dog barks is 

unique, given the set of subtrees in figure 5. But in the 

example above we need subtree frequencies to break 

ties, i.e. U-DOP computes the most probable tree 

from among the shortest derivations, the MPSD. The 

probability of a tree is compositionally computed 

from the frequencies of its subtrees, in the same way 

as in the supervised version of DOP (see Bod 1998, 

2002). Since the subtree [the dog]X is the only subtree 

that occurs more than once, we can predict that the 

most probable tree corresponds to the structure [[the 

dog]X barks]X in figure 7 where the dog is a 

constituent. This can also be shown formally, but a 

precise computation is unnecessary for this example.  

 
4  Learning constructions by U-DOP 
 

For the sake of simplicity, we have only considered 

subtrees without lexical labels in the previous section. 

Now, if we also add an (abstract) label to each word 

in figure 4, then a possible subtree would the subtree 

in figure 9, which has a discontiguous yield watch X 

dog, and which we will therefore refer to as a 

“discontiguous subtree”. 
 

X

watch dog

X

X X X

 
 

Figure 9. A discontiguous subtree 
 

Thus lexical labels enlarge the space of dependencies 

covered by our subtree set. In order for U-DOP to 
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take into account both contiguous and non-contiguous 

patterns, we will define the total tree-set of a sentence 

as the set of all unlabeled trees that are unary at the 

word level and binary at all higher levels. 

 Discontiguous subtrees, like in figure 9, are 

important for acquiring a variety of constructions as 

in (1)-(4): 
 

(1) Show me the nearest airport to Leipzig. 

(2) BA carried more people than cargo in 2005. 

(3) What is this scratch doing on the table? 

(4) Don’t take him by surprise. 
 

These constructions have been discussed at various 

places in the literature, and all of them are 

discontiguous in that the constructions do not appear 

as contiguous word strings. Instead the words are 

separated by ‘holes’ which are sometimes represented 

by dots as in more … than …, or by variables as in 

What is X doing Y (cf. Kay and Fillmore 1999). In 

order to capture the syntactic structure of 

discontiguous constructions we need a model that 

allows for productive units that can be partially 

lexicalized, such as subtrees. For example, the 

construction more ... than … in (2) can be represented 

by a subtree as in figure 10.  

  

more than

XX

X X

X

X X

 
 

Figure 10. Discontiguous subtree for more...than... 
 

U-DOP can learn the structure in figure 10 from a few 

sentences only, using the mechanism described in 

section 3. While we will go into the details of learning 

discontiguous subtrees in section 5, it is easy to see 

that U-DOP will prefer the structure in figure 10 over 

a structure where e.g. [X than] forms a constituent. 

First note that the substring more X can occur at the 

end of a sentence (in e.g. Can I have more milk?), 

whereas the substring X than cannot occur at the end 

of a sentence. This means that [more X] will be 

preferred as a constituent in [more X than X]. The 

same is the case for than X in e.g. A is cheaper than 

B. Thus both [more X] and [than X] can appear 

separately from the construction and will win out in 

frequency, which means that U-DOP will learn the 

structure in figure 10 for the construction more … 

than …. 

 Once it is learned, (supervised) DOP enforces 

the application of the subtree in figure 10 whenever a 

new form using the construction more ... than ... is 

perceived or produced because the particular subtree 

will directly cover it and lead to the shortest 

derivation.  

 

5  Learning agreement by U-DOP 
 

Discontiguous context is important not only for 

learning constructions but also for learning various 

syntactic regularities. Consider the following sentence 

(5):  
 

(5) Swimming in rivers is dangerous 
 

How can U-DOP deal with the fact that human 

language learners will perceive an agreement relation 

between swimming and is, and not between rivers and 

is? We will rephrase this question as follows: which 

sentences must be perceived such that U-DOP can 

assign as the best structure for swimming in rivers is 

dangerous the tree 16(a) which attaches the 

constituent is dangerous to swimming in rivers, and 

not an incorrect tree like 16(b) which attaches is 

dangerous to rivers? Note that tree (a) correctly 

represents the dependency between swimming and is 

dangerous, while tree (b) misrepresents a dependency 

between rivers and is dangerous. 

 

 

swimming is 

X 
X 

X 
X 

X 

X X 
in rivers 
X X 

dangerous    swimming is

XX

X

X

X

X X

in rivers

X X

dangerous  
 

      (a)     (b) 
 

Figure 16. Two possible trees for Swimming in rivers is 

dangerous 
 

It turns out that we need to observe only one 

additional sentence to overrule tree (b), i.e. sentence 

(6):  
 

(6) Swimming together is fun  
 

The word together can be attached either to swimming 

or to is fun, as illustrated respectively by 17(a) and 

17(b) (of course, together can also be attached to is 

alone, and the resulting phrase together is to fun, but 

our argument still remains valid): 
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swimming is

X

X

X

X

X

X X

together fun  swimming is

XX

X

X

X

XX

together fun  
 

           (a)             (b) 

 
Figure 17. Two possible trees for Swimming together is fun 
 

First note that there is a large common subtree 

between 16(a) and 17(a), as shown in figure 18. 

 

swimming is

X

X

X

X

X

X X

 
 

Figure 18. Common subtree in the trees 16(a) and 17(a) 
 

Next note that there is not such a large common 

subtree between 16(b) and 17(b). Since the shortest 

derivation is not unique (as both trees can be 

produced by directly using the largest tree from the 

binary tree set), we must rely on the frequencies of 

the subtrees. It is easy to see that the trees 16(a) and 

17(a) will overrule respectively 16(b) and 17(b), 

because 16(a) and 17(a) share the largest subtree. 

Although 16(b) and 17(b) also share subtrees, they 

cover a smaller part of the sentence than does the 

subtree in figure 18. Next note that for every common 

subtree between 16(a) and 17(a) there exists a 

corresponding common subtree between 16(b) and 

17(b) except for the common subtree in figure 18 (and 

one of its sub-subtrees by abstracting from 

swimming). Since the frequencies of all subtrees of a 

tree contribute to its probability, if follows that figure 

18 will be part of the most probable tree, and thus 

16(a) and 17(a) will overrule respectively 16(b) and 

17(b). 

 However, our argument is not yet complete: we 

have not yet ruled out another possible analysis for 

swimming in rivers is dangerous where in rivers 

forms a constituent together with is dangerous. 

Interestingly, it suffices to perceive a sentence like 

(7): He likes swimming in river. The occurrence of 

swimming in rivers at the end of this sentence will 

lead to a preference for 16(a) because it will get a 

higher frequency as a group. An implementation of 

U-DOP confirmed our informal argument. 

 We conclude that U-DOP only needs three 

sentences to learn the correct tree structure displaying 

the dependency between the subject swimming and 

the verb is, known otherwise as “agreement”. Once 

we have learned the correct structure for subject-verb 

agreement by the subtree in figure 18, (U-)DOP 

enforces agreement by the shortest derivation. 

It can also be shown that U-DOP still learns the 

correct agreement if sentences with incorrect 

agreement, like *Swimming in rivers are dangerous, 

are heard as long as the correct agreement has a 

higher frequency than the incorrect agreement during 

the learning process. 

 

6  Learning ‘movement’ by U-DOP  
 

We now come to what is often assumed to be the 

greatest challenge for models of language learning, 

and what Crain (1991) calls the “parade case of an 

innate constraint”: the problem of auxiliary 

movement, also known as auxiliary fronting or 

inversion. Let’s start with the typical examples, which 

are similar to those used in Crain (1991), 

MacWhinney (2005), Clark and Eyraud (2006) and 

many others:  
 

(8) The man is hungry 
 

If we turn sentence (8) into a (polar) interrogative, the 

auxiliary is is fronted, resulting in sentence (9). 
 

(9) Is the man hungry? 
 

A language learner might derive from these two 

sentences that the first occurring auxiliary is fronted. 

However, when the sentence also contains a relative 

clause with an auxiliary is, it should not be the first 

occurrence of is that is fronted but the one in the main 

clause, as shown in sentences (11) and (12). 
 

(11) The man who is eating is hungry 

(12) Is the man who is eating hungry? 
 

There is no reason that children should favor the 

correct auxiliary fronting. Yet children do produce the 

correct sentences of the form (12) and rarely if ever of 

the form (13) even if they have not heard the correct 

form before (see Crain and Nakayama 1987). 
 

 (13) *Is the man who eating is hungry? 
 

How can we account for this phenomenon? 

According to the nativist view, sentences of the type 
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in (12) are so rare that children must have innately 

specified knowledge that allows them to learn this 

facet of language without ever having seen it (Crain 

and Nakayama 1987). On the other hand, it has been 

claimed that this type of sentence is not rare at all and 

can thus be learned from experience (Pullum and 

Scholz 2002). We will not enter the controversy on 

this issue, but believe that both viewpoints overlook a 

very important alternative possibility, namely that 

auxiliary fronting needs neither be innate nor in the 

input data to be learned, but may simply be an 

emergent property of the underlying model. 

 How does (U-)DOP account for this 

phenomenon? We will show that the learning of 

auxiliary fronting can proceed with only two 

sentences: 
 

(14) The man who is eating is hungry  

(15) Is the boy hungry? 
 

Note that these sentences do not contain an example 

of the fact that an auxiliary should be fronted from the 

main clause rather than from the relative clause. 

 For reasons of space, we will have to skip the 

induction of the tree structures for (14) and (15), 

which can be derived from a total of six sentences 

using similar reasoning as in section 5, and which are 

given in figure 20a,b (see Bod forthcoming, for more 

details and a demonstration that the induction of these 

two tree structures is robust).  

 

is

X

X

X

X

X

X

is eating

X X

hungry

X

the man

X X

X

who

X

    

X

X

X

X

X

the boy

X X

is hungry  
 

           (a)       (b) 
 

Figure 20. Tree structures for the man who is eating is 

hungry and is the boy hungry? learned by U-DOP 
 

Given the trees in figure 20, we can now easily show 

that U-DOP’s shortest derivation produces the correct 

auxiliary fronting, without relying on any probability 

calculations. That is, in order to produce the correct 

interrogative, Is the man who is eating hungry, we 

only need to combine the following two subtrees from 

the acquired structures in figure 20, as shown in 

figure 21 (note that the first subtree is discontiguous): 

 

 

X 

X 

X 

X 

X 

is hungry 

X 

X 

is eating 

X X 

X 

the man 

X X 

X 

who 

X 

o 

 

Figure 21. Producing the correct auxiliary fronting by 

combining two subtrees from figure 20 
 

On the other hand, to produce the sentence with 

incorrect auxiliary fronting *Is the man who eating is 

hungry? we need to combine many more subtrees 

from figure 20. Clearly the derivation in figure 21 is 

the shortest one and produces the correct sentence, 

thereby blocking the incorrect form.
1
 

Thus the phenomenon of auxiliary fronting 

needs neither be innate nor in the input data to be 

learned. By using the notion of shortest derivation, 

auxiliary fronting can be learned from just a couple 

sentences only. Arguments about frequency and 

“poverty of the stimulus” (cf. Crain 1991; 

MacWhinney 2005) are therefore irrelevant – 

provided that we allow our productive units to be of 

arbitrary size. (Moreover, learning may be further 

eased once the syntactic categories have been 

induced. Although we do not go into category 

induction in the current paper, once unlabeled 

structures have been found, category learning turns 

out to be a relatively easy problem). 

 Auxiliary fronting has been previously dealt 

with in other probabilistic models of structure 

learning. Perfors et al. (2006) show that Bayesian 

model selection can choose the right grammar for 

auxiliary fronting. Yet, their problem is different in 

that Perfors et al. start from a set of given grammars 

from which their selection model has to choose the 

correct one. Our approach is more congenial to Clark 

and Eyraud (2006) who show that by distributional 

analysis in the vein of Harris (1954) auxiliary fronting 

can be correctly predicted. However, different from 

Clark and Eyraud, we have shown that U-DOP can 

also learn complex, discontiguous constructions. In 

order to learn both rule-based phenomena like 

auxiliary inversion and exemplar-based phenomena 

like idiosyncratic constructions, we believe we need 

                                                 
1
  We are implicitly assuming here an extension of DOP 

which computes the most probable shortest derivation given 

a certain meaning to be conveyed. This semantic DOP 

model was worked out in Bonnema et al. (1997) where the 

meaning of a sentence was represented by its logical form. 
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the richness of a probabilistic tree grammar rather 

than a probabilistic context-free grammar. 

 

7  Conclusion 
 

We have shown that various syntactic phenomena can 

be learned by a model that only assumes (1) the 

notion of recursive tree structure, and (2) an 

analogical matching algorithm which reconstructs a 

new sentence out of largest and most frequent 

fragments from previous sentences. The major 

difference between our model and other 

computational learning models (such as Klein and 

Manning 2005 or Clark and Eyraud 2006) is that we 

start with trees. But since we do not know which trees 

are correct, we initially allow for all of them and let 

analogy decide. Thus we assume that the language 

faculty (or ‘Universal Grammar’) has knowledge 

about the notion of tree structure but no more than 

that. Although we do not claim that we have 

developed any near-to-complete theory of all 

language acquisition, our argument to use only 

recursive structure as the core of language knowledge 

has a surprising precursor. Hauser, Chomksy and 

Fitch (2002) claim that the core language faculty 

comprises just ‘recursion’ and nothing else. If one 

takes this idea seriously, then U-DOP is probably the 

first fully computational model that instantiates it: U-

DOP’s trees encode the ultimate notion of recursion 

where every label can be recursively substituted for 

any other label. All else is analogy. 
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Abstract

We apply machine learning techniques to
study language transfer, a major topic in
the theory of Second Language Acquisition
(SLA). Using an SVM for the problem of
native language classification, we show that
a careful analysis of the effects of various
features can lead to scientific insights. In
particular, we demonstrate that character bi-
grams alone allow classification levels of
about 66% for a 5-class task, even when con-
tent and function word differences are ac-
counted for. This may show that native lan-
guage has a strong effect on the word choice
of people writing in a second language.

1 Introduction

While advances in NLP achieve improved results for
NLP applications such as machine translation, ques-
tion answering and document summarization, there
are other fields of research that can benefit from the
methods used by the NLP community. Second Lan-
guage Acquisition (SLA), a major area in Applied
Linguistics and Cognitive Science, is one such field.
In this paper we demonstrate how modern machine
learning tools can contribute to SLA theory. In par-
ticular, we address the major SLA topic of language
transfer, the effect of native language on second lan-
guage learners. Using an SVM for the computa-
tional problem of native language classification, we
study in detail the effects of various SVM features.
Surprisingly, character bi-grams alone lead to a clas-
sification accuracy of about 66% in a 5-class task,

even when accounting for differences in content and
function words.

This result leads us to form a novel hypothesis on
the role of language transfer in SLA: that the choice
of words people make when writing in a second lan-
guage is strongly influenced by the phonology of
their native language.

As far as we know, this is the first time that such
a hypothesis has beed formulated. Moreover, this is
the first statistical learning-supported hypothesis in
language transfer. Our results should be further sub-
stantiated by additional psycholinguistic and com-
putational experiments; nonetheless, we provide a
strong starting point.

The next section provides some essential back-
ground. In Section 3 we describe our experimen-
tal setup and feature selection, and in Section 4 we
detail an array of variations of experiments for rul-
ing out some possible types of bias that might have
affected the results. In Section 5 we discuss our hy-
pothesis in the context of psycho-linguistic theory.
We conclude with directions for future research.

2 Background

Our hypothesis is tested within an algorithm ad-
dressing the practical problem of determining the
native language of an anonymous writer writing in a
foreign language. The problem is applicable to dif-
ferent fields, such as language instructing, tailored
error correction, security applications and psycho-
linguistic research.

As background, we start from the somewhat re-
lated problem of authorship attribution. The au-
thorship attribution problem was addressed by lin-
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guists and other literary experts trying to pinpoint
an anonymous author, such as that of The Federalist
Papers (Holmes and Forsyth, 1995). Traditionally,
authorship experts analyzed topics, stylistic idiosyn-
crasies and personal information about the possible
candidates in order to determine an author.

While authorship is usually addressed with deep
human inspection of the texts in question, it has al-
ready been shown that automatic text analysis based
on various stylistic features can identify the gender
of an anonymous author with accuracy above 80%
(Argamon et al, 2003). Various papers (Diedrich et
al, 2003; Koppel and Schler, 2003; Koppel et al,
2005a; Stamatatos et al, 2004) report relative suc-
cess in machine based authorship attribution tasks
for small sets of known candidates.

Native language detection is a harder problem
than the authorship attribution problem, since we
wish to characterize the writing style of a set of
writers rather than the unique style of a single
person. There are several works presenting non-
native speech recognition and dialect analysis sys-
tems (Bouselmi et al, 2005; Bouselmi et al, 2006;
Hansen et al, 2004). However, all those works are
based on acoustic signals, not on written texts.

Koppel et al (2005a) report an accuracy of 80% in
the task of determining a writer’s native language.
To the best of our knowledge, this is the only pub-
lished work on automated classification of an au-
thor’s native language (along with another version
of the paper by the same authors (Koppel et al,
2005b)). Koppel et al used an SVM (Schölkopf and
Smola, 2002) and a combination of features in their
system (such as errors analysis and POS-error co-
occurrences, as described in section 2.2), but sur-
prisingly, it appears that a very naive set of features
achieves a relatively high accuracy. The charac-
ter bi-gram frequencies feature performs rather well,
and definitely outperforms the intuitive contribution
of frequent bigrams in this type of task.

3 Experimental Setting

3.1 The Corpus

The corpus that served for all of the experiments
described in this paper is the International Corpus
of Learner English (ICLE) (Granger et al, 2002),
which was also the one used by Koppel et al (2005a;

2005b). The corpus was compiled for the purpose of
studying the English writing of non-native speakers.
All contributors to the corpus are advanced English
students and are roughly the same age. The corpus is
combined from a number of sub-corpora, each con-
taining one native language. The corpus was assem-
bled in ten years of international collaboration be-
tween a number of universities and it contains more
than 2 million words of writing by students from 19
different native language backgrounds. We followed
Koppel et al (2005a) and worked on 5 sub-corpora,
each containing 238 randomly selected essays by na-
tive speakers of the following languages: Bulgarian,
Czech, French, Russian and Spanish. Each of the
texts in the corpus was written by a different author
and is of length between 500 to 1,000 words. Each
of the sub corpora contains about 180,000 (unique)
types, for a total of 886,677 tokens.

Essays in the corpus are of two types: argumen-
tative essays and literature examination papers. De-
scriptive, narrative or technical subjects were not in-
cluded in the corpus. The literature examination es-
says were restricted to no more than 25% of each
sub-corpus. Each contributor was requested to fill a
learner profile that was used to fine-proof the corpus
as needed.

In order to verify our results we used another con-
trol corpus containing the Dutch and Italian sub-
corpora contained in the ICLE instead of the Bul-
garian and French ones.

3.2 Document Representation

In the original experiment by Koppel et al (2005a)
each document was represented by a numerical vec-
tor of 1,035 dimensions. Each vector entry rep-
resented the frequency (relative to the document’s
length) of a given feature. The features were of 4
types:

• 400 function words
• 200 most frequent letter n-grams
• 250 rare POS bi-gram
• 185 error types

While the first three types of attributes are relatively
straightforward, the fourth is more complex. It rep-
resents clusters of families of spelling errors as well
as co-occurrences of errors and POS tags. Document
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representation is described in detail in (Koppel et al,
2005a; Koppel et al, 2005b).

A multi-class SVM (Witten and Frank, 2005) was
employed for learning and evaluating the classifica-
tion model. The experiment was run in a 10-fold
cross validation manner in order to test the effec-
tiveness of the model.

3.3 Previous Results

Koppel et al (2005a) report that when all features
types were used in tandem, an accuracy of 80.2%
was achieved. In the discussion section they an-
alyze the frequency of a few function words, er-
ror types, the co-occurrences of POS tags and er-
rors, and the co-occurrences of POS tags and certain
function words that seem to have significance in the
support vectors learnt by the SVM.

The goal of their research was to obtain the best
classification, therefore the results obtained by us-
ing only bi-grams of characters were not particularly
noted, although, surprisingly, representing each doc-
ument by only using the relative frequency of the
top 200 characters bi-grams achieves an accuracy of
about 66%. We believe that this surprising fact ex-
poses some fundamental phenomenon of human lan-
guage behavior. In the next section we describe a set
of experiments designed to isolate the causes of this
phenomenon.

4 Experimental Variations and Results

Intuitively, we do not expect the most frequent char-
acter n-grams to serve as good native language pre-
dictors, expecting that these will only reflect the
most frequent English words (and characters se-
quences). Accordingly, without language transfer
effects, a naive baseline classifier based on an n-
gram model is expected to achieve about 20% ac-
curacy in a 5 native languages classification task.
However, using classification based on the relative
frequency of top 200 bi-grams achieves about 66%1

in all experiments, substantially higher than the ran-
dom baseline. These results are so surprising that
they suggest that the characters bi-grams classifi-
cation masks some other bias or noise in the cor-
pus, or, conversely, that it mirrors other simple-to-

1Koppel et al did not report these results explicitly. How-
ever, they can be roughly estimated from their graph.

Figure 1: Classification accuracy of the different
variations of document representation. b-g: bi-
grams, f-w: function words, c-w: content words.

explain phenomena such as shallow language trans-
fer through the use of function words, or content
bias. The following sub-sections describe different
variations of the experiment, ruling out the effect of
these different types of bias.

4.1 Unigram Baseline

We first implemented a naive baseline classifier. We
represented each document by the normalized fre-
quencies of the (de-capitalized) letters it contains2.
These frequencies are simply a unigram model of
the sub-corpora. Using the multi-class SVM (Wit-
ten and Frank, 2005) we obtained 46.78% accu-
racy. This accuracy is more than twice the ran-
dom baseline accuracy. This result is in accordance
with our bi-grams results. Our discussion focuses on
bi-grams rather than unigrams because the former’s
results are much higher and because bi-grams are
much closer to the phonology of the language (for
alphabetic scripts, of course).

4.2 Bi-grams Based Classification

Choosing the 200 most frequent character bi-grams
in the corpus, we used a vector of the same dimen-
sion. Each vector entry contained the normalized
frequency of one of the bi-grams. Using a multi-
class SVM in a 10-fold cross validation manner we

2White spaces were considered a letter. However, sequences
of white spaces and tabs were collapsed to a single white space.
All the experiments that make use of character frequencies were
performed twice, including and excluding punctuation marks.
Results for both experiments are similar, therefore all the num-
bers reported in this paper are based on letters and punctuation
marks.
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Bulg. Czech French Russian Spanish
dr 170 183 n/a 195 n/a
am 117 135 142 140 152
m 121 120 133 119 139
iv 104 138 144 148 148
y 161 181 196 183 166

la 122 123 122 142 105

Table 1: Some of the separating bi-grams found in
the feature selection process. ‘’ indicates a white
space. The numbers are the frequency ranking of
the bi-grams in each sub-corpus (e.g., there are 103
bi-grams more frequent than ‘iv’ in the Bulgarian
corpus). n/a indicates that this bi-gram is not one of
the 200 most frequent bi-grams of the sub-corpus.

achieved 65.60% accuracy with standard deviation
of 3.99.

The bi-grams features in the 200 dimensional vec-
tor are the 200 most frequent bi-grams in the whole
corpus, regardless of their frequency in each sub-
corpus. We note that the effect of misspelled words
on the 200 most frequent bi-grams is negligible.

A more sophisticated feature selection could re-
duce the dimension of the representation vector
without detracting from the results. Careful fea-
ture selection can also give a better intuition regard-
ing the support vectors. We performed feature se-
lection in the following manner: we chose the top
200 bi-grams of each sub-corpus, getting 245 unique
bi-grams in total. We then chose all the bi-grams
that were ranked significantly higher or significantly
lower in one language than in at least one other
language, assuming that those bi-grams have strong
separating power. With the threshold of significance
set to 20 we obtained 84 separating bi-grams. Table
1 shows some of the separating bi-grams thus found.
For example, ‘la’ is a good separator between Rus-
sian and Spanish (its rank in the Spanish corpus is
much higher than that in the Russian corpus), but
not between other pairs.

Using only those 84 bigrams we obtained clas-
sification accuracy of 61.38%, a drop of only 4%
compared to the results achieved with the 200 di-
mensional vectors. These results show that increas-
ing the dimension of the representation vector using
additional bi-grams contribute a marginal improve-
ment while it does not introduce substantial noise.

4.3 Using Tri-gram Frequencies as Features

Repeating the same experiment with the top 200 tri-
grams, we obtained an accuracy of 59.67%, which
is 40% higher than the expected baseline and 15%
higher than the uni-grams baseline. These results
show that the texts in our corpus can be classified
by only using naive n-gram models, while the op-
timal n of the n-gram is a different question that
might be addressed in a different work (and might
be language-dependent).

4.4 Function Words Based Classification

Function words are words that have a little lexical
meaning but instead serve to express grammatical
relations within a sentence or specify the attitude of
the speaker (function words should not be confused
with stopwords, although the lists of most frequent
function words and the stopword list share a large
subset). We used the same list of 460 function words
used by Koppel et al (2005a). A partial list includes:
{a, afterward, although, because, cannot, do, enter,
eventually, fifteenth, hither, hath, hence, lastly, oc-
casionally, presumable, said, seldom, undoubtedly,
was}.

In this variation of the experiment, we represented
each document only by the relative frequencies of
the function words it contained. Using the same
experimental setup as before, we achieved an ac-
curacy of 66.7%. These results are less surprising
than the results obtained by the character n-grams
vectors, since we do expect native speakers of a cer-
tain language to use, misuse or ignore certain func-
tion words as a result from language transfer mech-
anisms (Odlin, 1989). For example, it is well known
that native speakers of Russian tend to omit English
articles.

4.5 Function Words Bias

The previous results suggest that the n-gram based
classification is simply the result of the different
uses of function words by speakers of different na-
tive languages. In order to rule out the effect of the
function words on the bi-gram-based classification,
we removed all function words from the corpus, re-
calculated the bi-gram frequencies and ran the ex-
periment once again, this time achieving an accuracy
of 62.92% in the 10-fold cross validation test.

12



These results, obtained on the function words-free
corpus, clearly show that n-gram based classification
is not a mere artifact masking the use of function
words.

4.6 Content Bias

Bi-gram frequencies could also reflect content bias
rather than language use. By content bias we mean
that the subject matter of the documents in the dif-
ferent sub-corpora could exhibit internal sub-corpus
uniformity and external sub-corpus disparity. In or-
der to rule this out, we employed a variation on the
Term Frequency – Inverted Document Frequency
(tf-idf ) content analysis metric.

The tf-idf measure is a statistical measure that is
used in information retrieval tasks to evaluate how
important a word/term is to a document in a collec-
tion or corpus (Salton and Buckley, 1988). Given a
collection of documentsD, thetf-idf weight of term
t in a documentd ∈ D is computed as follows:

tfidft = ft,d × log
|D|

ft,D

whereft,d is the frequency of termt in document
d, andft,D is the number of documents in whicht
appears. Therefore, the weight of termt ∈ d is max-
imal if it is a common term ind while the number of
documents it appears in is relatively low.

We used thetf-idf weights in the information re-
trieval sense in order to discover the dominant con-
tent words of each sub-corpus. We treated each sub-
corpus (set of documents by writers who share a
native language) as a single document and calcu-
lated thetf-idf of each word. In order to determine
whether there is a content bias or not, we set a domi-
nance threshold, and removed all words such that the
difference between theirtf-idf score in two different
sub-corpora is higher than the dominance threshold.
Given a thresholdt, thedominanceDw,t, of a token
w is given by:

Dw,t = maxi,j |tfidfw,i − tfidfw,j |

where tfidfw,k is the tf-idf score of tokenw in
sub-corpusk. Changing the threshold in 0.0005 in-
tervals, we removed from 1 to 340 unique content
words (between 1,545 and 84,725 word tokens in to-
tal). However, the classification accuracy was essen-
tially the same (see Figure 2), with a slight drop of

Word Bulg. Czech Fr. Rus. Spa.
europe 0 0.3 2.7 0.2 0.2
european 0 0.3 3 0.1 0.5
imagination 4.3 2 0.8 1 0.8
television 0 3.6 1.9 3.1 0.3
women 0.4 1.7 1.2 5.5 2.6

Table 2: Thetf-idf score of some of the most domi-
nant words, multiplied by 1,000 for easier reading.

Subcorpus content function unique
words words stems

Bulgarian 1543 94685 11325
Czech 2784 110782 12834
French 2059 67016 9474
Russian 2730 112410 12338
Spanish 2985 108052 12627
Total 12101 492945 36474

Table 3: Numbers of dominant content words (with
a threshold of 0.0025) and function words that were
removed from each sub-corpus. The unique stems
column indicates the number of unique stems (types)
that remained after removal ofc-w andf-w.

only 2% after removing 51 content words (by using
a threshold of 0.0015).

We calculated thetf-idf weights after stop-words
removal and stemming (using a Porter stemmer
(Porter, 1980)), trying to pinpoint dominant stems.
The results were similar to the word’stf-idf and no
significantly dominant stem was found in either of
the sub-corpora.

A drop of only 3% in accuracy was noticed after
removing both dominant content words and function
words. These results show that if a content bias ex-
ists in the corpus it has only a minor effect on the
SVM classification, and that the n-grams based clas-

Figure 2: Classification accuracy as a function of the
threshold (removed content words).
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Thresh. 0.004 0.003 0.0025 0.0015 0.001
2 c-w 9 c-w 15 c-w 51 c-w 113c-w

Bulg. 77 908 1543 3955 7426
Czech 306 1829 2784 5139 8588
French 665 1829 2059 3603 6205
Russian 781 1886 2730 6302 9918
Spanish 389 1418 2985 6548 10521
Total 2218 7970 12101 25547 42658

Table 4: Number of occurrences of content words
that were removed from each sub-corpus for some
of the thresholds. The numbers in the top row indi-
cate the threshold and the number of unique content
words that were found with this threshold.

sification is not an artifact of a content bias.

We ran the same experiment five more times, each
time on 4 sub-corpora instead of 5, removing one
(different) language each time. The results in all 5
4-class experiments were essentially the same, and
similar to those of the 5 language task (beyond the
fact that the random baseline for the former is 25%
rather than 20%).

4.7 Suffix Bias

Bias might also be attributed to the use of suf-
fixes. There are numerous types of English suf-
fixes, which, roughly speaking, may be categorized
as derivational or inflectional. It is reasonable to ex-
pect that just like a use of function words, use or mis-
use of certain suffixes might occur due to language
transfer. Frequent use of a certain suffix or avoid-
ance of the use of a certain suffix may influence the
bi-grams statistics and thus the bi-grams classifica-
tion may be only an artifact of the suffixes usage.

Checking the use of the 50 most productive suf-
fixes taken from a standard list (e.g.ing, ed, less,
able, most, en) we have found that only a small num-
ber of suffixes are not equally used by speakers of all
5 languages. Most notable are the differences in the
use ofing between native French speakers and na-
tive Czech speakers and the differences of use ofless
between Bulgarian and Spanish speakers (Table 5).
However, no real bias can be attributed to the use of
any of the suffixes because their relative aggregate
effect on the values in the support vector entries is
very small.

Suffix Bulg. Czech French Russian Spanish
ing 872 719 932 903 759
less 47 36 39 45 32

Table 5: Counts of two of the suffixes whose fre-
quency of use differs the most between sub-corpora.

4.8 Control Corpus

Finally, we have also ran the experiment on a differ-
ent corpus replacing the French and the Spanish sub-
corpora by the Dutch and Italian ones, introducing a
new Roman language and a new Germanic language
to the corpus. We obtained 64.66% accuracy, essen-
tially the same as in the original 5-language setting.

The corpus was compiled from works of advanced
English students of the same level who write essays
of approximately the same length, on a set of ran-
domly and roughly equally distributed topics. We
expected that these students will use roughly the
same n-grams distribution. However, the results de-
scribed above suggest that there exists some mecha-
nism that influences the authors’ choice of words. In
the next section we present a computational psycho-
linguistic framework that might explain our results.

5 Statistical Learning and Language
Transfer in SLA

5.1 Statistical Learning by Infants

Psychologists, linguists, and cognitive science re-
searchers try to understand the process of language
learning by infants. Many models for language
learning and cognitive language modeling were sug-
gested (Clark, 2003).

Infants learn their first language by a combina-
tion of speech streams, vocal cues and body ges-
tures. Infants as young as 8 months old have a
limited grasp of their native tongue as they react
to familiar words. In that age they already under-
stand the meaning of single words, they learn to spot
these words in a speech stream, and very soon they
learn to combine different words into new sentential
units. Parental speech stream analysis shows that it
is impossible to separate between words by identi-
fying sequences of silence between words (Saffran,
2001). Recent studies of infant language learning
are in favor of the statistical framework (Saffran,
2001; Saffran et al, 1996). Saffran (2002) exam-
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ined 8 month-old to one year-old infants who were
stimulated by speech sequences. The infants showed
a significant discrimination between word and non-
word stimuli. In a different experimental setup in-
fants showed a significant discrimination between
frequent syllable n-grams and non frequent sylla-
ble n-grams, heard as part of a gibberish speech se-
quence generated by a computer according to var-
ious statistical language models. In a third experi-
mental setup infants showed a significant discrimi-
nation in favor of English-like gibberish speech se-
quences upon non-English-like gibberish speech se-
quences. These findings along with the established
finding (Jusczyk, 1997) that infants prefer the sound
of their native tongue suggest that humans learn ba-
sic language units in a statistical manner and that
they store some statistical parameters pertaining to
these units. We should note that some researchers
doubt these conclusions (Yang, 2004).

5.2 Language Transfer in SLA

The role of the first language in second language ac-
quisition is under a continuous debate (Ellis, 1999).
Language Transferbetween L1 and L2 is the pro-
cess in which a language learner of L2 whose na-
tive language is L1, is influenced by L1 when using
L2 (actually, when building his/her inter-language).
This influence might appear helpful when L2 is rel-
atively close to L1, but it interferes with the learn-
ing process due to over- and under-generalization or
other problems. Although there is clear evidence
that language learners use constructs of their first
language when learning a foreign language (James,
1980; Odlin, 1989), it is not clear that the majority
of learner errors can be attributed to the L1 transfer
(Ellis, 1999).

5.3 Sound Transfer Hypothesis

For alphabetic scripts, character bi-grams reflect ba-
sic sounds and sound sequences of the language3.
We have shown that native language strongly corre-
lates with character bi-grams when people write in
English as a second language. After ruling out usage
of function words, content bias, and morphology-
related influences, the most plausible explanation is

3Note that for English, they do not directly correspond to
phonemes or syllables. Nonetheless, they do reflect English
phonology to some extent.

that these are language transfer effects related to L1
sounds.

We hypothesize that there are language transfer
effects related to L1 sounds and manifested by the
words that people choose to use when writing in a
second language. (We say ‘writing’ because we have
only experimented with written texts; a more gen-
eral hypothesis covering speaking and writing can
be formulated as well.)

Furthermore, since the acquisition and represen-
tation of phonology is strongly influenced by statis-
tical considerations (Section 5.1), we speculate that
the general language transfer phenomenon might be
related to frequency. This does not directly follow
from our findings, of course, but is an exciting direc-
tion to investigate, and it is in accordance with the
growing body of work on the effects of frequency
on language learning and the emergence of syntax
(Ellis, 2002; Bybee, 2006).

We note that there is one obvious and well-known
lexical transfer effect: the usage of cognates (words
that have similar form (sound) and meaning in two
different languages). However, the languages we
used in our experiments contain radically differing
amounts of cognates of English words (just consider
French vs. Bulgarian, for example), while the clas-
sification results were about the same for all 5 lan-
guages. Hence, cognates might play a role, but they
do not constitute a single major explaining factor for
our findings.

We note that the hypothesis put forward in the
present paper is the first that attributes a language
transfer phenomenon to a cognitive representation
(phonology) whose statistical nature has been seri-
ously substantiated.

6 Conclusion

In this paper we have demonstrated how modern ma-
chine learning can aid other fields, here the impor-
tant field of Second Language Acquisition (SLA).
Our analysis of the features useful for a multi-class
SVM in the task of native language classification has
resulted in the formulation of a hypothesis of poten-
tial significance in the theory of language transfer
in SLA. We hypothesize language transfer effects at
the level of basic sounds and short sound sequences,
manifested by the words that people choose when
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writing in a second language. In other words, we
hypothesize that use of L2 words is strongly influ-
enced by L1 sounds and sound patterns.

As noted above, further experiments (psycholog-
ical and computational) must be conducted for vali-
dating our hypothesis. In particular, construction of
a wide-scale learners’ corpus with tight control over
content bias is essential for reaching stronger con-
clusions.

Additional future work should address sound se-
quences vs. the orthographic sequences that were
used in this work. If our hypothesis is correct, then
using spoken language corpora should produce even
stronger results, since (1) writing systems rarely
show a 1-1 correspondence with how words are at
the phonological level; and (2) writing allows more
conscious thinking that speaking, thus potentially re-
duces transfer effects. Our eventual goal is creating
a unified model of statistical transfer mechanisms.
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Abstract 

This paper discusses a new, open-source 
software program, called Phon, that is de-
signed for the transcription, coding, and 
analysis of phonological corpora. Phon 
provides support for multimedia data link-
age, segmentation, multiple-blind transcrip-
tion, transcription validation, syllabifica-
tion, alignment of target and actual forms, 
and data analysis. All of these functions are 
available through a user-friendly graphical 
interface. Phon, available on most com-
puter platforms, supports data exchange 
among researchers with the TalkBank 
XML document format and the Unicode 
character set.. This program provides the 
basis for the elaboration of PhonBank, a 
database project that seeks to broaden the 
scope of CHILDES into phonological de-
velopment and disorders. 

1 Introduction 

Empirical studies of natural language and language 
acquisition will always be required in most types 
of linguistic research. These studies provide the 
basis for describing languages and linguistic pat-
terns. In addition to providing us with baseline data, 
empirical data allow us to test theoretical, neuro-
logical, psychological and computational models. 
However, the construction of natural language cor-
pora is an extremely tedious and resource-
consuming process, despite tremendous advances 

in data recording, storage, and coding methods in 
recent decades.  

Thanks to corpora and tools such as those de-
veloped in the context of the CHILDES project 
(http://childes.psy.cmu.edu/), researchers in areas 
such as morphology and syntax have enjoyed a 
convenient and powerful method to analyze the 
morphosyntactic properties of adult languages and 
their acquisition by first and second language 
learners. In the area of phonetics, the Praat system  
(http://www.fon.hum.uva.nl/praat/) has expanded 
our abilities to conduct phonological modeling, 
computational simulations based on a variety of 
theoretical approaches, and articulatory synthesis.  

In this rapidly-expanding software universe, 
phonologists interested in the organization of 
sound systems (e.g. phones, syllables, stress and 
intonational patterns) and their acquisition have not 
yet enjoyed the same level of computational sup-
port. There is no developed platform for 
phonological analysis and no system for data-
sharing parallel to that found in CHILDES. Unfor-
tunately, this situation negatively affects the study 
of natural language phonology and phonological 
development. It also undermines potential studies 
pertaining to interfaces between various compo-
nents of the grammar or the elaboration of compu-
tational models of language or language develop-
ment.  

It is largely accepted that the grammar is hierar-
chically organized such that larger domains (e.g. a 
sentence or a phrase) provide the conditioning en-
vironments for patterns occurring in the domains 
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located lower in the hierarchy (e.g. the word or the 
syllable), as indicated in Figure 1.  

 

 
 

Figure 1: General grammatical hierarchy 
 

This hierarchical view of grammatical organization 
allows us to make reference to factors that link 
phonology to syntax. For example, in English, the 
phonological phrase, a domain that constrains 
phonological phenomena such as intonation, is best 
described using syntactic criteria (e.g. Selkirk 
1986). Data on the acquisition of these grammati-
cal structures and their phonological consequences 
can help us understand how they are learned and 
assimilated by the learner.  

In this paper we discuss Phon 1.2, the current 
version of an open-source software program that 
offers significant methodological advances in re-
search in phonology and phonological develop-
ment. On the one hand, Phon provides a powerful 
and flexible solution for phonological corpus 
elaboration and analysis. On the other hand, its 
ability to integrate with other open-source software 
will facilitate the construction of complete analyses 
across all levels of grammatical organization repre-
sented in Figure 1.  

The paper is organized as follows. In section 2, 
we discuss the general motivation behind the Phon 
project. In section 3, we discuss the current func-
tionality supported in Phon 1.2. In section 4, we 
offer a glance at future plans for this project. Sec-
tion 5 provides a final summary.  

2 The PhonBank Project 

PhonBank, the latest initiative within the 
CHILDES project, focuses on the construction of 
corpora suitable for phonological and phonetic an-
alysis. In this section we first describe the goals 
and orientations of PhonBank. We then describe 
Phon, the software project designed to facilitate 
this endeavor. 

2.1 PhonBank 

The PhonBank project seeks to broaden the scope 
of the current CHILDES system to include the 
analysis of phonological development in first and 
second languages for language learners with and 
without language disorders. To achieve this goal, 
we will create a new phonological database called 
PhonBank and a program called Phon to facilitate 
analysis of PhonBank data. Using these tools, re-
searchers will be in position to conduct a series of 
developmental, crosslinguistic, and methodological 
analyses based on large-scale corpora. 

2.2 Phon 

Phon consists of inter-connected modules that offer 
functionality to assist the researcher in important 
tasks related to corpus transcription, coding and 
analysis. (The main functions supported are dis-
cussed in the next section.) 

The application is developed in Java and is 
packaged to run on Macintosh (Mac OS X 10.4+) 
and Windows (Vista not tested yet) platforms.1 
Phon is Unicode-compliant, a required feature for 
the sharing of data transcribed with phonetic sym-
bols across computer platforms. Phon can share 
data with programs which utilize the TalkBank 
XML schema for their documents such as those 
provided by the TalkBank and CHILDES projects. 
Phon is available as free download directly from 
CHILDES (http://childes.psy.cmu.edu/phon/). 

At the time of writing these lines, Phon is avail-
able in its version 1.1, an iteration of the program 
that offered a proof of concept for the application 
envisioned (see Rose et al., 2006). Over the past 
year, however, we have thoroughly revised signifi-
cant portions of the code to refine the functionality, 
ensure further compatibility with other TalkBank-
compliant applications, and streamline the inter-
face for better user experience and improved 
workflow. Despite what the minor version incre-
ment (1.1 to 1.2) may imply, the new version, 
which is currently being tested internally and due 
for public release in June 2007, offers significant 
improvements as well as novel and innovative 
functionality.  

                                                
1 Support for the Unix/Linux platform is currently compro-
mised, primarily because of licensing issues related to the 
multimedia functions of the application. 
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3 Phon 1.2 

As illustrated in Figure 2, the general interface of 
Phon 1.2 consists of a media centre (top left of the 
interface), a section for metadata (e.g. recorded 
participants and their linguistic profiles; bottom 
left) and a Transcript Editor, the interface that pro-
vides access to most of the functionality (right).  

 

 
Figure 2: Phon 1.2 General Interface 

 
One of the most significant improvements 

brought to version 1.2 comes from the integration 
of common tasks within the same user interface. In 
the previous version, completely separate inter-
faces had to be accessed to achieve the following 
tasks, all of which are required in the elaboration 
of any corpus: 

• Media linkage and segmentation. 

• Data transcription and validation (including 
support for multiple-blind transcriptions). 

• Segmentation of transcribed utterances (into 
e.g. phrases, words). 

• Labeling of transcribed forms for syllabifi-
cation. 

• Phone and syllable alignment between target 
(expected) and actual (produced) forms. 

As a result the user often had to navigate between 
various modules in order to accomplish relatively 
simple operations. For example, a simple modifica-
tion to a transcription required, in addition to the 
modification itself, revalidation of the data, and 
then a verification of the syllabification and align-
ment data generated from this revised transcrip-

tion, each of these steps requiring access to and 
subsequent exit from a separate module.  

In Phon 1.2, most of this hurdle has been allevi-
ated through an integration of most of the functions 
into the Transcript Editor, while the others (e.g. 
media linkage and segmentation; transcript valida-
tion) are accessed directly from the general inter-
face, without a need to exit the Transcript Editor. 
In the next subsections, we describe the main func-
tions supported by the application.2 

3.1 Media linkage and segmentation 

As mentioned above, linkage of multimedia data 
and subsequent identification of the portions of the 
recorded media that are relevant for analysis are 
now available directly from the application’s main 
interface. These tasks follow the same logic as 
similar systems in programs like CLAN 
(http://childes.psy.cmu.edu/clan/). In addition to its 
integrated interface, Phon 1.2 offers support for 
linking different portions to a single transcript to 
different media files. 

3.2 Data transcription 

The Transcript Editor now incorporates in a single 
interface access to data transcription and annota-
tion, transcription segmentation, syllabification and 
alignment. This module is illustrated in more detail 
with the screen shot of a data record (correspond-
ing to an utterance) in Figure 3.  
 

 
Figure 3: Data record in Transcript Editor 

                                                
 2 Additional functions, such as user management, are also 
supported by Phon; we will however restrict ourselves to the 
most central functions of the program. 

19



As can be seen, the interface incorporates tiers for 
orthographic and phonetic transcriptions as well as 
other textual annotations. Phon also provides sup-
port for an unlimited number of user-defined fields 
that can be used for all kinds of textual annotations 
that may be relevant to the coding of a particular 
dataset. All fields can be ordered to accommodate 
specific data visualization needs. Phonetic tran-
scriptions are based on the phonetic symbols and 
conventions of the International Phonetic Associa-
tion (IPA). A useful IPA character map is easily 
accessible from within the application, in the shape 
of a floating window within which IPA symbols 
and diacritics are organized into intuitive catego-
ries. This map facilitates access to the IPA symbols 
for which there is no keyboard equivalent.  

Target and actual IPA transcriptions are stored 
internally as strings of phonetic symbols. Each 
symbol is automatically associated with a set of 
descriptive features generally accepted in the fields 
of phonetics and phonology (e.g. bilabial, alveolar, 
voiced, voiceless, aspirated) (Ladefoged and Mad-
dieson, 1996). These features are extremely useful 
in the sense that they provide series of descriptive 
labels to each transcribed symbol. The availability 
of these labels is essential for research involving 
the grouping of various sounds into natural classes 
(e.g. voiced consonants; non-high front vowels). 
The built-in set of features can also be reconfig-
ured as needed to fit special research needs. 

Phon 1.2 is also equipped with functionality to 
automatically insert IPA Target transcriptions 
based on the orthographic transcriptions. Citation 
form IPA transcriptions of these words are cur-
rently available for English and French. The Eng-
lish forms were obtained from the CMU Pronounc-
ing Dictionary (www.speech.cs.cmu.edu/cgi-
bin/cmudict); the French forms were obtained from 
the Lexique Project database (www.lexique.org).  

In cases when more than one pronunciation are 
available from the built-in dictionaries for a given 
written form (e.g. the present and past tense ver-
sions of the English word ‘read’), the application 
provides a quick way to select the wanted form.  

Of course, idealized citation forms do not pro-
vide accurate fine-grained characterizations of 
variations in the target language (e.g. dialect-
specific pronunciation variants; phonetic details 
such as degree of aspiration in obstruent stops). 
They however typically provide a useful general 
baseline against which patterns can be identified. 

1.1 Media playback and exporting 

Actual forms (e.g. the forms produced by a lan-
guage learner) must be transcribed manually. Tran-
script validation, the task described in the next sec-
tion, also requires access to the recorded data. To 
facilitate these tasks, Phon provides direct access 
to the segmented portions of the media for play-
back in each record (see the ‘Segment’ tier in Fig-
ure 3). The beginning and end times of these seg-
ments can be edited directly from the record, 
which facilitates an accurate circumscription of the 
relevant portions of the recorded media. Finally, 
Phon can export the segmented portions of the me-
dia into a sound file, which enables quick acoustic 
verifications using sound visualizing software such 
as Praat (http://www.fon.hum.uva.nl/praat/), SFS 
(http://www.phon.ucl.ac.uk/resource/sfs/), Signa-
lyze (http://www.signalyze.com/) or CSL 
(http://www.kayelemetrics.com/).  

1.2 Transcript validation 

In projects where only a single transcription of the 
recorded data is utilized, this transcription can be 
entered directly in the Transcript Editor. In projects 
that rely on a multiple-blind transcription method, 
each transcription for a given form is stored sepa-
rately. To appear in the Transcript Editor, a blind 
transcription must be selected through the Tran-
script Validation mode. This interface allows the 
transcription supervisor (or, in a better setting, a 
team of supervisors working together) to compare 
competing transcriptions and resolve divergences. 
Alternative, non-validated transcriptions are pre-
served for data recoverability and verification pur-
poses. They are however unavailable for further 
processing, coding or analysis.  

1.3 Transcription segmentation 

Researchers often wish to divide transcribed utter-
ances into specific domains such as the phrase or 
the word. Phon fulfills this need by incorporating a 
text segmentation module that enables the identifi-
cation of strings of symbols corresponding to such 
morphosyntactic and phonological domains. For 
example, using the syllabification module de-
scribed immediately below, the researcher can test 
hypotheses about what domains are relevant for 
resyllabification processes across words. Word-
level segmentation is exemplified in Figure 3, as 
can be seen from the gray bracketing circumscrib-
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ing each word. Not readily visible from this inter-
face however is the important fact that the bracket-
ing enforces a logical organization between Ortho-
graphic, IPA Target and IPA Actual forms, the lat-
ter two being treated as daughter nodes directly 
related to their corresponding parent bracketed 
form in the Orthography tier. This system of tier 
dependency offers several analytical advantages, 
for example for the identification of patterns that 
can relate to a particular grammatical category or 
position within the utterance. 

In addition to the textual entry fields just de-
scribed, the Transcript Editor contains color-coded 
graphical representations of syllabification infor-
mation for both IPA Target and IPA Actual forms 
as well as for the segmental and syllabic alignment 
of these forms.  

1.4 Syllabification algorithm 

Once the researcher has identified the domains that 
are relevant for analysis, segmentation at the level 
of the syllable is performed automatically: seg-
ments are assigned descriptive syllable labels 
(visually represented with colors) such as ‘onset’ 
or ‘coda’ for consonants and ‘nucleus’ for vowels. 
The program also identifies segmental sequences 
within syllable constituents (e.g. complex onsets or 
nuclei). Since controversy exists in both phonetic 
and phonological theory regarding guidelines for 
syllabification, the algorithm is parameterized to 
allow for analytical flexibility. The availability of 
different parameter settings also enables the re-
searcher to test hypotheses on which analysis 
makes the best prediction for a given dataset. Phon 
1.2 contains built-in syllabification algorithms for 
both English and French. The algorithm for Eng-
lish incorporates fine distinctions such as those 
proposed by Davis and Hammond (1995) for the 
syllabification of on-glides. Both algorithms are 
based on earlier work by, e.g. Selkirk (1982) and 
Kaye and Lowenstamm (1984), the latter also 
documenting the most central properties of French 
syllabification. While these algorithms use specific 
syllable positions such as the left appendix (util-
ized to identify strident fricatives at the left-edge of 
triconsonantal onset clusters; e.g. ‘strap’), a simple 
syllabification algorithm is also supplied, which 
restricts syllable position to onset, nucleus and 
coda only. Additional algorithms (for other lan-
guages or assuming different syllable constructs) 
can easily be added to the program. 

Our currently-implemented syllabification algo-
rithms use a scheme based on a composition-
cascade of seven deterministic FSTs  (Finite State 
Tools). This cascade takes as input a sequence of 
phones and produces a sequence of phones and 
associated syllable-constituent symbols, which is 
subsequently parsed to create the full multi-level 
metrical structure. The initial FST in the cascade 
places syllable nuclei and the subsequent FSTs 
establish and adjust the boundaries of associated 
onset- and coda-domains. Changes in the definition 
of syllable nuclei in the initial FST and/or the or-
dering and makeup of the subsequent FSTs give 
language-specific syllabification algorithms. To 
ease the development of this cascade, initial FST 
prototypes were written and tested using the Xerox 
Finite-State Tool (xFST) (Beesley and Karttunen 
2003). However, following the requirements of 
easy algorithm execution within and integration 
into Phon, these FSTs were subsequently coded in 
Java. To date, the implemented algorithm has been 
tested on corpora from English and French, and 
has obtained accuracies of almost 100%. 

Occasionally, the algorithm may produce spuri-
ous results or flag symbols as unsyllabified. This is 
particularly true in the case of IPA Actual forms 
produced by young language learners, which 
sometimes contain strings of sounds that are not 
attested in natural languages. Syllabification is 
generated on the fly upon transcription of IPA 
forms; the researcher can thus quickly verify all 
results and modify them through a contextual 
menu (represented in Figure 3) whenever needed. 
Segments that are left unsyllabified are available 
for all queries on segmental features and strings of 
segments, but are not available for queries refer-
ring to aspects of syllabification (see also Figure 4 
for a closer look at the display of syllabification). 

The syllabification labels can then be used in da-
tabase query (for example, to access specific in-
formation about syllable onsets or codas). In addi-
tion, because the algorithm is sensitive to main and 
secondary stress marks and domain edges (i.e. first 
and final syllables), each syllable identified is 
given a prosodic status and position index. Using 
the search functions, the researcher can thus use 
search criteria as precisely defined as, for example, 
complex onsets realized in word-medial, secon-
dary-stressed syllables. This level of functionality 
is central to the study of several phenomena in 
phonological acquisition that are determined by the 
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status of the syllable as stressed or unstressed, or 
by the position of the syllable within the word (e.g. 
Inkelas and Rose 2003). 

1.5 Alignment algorithm 

After syllabification, a second algorithm per-
forms automatic, segment-by-segment and sylla-
ble-by-syllable alignment of IPA-transcribed target 
and actual forms. Building on featural similarities 
and differences between the segments in each syl-
lable and on syllable properties such as stress, this 
algorithm automatically aligns corresponding seg-
ments and syllables in target and actual forms. It 
provides alignments for both corresponding sounds 
and syllables. For example, in the target-actual 
word pair ‘apricot’ > ‘a_cot’, the algorithm aligns 
the first and final syllables of each form, and iden-
tifies the middle syllable (‘pri’) as truncated. This 
is illustrated in Figure 4. Similarly, in cases of ren-
ditions such as ‘blow’ > ‘bolow’ the alignment 
algorithm relates both syllables of the actual form 
to the only syllable of the target form and diagno-
ses a case of vowel epenthesis.  

 

 
Figure 4: Syllabification and Alignment 

 
In this alignment algorithm, forms are viewed as 

sequences of phones and syllable-boundary mark-
ers and the alignment is done on the phones in a 
way that preserves syllable integrity. This algo-
rithm is a variant of the standard dynamic pro-
gramming algorithm for pairwise global sequence 
alignment (see Sankoff and Kruskal 1983 and ref-
erences therein); as such, it is similar to but ex-
tends the phone-alignment algorithm described in 
Kondrak (2003). At the core of the Phon alignment 
algorithm is a function sim(x, y) that assesses the 
degree of similarity of a symbol x from the first 
given sequence and a symbol y from the second 
given sequence. In our sim() function, the similar-
ity value of phones x and y is a function of a basic 

score (which is the number of phonetic features 
shared by x and y) and the associated values of 
various applicable reward and penalty conditions, 
each of which encodes a linguistically-motivated 
constraint on the form of the alignment. There are 
nine such reward and penalty conditions, and the 
interaction of these rewards and penalties on phone 
matchings effectively simulates syllable integrity 
and matching constraints. Subsequent to this en-
hanced phone alignment, a series of rules is in-
voked to reintroduce the actual and target form 
syllable boundaries. 

A full description of the alignment algorithm is 
given in Maddocks (2005) and Hedlund et al. 
(2005). Preliminary tests on attested data from the 
published literature on Dutch- and English-
learning children (Fikkert, 1994; Pater, 1997) indi-
cate an accuracy rate above 95% (96% for a Dutch 
corpus and 98% for an English corpus). As it is the 
case with the other algorithms included in the pro-
gram, the user is able to perform manual adjust-
ments of the computer-generated syllable align-
ments whenever necessary. This process was made 
as easy as possible: it consists of clicking on the 
segment that needs to be realigned and moving it 
leftward or rightward using keyboard arrows.  

The alignment algorithm, as well as the data 
processing steps that precede it (especially, syllabi-
fication), are essential to any acquisition study that 
requires pair-wise comparisons between target and 
actual forms, from both segmental and syllabic 
perspectives.  

Implicit to the description of the implementation 
of the syllabification and alignment functions is a 
careful approach whereby the algorithms imple-
mented at this stage are used to assist data compi-
lation; because every result generated by the algo-
rithms can be modified by the user, no data analy-
sis directly depends on them. The user thus has 
complete control on the processing of the data be-
ing readied for analysis. After extensive testing on 
additional types of data sets, we will be able to op-
timize their degree of reliability and then deter-
mined how they can be used in truly automated 
analyses. 

1.6 Database query 

Phon sports a simple search function built directly 
in the main interface (see Figure 2 above). More 
complex queries are now supported through a se-
ries of built-in analysis and reporting functions. 
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Using these functions, the research can identify 
records that contain: 

• Phones and phone sequences (defined with 
IPA symbols or descriptive feature sets). 

• Syllable types (e.g. CV, CVC, CGV, …).3 

• Word types (e.g. number of syllables and the 
stress patterns that they compose). 

• Segmental processes (obtained through fea-
tural comparisons between Target-Actual 
aligned phones; e.g. devoicing, gliding). 

• Syllabic processes (obtained through com-
parisons between target-actual aligned sylla-
bles e.g. complex onset reduction).  

Using these functions, the researcher can quickly 
identify the records that match the search criteria 
within the transcript. The reported data are visual-
ized in tables which can be saved as comma-
separated value text files (.csv) that can subse-
quently be open in statistical or spreadsheet appli-
cations. Using an expression builder, i.e. a system 
to combine simple searches using functions such as 
intersection and union, the researcher can also take 
advantage of more elaborate search criteria. The 
expression builder thus enables the study of inter-
action between factors such as feature combina-
tions, stress, position within the syllable, word or 
any other larger domain circumscribed through the 
utterance segmentation function described above. 

2 Future projects 

Phon 1.2 now provides all the functionality re-
quired for corpus elaboration, as well as a versatile 
system for data extraction. In future versions, we 
will incorporate an interface for the management 
of acoustic data and fuller support for data query-
ing and searching.  At a later stage, we will con-
struct a system for model testing. We discuss these 
plans briefly in the next subsections. 

2.1 Interface for acoustic data 

In order to facilitate research that requires acoustic 
measurements, Phon will also incorporate full in-
terfacing with Praat and Speech Filing System, two 
software programs designed for acoustic analysis 
of speech sounds. As a result, researchers that util-

                                                
3 C=consonant; V=vowel; G=glide. 

ize these programs will be able to take advantage 
of some of Phon’s unique functions and, similarly, 
researchers using Phon will be able to take advan-
tage of the functionality of these two applications. 

2.2 Extension of database query functionality 

The search and report functions described in 
section 3.8 provide simple and flexible tools to 
generate general assessments of the corpus or de-
tect and extract particular phonological patterns. 
However, to take full advantage of all of the re-
search potential that Phon offers, a more powerful 
query system will be designed. This system will 
take the form of a query language supplemented 
with statistical functions. 

Such a system will enable precise assessments 
of developmental data within and across corpora of 
language learners or learning situations. The query 
language will also offer the relevant functionality 
to take full advantage of the module for manage-
ment of acoustic data described in the preceding 
subsection.  

2.3 Platform for model testing 

As presently implemented, Phon will allow us to 
continue with the construction of PhonBank and 
will provide tools for analyzing the new database. 
Once this system is in place, we will begin to de-
velop additional tools for model testing. These new 
systems will formalize learning algorithms in ways 
that will allow users to run these algorithms on 
stored data, much as in the “Learn” feature in 
Praat. This new model-testing application will in-
clude functions such as: 

• Run an arbitrary language learning algo-
rithm. 

• Compare the results of the grammar pro-
duced by such a language learning algorithm 
against actual language data. 

• In the event that the learning algorithm pro-
vides a sequence of grammars correspond-
ing to the stages of human language learn-
ing, compare the results of this sequence of 
grammars against actual longitudinal lan-
guage data. 

By virtue of its software architecture, form-
comparison routines, and stored data, Phon pro-
vides an excellent platform for implementing such 
an application. Running arbitrary language learn-
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ing algorithms could be facilitated using a Java 
API/interface-class combination specifying sub-
routines provided by Phon. The outputs of a given 
computational model could be compared against 
adult productions stored in Phon using the align-
ment algorithm described in Section 3.7 (which 
internally produces but does not output a score giv-
ing the similarity of the two forms being aligned). 
Finally, the outputs of a sequence of algorithm-
produced grammars relative to a given target word 
could be compared against the sequence of produc-
tions of that word made over the course of acquisi-
tion by a particular learner by aligning these pro-
duction sequences. Such an alignment could be 
done using the alignment algorithm described in 
Section 3.7 as a sim() function for matching up 
production-pairs in these sequences. In this case, 
more exotic forms of alignment such as local 
alignment or time-warping may be more appropri-
ate than the global alignment used in Section 3.7. 
For a full description of such alignment options, 
see Gusfield (1997) and Sankoff and Kruskal 
(1983). 

3 Discussion 

In its current form, Phon 1.2 provides a powerful 
system for corpus transcription, coding and analy-
sis. It also offers a sound computational foundation 
for the elaboration of the PhonBank database and 
its incorporation to the CHILDES system. Finally, 
it sets the basis for further improvements of its 
functionality, some of which was discussed briefly 
in the preceding section.  

The model-testing tool design sketched above is 
ambitious and perhaps premature in some aspects 
—for example, should we expect the current (or 
even next) generation of language learning algo-
rithms to mimic the longitudinal behavior of actual 
language learners? This question is especially rele-
vant given that some language behaviors observed 
in learners can be driven by articulatory or percep-
tual factors, the consideration of which implies 
relatively more complex models. That being said, 
the above suggests how Phon, by virtue of its lon-
gitudinal data, output-form comparison routines, 
and software architecture, may provide an excel-
lent platform for implementing the next generation 
of computational language analysis tools. 
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Abstract

Corpora of child language are essential for
psycholinguistic research. Linguistic anno-
tation of the corpora provides researchers
with better means for exploring the develop-
ment of grammatical constructions and their
usage. We describe an ongoing project that
aims to annotate the English section of the
CHILDES database with grammatical re-
lations in the form of labeled dependency
structures. To date, we have produced a cor-
pus of over 65,000 words with manually cu-
rated gold-standard grammatical relation an-
notations. Using this corpus, we have devel-
oped a highly accurate data-driven parser for
English CHILDES data. The parser and the
manually annotated data are freely available
for research purposes.

1 Introduction

In order to investigate the development of child lan-
guage, corpora which document linguistic interac-
tions involving children are needed. The CHILDES
database (MacWhinney, 2000), containing tran-
scripts of spoken interactions between children at
various stages of language development with their
parents, provides vast amounts of useful data for lin-
guistic, psychological, and sociological studies of
child language development. The raw information in
CHILDES corpora was gradually enriched by pro-

viding a layer of morphological information. In par-
ticular, the English section of the database is aug-
mented by part of speech (POS) tags for each word.
However, this information is usually insufficient for
investigations dealing with the syntactic, semantic
or pragmatic aspects of the data.

In this paper we describe an ongoing effort aim-
ing to annotate the English portion of the CHILDES
database with syntactic information based on gram-
matical relations represented as labeled dependency
structures. Although an annotation scheme for syn-
tactic information in CHILDES data has been pro-
posed (Sagae et al., 2004), until now no significant
amount of annotated data had been made publicly
available. In the process of manually annotating sev-
eral thousands of words, we updated the annotation
scheme, mostly by extending it to cover syntactic
phenomena that occur in real data but were unac-
counted for in the original annotation scheme.

The contributions of this work fall into three main
categories: revision and extension of the annota-
tion scheme for representing syntactic information
in CHILDES data; creation of a manually annotated
65,000 word corpus with gold-standard syntactic
analyses; and implementation of a complete parser
that can automatically annotate additional data with
high accuracy. Both the gold-standard annotated
data and the parser are freely available. In addi-
tion to introducing the parser and the data, we re-
port on many of the specific annotation issues that
we encountered during the manual annotation pro-
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cess, which should be helpful for those who may
use the annotated data or the parser. The anno-
tated corpora and the parser are freely available from
http://childes.psy.cmu.edu/.

We describe the annotation scheme in the next
section, along with issues we faced during the pro-
cess of manual annotation. Section 3 describes the
parser, and an evaluation of the parser is presented in
section 4. We analyze the remaining parsing errors
in section 5 and conclude with some applications of
the parser and directions for future research in sec-
tion 6.

2 Syntactic annotation

The English section of the CHILDES database is
augmented with automatically produced ambiguous
part-of-speech and morphological tags (MacWhin-
ney, 2000). Some of these data have been manually
disambiguated, but we found that some annotation
decisions had to be revised to facilitate syntactic an-
notation. We discuss below some of the revisions we
introduced, as well as some details of the syntactic
constructions that we account for.

2.1 The morphological annotation scheme
The English morphological analyzer incorporated
in CHILDES produces various part-of-speech tags
(there are 31 distinct POS tags in the CHILDES
tagset), including ADJective, ADVerb, COmmuni-
cator, CONJunction, DETerminer, FILler, Noun,
NUMeral, ONomatopoeia, PREPosition, PROnoun,
ParTicLe, QuaNtifier, RELativizer and Verb1. In
most cases, the correct annotation of a word is obvi-
ous from the context in which the word occurs, but
sometimes a more subtle distinction must be made.
We discuss some common problematic issues below.

Adverb vs. preposition vs. particle The words
about, across, after, away, back, down, in, off, on,
out, over, up belong to three categories: ADVerb,
PREPosition and ParTicLe. To correctly annotate
them in context, we apply the following criteria.

First, a preposition must have a prepositional ob-
ject, which is typically realized as a noun phrase
(which may be topicalized, or even elided). Sec-
ond, a preposition forms a constituent with its noun

1We use capital letters to denote the actual tag names in the
CHILDES tagset.

phrase object. Third, a prepositional object can be
fronted (for example, he sat on the chair becomes
the chair on which he sat), whereas a particle-NP
sequence cannot (*the phone number up which he
looked cannot be obtained from he looked up the
phone number). Finally, a manner adverb can be
placed between the verb and a preposition, but not
between a verb and a particle.

To distinguish between an adverb and a particle,
the meaning of the head verb is considered. If the
meaning of the verb and the target word, taken to-
gether, cannot be predicted from the meanings of the
verb and the target word separately, then the target
word is a particle. In all other cases it is an adverb.

Verbs vs. auxiliaries Distinguishing between
Verb and AUXiliary is often straightforward, but
special attention is given when tagging the verbs be,
do and have. If the target word is accompanied by an
non-finite verb in the same clause, as in I have had
enough or I do not like eggs, it is an auxiliary. Ad-
ditionally, in interrogative sentences, the auxiliary is
moved to the beginning of the clause, as in have I
had enough? and do I like eggs?, whereas the main
verb is not. However, this test does not always work
for the verb be, which may head a non-verbal pred-
icate, as in John is a teacher, vs. John is smiling. In
verb-participle constructions headed by the verb be,
if the participle is in the progressive tense, then the
head verb is labeled as auxiliary.

Communicators vs. locative adverbs COmmu-
nicators can be hard to distinguish from locative ad-
verbs, especially at the beginning of a sentence. Our
convention is that CO must modify an entire sen-
tence, so if a word appears by itself, it cannot be a
CO. For example, utterances like here or there are
labeled as ADVerb. However, if these words appear
at the beginning of a sentence, are followed by a
break or pause, and do not clearly express a location,
then they are labeled CO. Additionally, in here/there
you are/go, here and there are labeled CO.

2.2 The syntactic annotation scheme
Our annotation scheme for representing grammati-
cal relations, or GRs (such as subjects, objects and
adjuncts), in CHILDES transcripts is a slightly ex-
tended version of the scheme proposed by Sagae et
al. (2004), which was inspired by a general annota-
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tion scheme for grammatical relations (Carroll et al.,
1998), but adapted specifically for CHILDES data.
Our scheme contains 37 distinct GR types. Sagae
et al. reported 96.5% interannotator agreement, and
we do not believe our minor updates to the annota-
tion scheme should affect interannotator agreement
significantly.

The scheme distinguishes among SUBJects, (fi-
nite) Clausal SUBJects2 (e.g., that he cried moved
her) and XSUBJects (eating vegetables is impor-
tant). Similarly, we distinguish among OBJects,
OBJect2, which is the second object of a ditran-
sitive verb, and IOBjects, which are required verb
complements introduced by prepositions. Verb com-
plements that are realized as clauses are labeled
COMP if they are finite (I think that was Fraser) and
XCOMP otherwise (you stop throwing the blocks).
Additionally, we mark required locative adjectival
or prepositional phrase arguments of verbs as LOCa-
tives, as in put the toys in the box/back.

PREDicates are nominal, adjectival or prepo-
sitional complements of verbs such as get, be
and become, as in I’m not sure. Again, we
specifically mark Clausal PREDicates (This is
how I drink my coffee) and XPREDicates (My goal
is to win the competition).

Adjuncts (denoted by JCT) are optional modi-
fiers of verbs, adjectives or adverbs, and we dis-
tinguish among non-clausal ones (That’s much bet-
ter; sit on the stool), finite clausal ones (CJCT, Mary
left after she saw John) and non-finite clausal ones
(XJCT, Mary left after seeing John).

MODifiers, which modify or complement nouns,
again come in three flavors: MOD (That’s a nice
box); CMOD (the movie that I saw was good ); and
XMOD (the student reading a book is tall ).

We then identify AUXiliary verbs, as in did you
do it? ; NEGation (Fraser is not drinking his coffee);
DETerminers (a fly); QUANTifiers (some juice); the
objects of prepositions (POBJ, on the stool); verb
ParTicLes (can you get the blocks out? ); ComPle-
mentiZeRs (wait until the noodles are cool ); COM-
municators (oh, I took it); the INfinitival to; VOCa-
tives (Thank you, Eve); and TAG questions (you
know how to count, don’t you? ).

2As with the POS tags, we use capital letters to represent the
actual GR tags used in the annotation scheme.

Finally, we added some specific relations for han-
dling problematic issues. For example, we use
ENUMeration for constructions such as one, two,
three, go or a, b, c. In COORDination construc-
tions, each conjunct is marked as a dependent of the
conjunction (e.g., go and get your telephone). We
use TOPicalization to indicate an argument that is
topicalized, as in tapioca, there is no tapioca. We
use SeRiaL to indicate serial verbs as in come see
if we can find it or go play with your toys. Finally,
we mark sequences of proper names which form the
same entity (e.g., New York ) as NAME.

The format of the grammatical relation (GR) an-
notation, which we use in the examples that follow,
associates with each word in a sentence a triple i|j|g,
where i is the index of the word in the sentence, j the
index of the word’s syntactic head, and g is the name
of the grammatical relation represented by the syn-
tactic dependency between the i-th and j-th words.
If the topmost head of the utterance is the i-th word,
it is labeled i|0|ROOT. For example, in:

a cookie .
1|2|DET 2|0|ROOT 3|2|PUNCT

the first word a is a DETerminer of word 2 (cookie),
which is itself the ROOT of the utterance.

2.3 Manual annotation of the corpus

We focused our manual annotation on a set of
CHILDES transcripts for a particular child, Eve
(Brown, 1973), and we refer to these transcripts,
distributed in a set of 20 files, as the Eve corpus.
We hand-annotated (including correcting POS tags)
the first 15 files of the Eve corpus following the
GR scheme outlined above. The annotation pro-
cess started with purely manual annotation of 5,000
words. This initial annotated corpus was used to
train a data-driven parser, as described later. This
parser was then used to label an additional 20,000
words automatically, followed by a thorough manual
checking stage, where each syntactic annotation was
manually verified and corrected if necessary. We re-
trained the parser with the newly annotated data, and
proceeded in this fashion until 15 files had been an-
notated and thoroughly manually checked.

Annotating child language proved to be challeng-
ing, and as we progressed through the data, we no-
ticed grammatical constructions that the GRs could
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not adequately handle. For example, the original GR
scheme did not differentiate between locative argu-
ments and locative adjuncts, so we created a new GR
label, LOC, to handle required verbal locative argu-
ments such as on in put it on the table. Put licenses
a prepositional argument, and the existing JCT rela-
tion could not capture this requirement.

In addition to adding new GRs, we also faced
challenges with telegraphic child utterances lack-
ing verbs or other content words. For instance,
Mommy telephone could have one of several mean-
ings: Mommy this is a telephone, Mommy I want
the telephone, that is Mommy’s telephone, etc. We
tried to be as consistent as possible in annotating
such utterances and determined their GRs from con-
text. It was often possible to determine the VOC
reading vs.the MOD (Mommy’s telephone) reading
by looking at context. If it was not possible to deter-
mine the correct annotation from context, we anno-
tated such utterances as VOC relations.

After annotating the 15 Eve files, we had 18,863
fully hand-annotated utterances, 10,280 adult
and 8,563 child. The utterances consist of 84,226
GRs (including punctuation) and 65,363 words.
The average utterance length is 5.3 words (in-
cluding punctuation) for adult utterances, 3.6 for
child, 4.5 overall. The annotated Eve corpus
is available at http://childes.psy.cmu.
edu/data/Eng-USA/brown.zip. It was used
for the Domain adaptation task at the CoNLL-2007
dependency parsing shared task (Nivre, 2007).

3 Parsing

Although the CHILDES annotation scheme pro-
posed by Sagae et al. (2004) has been used in prac-
tice for automatic parsing of child language tran-
scripts (Sagae et al., 2004; Sagae et al., 2005), such
work relied mainly on a statistical parser (Char-
niak, 2000) trained on the Wall Street Journal por-
tion of the Penn Treebank, since a large enough cor-
pus of annotated CHILDES data was not available
to train a domain-specific parser. Having a corpus
of 65,000 words of CHILDES data annotated with
grammatical relations represented as labeled depen-
dencies allows us to develop a parser tailored for the
CHILDES domain.

Our overall parsing approach uses a best-first

probabilistic shift-reduce algorithm, working left-to-
right to find labeled dependencies one at a time. The
algorithm is essentially a dependency version of the
data-driven constituent parsing algorithm for prob-
abilistic GLR-like parsing described by Sagae and
Lavie (2006). Because CHILDES syntactic annota-
tions are represented as labeled dependencies, using
a dependency parsing approach allows us to work
with that representation directly.

This dependency parser has been shown to have
state-of-the-art accuracy in the CoNLL shared tasks
on dependency parsing (Buchholz and Marsi, 2006;
Nivre, 2007)3. Sagae and Tsujii (2007) present a
detailed description of the parsing approach used in
our work, including the parsing algorithm. In sum-
mary, the parser uses an algorithm similar to the LR
parsing algorithm (Knuth, 1965), keeping a stack of
partially built syntactic structures, and a queue of
remaining input tokens. At each step in the pars-
ing process, the parser can apply a shift action (re-
move a token from the front of the queue and place
it on top of the stack), or a reduce action (pop the
two topmost stack items, and push a new item com-
posed of the two popped items combined in a sin-
gle structure). This parsing approach is very similar
to the one used successfully by Nivre et al. (2006),
but we use a maximum entropy classifier (Berger et
al., 1996) to determine parser actions, which makes
parsing extremely fast. In addition, our parsing ap-
proach performs a search over the space of possible
parser actions, while Nivre et al.’s approach is de-
terministic. See Sagae and Tsujii (2007) for more
information on the parser.

Features used in classification to determine
whether the parser takes a shift or a reduce action
at any point during parsing are derived from the
parser’s current configuration (contents of the stack
and queue) at that point. The specific features used
are:4

• Word and its POS tag: s(1), q(2), and q(1).

• POS: s(3) and q(2).
3The parser used in this work is the same as the probabilistic

shift-reduce parser referred to as “Sagae” in the cited shared
task descriptions. In the 2007 shared task, an ensemble of shift-
reduce parsers was used, but only a single parser is used here.

4s(n) denotes the n-th item from the top of the stack (where
s(1) is the item on the top of the stack), and q(n) denotes the
n-th item from the front of the queue.
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• The dependency label of the most recently at-
tached dependent of: s(1) and s(2).

• The previous parser action.

4 Evaluation

4.1 Methodology

We first evaluate the parser by 15-fold cross-
validation on the 15 manually curated gold-standard
Eve files (to evaluate the parser on each file, the re-
maining 14 files are used to train the parser). Single-
word utterances (excluding punctuation) were ig-
nored, since their analysis is trivial and their inclu-
sion would artificially inflate parser accuracy mea-
surements. The size of the Eve evaluation corpus
(with single-word utterances removed) was 64,558
words (or 59,873 words excluding punctuation). Of
these, 41,369 words come from utterances spoken
by adults, and 18,504 come from utterances spo-
ken by the child. To evaluate the parser’s portabil-
ity to other CHILDES corpora, we also tested the
parser (trained only on the entire Eve set) on two ad-
ditional sets, one taken from the MacWhinney cor-
pus (MacWhinney, 2000) (5,658 total words, 3,896
words in adult utterances and 1,762 words in child
utterances), and one taken from the Seth corpus (Pe-
ters, 1987; Wilson and Peters, 1988) (1,749 words,
1,059 adult and 690 child).

The parser is highly efficient: training on the en-
tire Eve corpus takes less that 20 minutes on stan-
dard hardware, and once trained, parsing the Eve
corpus takes 18 seconds, or over 3,500 words per
second.

Following recent work on dependency parsing
(Nivre, 2007), we report two evaluation measures:
labeled accuracy score (LAS) and unlabeled accu-
racy score (UAS). LAS is the percentage of tokens
for which the parser predicts the correct head-word
and dependency label. UAS ignores the dependency
labels, and therefore corresponds to the percentage
of words for which the correct head was found. In
addition to LAS and UAS, we also report precision
and recall of certain grammatical relations.

For example, compare the parser output of go buy
an apple to the gold standard (Figure 1). This se-
quence of GRs has two labeled dependency errors
and one unlabeled dependency error. 1|2|COORD

for the parser versus 1|2|SRL is a labeled error be-
cause the dependency label produced by the parser
(COORD) does not match the gold-standard anno-
tation (SRL), although the unlabeled dependency is
correct, since the headword assignment, 1|2, is the
same for both. On the other hand, 5|1|PUNCT ver-
sus 5|2|PUNCT is both a labeled dependency error
and an unlabeled dependency error, since the head-
word assignment produced by the parser does not
match the gold-standard.

4.2 Results

Trained on domain-specific data, the parser per-
formed well on held-out data, even though the train-
ing corpus is relatively small (about 60,000 words).
The results are listed in Table 1.

LAS UAS
Eve cross-validation 92.0 93.8

Table 1: Average cross-validation results, Eve

The labeled dependency error rate is about 8%
and the unlabeled error rate is slightly over 6%. Per-
formance in individual files ranged between the best
labeled error rate of 6.2% and labeled error rate of
4.4% for the fifth file, and the worst error rates of
8.9% and 7.8% for labeled and unlabeled respec-
tively in the fifteenth file. For comparison, Sagae et
al. (2005) report 86.9% LAS on about 2,000 words
of Eve data, using the Charniak (2000) parser with
a separate dependency-labeling step. Part of the rea-
son we obtain levels of accuracy higher than usu-
ally reported for dependency parsers is that the aver-
age sentence length in CHILDES transcripts is much
lower than in, for example, newspaper text. The av-
erage sentence length for adult utterances in the Eve
corpus is 6.1 tokens, and 4.3 tokens for child utter-
ances5.

Certain GRs are easily identifiable, such as DET,
AUX, and INF. The parser has precision and recall
of nearly 1.00 for those. For all GRs that occur more
than 1,000 times in the Eve corpus (which contrains
more than 60,000 tokens), precision and recall are
above 0.90, with the exception of COORD, which

5This differs from the figures in section 2.3 because for the
purpose of parser evaluation we ignore sentences composed
only of a single word plus punctuation.
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go buy an apple .
parser: 1|2|COORD 2|0|ROOT 3|4|DET 4|2|OBJ 5|1|PUNCT
gold: 1|2|SRL 2|0|ROOT 3|4|DET 4|2|OBJ 5|2|PUNCT

Figure 1: Example output: parser vs. gold annotation

occurs 1,163 times in the gold-standard data. The
parser’s precision for COORD is 0.73, and recall
is 0.84. Other interesting GRs include SUBJ, OBJ,
JCT (adjunct), COM, LOC, COMP, XCOMP, CJCT
(subordinate clause acting as an adjunct), and PTL
(verb particle, easily confusable with prepositions
and adverbs). Their precision and recall is shown
in table 2.

GR Precision Recall F-score
SUBJ 0.96 0.96 0.96
OBJ 0.93 0.94 0.93
JCT 0.91 0.90 0.90
COM 0.96 0.95 0.95
LOC 0.95 0.90 0.92
COMP 0.83 0.86 0.84
XCOMP 0.86 0.87 0.87
CJCT 0.61 0.59 0.60
PTL 0.97 0.96 0.96
COORD 0.73 0.84 0.78

Table 2: Precision, recall and f-score of selected
GRs in the Eve corpus

We also tested the accuracy of the parser on child
utterances and adult utterances separately. To do
this, we split the gold standard files into child and
adult utterances, producing gold standard files for
both child and adult utterances. We then trained
the parser on 14 of the 15 Eve files with both child
and adult utterances, and parsed the individual child
and adult files. Not surprisingly, the parser per-
formed slightly better on the adult utterances due to
their grammaticality and the fact that there was more
adult training data than child training data. The re-
sults are listed in Table 3.

LAS UAS
Eve - Child 90.0 91.7
Eve - Adult 93.1 94.8

Table 3: Average child vs. adult results, Eve

Our final evaluation of the parser involved test-
ing the parser on data taken from a different parts of
the CHILDES database. First, the parser was trained
on all gold-standard Eve files, and tested on man-
ually annotated data taken from the MacWhinney
transcripts. Although accuracy was lower for adult
utterances (85.8% LAS) than on Eve data, the accu-
racy for child utterances was slightly higher (92.3%
LAS), even though child utterances were longer on
average (4.7 tokens) than in the Eve corpus.

Finally, because a few aspects of the many tran-
script sets in the CHILDES database may vary in
ways not accounted for in the design of the parser
or the annotation of the training data, we also re-
port results on evaluation of the Eve-trained parser
on a particularly challenging test set, the Seth cor-
pus. Because the Seth corpus contains transcriptions
of language phenomena not seen in the Eve corpus
(see section 5), parser performance is expected to
suffer. Although accuracy on adult utterances is high
(92.2% LAS), accuracy on child utterances is very
low (72.7% LAS). This is due to heavy use of a GR
label that does not appear at all in the Eve corpus
that was used to train the parser. This GR is used to
represent relations involving filler syllables, which
appear in nearly 45% of the child utterances in the
Seth corpus. Accuracy on the sentences that do not
contain filler syllables is at the same level as in the
other corpora (91.1% LAS). Although we do not ex-
pect to encounter many sets of transcripts that are as
problematic as this one in the CHILDES database, it
is interesting to see what can be expected from the
parser under unfavorable conditions.

The results of the parser on the MacWhinney and
Seth test sets are summarized in table 4, where Seth
(clean) refers to the Seth corpus without utterances
that contain filler sylables.

5 Error Analysis

A major source for parser errors on the Eve cor-
pus (112 out of 5181 errors) was telegraphic speech,
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LAS UAS
MacWhinney - Child 92.3 94.8
MacWhinney - Adult 85.8 89.4
MacWhinney - Total 88.0 91.2
Seth - Child 72.7 82.0
Seth - Adult 92.2 94.4
Seth - Total 84.6 89.5
Seth (clean) - Child 91.1 92.7
Seth (clean) - Total 92.0 93.9

Table 4: Training on Eve, testing on MacWhinney
and Seth

as in Mommy telephone or Fraser tape+recorder
floor. Telegraphic speech may be the most chal-
lenging, since even for a human annotator, deter-
mining a GR is difficult. The parser usually labeled
such utterances with the noun as the ROOT and the
proper noun as the MOD, while the gold annotation
is context-dependent as described above.

Another category of errors, with about 150 in-
stances, is XCOMP errors. The majority of the er-
rors in this category revolve around dropped words
in the main clause, for example want eat cookie. Of-
ten, the parser labels such utterances with COMP
GRs, because of the lack of to. Exclusive training on
utterances of this type may resolve the issue. Many
of the errors of this type occur with want : the parser
could be conditioned to assign an XCOMP GR with
want as the ROOT of an utterance.

COORD and PRED errors would both benefit
from more data as well. The parser performs ad-
mirably on simple coordination and predicate con-
structions, but has troubles with less common con-
structions such as PRED GRs with get, e.g., don’t
let your hands get dirty (69 errors), and coordina-
tion of prepositional objects, as in a birthday cake
with Cathy and Becky (154 errors).

The performance drop on the Seth corpus can be
explained by a number of factors. First and fore-
most, Seth is widely considered in the literature to
be the child who is most likely to invalidate any the-
ory (Wilson and Peters, 1988). He exhibits false
starts and filler syllables extensively, and his syn-
tax violates many “universal” principles. This is
reflected in the annotation scheme: the Seth cor-
pus, following the annotation of Peters (1983), is

abundant with filler syllables. Because there was
no appropriate GR label for representing the syn-
tactic relationships involving the filler syllables, we
annotated those with a special GR (not used during
parser training), which the parser is understandably
not able to produce. Filler syllables usually occur
near the start of the sentence, and once the parser
failed to label them, it could not accurately label the
remaining GRs. Other difficulties in the Seth cor-
pus include the usage of dates, of which there were
no instances in the Eve corpus. The parser had not
been trained on the new DATE GR and subsequently
failed to parse it.

6 Conclusion

We described an annotation scheme for represent-
ing syntactic information as grammatical relations
in CHILDES data, a manually curated gold-standard
corpus of 65,000 words annotated according to this
GR scheme, and a parser that was trained on the an-
notated corpus and produces highly accurate gram-
matical relations for both child and adult utterances.
These resources are now freely available to the re-
search community, and we expect them to be in-
strumental in psycholinguistic investigations of lan-
guage acquisition and child language.

Syntactic analysis of child language transcripts
using a GR scheme of this kind has already been
shown to be effective in a practical setting, namely
in automatic measurement of syntactic development
in children (Sagae et al., 2005). That work relied on
a phrase-structure statistical parser (Charniak, 2000)
trained on the Penn Treebank, and the output of that
parser had to be converted into CHILDES grammat-
ical relations. Despite the obvious disadvantage of
using a parser trained on a completely different lan-
guage genre, Sagae et al. (2005) demonstrated how
current natural language processing techniques can
be used effectively in child language work, achiev-
ing results that are close to those obtained by man-
ual computation of syntactic development scores for
child transcripts. Still, the use of tools not tailored
for child language and extra effort necessary to make
them work with community standards for child lan-
guage transcription present a disincentive for child
language researchers to incorporate automatic syn-
tactic analysis into their work. We hope that the GR
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representation scheme and the parser presented here
will make it possible and convenient for the child
language community to take advantage of some of
the recent developments in natural language parsing,
as was the case with part-of-speech tagging when
CHILDES specific tools were first made available.

Our immediate plans include continued improve-
ment of the parser, which can be achieved at least in
part by the creation of additional training data from
other English CHILDES corpora. We also plan to
release automatic syntactic analyses for the entire
English portion of CHILDES.

Although we have so far focused exclusively on
English CHILDES data, dependency schemes based
on functional relationships exist for a number of lan-
guages (Buchholz and Marsi, 2006), and the general
parsing techniques used in the present work have
been shown to be effective in several of them (Nivre
et al., 2006). As future work, we plan to adapt
existing dependency-based annotation schemes and
apply our current syntactic annotation and pars-
ing framework to other languages in the CHILDES
database.
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Abstract

Empirical data regarding the syntactic com-
plexity of children’s speech is important for
theories of language acquisition. Currently
much of this data is absent in the annotated
versions of the CHILDES database. In this
perliminary study, we show that a state-of-
the-art subcategorization acquisition system of
Preiss et al. (2007) can be used to extract large-
scale subcategorization (frequency) informa-
tion from the (i) child and (ii) child-directed
speech within the CHILDES database without
any domain-specific tuning. We demonstrate
that the acquired information is sufficiently ac-
curate to confirm and extend previously re-
ported research findings. We also report quali-
tative results which can be used to further im-
prove parsing and lexical acquisition technol-
ogy for child language data in the future.

1 Introduction

Large empirical data containing children’s speech are
the key to developing and evaluating different theo-
ries of child language acquisition (CLA). Particularly
important are data related to syntactic complexity of
child language since considerable evidence suggests
that syntactic information plays a central role during
language acquisition, e.g. (Lenneberg, 1967; Naigles,
1990; Fisher et al., 1994).

The standard corpus in the study of CLA is the
CHILDES database (MacWhinney, 2000)1 which pro-
vides 300MB of transcript data of interactions be-

1See http://childes.psy.cmu.edu for details.

tween children and parents over 25 human languages.
CHILDES is currently available in raw, part-of-speech-
tagged and lemmatized formats. However, adequate
investigation of syntactic complexity requires deeper
annotations related to e.g. syntactic parses, subcatego-
rization frames (SCFs), lexical classes and predicate-
argument structures.

Although manual syntactic annotation is possible,
it is extremely costly. The alternative is to use natu-
ral language processing (NLP) techniques for annota-
tion. Automatic techniques are now viable, cost effec-
tive and, although not completely error-free, are suffi-
ciently accurate to yield annotations useful for linguis-
tic purposes. They also gather important qualitative
and quantitative information, which is difficult for hu-
mans to obtain, as a side-effect of the acquisition pro-
cess.

For instance, state-of-the-art statistical parsers,
e.g. (Charniak, 2000; Briscoe et al., 2006), have wide
coverage and yield grammatical representations capa-
ble of supporting various applications (e.g. summa-
rization, information extraction). In addition, lexi-
cal information (e.g. subcategorization, lexical classes)
can now be acquired automatically from parsed
data (McCarthy and Carroll, 2003; Schulte im Walde,
2006; Preiss et al., 2007). This information comple-
ments the basic grammatical analysis and provides ac-
cess to the underlying predicate-argument structure.

Containing considerable ellipsis and error, spoken
child language can be challenging for current NLP

techniques which are typically optimized for written
adult language. Yet Sagae et al. (2005) have recently
demonstrated that existing statistical parsing tech-
niques can be usefully modified to analyse CHILDES
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with promising accuracy. Although further improve-
ments are still required for optimal accuracy, this re-
search has opened up the exciting possibility of auto-
matic grammatical annotation of the entire CHILDES

database in the future.
However, no work has yet been conducted on au-

tomatic acquisition of lexical information from child
speech. The only automatic lexical acquisition study
involving CHILDES that we are aware of is that of
Buttery and Korhonen (2005). The study involved
extracting subcategorization information from (some
of) the adult (child-directed) speech in the database,
and showing that this information differs from that ex-
tracted from the spoken part of the British National
Corpus (BNC) (Burnard, 1995).

In this paper, we investigate whether state-of-the-
art subcategorization acquisition technology can be
used—without any domain-specific tuning—to obtain
large-scale verb subcategorization frequency informa-
tion from CHILDES which is accurate enough to show
differences and similarities between child and adult
speech, and thus be able to provide support for syn-
tactic complexity studies in CLA.

We use the new system of Preiss et al. (2007) to
extract SCF frequency data from the (i) child and
(ii) child-directed speech within CHILDES. We show
that the acquired information is sufficiently accu-
rate to confirm and extend previously reported SCF

(dis)similarities between the two types of data. In par-
ticular, we demonstrate that children and adults have
different preferences for certain types of verbs, and
that these preferences seem to influence the way chil-
dren acquire subcategorization. In addition, we report
qualitative results which can be used to further im-
prove parsing and lexical acquisition technology for
spoken child language data in the future.

2 Subcategorization Acquisition System

We used for subcategorization acquisition the new sys-
tem of Preiss, Briscoe and Korhonen (2007) which
is essentially a much improved and extended version
of Briscoe and Carroll’s (1997) system. It incorpo-
rates 168 SCF distinctions, a superset of those found
in the COMLEX Syntax (Grishman et al., 1994) and
ANLT (Boguraev et al., 1987) dictionaries. Currently,
SCFs abstract over specific lexically governed parti-
cles and prepositions and specific predicate selectional

preferences but include some derived semi-predictable
bounded dependency constructions, such as particle
and dative movement—this will be revised in future
versions of the SCF system.

The system tokenizes, tags, lemmatizes and parses
input sentences using the recent (second) release of
the RASP (Robust Accurate Statistical Parsing) system
(Briscoe et al., 2006) which parses arbitrary English
text with state-of-the-art levels of accuracy. SCFs are
extracted from the grammatical relations (GRs) output
of the parser using a rule-based classifier. This clas-
sifier operates by exploiting the close correspondence
between the dependency relationships which the GRs
embody and the head-complement structure which
subcategorization acquisition attempts to recover. Lex-
ical entries of extracted SCFs are constructed for each
word in the corpus data. Finally, the entries may be
optionally filtered to obtain a more accurate lexicon.
This is done by setting empirically determined thresh-
olds on the relative frequencies of SCFs.

When evaluated on cross-domain corpora contain-
ing mainly adult language, this system achieves 68.9
F-measure2 in detecting SCF types—a result which
compares favourably to those reported with other com-
parable SCF acquisition systems.

3 Data

The English (British and American) sections of the
CHILDES database (MacWhinney, 2000) were used to
create two corpora: 1) CHILD and 2) CDS. Both cor-
pora contained c. 1 million utterances which were se-
lected from the data after some utterances contain-
ing un-transcribable sections were removed. Speak-
ers were identified using speaker-id codes within the
CHAT transcriptions of the data:3 CHILD contained
the utterances of speakers identified as target children;
CDS contained input from speakers identified as par-
ents/caretakers. The mean utterance length (measured
in words) in CHILD and CDS were 3.48 and 4.61, re-
spectively. The mean age of the child speaker in CHILD

is around 3 years 6 months.4

2See Section 4 for details of F-measure.
3CHAT is the transcription and coding format used by all the

transcriptions within CHILDES.
4The complete age range is from 1 year and 1 month up to 7

years.
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3.1 Test Verbs and SCF Lexicons

We selected a set of 161 verbs for experimentation.
The words were selected at random, subject to the con-
straint that a sufficient number of SCFs would be ex-
tracted (> 100) from both corpora to facilitate max-
imally useful comparisons. All sentences containing
an occurrence of one of the test verbs were extracted
from the two corpora and fed into the SCF acquisition
system described earlier in section 2.

In some of our experiments the two lexicons were
compared against the VALEX lexicon (Korhonen et al.,
2006)—a large subcategorization lexicon for English
which was acquired automatically from several cross-
domain corpora (containing both written and spoken
language). VALEX includes SCF and frequency infor-
mation for 6,397 English verbs. We employed the
most accurate version of the lexicon here (87.3 F-
measure)—this lexicon was obtained by selecting high
frequency SCFs and supplementing them with lower
frequency SCFs from manually built lexicons.

4 Analysis

4.1 Methods for Analysis

The similarity between verb and SCF distributions in
the lexicons was examined. To maintain a robust anal-
ysis in the presence of noise, multiple similarity mea-
sures were used to compare the verb and SCF distri-
butions (Korhonen and Krymolowski, 2002). In the
following p = (pi) and q = (qi) where pi and qi are
the probabilities associated with SCFi in distributions
(lexicons) P and Q:

• Intersection (IS) - the intersection of non-zero probability
SCFs in p and q;

• Spearman rank correlation (RC) - lies in the range [1; 1], with
values near 0 denoting a low degree of association and val-
ues near -1 and 1 denoting strong association;

• Kullback-Leibler (KL) distance - a measure of the additional
information needed to describe p using q, KL is always ≥ 0
and = 0 only when p ≡ q;

The SCFs distributions acquired from the corpora for
the chosen words were evaluated against: (i) a gold
standard SCF lexicon created by merging the SCFs in
the COMLEX and ANLT syntax dictionaries—this en-
abled us to determine the accuracy of the acquired
SCFs; (ii) another acquired SCF lexicon (as if it were
a gold standard)—this enabled us to determine simi-
larity of SCF types between two lexicons. In each case

Verb CHILD CDS
go 1 1
want 2 2
get 3 3
know 4 4
put 5 6
see 6 5
come 7 10
like 8 7
make 9 11
say 10 8
take 11 13
eat 12 14
play 13 15
need 14 16
look 15 12
fall 16 22
sit 17 21
think 18 9
break 19 27
give 20 17

Table 1: Ranks of the 20 most frequent verbs in CHILD

and in CDS

we recorded the number of true positives (TPs), correct
SCFs, false positives (FPs), incorrect SCFs, and false
negatives (FNs), correct SCFs not in the gold standard.

Using these counts, we calculated type precision
(the percentage of SCF types in the acquired lexicon
which are correct), type recall (the percentage of SCF

types in the gold standard that are in the lexicon) and
F-measure:

F =
2 · precision · recall

precision + recall
(1)

4.2 Verb Analysis

Before conducting the SCF comparisons we first com-
pared (i) our 161 test verbs and (ii) all the 1212
common verbs and their frequencies in CHILD and
CDS using the Spearman rank correlation (RC) and
the Kullback-Leibler distance (KL). The result was
a strong correlation between the 161 test verbs (RC =
0.920 ± 0.0791, KL = 0.05) as well as between all the
1212 verbs (RC = 0.851 ± 0.0287, KL = 0.07) in the
two corpora.

These figures suggest that the child-directed speech
(which is less diverse in general than speech between
adults, see e.g. the experiments of Buttery and Ko-
rhonen (2005)) contains a very similar distribution of
verbs to child speech. This is to be expected since the
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corpora essentially contain separate halves of the same
interactions.

However, our large-scale frequency data makes it
possible to investigate the cause for the apparently
small differences in the distributions. We did this by
examining the strength of correlation throughout the
ranking. We compared the ranks of the individual
verbs and discovered that the most frequent verbs in
the two corpora have indeed very similar ranks. Ta-
ble 1 lists the 20 most frequent verbs in CHILD (starting
from the highest ranked verb) and shows their ranks
in CDS. As illustrated in the table, the top 4 verbs
are identical in the two corpora (go, want, get, know)
while the top 15 are very similar (including many ac-
tion verbs e.g. put, look, sit, eat, and play).

Yet some of the lower ranked verbs turned out to
have large rank differences between the two corpora.
Two such relatively highly ranked verbs are included
in the table—think which has a notably higher rank
in CDS than in CHILD, and break which has a higher
rank in CHILD than in CDS. Many other similar cases
were found in particular among the medium and low
frequency verbs in the two corpora.

To obtain a better picture of this, we calculated for
each verb its rank difference between CHILD vs. CDS.
Table 2 lists 40 verbs with substantial rank differences
between the two corpora. The first column shows
verbs which have higher ranks in CHILD than in CDS,
and the second column shows verbs with higher ranks
in CDS than in CHILD. We can see e.g. that children
tend to prefer verbs such as shoot, die and kill while
adults prefer verbs such as remember, send and learn.

To investigate whether these differences in pref-
erences are random or motivated in some manner,
we classified the verbs with the largest differences
in ranks (>10) into appropriate Levin-style lexical-
semantic classes (Levin, 1993) according to their pre-
dominant senses in the two corpora.5 We discovered
that the most frequent classes among the verbs that
children prefer are HIT (e.g. bump, hit, kick), BREAK

(e.g. crash, break, rip), HURT (e.g. hurt, burn, bite)
and MOTION (e.g. fly, jump, run) verbs. Overall, many
of the preferred verbs (regardless of the class) express
negative actions or feelings (e.g. shoot, die, scare,
hate).

5This classification was done manually to obtain a reliable re-
sult.

CHILD CDS
shoot tie remember hope
hate wish send suppose
die cut learn bet
write crash wipe kiss
use kick pay smell
bump scare feed guess
win step ask change
lock burn feel set
fight stand listen stand
jump care wait wonder

Table 2: 20 verbs ranked higher in (i) child speech and
(ii) child-directed speech.

In contrast, adults have a preference for verbs from
classes expressing cognitive processes (e.g. remember,
suppose, think, wonder, guess, believe, hope, learn) or
those that can be related to the education of children,
e.g. the WIPE verbs wash, wipe and brush and the PER-
FORMANCE verbs draw, dance and sing. In contrast to
children, adults prefer verbs which express positive ac-
tions and feelings (e.g. share, help, love, kiss).

It is commonly reported that child CLA is moti-
vated by a wish to communicate desires and emo-
tions, e.g. (Pinker, 1994), but a relative preference
in child speech over child-directed speech for certain
verb types or verbs expressing negative actions and
feelings has not been explicitly shown on such a scale
before. While this issue requires further investigation,
our findings already demonstrate the value of using
large scale corpora in producing novel data and hy-
potheses for research in CLA.

4.3 SCF Analysis

4.3.1 Quantitative SCF Comparison

The average number of SCFs taken by studied verbs
in the two corpora proved quite similar. In unfil-
tered SCF distributions, verbs in CDS took on average
a larger number of SCFs (29) than those in CHILD (24),
but in the lexicons filtered for accuracy the numbers
were identical (8–10, depending on the filtering thresh-
old applied). The intersection between the CHILD /
CDS SCFs and those in the VALEX lexicon was around
0.5, indicating that the two lexicons included only
50% of the SCFs in the lexicon extracted from general
(cross-domain) adult language corpora. Recall against
VALEX was consequently low (between 48% and 68%
depending on the filtering threshold) but precision was
around 50-60% for both CHILDES and CDS lexicons
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Measures Unfilt. Filt.
Precision (%) 82.9 88.7
Recall (%) 69.3 44.5
F-measure 75.5 59.2
IS 0.73 0.62
RC 0.69 0.72
KL 0.33 0.46

Table 3: Average results when SCF distributions in
CHILD and CDS are compared against each other.

(also depending on the filtering threshold), which is
a relatively good result for the challenging CHILDES

data. However, it should be remembered that with this
type of data it would not be expected for the SCF sys-
tem to achieve as high precision and recall as it would
on, for instance, adult written text and that the missing
SCFs and/or misclassified SCFs are likely to provide us
with the most interesting information.

As expected, there were differences between the
SCF distributions in the two lexicons. Table 3 shows
the results when the CHILD and CDS lexicons are com-
pared against each other (i.e. using the CDS as a gold
standard). The comparison was done using both the
unfiltered and filtered (using relative frequency thresh-
old of 0.004) versions of the lexicons. The similarity
in SCF types is 75.5 according to F-measure in the un-
filtered lexicons and 59.2 in filtered ones.6

4.3.2 Qualitative SCF Comparison

Our qualitative analysis of SCFs in the two corpora
revealed reasons for the differences. Table 4 lists the
10 most frequent SCFs in CHILD (starting from the
highest ranked SCF), along with their ranks in CDS

and VALEX. The top 3 SCFs (NP, INTRANSITIVE and
PP frames) are ranked quite similarly in all the cor-
pora. Looking at the top 10 SCFs, CHILD appears,
as expected, more similar to CDS than with VALEX,
but large differences can be detected in lower ranked
frames.

To identify those frames, we calculated for each SCF

its difference in rank between CHILD vs. CDS. Table 5
exemplifies some of the SCFs with the largest rank
differences. Many of these concern frames involving
sentential complementation. Children use more fre-

6The fact that the unfiltered lexicons appear so much more sim-
ilar suggests that some of the similarity is due to similarity in in-
correct SCFs (many of which are low in frequency, i.e. fall under
the threshold).

quently than adults SCFs involving THAT and HOW

complementation, while adults have a preference for
SCFs involving WHETHER, ING and IF complementa-
tion.

Although we have not yet looked at SCF differences
across ages, these discoveries are in line with previous
findings, e.g. (Brown, 1973), which indicate that chil-
dren master the sentential complementation SCFs pre-
ferred by adults (in our experiment) fairly late in the
acquisition process. With a mean utterance length for
CHILD at 3.48, we would expect to see relatively few of
these frames in the CHILD corpus—and consequently
a preference for the simpler THAT constructions.

4.4 The Impact of Verb Type Preferences on SCF
Differences

Given the new research findings reported in Sec-
tion 4.2 (i.e. the discovery that children and adults have
different preferences for many medium-low frequency
verbs) we investigated whether verb type preferences
play a role in SCF differences between the two corpora.
We chose for experimentation 10 verbs from 3 groups:

1. Group 1 – verbs with similar ranks in CHILD and CDS: bring,
find, give, know, need, put, see, show, tell, want

2. Group 2 – verbs with higher ranks in CDS: ask, feel, guess,
help, learn, like, pull, remember, start, think

3. Group 3 – verbs with higher ranks in CHILD: break, die,
forget, hate, hit, jump, scare, shoot, burn, wish

The test verbs were selected randomly, subject to
the constraint that their absolute frequencies in the two
corpora were similar.7 We first correlated the unfil-
tered SCF distributions of each test verb in the two cor-
pora against each other and calculated the similarity in
the SCF types using the F-measure. We then evaluated
for each group, the accuracy of SCFs in unfiltered dis-
tributions against our gold standard (see Section 4.1).
Because the gold standard was too ambitious in terms
of recall, we only calculated the precision figures: the
average number of TP and FP SCFs taken by test verbs.

The results are included in Table 6. Verbs in Group
1 show the best SCF type correlation (84.7 F-measure)
between the two corpora although they are the rich-
est in terms of subcategorization (they take the highest
number of SCFs out of the three groups). The SCF cor-
relation is clearly lower in Groups 2 and 3, although

7This requirement was necessary because frequency may influ-
ence subcategorization acquisition performance.
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SCF Example sentence CHILD CDS VALEX

NP I love rabbits 1 1 1
INTRANS I sleep with a pillow and blanket 2 2 2
PP He can jump over the fence 3 4 3
PART I can’t give up 4 7 9
TO-INF-SC I want to play with something else 5 3 6
PART-NP/NP-PART He looked it up 6 6 7
NP-NP Ask her all these questions 7 5 18
NP-INF-OC Why don’t you help her put the blocks in the can ? 8 9 60
INTR-RECIP So the kitten and the dog won’t fight 9 8 48
NP-PP He put his breakfast in the bin 10 10 4

Table 4: 10 most frequent SCFs in CHILD, along with their ranks in CDS and VALEX.

SCF Example sentence
CHILD MP I win twelve hundred dollars

INF-AC You can help me wash the dishes
PP-HOW-S He explained to her how she did it
HOW-TO-INF Daddy can you tell me how to spell Christmas carols?
NP-S He did not tell me that it was gonna cost me five dollars

CDS ING-PP Stop throwing a tantrum
NP-AS-NP I sent him as a messenger
NP-WH-S I’ll tell you whether you can take it off
IT WHS, SUBTYPE IF How would you like it if she pulled your hair?
NP-PP-PP He turned it from a disaster into a victory

Table 5: Typical SCFs with higher ranks in (i) CHILD and (ii) CDS.

Measures Group1 Group2 Group3
SCF similarity F-measure 84.7 72.17 75.60
SCF accuracy TPs CDS 12 11 7

TPs CHILD 10 9 8
FPs CDS 36 29 13
FPs CHILD 32 18 15

Table 6: Average results for 3 groups when (i) unfil-
tered SCF distributions in CHILD and CDS are com-
pared against each other (SCF similarity) and when (ii)
the SCFs in the distributions are evaluated against a
gold standard (SCF accuracy).

the verbs in these groups take fewer SCFs. Interest-
ingly, Group 3 is the only group where children pro-
duce more TPs and FPs on average than adults do, i.e.
both correct and incorrect SCFs which are not exem-
plified in the adult speech. The frequency effects con-
trolled, the reason for these differences is likely to lie
in the differing relative preferences children and adults
have for verbs in groups 2 and 3, which we think may
impact the richness of their language.

4.5 Further Analysis of TP and FP Differences

We looked further at the interesting TP and FP differ-
ences in Group 3 to investigate whether they tell us

something about (i) how children learn SCFs (via both
TPs and FPs), and (ii) how the parsing / SCF extraction
system could be improved for CHILDES data in the fu-
ture (via the FPs).

We first made a quantitative analysis of the rela-
tive difference in TPs and FPs for all the SCFs in both
corpora. The major finding of this high level anal-
ysis was a significantly high FP rate for some ING

frames (e.g. PART-ING-SC, ING-NP-OMIT, NP-ING-
OC) within CHILD (e.g. “car going hit”, “I hurt hand
moving”). This agrees with many previous studies,
e.g. (Brown, 1973), which have shown that children
overextend and incorrectly use the “ing” morpheme
during early acquisition.

A qualitative analysis of the verbs from Group 3 was
then carried out, looking for the following scenarios:

• SCF is a FP in both CHILD and CDS - either i) the
gold standard is incomplete, or ii) there is error in
the parser/subcategorization system with respect to the
CHILDES domain.

• SCF is a TP in CDS and not present in CHILD - children have
not acquired the frame despite exposure to it (perhaps it is
complicated to acquire).

• SCF is a TP in CHILD but not present in CDS - adults are
not using the frame but the children have acquired it. This
indicates that either i) children are acquiring the frame from
elsewhere in their environment (perhaps from a television),
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Figure 1: SCFs obtained for the verb shoot

or ii) there is a misuse of the verb’s semantic class in child
speech.

• SCF is a FP in CHILD but not present in CDS - children should
not have been exposed to this frame but they have acquired
it. This indicates either i) a misuse of the verb’s semantic
class, or ii) error in the parsing/subcategorization technology
with respect to the child-speech domain.

These scenarios are illustrated in Figure 1 which
graphically depicts the differences in TPs and FPs for
the verb shoot. The SCFs have been arranged in a
complexity hierarchy where complexity is defined in
terms of increasing argument structure.8 SCFs found
within our ANLT-COMLEX gold standard lexicon for
shoot are indicated in bold-face. A right-angled rect-
angle drawn around a SCF indicates that the frame
is present in CHILD—a solid line indicating a strong
presence (relative frequency > 0.010) and a dotted
line indicating a weak presence (relative frequency >
0.005). Rounded-edge rectangles represent the pres-
ence of SCFs within CDS similarly. For example, the
frame NP represents a TP in both CHILD and CDS and
the frame NP-NP represents a FP within CHILD.

With reference to Figure 1, we notice that all of
the SCFs present in CHILD are directly connected
within the hierarchy and there is a tendency for weakly
present SCFs to inherit from those strongly present. A
possible explanation for this is that children are ex-
ploring SCFs—trying out frames that are slightly more
complex than those already acquired (for a learning

8For instance, the intransitive frame INTRANS is less complex
than the transitive frame NP, which in turn is less complex than the
di-transitive frame NP-NP. For a detailed description of all SCFs
see (Korhonen, 2002).

algorithm that exploits such a hypothesis in general
see (Buttery, 2006)).

The SCF NP-NP is strongly present in CHILD de-
spite being a FP. Inspection of the associated utter-
ances reveals that some instances NP-NP are legitimate
but so uncommon in adult language that they are omit-
ted from the gold-standard (e.g. “can i shoot us all to
pieces”. However, other instances demonstrate a mis-
understanding of the semantic class of the verb; there
is possible confusion with the semantic class of send
or throw (e.g. “i shoot him home”).

The frame NP-INF is a FP in both corpora and a fre-
quent FP in CHILD. Inspection of the associated utter-
ances flags up a parsing problem. Frame NP-INF can
be illustrated by the sentences “he helped her bake the
cake” or “he made her sing”, however, within CHILD

the NP-INF has been acquired from utterances such
as “i want ta shoot him”. The RASP parser has mis-
tagged the word “ta” leading to a misclassification
by the SCF extraction system. This problem could be
solved by augmenting RASP’s current grammar with a
lexical entry specifying “ta” as an alternative to infini-
tival “to”.

In summary, our analysis of TP and FP differ-
ences has confirmed previous studies regarding the
nature of child speech (the over-extension of the
“ing” morpheme). It has also demonstrated that
TP/FP analysis can be a useful diagnostic for pars-
ing/subcategorization extraction problems within a
new data domain. Further, we suggest that analysis
of FPs can provide empirical data regarding the man-
ner in which children learn the semantic classes of
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verbs (a matter that has been much debated e.g. (Levin,
1993), (Brooks and Tomasello, 1999)).

5 Conclusion

We have reported the first experiment for automatically
acquiring verbal subcategorization from both child and
child-directed parts of the CHILDES database. Our re-
sults show that a state-of-the-art subcategorization ac-
quisition system yields useful results on challenging
child language data even without any domain-specific
tuning. It produces data which is accurate enough
to confirm and extend several previous research find-
ings in CLA. We explore the discovery that children
and adults have different relative preferences for cer-
tain verb types, and that these preferences influence
the way children acquire subcategorization. Our work
demonstrates the value of using NLP technology to an-
notate child language data, particularly where manual
annotations are not readily available for research use.
Our pilot study yielded useful information which will
help us further improve both parsing and lexical ac-
quisition performance on spoken/child language data.
In the future, we plan to optimize the technology so
that it can produce higher quality data for investiga-
tion of syntactic complexity in this domain. Using the
improved technology we plan to then conduct a more
thorough investigation of the interesting CLA topics
discovered in this study—first concentrating on SCF

differences in child speech across age ranges.
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Abstract

We present a cognitive model of inducing
verb selectional preferences from individ-
ual verb usages. The selectional preferences
for each verb argument are represented as
a probability distribution over the set of
semantic properties that the argument can
possess—asemantic profile. The seman-
tic profiles yield verb-specific conceptual-
izations of the arguments associated with a
syntactic position. The proposed model can
learn appropriate verb profiles from a small
set of noisy training data, and can use them
in simulating human plausibility judgments
and analyzing implicit object alternation.

1 Introduction

Verbs have preferences for the semantic properties
of the arguments filling a particular role. For ex-
ample, the verbeatexpects that the object receiving
its theme role will have the property of being edi-
ble, among others. Learning verb selectional pref-
erences is an important aspect of human language
acquisition, and the acquired preferences have been
shown to guide children’s expectations about miss-
ing or upcoming arguments in language comprehen-
sion (Nation et al., 2003).

Resnik (1996) introduced a statistical approach
to learning and use of verb selectional preferences.
In this framework, a semantic class hierarchy for
words is used, together with statistical tools, to in-
duce a verb’s selectional preferences for a particu-
lar argument position in the form of a distribution

over all the classes that can occur in that position.
Resnik’s model was proposed as a model of human
learning of selectional preferences that made min-
imal representational assumptions; it showed how
such preferences could be acquired from usage data
and an existing conceptual hierarchy. However, his
and later computational models (see Section 2) have
properties that do not match with certain cognitive
plausibility criteria for a child language acquisition
model. All these models use the training data in
“batch mode”, and most of them use information
theoretic measures that rely on total counts from a
corpus. Therefore, it is not clear how the representa-
tion of selectional preferences could be updated in-
crementally in these models as the person receives
more data. Moreover, the assumption that children
have access to a full hierarchical representation of
semantic classes may be too strict. We propose an
alternative view in this paper which is more plausi-
ble in the context of child language acquisition.

In previous work (Alishahi and Stevenson, 2005),
we have proposed a usage-based computational
model of early verb learning that uses Bayesian clus-
tering and prediction to model language acquisition
and use. Individual verb usages are incrementally
grouped to form emergent classes of linguistic con-
structions that share semantic and syntactic proper-
ties. We have shown that our Bayesian model can
incrementally acquire a general conception of the
semantic roles of predicates based only on expo-
sure to individual verb usages (Alishahi and Steven-
son, 2007). The model forms probabilistic associa-
tions between the semantic properties of arguments,
their syntactic positions, and the semantic primitives
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of verbs. Our previous experiments demonstrated
that, initially, this probability distribution for an ar-
gument position yields verb-specific conceptualiza-
tions of the role associated with that position. As the
model is exposed to more input, the verb-based roles
gradually transform into more abstract representa-
tions that reflect the general properties of arguments
across the observed verbs.

A shortcoming of the model was that, because
the prediction of the semantic roles was based only
on the groupings of verbs, it could not make use of
verb-specific knowledge in generating expectations
about a particular verb’s arguments. That is, once
it was exposed to a range of verbs, it no longer had
access to the verb-specific information, only to gen-
eralizations over clusters of verbs.

In this paper, we propose a new version of our
model that, in addition to learning general seman-
tic roles for constructions, can use its verb-specific
knowledge to predict intuitive selectional prefer-
ences for each verb argument position. We introduce
a new notion, averb semantic profile, as a prob-
ability distribution over the semantic properties of
an argument for each verb. A verb semantic pro-
file is predicted from both the verb-based and the
construction-based knowledge that the model has
learned through clustering, and reflects the prop-
erties of the arguments that are observed for that
verb. Our proposed prediction model makes appro-
priate generalizations over the observed properties,
and captures expectations about previously unseen
arguments.

As in other work on selectional preferences, the
semantic properties that we use in our representa-
tion of arguments are drawn from a standard lex-
ical ontology (WordNet; Miller, 1990), but we do
not require knowledge of the hierarchical structure
of the WordNet concepts. From the computational
point of view, this makes use of an available re-
source, while from the cognitive view, this avoids
ad hoc assumptions about the representation of a
conceptual hierarchy. However, we do require some
properties to be more general (i.e., shared by more
words) than others, which eventually enables the
model to make appropriate generalizations. Other-
wise, the selected semantic properties are not fun-
damental to the model, and could in the future be
replaced with an approach that is deemed more ap-

propriate to child language acquisition. Each argu-
ment contributes to the semantic profile of the verb
through its (potentially large) set of semantic prop-
erties instead of its membership in a single class. As
input to our model, we use an automatically parsed
corpus, which is very noisy. However, as a result of
our novel representation, the model can induce and
use selectional preferences using a relatively small
set of noisy training data.

2 Related Computational Models

A variety of computational models for verb selec-
tional preferences have been proposed, which use
different statistical models to induce the preferences
of each verb from corpus data. Most of these
models, however, use the same representation for
verb selectional preferences: the preference can be
thought of as a mapping, with respect to an argument
position for a verb, of each class to a real number
(Light and Greiff, 2002). The induction of a verb’s
preferences is, therefore, modeled as using a set of
training data to estimate that number.

Resnik (1996) defines the selectional preference
strength of a verb as the divergence between two
probability distributions: the prior probabilities of
the classes, and the posterior probabilities of the
classes given that verb. The selectional association
of a verb with a class is also defined as the contribu-
tion of that class to the total selectional preference
strength. Resnik estimates the prior and posterior
probabilities based on the frequencies of each verb
and its relevant argument in a corpus.

Li and Abe (1998) model selectional preferences
of a verb (for an argument position) as a set of nodes
in the semantic class hierarchy with a probability
distribution over them. They use the Minimum De-
scription Length (MDL) principle to find the best set
for each verb and argument based on the usages of
that verb in the training data. Clark and Weir (2002)
also find an appropriate set of concept nodes to rep-
resent the selectional preferences for a verb, but do
so using aχ2 test over corpus frequencies mapped
to concepts to determine when to generalize from a
node to its parent. Ciaramita and Johnson (2000)
use a Bayesian network with the same topology as
WordNet to estimate the probability distribution of
the relevant set of nodes in the hierarchy. Abney
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and Light (1999) use a different representational ap-
proach: they train a separate hidden Markov model
for each verb, and the selectional preference is rep-
resented as a probability distribution over words in-
stead of semantic classes.

3 The Bayesian Verb-Learning Model

3.1 Overview of the Model

Our model learns the set ofargument structure
framesfor each verb, and their grouping across verbs
into constructions. An argument structure frame is
a set of features of a verb usage that are both syn-
tactic (the number of arguments, the syntactic pat-
tern of the usage) and semantic (the semantic prop-
erties of the verb, the semantic properties of each
argument). The syntactic pattern indicates the word
order of the verb and arguments. A construction is
a grouping of individual frames which probabilisti-
cally share syntactic and semantic features, and form
probabilistic associations across verb semantic prop-
erties, argument semantic properties, and syntactic
pattern. These groupings typically correspond to
general constructions in the language such as tran-
sitive, intransitive, and ditransitive.

For each verb, the model associates an argument
position with a probability distribution over a set of
semantic properties—a semantic profile. In doing
so, the model uses the knowledge that it has learned
for that verb, as well as the grouping of frames for
that verb into constructions.

The semantic properties of words are taken from
WordNet (version 2.0) as follows. We extract all the
hypernyms (ancestors) for all the senses of the word,
and add all the words in the hypernym synsets to the
list of the semantic properties. Figure 1 shows an ex-
ample of the hypernyms fordinner, and its resulting
set of semantic properties.1

The following sections review basic properties
of the model from Alishahi and Stevenson (2005,
2007), and introduce extensions that give the model
its ability to make verb-based predictions.

3.2 Learning as Bayesian Clustering

Each argument structure frame for an observed verb
usage is input to an incremental Bayesian clustering

1We do not remove alternate spellings of a term in WordNet;
this will be seen in the profiles in the results section.

Sense 1
dinner

=> meal, repast
=> nutriment, nourishment, nutrition, sustenance,

aliment, alimentation, victuals
=> food, nutrient

=> substance, matter
=> entity

Sense 2
dinner, dinner party

=> party
=> social gathering, social affair

=> gathering, assemblage
=> social group

=> group, grouping

dinner: {meal, repast, nutriment, nourishment, nutrition, substance, aliment, alimentation,
victuals, food, nutrient, substance, matter, entity, party, social gathering,
social affair, gathering, assemblage, social group, group, grouping}

Figure 1: Semantic properties fordinnerfrom Word-
Net

process. This process groups the new frame together
with an existing group of frames—a construction—
that probabilistically has the most similar semantic
and syntactic properties to it. If no construction has
sufficiently high probability for the new frame, then
a new construction is created for it. We use the prob-
abilistic model of Alishahi and Stevenson (2007) for
learning constructions, which is itself an adaptation
of a Bayesian model of human categorization pro-
posed by Anderson (1991). It is important to note
that the categories (i.e., constructions) are not prede-
fined, but rather are created according to the patterns
of similarity over observed frames.

Grouping a frameF with other frames participat-
ing in constructionk is formulated as finding thek
with the maximum probability givenF :

BestConstruction(F ) = argmax
k

P (k|F ) (1)

wherek ranges over the indices of all constructions,
with index 0 representing recognition of a new con-
struction.

Using Bayes rule, and droppingP (F ) which is
constant for allk:

P (k|F ) =
P (k)P (F |k)

P (F )
∝ P (k)P (F |k) (2)

The prior probability,P (k), indicates the degree of
entrenchment of constructionk, and is given by the
relative frequency of its frames over all observed
frames. The posterior probability of a frameF is
expressed in terms of the individual probabilities of
its features, which we assume are independent, thus
yielding a simple product of feature probabilities:
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P (F |k) =
∏

i∈FrameFeatures

Pi(j|k) (3)

where j is the value of theith feature ofF , and
Pi(j|k) is the probability of displaying valuej on
featurei within constructionk. Given the focus here
on semantic profiles, we next focus on the calcula-
tion of the probabilities of semantic properties.

3.3 Probabilities of Semantic Properties

The probability in equation (3) of valuej for feature
i in constructionk is estimated using a smoothed
version of this maximum likelihood formula:

Pi(j|k) =
countk

i
(j)

nk

(4)

wherenk is the number of frames participating in
constructionk, and countk

i
(j) is the number of

those with valuej for featurei.
For most features,countk

i
(j) is calculated by

simply counting those members of constructionk

whose value for featurei exactly matchesj. How-
ever, for the semantic properties of words, counting
only the number of exact matches between the sets
is too strict, since even highly similar words very
rarely have the exact same set of properties. We
instead use the following Jaccard similarity score
to measure the overlap between the set of semantic
properties,SF , of a particular argument in the frame
to be clustered, and the set of semantic properties,
Sk, of the same argument in a member frame of a
construction:

sem score(SF , Sk) =
|SF ∩ Sk|

|SF ∪ Sk|
(5)

For example, assume that the new frameF repre-
sents a usage ofJohn ate cake. In the construction
that we are considering for inclusion ofF , one of
the member frames represents a usage ofMom got
water. We must compare the semantic properties of
the corresponding argumentscakeandwater:

cake: {baked goods,food,solid,substance,matter,entity}
water: {liquid,fluid,food,nutrient,substance,matter,entity}

The intersection of the two sets is{food, substance,
matter, entity}, yielding asem score of 4

9
.

In general, to calculate the conditional probability
for the set of semantic properties, we setcountk

i
(j)

in equation (4) to the sum of thesem score’s for
the new frame and every member of constructionk,

and normalize the resulting probability over all pos-
sible sets of semantic properties in our lexicon.

3.4 Predicting Semantic Profiles for Verbs

We represent the selectional preferences of a verb
for an argument position as a semantic profile, which
is a probability distribution over all the semantic
properties. To predict the profile of a verbv for
an argument positionarg , we need to estimate the
probability of each semantic propertyj separately:

Parg (j|v) =
∑

k

Parg(j, k|v) (6)

∝
∑

k

P (k, v)Parg (j|k, v)

Here,j ranges over all the possible semantic proper-
ties that an argument can have, andk ranges over all
constructions. The prior probability of having verbv

in constructionk, or P (k, v), takes into account two
important factors: the relative entrenchment of the
constructionk, and the (smoothed) frequency with
which v participates ink.

The posterior probabilityParg (j|k, v) is calcu-
lated analogously toPi(j|k) in equation (4), but lim-
iting the count of matching features to those frames
in k that containv:

Parg (j|k, v) =
verb countk

arg (j, v)

nkv

(7)

wherenkv is the number of frames forv participat-
ing in constructionk, andverb countk

arg(j, v) is
the number of those with semantic propertyj for
argumentarg . We use a smoothed version of the
above formula, where the relative frequency of each
propertyj among all nouns is used as the smoothing
factor.

3.5 Verb-Argument Compatibility

In one of our experiments, we need to measure the
compatibility of a particular nounn for an argument
positionarg of some verbv. That is, we need to es-
timate how much the semantic properties ofn con-
form to the acquired semantic profile ofv for arg .
We formulate the compatibility as the conditional
probability of observingn as an argumentarg of v:

compatibility(v, n) = log(Parg (jn|v)) (8)
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where jn is the set of the semantic properties for
word n, and Parg (jn|v) is estimated as in equa-
tion (7). However, sincejn here is a set of prop-
erties (as opposed toj in equation (7) being a
single property),verb countk

arg in equation (7)
should be modified as described in Section 3.3:
we set verb countk

arg (jn, v) to the sum of the
sem score’s (equation (5)) forjn and every frame
of v that participates in constructionk.

4 Experimental Results

In the following sections, we first describe the train-
ing data for our model. In accordance with other
computational models, we focus here on the verb
preferences for the direct object position.2 Next, we
provide a qualitative analysis of our model through
examination of the semantic profiles for a number
of verbs. We then evaluate our model through two
tasks of simulating verb-argument plausibility judg-
ment, and analyzing the implicit object alternation,
following Resnik (1996).3

4.1 The Training Data

In earlier work (Alishahi and Stevenson, 2005,
2007), we used a method to automatically generate
training data with the same distributional properties
as the input children receive. However, this relies on
manually-compiled data about verbs and their argu-
ment structure frames from the CHILDES database
(MacWhinney, 1995). To evaluate the new version
of our model for the task of learning selectional pref-
erences, we need a wide selection of verbs and their
arguments that is impractical to compile by hand.

The training data for our experiments here are
generated as follows. We use 20,000 sentences
randomly selected from the British National Cor-
pus (BNC),4 automatically parsed using the Collins
parser (Collins, 1999), and further processed with
TGrep2,5 and an NP-head extraction software.6 For

2To our knowledge, the only work that considers selectional
preferences of subjects and prepositional phrases as well as di-
rect objects is Brockmann and Lapata (2003).

3Computational models of verb selectional preference have
been evaluated through disambiguation tasks (Li and Abe,
1998; Abney and Light, 1999; Ciaramita and Johnson, 2000;
Clark and Weir, 2002), but for to evaluate our cognitive model,
the experiments from Resnik (1996) are the most interesting.

4http://www.natcorp.ox.ac.uk
5http://tedlab.mit.edu/∼dr/Tgrep2
6The software was provided to us by Eric Joanis, and Af-

each verb usage in a sentence, we construct a frame
by recording the verb in root form, the number of
the arguments for that verb, and the syntactic pattern
of the verb usage (i.e., the word order of the verb
and the arguments). We also record in the frame the
semantic properties of the verb and each of the ar-
gument heads (each noun is also converted to root
form); these properties are extracted from WordNet
(as discussed in Section 3.1 and illustrated in Fig-
ure 1). This process results in 16,300 frames which
serve as input data to our learning model.

4.2 Formation of Semantic Profiles for Verbs

After training our model on the above data, we use
equation (7) to predict the semantic profile of the di-
rect object position for a range of verbs. Some of
these verbs, such aswrite andsing, have strong se-
lectional preferences, whereas others, such aswant
and put, can take a wide range of nouns as direct
object (as confirmed by Resnik’s (1996) estimated
strength of selectional preference for these verbs).
The semantic profiles forwrite and sing are dis-
played in Figure 2, and the profiles forwantandput
are displayed in Figure 3. (Due to limited space, we
only include the 25 properties that have the highest
probability in each profile.)

Because we extract the semantic properties of
words from WordNet, which has a hierarchical
structure, the properties that come from nodes in
the higher levels of the hierarchy (such asentityand
abstraction) appear as the semantic property for a
very large set of words, whereas the properties that
come from the leaves in the hierarchy are specific to
a small set of words. Therefore, the general prop-
erties are more likely to be associated with a higher
probability in the semantic profiles for most verbs.
In fact, a closer look at the semantic profiles forwant
andput reveals that the top portion of the semantic
profile for these verbs consists solely of such gen-
eral properties that are shared among a large group
of words. However, this is not the case for the more
restrictive verbs. The semantic profiles forwrite and
singshow that the specific properties that these verbs
demand from their direct object appear amongst the
highest-ranked properties, even though only a small
set of words share these properties (e.g.,content,

saneh Fazly helped us in using the above-mentioned tools for
generating our input corpora.
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write
(0.024) abstraction
(0.022) entity
(0.021) location
(0.020) substance
(0.019) destination
(0.018) relation
(0.015) communication
(0.015) social relation
(0.013) content
(0.011) message
(0.011) subject matter
(0.011) written

communication
(0.011) written

language
(0.010) object
(0.010) physical object
(0.010) writing
(0.010) goal
(0.010) unit
(0.009) whole
(0.009) whole thing
(0.009) artifact
(0.009) artefact
(0.009) state
(0.009) amount
(0.009) measure

sing
(0.020) abstraction
(0.015) relation
(0.015) communication
(0.015) social relation
(0.013) act
(0.013) human action
(0.013) human activity
(0.013) auditory

communication
(0.012) music
(0.010) entity
(0.010) piece
(0.009) composition
(0.009) musical

composition
(0.009) opus
(0.009) piece of music
(0.009) psychological

feature
(0.008) cognition
(0.008) knowledge
(0.008) noesis
(0.008) activity
(0.008) content
(0.008) grouping
(0.008) group
(0.008) amount
(0.008) measure

Figure 2: Semantic profiles ofwrite andsing for the
direct object position.

message, written communication, written language,
... for write, and auditory communication, music,
musical composition, opus, ...for sing).

The examination of the semantic profiles for fairly
frequent verbs in the training data shows that our
model can use the verb usages to predict an appro-
priate semantic profile for each verb. When pre-
sented with a novel verb (for which no verb-based
information is available), equation (7) predicts a se-
mantic profile which reflects the relative frequencies
of the semantic properties among all words (due to
the smoothing factor added to equation (7)), modu-
lated by the prior probability of each construction.
The predicted profile is displayed in Figure 4. It
shows similarities with the profiles forwantandput
in Figure 3, but the general properties in this profile
have an even higher probability. Since the profile for
the novel verb is predicted in the absence of any evi-
dence (i.e., verb usage) in the training data, we later
use it as the base for estimating other verbs’ strength
of selectional preference.

want
(0.016) entity
(0.015) object
(0.015) physical object
(0.014) abstraction
(0.013) act
(0.012) human action
(0.012) human activity
(0.012) relation
(0.011) unit
(0.011) whole
(0.011) whole thing
(0.011) artifact
(0.011) artefact
(0.008) communication
(0.008) social relation
(0.008) activity
(0.007) cause
(0.007) state
(0.007) instrumentality
(0.007) instrumentation
(0.007) event
(0.006) being
(0.006) living thing
(0.006) animate thing
(0.006) organism

put
(0.015) entity
(0.015) object
(0.013) physical object
(0.013) abstraction
(0.011) unit
(0.011) whole
(0.011) whole thing
(0.011) artifact
(0.011) artefact
(0.010) act
(0.009) relation
(0.008) human action
(0.008) human activity
(0.008) communication
(0.008) social relation
(0.007) substance
(0.007) content
(0.007) instrumentality
(0.007) instrumentation
(0.007) measure
(0.006) amount
(0.006) quantity
(0.006) cause
(0.006) causal agent
(0.006) causal agency

Figure 3: Semantic profiles ofwantandput for the
direct object position.

4.3 Verb-Argument Plausibility Judgments

Holmes et al. (1989) evaluate verb argument plau-
sibility by asking human subjects to rate sentences
like The mechanic warned the driverand The me-
chanic warned the engine. Resnik (1996) used this
data to assess the performance of his model by com-
paring its judgments of selectional fit against the
plausibility ratings elicited from human subjects. He
showed that his selectional association measure for
a verb and its direct object can be used to select the
more plausible verb-noun pair among the two (e.g.,
<warn,driver> vs. <warn,engine> in the previous
example). That is, a higher selectional association
between the verb and one of the nouns compared to
the other noun indicates that the former is the more
plausible pair. Resnik (1996) used the Brown corpus
as training data, and showed that his model arrives
at the correct ordering of more and less plausible ar-
guments in 11 of the 16 cases.

We repeated this experiment, using the same 16
pairs of verb-noun combinations. For each pair of
<v, n1> and <v, n2>, we calculate the compati-
bility measure using equation (8); these values are
shown in Figure 5. (Note that because these are
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A novel verb
(0.021) entity
(0.017) object
(0.017) physical object
(0.015) abstraction
(0.010) act
(0.010) human action
(0.010) human activity
(0.010) unit
(0.009) whole
(0.009) whole thing
(0.009) artifact
(0.009) artefact
(0.009) being
(0.009) living thing
(0.009) animate thing
(0.009) organism
(0.008) cause
(0.008) causal agent
(0.008) causal agency
(0.008) relation
(0.008) person
(0.008) individual
(0.008) someone
(0.008) somebody
(0.008) mortal

Figure 4: Semantic profile of a novel verb for the
direct object position.

log-probabilities and therefore negative numbers,
a lower absolute value ofcompatibility(v, n)
shows a better compatibility between the verbv

and the argumentn.) For example,<see,friend>
has a higher compatibility score (-30.50) than
<see,method> (-32.14). Similar to Resnik, our
model detects 11 plausible pairs out of 16. How-
ever, these results are reached with a much smaller
training corpus (around 500,000 words), compared
to the Brown corpus used by Resnik (1996) which
contains one million words. Moreover, whereas the
Brown corpus is tagged and parsed manually, the
portion of the BNC that we use is parsed automat-
ically, and as a result our training data is very noisy.
Nonetheless, the model achieves the same level of
accuracy in distinguishing plausible verb-argument
pairs from implausible ones.

4.4 Implicit Object Alternations

In English, some inherently transitive verbs can ap-
pear with or without their direct objects (e.g.,John
ate his dinneras well asJohn ate), but others can-
not (e.g.,Mary made a cakebut not*Mary made).
It is argued that implicit object alternations involve a

Verb Plausible Implausible
see friend -30.50 method -32.14
read article -32.76 fashion -33.33
find label -32.05 fever -33.30
hear story -32.11 issue -32.40
write letter -31.37 market -32.46
urge daughter -36.73 contrast -35.64
warn driver -33.68 engine -34.42
judge contest -39.05 climate -38.23
teach language -45.64 distance -45.11
show sample -31.75 travel -31.42
expect visit -33.88 mouth -32.87
answer request -31.89 tragedy -33.95
recognize author -32.53 pocket -32.62
repeat comment -33.80 journal -33.97
understand concept -32.25 session -32.93
remember reply -33.79 smoke -34.29

Figure 5: Compatibility scores for plausible vs. im-
plausible verb-noun pairs.

particular relationship between the verb and its argu-
ment. In particular, for verbs that participate in the
implicit object alternation, the omitted object must
be in some sense inferable ortypical for that verb
(Levin, 1993, among others).

Resnik (1996) used his model of selectional pref-
erences to analyze implicit object alternations, and
showed a relationship between his measure of se-
lectional preference strength and the notion of typ-
icality of an object. He calculated this measure
for two groups of Alternating and Non-alternating
verbs, and showed that, on average, the Alternating
verbs have a higher strength of selectional prefer-
ence for the direct object than the Non-alternating
verbs. However, there was no threshold separating
the two groups of verbs.

To repeat Resnik’s experiment, we need a mea-
sure of how “strongly constraining” a semantic pro-
file is. We can do this by measuring the similarity
between the semantic profile we generate for the ob-
ject of a particular verb and some “default” notion of
the argument for that position across all verbs. We
use the semantic profile predicted for the object po-
sition of a novel verb, shown earlier in Figure 4, as
the default profile for that argument position. Be-
cause this profile is predicted in the absence of any
evidence in the training data, it makes the minimum
assumptions about the properties of the argument
and thus serves as a suitable default. We then assume
that verbs with weaker selectional preferences have
semantic profiles more similar to the default profile
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Alternating verbs Non-alternating verbs
write 0.61 hang 0.56
sing 0.67 wear 0.71
drink 0.67 say 0.75
eat 0.74 catch 0.76
play 0.74 show 0.77
pour 0.76 make 0.78
watch 0.77 hit 0.78
pack 0.78 open 0.81
steal 0.80 take 0.83
push 0.80 see 0.87
call 0.80 like 0.87
pull 0.80 get 0.87
explain 0.81 find 0.87
read 0.82 give 0.88
hear 0.87 bring 0.89

want 0.89
put 0.90

Mean: 0.76 Mean: 0.81

Figure 6: Similarity with the base profile for Alter-
nating and Non-alternating verbs.

than verbs with stronger preferences. We use the
cosine measure to estimate the similarity between
two profilesp andq:

cosine(p, q) =
p× q

||p|| × ||q||
(9)

The similarity values for the Alternating and Non-
alternating verbs are shown in Figure 6. The larger
values represent more similarity with the base pro-
file, which means a weaker selectional preference.
The means for the Alternating and Non-alternating
verbs were respectively 0.76 and 0.81, which con-
firm the hypothesis that verbs participating in im-
plicit object alternations select more strongly for the
direct objects than verbs that do not. However, like
Resnik (1996), we find that it is not possible to set a
threshold that will distinguish the two sets of verbs.

5 Conclusions

We have proposed a cognitively plausible model for
learning selectional preferences from instances of
verb usage. The model represents verb selectional
preferences as a semantic profile, which is a prob-
ability distribution over the semantic properties that
an argument can take. One of the strengths of our
model is the incremental nature of its learning mech-
anism, in contrast to other approaches which learn
selectional preferences in batch mode. Here we have
only reported the results for the final stage of learn-
ing, but the model allows us to monitor the semantic

profiles during the course of learning, and compare
it with child data for different age groups, as we do
with semantic roles (Alishahi and Stevenson, 2007).
We have shown that the model can predict appropri-
ate semantic profiles for a variety of verbs, and use
these profiles to simulate human judgments of verb-
argument plausibility, using a small and highly noisy
set of training data. The model can also use the pro-
files to measure verb-argument compatibility, which
was used in analyzing the implicit object alternation.
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Abstract

We introduce Incremental Semantic Analy-
sis, a fully incremental word space model,
and we test it on longitudinal child-directed
speech data. On this task, ISA outperforms
the related Random Indexing algorithm, as
well as a SVD-based technique. In addi-
tion, the model has interesting properties
that might also be characteristic of the se-
mantic space of children.

1 Introduction

Word space models induce a semantic space from
raw textual input by keeping track of patterns of
co-occurrence of words with other words through a
vectorial representation. Proponents of word space
models such as HAL (Burgess and Lund, 1997) and
LSA (Landauer and Dumais, 1997) have argued that
such models can capture a variety of facts about hu-
man semantic learning, processing, and representa-
tion. As such, word space methods are not only
increasingly useful as engineering applications, but
they are also potentially promising for modeling
cognitive processes of lexical semantics.

However, to the extent that current word space
models are largely non-incremental, they can hardly
accommodate how young children develop a seman-
tic space by moving from virtually no knowledge
of the language to reach an adult-like state. The
family of models based on singular value decom-
position (SVD) and similar dimensionality reduc-
tion techniques (e.g., LSA) first construct a full co-
occurrence matrix based on statistics extracted from

the whole input corpus, and then build a model at
once via matrix algebra operations. Admittedly,
this is hardly a plausible simulation of how chil-
dren learn word meanings incrementally by being
exposed to short sentences containing a relatively
small number of different words. The lack of incre-
mentality of several models appears conspicuous es-
pecially given their explicit claim to solve old theo-
retical issues about the acquisition of language (e.g.,
(Landauer and Dumais, 1997)). Other extant models
display some degree if incrementality. For instance,
HAL and Random Indexing (Karlgren and Sahlgren,
2001) can generate well-formed vector representa-
tions at intermediate stages of learning. However,
they lack incrementality when they make use of stop
word lists or weigthing techniques that are based on
whole corpus statistics. For instance, consistently
with the HAL approach, Li et al. (2000) first build
a word co-occurrence matrix, and then compute the
variance of each column to reduce the vector dimen-
sions by discarding those with the least contextual
diversity.

Farkas and Li (2000) and Li et al. (2004) pro-
pose an incremental version of HAL by using a a re-
current neural network trained with Hebbian learn-
ing. The networks incrementally build distributional
vectors that are then used to induce word semantic
clusters with a Self-Organizing Map.Farkas and Li
(2000) does not contain any evaluation of the struc-
ture of the semantic categories emerged in the SOM.
A more precise evaluation is instead performed by
Li et al. (2004), revealing the model’s ability to sim-
ulate interesting aspects of early vocabulary dynam-
ics. However, this is achieved by using hybrid word
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representations, in which the distributional vectors
are enriched with semantic features derived from
WordNet.

Borovsky and Elman (2006) also model word
learning in a fairly incremental fashion, by using the
hidden layer vectors of a Simple Recurrent Network
as word representations. The network is probed at
different training epochs and its internal represen-
tations are evaluated against a gold standard ontol-
ogy of semantic categories to monitor the progress in
word learning. Borovsky and Elman (2006)’s claim
that their model simulates relevant aspects of child
word learning should probably be moderated by the
fact that they used a simplified set of artificial sen-
tences as training corpus. From their simulations it
is thus difficult to evaluate whether the model would
scale up to large naturalistic samples of language.

In this paper, we introduce Incremental Semantic
Indexing (ISA), a model that strives to be more de-
velopmentally plausible by achieving full incremen-
tality. We test the model and some of its less incre-
mental rivals on Lara, a longitudinal corpus of child-
directed speech based on samples of child-adult lin-
guistic interactions collected regularly from 1 to 3
years of age of a single English child. ISA achieves
the best performance on these data, and it learns
a semantic space that has interesting properties for
our understanding of how children learn and struc-
ture word meaning. Thus, the desirability of incre-
mentality increases as the model promises to cap-
ture specific developmental trajectories in semantic
learning.

The plan of the paper is as follows. First, we
introduce ISA together with its main predecessor,
Random Indexing. Then, we present the learning
experiments in which several versions of ISA and
other models are trained to induce and organize lexi-
cal semantic information from child-directed speech
transcripts. Lastly, we discuss further work in devel-
opmental computational modeling using word space
models.

2 Models

2.1 Random Indexing

Since the model we are proposing can be seen as
a fully incremental variation on Random Indexing
(RI), we start by introducing the basic features of

RI (Karlgren and Sahlgren, 2001). Initially, each
context word is assigned an arbitrary vector repre-
sentation of fixed dimensionality d made of a small
number of randomly distributed +1 and -1, with all
other dimensions assigned a 0 value (d is typically
much smaller than the dimensionality of the full co-
occurrence matrix). This vector representation is
called signature. The context-dependent represen-
tation for a given target word is then obtained by
adding the signatures of the words it co-occurs with
to its history vector. Multiplying the history by a
small constant called impact typically improves RI
performance. Thus, at each encounter of target word
t with a context word c, the history of t is updated as
follows:

ht += i× sc (1)

where i is the impact constant, ht is the history vec-
tor of t and sc is the signature vector of c. In this
way, the history of a word keeps track of the con-
texts in which it occurred. Similarity among words
is then measured by comparing their history vectors,
e.g., measuring their cosine.

RI is an extremely efficient technique, since it di-
rectly builds and updates a matrix of reduced di-
mensionality (typically, a few thousands elements),
instead of constructing a full high-dimensional co-
occurrence matrix and then reducing it through SVD
or similar procedures. The model is incremental
to the extent that at each stage of corpus process-
ing the vector representations are well-formed and
could be used to compute similarity among words.
However, RI misses the “second order” effects that
are claimed to account, at least in part, for the ef-
fectiveness of SVD-based techniques (Manning and
Schütze, 1999, 15.4). Thus, for example, since dif-
ferent random signatures are assigned to the words
cat, dog and train, the model does not capture the
fact that the first two words, but not the third, should
count as similar contexts. Moreover, RI is not fully
incremental in several respects. First, on each en-
counter of two words, the same fixed random sig-
nature of one of them is added to the history of the
other, i.e., the way in which a word affects another
does not evolve with the changes in the model’s
knowledge about the words. Second, RI makes use
of filtering and weighting procedures that rely on
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global statistics, i.e., statistics based on whole cor-
pus counts. These procedures include: a) treating
the most frequent words as stop words; b) cutting
off the lowest frequency words as potential contexts;
and c) using mutual information or entropy mea-
sures to weight the effect of a word on the other).
In addition, although procedures b) and c) may have
some psychological grounding, procedure a) would
implausibly entail that to build semantic represen-
tations the child actively filters out high frequency
words as noise from her linguistic experience. Thus,
as it stands RI has some noticeable limitations as a
developmental model.

2.2 Incremental Semantic Analysis

Incremental Semantic Analysis (ISA) differs from
RI in two main respects. First and most importantly,
when a word encounters another word, the history
vector of the former is updated with a weighted sum
of the signature and the history of the latter. This
corresponds to the idea that a target word is affected
not only by its context words, but also by the se-
mantic information encoded by that their distribu-
tional histories. In this way, ISA can capture SVD-
like second order effects: cat and dog might work
like similar contexts because they are likely to have
similar histories. More generally, this idea relies on
two intuitively plausible assumptions about contex-
tual effects in word learning, i.e., that the informa-
tion carried by a context word will change as our
knowledge about the word increases, and that know-
ing about the history of co-occurrence of a context
word is an important part of the information being
contributed by the word to the targets it affects.

Second, ISA does not rely on global statistics for
filtering and weighting purposes. Instead, it uses a
weighting scheme that changes as a function of the
frequency of the context word at each update. This
makes the model fully incremental and (together
with the previous innovation) sensitive not only to
the overall frequency of words in the corpus, but to
the order in which they appear.

More explicitly, at each encounter of a target word
t with a context word c, the history vector of t is
updated as follows:

ht += i× (mchc + (1−mc)sc) (2)

The constant i is the impact rate, as in the RI for-
mula (1) above. The value mc determines how much
the history of a word will influence the history of an-
other word. The intuition here is that frequent words
tend to co-occur with a lot of other words by chance.
Thus, the more frequently a word is seen, the less
informative its history will be, since it will reflect
uninteresting co-occurrences with all sorts of words.
ISA implements this by reducing the influence that
the history of a context word c has on the target word
t as a function of the token frequency of c (notice
that the model still keeps track of the encounter with
c, by adding its signature to the history of t; it is just
the history of c that is weighted down). More pre-
cisely, the m weight associated with a context word
c decreases as follows:

mc =
1

exp
(

Count(c)
km

)
where km is a parameter determining how fast the
decay will be.

3 Experimental setting

3.1 The Lara corpus
The input for our experiments is provided by the
Child-Directed-Speech (CDS) section of the Lara
corpus (Rowland et al., 2005), a longitudinal cor-
pus of natural conversation transcripts of a single
child, Lara, between the ages of 1;9 and 3;3. Lara
was the firstborn monolingual English daughter of
two White university graduates and was born and
brought up in Nottinghamshire, England. The cor-
pus consists of transcripts from 122 separate record-
ing sessions in which the child interacted with adult
caretakers in spontaneous conversations. The total
recording time of the corpus is of about 120 hours,
representing one of the densest longitudinal corpora
available. The adult CDS section we used contains
about 400K tokens and about 6K types.

We are aware that the use of a single-child corpus
may have a negative impact on the generalizations
on semantic development that we can draw from the
experiments. On the other hand, this choice has the
important advantage of providing a fairly homoge-
neous data environment for our computational sim-
ulations. In fact, we can abstract from the intrin-
sic variability characterizing any multi-child corpus,
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and stemming from differences in the conversation
settings, in the adults’ grammar and lexicon, etc.
Moreover, whereas we can take our experiments to
constitute a (very rough) simulation of how a par-
ticular child acquires semantic representations from
her specific linguistic input, it is not clear what simu-
lations based on an “averages” of different linguistic
experiences would represent.

The corpus was part-of-speech-tagged and lem-
matized using the CLAN toolkit (MacWhinney,
2000). The automated output was subsequently
checked and disambiguated manually, resulting in
very accurate annotation. In our experiments, we
use lemma-POS pairs as input to the word space
models (e.g., go-v rather than going, goes, etc.)
Thus, we make the unrealistic assumptions that the
learner already solved the problem of syntactic cate-
gorization and figured out the inflectional morphol-
ogy of her language. While a multi-level bootstrap-
ping process in which the morphosyntactic and lex-
ical properties of words are learned in parallel is
probably cognitively more likely, it seems reason-
able at the current stage of experimentation to fix
morphosyntax and focus on semantic learning.

3.2 Model training

We experimented with three word space models:
ISA, RI (our implementations in both cases) and the
SVD-based technique implemented by the Infomap
package.1

Parameter settings may considerably impact the
performance of word space models (Sahlgren,
2006). In a stage of preliminary investigations (not
reported here, and involving also other corpora) we
identified a relatively small range of values for each
parameter of each model that produced promising
results, and we focused on it in the subsequent, more
systematic exploration of the parameter space.

For all models, we used a context window of five
words to the left and five words to the right of the
target. For both RI and ISA, we set signature initial-
ization parameters (determining the random assign-
ment of 0s, +1s and -1s to signature vectors) similar
to those described by Karlgren and Sahlgren (2001).
For RI and SVD, we used two stop word filtering
lists (removing all function words, and removing the

1http://infomap-nlp.sourceforge.net/

top 30 most frequent words), as well as simulations
with no stop word filtering. For RI and ISA, we used
signature and history vectors of 1,800 and 2,400 di-
mensions (the first value, again, inspired by Karl-
gren and Sahlgren’s work). Preliminary experiments
with 300 and 900 dimensions produced poor results,
especially with RI. For SVD, we used 300 dimen-
sions only. This was in part due to technical lim-
itations of the implementation, but 300 dimensions
is also a fairly typical choice for SVD-based mod-
els such as LSA, and a value reported to produce
excellent results in the literature. More importantly,
in unrelated experiments SVD with 300 dimensions
and function word filtering achieved state-of-the-art
performance (accuracy above 90%) in the by now
standard TOEFL synonym detection task (Landauer
and Dumais, 1997).

After preliminary experiments showed that both
models (especially ISA) benefited from a very low
impact rate, the impact parameter i of RI and ISA
was set to 0.003 and 0.009. Finally, km (the ISA pa-
rameter determining the steepness of decay of the
influence of history as the token frequency of the
context word increases) was set to 20 and 100 (recall
that a higher km correspond to a less steep decay).

The parameter settings we explored were system-
atically crossed in a series of experiments. More-
over, for RI and ISA, given that different random
initializations will lead to (slightly) different results,
each experiment was repeated 10 times.

Below, we will report results for the best perform-
ing models of each type: ISA with 1,800 dimen-
sions, i set to 0.003 and km set to 100; RI with 2,400
dimensions, i set to 0.003 and no stop words; SVD
with 300-dimensional vectors and function words
removed. However, it must be stressed that 6 out
of the 8 ISA models we experimented with outper-
formed the best RI model (and they all outperformed
the best SVD model) in the Noun AP task discussed
in section 4.1. This suggests that the results we re-
port are not overly dependent on specific parameter
choices.

3.3 Evaluation method
The test set was composed of 100 nouns and 70
verbs (henceforth, Ns and Vs), selected from the
most frequent words in Lara’s CDS section (word
frequency ranges from 684 to 33 for Ns, and from
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3501 to 89 for Vs). This asymmetry in the test
set mirrors the different number of V and N types
that occur in the input (2828 Ns vs. 944 Vs). As
a further constraint, we verified that all the words
in the test set also appeared among the child’s pro-
ductions in the corpus. The test words were un-
ambiguously assigned to semantic categories pre-
viously used to model early lexical development
and represent plausible early semantic groupings.
Semantic categories for nouns and verbs were de-
rived by combining two methods. For nouns, we
used the ontologies from the Macarthur-Bates Com-
municative Development Inventories (CDI).2 All
the Ns in the test set also appear in the Tod-
dler’s List in CDI. The noun semantic categories are
the following (in parenthesis, we report the num-
ber of words per class and an example): ANI-
MALS REAL OR TOY (19; dog), BODY PARTS (16;
nose), CLOTHING (5; hat), FOOD AND DRINK (13;
pizza), FURNITURE AND ROOMS (8; table), OUT-
SIDE THINGS AND PLACES TO GO (10; house),
PEOPLE (10; baby), SMALL HOUSEHOLD ITEMS

(13; bottle), TOYS (6; pen). Since categories for
verbs were underspecified in the CDI, we used
12 broad verb semantic categories for event types,
partly extending those in Borovsky and Elman
(2006): ACTION (11; play), ACTION BODY (6;
eat), ACTION FORCE (5; pull), ASPECTUAL (6;
start), CHANGE (12; open), COMMUNICATION (4;
talk), MOTION (5; run), PERCEPTION (6; hear),
PSYCH (7; remember), SPACE (3; stand), TRANS-
FER (6; buy).

It is worth emphasizing that this experimental set-
ting is much more challenging than those that are
usually adopted by state-of-the-art computational
simulations of word learning, as the ones reported
above. For instance, the number of words in our
test set is larger than the one in Borovsky and Elman
(2006), and so is the number of semantic categories,
both for Ns and for Vs. Conversely, the Lara corpus
is much smaller than the data-sets normally used to
train word space models. For instance, the best re-
sults reported by Li et al. (2000) are obtained with
an input corpus which is 10 times bigger than ours.

As an evaluation measure of the model perfor-
mance in the word learning task, we adopted Aver-

2http://www.sci.sdsu.edu/cdi/

age Precision (AP), recently used by Borovsky and
Elman (2006). AP evaluates how close all members
of a certain category are to each other in the seman-
tic space built by the model.

To calculate AP, for each wi in the test set we first
extracted the corresponding distributional vector vi

produced by the model. Vectors were used to cal-
culate the pair-wise cosine between each test word,
as a measure of their distance in the semantic space.
Then, for each target word wi, we built the list ri of
the other test words ranked by their decreasing co-
sine values with respect to wi. The ranking ri was
used to calculate AP (wi), the Word Average Preci-
sion for wi, with the following formula:

AP (wi) =
1

|Cwi |
∑

wj∈Cwi

nwj (Cwi)
nwj

where Cwi is the semantic category assigned to wi,
nwj is the set of words appearing in ri up to the rank
occupied by wj , and nwj (Cwi) is the subset of words
in nwj that belong to category Cwi .

AP (wi) calculates the proportion of words that
belong to the same category of wi at each rank in
ri, and then divides this proportion by the number
of words that appear in the category. AP ranges
from 0 to 1: AP (wi) = 1 would correspond to the
ideal case in which all the closest words to wi in ri

belonged to the same category as wi; conversely, if
all the words belonging to categories other than Cwi

were closer to wi than the words in Cwi , AP (wi)
would approach 0. We also defined the Class AP
for a certain semantic category by simply averaging
over the Word AP (wi) for each word in that cate-
gory:

AP (Ci) =
∑j=|Ci|

j=1 AP (wj)
|Ci|

We adopted AP as a measure of the purity and co-
hesiveness of the semantic representations produced
by the model. Words and categories for which the
model is able to converge on well-formed represen-
tations should therefore have higher AP values. If
we define Recall as the number of words in nwj be-
longing to Cwi divided by the total number of words
in Cwi , then all the AP scores reported in our exper-
iments correspond to 100% Recall, since the neigh-
bourhood we used to compute AP (wi) always in-
cluded all the words in Cwi . This represents a very
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Nouns
Tokens ISA RI SVD
100k 0.321 0.317 0.243
200k 0.343 0.337 0.284
300k 0.374 0.367 0.292
400k 0.400 0.393 0.306

Verbs
100k 0.242 0.247 0.183
200k 0.260 0.266 0.205
300k 0.261 0.266 0.218
400k 0.270 0.272 0.224

Table 1: Word AP scores for Nouns (top) and Verbs
(bottom). For ISA and RI, scores are averaged
across 10 iterations

stringent evaluation condition for our models, far be-
yond what is commonly used in the evaluation of
classification and clustering algorithms.

4 Experiments and results

4.1 Word learning
Since we intended to monitor the incremental path
of word learning given increasing amounts of lin-
guistic input, AP scores were computed at four
“training checkpoints” established at 100K, 200K,
300K and 400K word tokens (the final point corre-
sponding to the whole corpus).3 Scores were calcu-
lated independently for Ns and Vs. In Table 1, we
report the AP scores obtained by the best perform-
ing models of each type , as described in section 3.2.
The reported AP values refer to Word AP averaged
respectively over the number of Ns and Vs in the test
set. Moreover, for ISA and RI we report mean AP
values across 10 repetitions of the experiment.

For Ns, both ISA and RI outperformed SVD at all
learning stages. Moreover, ISA also performed sig-
nificantly better than RI in the full-size input condi-
tion (400k checkpoint), as well as at the 300k check-
point (Welch t-test; df = 17, p < .05).

One of the most striking results of these experi-
ments was the strong N-V asymmetry in the Word AP
scores, with the Vs performing significantly worse
than the Ns. For Vs, RI appeared to have a small
advantage over ISA, although it was never signifi-
cant at any stage. The asymmetry is suggestive of
the widely attested N-V asymmetry in child word

3The checkpoint results for SVD were obtained by training
different models on increasing samples from the corpus, given
the non-incremental nature of this method.

learning. A consensus has gathered in the early
word learning literature that children from several
languages acquire Ns earlier and more rapidly than
Vs (Gentner, 1982). An influential account explains
this noun-bias as a product of language-external fac-
tors such as the different complexity of the world
referents for Ns and Vs. Recently, Christiansen and
Monaghan (2006) found that distributional informa-
tion in English CDS was more reliable for identi-
fying Ns than Vs. This suggests that the category-
bias may also be partly driven by how good cer-
tain language-internal cues for Ns and Vs are in a
given language. Likewise, distributional cues to se-
mantics may be stronger for English Ns than for
Vs. The noun-bias shown by ISA (and by the other
models) could be taken to complement the results
of Christiansen and Monaghan in showing that En-
glish Ns are more easily discriminable than Vs on
distributionally-grounded semantic terms.

4.2 Category learning

In Table 2, we have reported the Class AP scores
achieved by ISA, RI and SVD (best models) under
the full-corpus training regime for the nine nominal
semantic categories. Although even in this case ISA
and RI generally perform better than SVD (with the
only exceptions of FURNITURE AND ROOMS

and SMALL HOUSEHOLD ITEMS), results
show a more complex and articulated sit-
uation. With BODY PARTS, PEOPLE, and
SMALL HOUSEHOLD ITEMS, ISA significantly
outperforms its best rival RI (Welch t-test; p < .05).
For the other classes, the differences among the two
models are not significant, except for CLOTHING

in which RI performs significantly better than ISA.
For verb semantic classes (whose analytical data are
not reported here for lack of space), no significant
differences exist among the three models.

Some of the lower scores in Table 2 can be ex-
plained either by the small number of class mem-
bers (e.g. TOYS has only 6 items), or by the class
highly heterogeneous composition (e.g. in OUT-
SIDE THINGS AND PLACES TO GO we find nouns
like garden, flower and zoo). The case of PEOPLE,
for which the performance of all the three models
is far below their average Class AP score (ISA =
0.35; RI = 0.35; SVD = 0.27), is instead much more
surprising. In fact, PEOPLE is one of the classes
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Semantic class ISA RI SVD
ANIMALS REAL OR TOY 0.616 0.619 0.438
BODY PARTS 0.671 0.640 0.406
CLOTHING 0.301 0.349 0.328
FOOD AND DRINK 0.382 0.387 0.336
FURNITURE AND ROOMS 0.213 0.207 0.242
OUTSIDE THINGS PLACES 0.199 0.208 0.198
PEOPLE 0.221 0.213 0.201
SMALL HOUSEHOLD ITEMS 0.208 0.199 0.244
TOYS 0.362 0.368 0.111

Table 2: Class AP scores for Nouns. For ISA and
RI, scores are averaged across 10 iterations

with the highest degree of internal coherence, be-
ing composed only of nouns unambiguously denot-
ing human beings, such as girl, man, grandma, etc.
The token frequency of the members in this class is
also fairly high, ranging between 684 and 55 occur-
rences. Last but not least, in unrelated experiments
we found that a SVD model trained on the British
National Corpus with the same parameters as those
used with Lara was able to achieve very good per-
formances with human denoting nouns, similar to
the members of our PEOPLE class.

These facts have prompted us to better investi-
gate the reasons why with Lara none of the three
models was able to converge on a satisfactory rep-
resentation for the nouns belonging to the PEO-
PLE class. We zoomed in on this semantic class
by carrying out another experiment with ISA. This
model underwent 8 cycles of evaluation, in each of
which the 10 words originally assigned to PEOPLE

have been reclassified into one of the other nom-
inal classes. For each cycle, AP scores were re-
computed for the 10 test words. The results are re-
ported in Figure 1 (where AP refers to the average
Word AP achieved by the 10 words originally be-
longing to the class PEOPLE). The highest score is
reached when the PEOPLE nouns are re-labeled as
ANIMALS REAL OR TOY (we obtained similar re-
sults in a parallel experiment with SVD). This sug-
gests that the low score for the class PEOPLE in the
original experiment was due to ISA mistaking peo-
ple names for animals. What prima facie appeared
as an error could actually turn out to be an interesting
feature of the semantic space acquired by the model.
The experiments show that ISA (as well as the other
models) groups together animals and people Ns, as

Figure 1: AP scores for Ns in PEOPLE reclassified
in the other classes

it has formed a general and more underspecified se-
mantic category that we might refer to as ANIMATE.
This hypothesis is also supported by qualitative ev-
idence. A detailed inspection of the CDS in the
Lara corpus reveals that the animal nouns in the
test set are mostly used by adults to refer either to
toy-animals with which Lara plays or to characters
in stories. In the transcripts, both types of entities
display a very human-like behavior (i.e., they talk,
play, etc.), as it happens to animal characters in most
children’s stories. Therefore, the difference between
model performance and the gold standard ontology
can well be taken as an interesting clue to a genuine
peculiarity in children’s semantic space with respect
to adult-like categorization. Starting from an input
in which animal and human nouns are used in sim-
ilar contexts, ISA builds a semantic space in which
these nouns belong to a common underspecified cat-
egory, much like the world of a child in which cats
and mice behave and feel like human beings.

5 Conclusion

Our main experiments show that ISA significantly
outperforms state-of-the-art word space models in
a learning task carried out under fairly challenging
training and testing conditions. Both the incremen-
tal nature and the particular shape of the semantic
representations built by ISA make it a (relatively)
realistic computational model to simulate the emer-
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gence of a semantic space in early childhood.
Of course, many issues remain open. First of all,

although the Lara corpus presents many attractive
characteristics, it still contains data pertaining to a
single child, whose linguistic experience may be un-
usual. The evaluation of the model should be ex-
tended to more CDS corpora. It will be especially
interesting to run experiments in languages such as
as Korean (Choi and Gopnik, 1995), where no noun-
bias is attested. There, we would predict that the dis-
tributional information to semantics be less skewed
in favor of nouns. All CDS corpora we are aware of
are rather small, compared to the amount of linguis-
tic input a child hears. Thus, we also plan to test the
model on “artificially enlarged” corpora, composed
of CDS from more than one child, plus other texts
that might be plausible sources of early linguistic in-
put, such as children’s stories.

In addition, the target of the model’s evaluation
should not be to produce as high a performance as
possible, but rather to produce performance match-
ing that of human learners.4 In this respect, the
output of the model should be compared to what is
known about human semantic knowledge at various
stages, either by looking at experimental results in
the acquisition literature or, more directly, by com-
paring the output of the model to what we can in-
fer about the semantic generalizations made by the
child from her/his linguistic production recorded in
the corpus.

Finally, further studies should explore how the
space constructed by ISA depends on the order in
which sentences are presented to it. This could shed
some light on the issue of how different experien-
tial paths might lead to different semantic general-
izations.

While these and many other experiments must be
run to help clarifying the properties and effective-
ness of ISA, we believe that the data presented here
constitute a very promising beginning for this new
line of research.
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Abstract
Naming requires recognition. Recognition requires
the ability to categorize objects and events. In-
fants under six months of age are capable of making
fine-grained discriminations of object boundaries and
three-dimensional space. At 8 to 10 months, a child’s
object categories are sufficiently stable and flexible to
be used as the foundation for labeling and referenc-
ing actions. What mechanisms in the brain underlie
the unfolding of these capacities? In this article, we
describe a neural network model which attempts to
simulate, in a biologically plausible way, the process
by which infants learn how to recognize objects and
words through exposure to visual stimuli and vocal
sounds.

1 Introduction
Humans, come to recognize an infinite variety of
natural and man-made objects and make use of
sounds to identify and categorize them. How do hu-
man beings arrive at this capacity? Different expla-
nations have been offered to explain the processes,
and those behind the learning of first words in par-
ticular.

Evidence has made clear that object recognition
and categorization in early infancy is much more so-
phisticated than was previously thought. By the time
children are 8 to 10 months old their object cate-
gories are sufficiently stable and flexible to be used
as the foundation for labeling and referencing ac-
tions. Increasing amounts of evidence point to the
growing capacity of infants at this stage to reliably
map arbitrary sounds onto meanings and this map-
ping process is crucial to the acquisition of language.

The word-learning mechanisms used at this early
phase of language learning could very well involve a
mapping of words onto the most perceptually inter-
esting objects in an infant’s environment (Pruden et
al., 2006). There are those that claim that early word
learning is not purely associative and that it is based
on a sensitivity to social intent (Tomasello, 1999),
through joint attention phenomena (Bloom, 2000).
Pruden et al. have demonstrated that 10-month-old
infants “are sensitive to social cues but cannot recruit
them for word learning” and therefore, at this age
infants presumably have to learn words on a simple
associative basis. It is not by chance, it seems, that
early vocabulary is made up of the objects infants
most frequently see (Gershkoff-Stowe and Smith,
2004). Early word-learning and object recognition
can thus be explained, according to a growing group
of researchers, by associational learning strategies
alone.

There are those such as Carey and Spelke that
postulate that there must necessarily be innate con-
straints that have the effect of making salient cer-
tain features as opposed to others, so as to narrow
the hypothesis space with respect to the kinds of
objects to be categorized first (Carey and Spelke,
1996). They reject the idea that object categorization
in infants could emerge spontaneously from the abil-
ity to grasp patterns of statistical regularities. Jean
Mandler presents evidence that the first similarity di-
mensions employed in categorization processes are
indeed extremely general (Mandler, 2004); in other
words, these dimensions single out wide domains of
objects, with further refinements coming only later.
Mandler claims, however, that the early salience of
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these extremely general features could have a dif-
ferent explanation other than nativism: for example,
that salience could emerge from physiological con-
straints.

Using a connectionist model with backpropaga-
tion, Rogers and McClelland have shown that quite
general dimensions of similarity can emerge with-
out appealing to either physiological or cognitive
constraints, simply as the result of a coherent co-
variation of features, that is, as an effect of mere sta-
tistical regularities (Rogers and McClelland, 2006).
What Rogers and McClelland say about the most
general features obviously apply also to more spe-
cific features which become salient later on. How-
ever, interesting as it is from a computational point
of view, this model is rather unrealistic as a simula-
tion of biological categorization processes.

Linda Smith, suggests that words can contribute
to category formation, in that they behave as features
which co-vary with other language-independent fea-
tures of objects (Smith, 1999). In general, her idea
is that the relevant features simply emerge from reg-
ularities in the input. Terry Regier, building upon
the proposal offered by Smith, has shown that word
learning might behave in analogy with what we have
said about categorization (Regier, 2005): certain
features of both objects and words (i.e., phonolog-
ical forms) can be made more salient than others,
simply as a consequence of regularities in objects,
words, and their co-variation. Regier’s training sets
however, are constituted by wholly “artificial phono-
logical or semantic features”, rather than by “nat-
ural features such as voicing or shape”. The posi-
tions mentioned above conflict with others, such as
that of Lila Gleitman and her colleagues, according
to which some innate constraints are needed in or-
der to learn words. It should be noted, however,
that even in Gleitman’s proposal the need for in-
nate constraints on syntax-semantic mapping mainly
concerns verbs; moreover, the possibility to appre-
hend a core set of concrete terms without the con-
tribution of any syntactic constraint is considered as
a precondition for verb acquisition itself (Gillette et
al., 1999).

This paper describes a neural network model
which attempts to simulate the process by which in-
fants learn how to recognize objects and words in
the first year of life through exposure to visual stim-

uli and vocal sounds. The approach here pursued is
in line with the view that a coherent covariation of
features is the major engine leading to object name
acquisition, the attempt made however, is to rely on
biological ways of capturing coherent covariation.
The pre-established design of the mature functions
of the organism is avoided, and the emergence of
the final function of each component of the system is
left to the plastic development of the neural circuits.
In the cortex, there is very little differentiation in the
computational capability that neural circuits will po-
tentially perform in the mature stage. The interac-
tion between environmental stimuli and some of the
basic mechanisms of development is what drives dif-
ferentiation in computational functions. This posi-
tion has large empirical support (Katz and Callaway,
1992; Löwel and Singer, 2002), and is compatible
with current knowledge on neural genetics (Quartz,
2003).

The model here described, can be considered an
implementation of the processes that emerge around
the 10 month of age period. It can also be used to
consider what happens in a hypothesized subsequent
period, in which the phenomenon of joint attention
provides the social cueing that leads to the increased
ability to focus on certain objects as opposed to oth-
ers.

2 The proposed model

First the mathematics common to the modules will
be described, then the model will be outlined. De-
tails of the visual and the auditory paths will be pro-
vided along with a description of the learning proce-
dures.

2.1 The mathematical abstraction of the
cortical maps

All the modules composing this model are imple-
mented as artificial cortical maps, adopting the LIS-
SOM (Laterally Interconnected Synergetically Self-
Organizing Map) architecture (Sirosh and Miikku-
lainen, 1997; Bednar, 2002). This architecture has
been chosen because of its reproduction of neural
plasticity, through the combination of Hebb’s princi-
ple and neural homeostasis, and because it is a good
compromise between a number of realistic features
and the simplicity necessary for building complex
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Figure 1: Overall scheme of the model.

models. The LISSOM is a two dimensional arrange-
ment of neurons, where each cell is not only con-
nected with the afferent input vector, but receives ex-
citatory and inhibitory inputs from several neighbor
neurons on the same map:

x
(k)
i = f

(

γA

1 + γN
~I · ~vrA,i

~arA,i · ~vrA,i

+ γE~erE,i · ~x
(k−1)
rE,i

− γH
~hrH,i · ~x

(k−1)
rH,i

)

,

(1)

where x
(k)
i is the activation of the neuron i at time

step k. All vectors are composed by a circular neigh-
borhood of given radius around the neuron i: vectors
~x (k−1) are activations of neurons on the same layer
at the previous time step. Vector ~vrA,i comprises all
neurons in the underlying layer, in a circular area
centered on the projection of i on this layer, with ra-
dius rA. Vectors ~arA,i, ~erE,i, and ~hrH,i are composed
by all connection strengths of, afferent, excitatory or
inhibitory neurons respectively, projecting to i, in-
side circular areas of radius rA, rE, rH. Vector ~I is
just a vector of 1’s of the same dimension of ~vrA,i.
The scalars γA, γE, and γH, are constants modulat-
ing the contribution of afferent, excitatory and in-
hibitory connections. The scalar γN controls the set-

ting of a push-pull effect in the afferent weights, al-
lowing inhibitory effect without negative weight val-
ues. Mathematically, it represents dividing the re-
sponse from the excitatory weights by the response
from a uniform disc of inhibitory weights over the
receptive field of neuron i. The map is character-
ized by the matrices A,E,H, which columns are all
vectors ~a, ~e, ~h for every neuron in the map. The
function f is a monotonic non-linear function lim-
ited between 0 and 1. The final activation value of
the neurons is assessed after settling time K.

All connection strengths to neuron i adapt by fol-
lowing the rules:

∆~arA,i =
~arA,i + ηAxi~vrA,i

‖~arA,i + ηAxi~vrA,i‖
− ~arA,i, (2)

∆~erE,i =
~erE,i + ηExi~xrE,i

‖~arE,i + ηExi~xrE,i‖
− ~erE,i, (3)

∆~hrH,i =
~hrH,i + ηAxi~xrH,i
∥

∥

∥

~hrH,i + ηAxi~xrH,i

∥

∥

∥

− ~hrH,i, (4)

where η{A,E,H} are the learning rates for afferent, ex-
citatory and inhibitory synaptic modifications. All
rules are based on the Hebbian law, with an ad-
ditional competitive factor, here implemented as a
normalization, that maintains constant the integra-
tion of all connection strengths to the same neu-
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layer size rA rE rH γA γE γH γN

LGN Lateral Geniculated Nucleus 120× 120 - - - - - - -
MGN Medial Geniculated Nucleus 32× 32 - - - - - - -
V1 Primary Visual Cortex 96× 96 8.5 1.5 7.0 1.5 1.0 1.0 0.0
V2 Secondary Visual Cortex 30× 30 7.5 8.5 3.5 50.0 3.2 2.5 0.7
VO Ventral Occipital 30× 30 24.5 4.0 8.0 1.8 1.0 1.0 0.0
A1 Auditory Primary Cortex 24× 24 3.5 2.5 5.5 5.0 5.0 6.7 0.8
LOC Lateral Occipital Complex 16× 16 6.5 1.5 3.5 1.2 1.0 1.5 0.0
STS Superior Temporal Sulcus 16× 16 3.5 2.5 2.5 2.0 1.6 2.6 0.0

Table 1: Legend of all modules, and main parameters of the cortical layers composing the model.

ron, and to the same type (afferent, excitatory or in-
hibitory). This is a computational account of the bi-
ological phenomena of homeostatic plasticity, that
induce neurons in the cortex to maintain an aver-
age firing rate by correcting their incoming synaptic
strengths.

2.2 The overall model
An outline of the modules that make up the model
is shown in Fig. 1. The component names and their
dimensions are in Tab. 1. All cortical layers are
implemented by LISSOM maps, where the afferent
connections ~v in (1) are either neurons of lower LIS-
SOM maps, or neurons in the thalamic nuclei MGN
and LGN. There are two main paths, one for the
visual process and another for the auditory chan-
nel. Both paths include thalamic modules, which are
not the object of this study and are therefore hard-
wired according to what is known about their func-
tions. The two higher cortical maps, LOC and STS,
will carry the best representation coded by models
on object visual features and word features. These
two representations are associated in an abstract type
map, called AAM (Abstract Associative Map). This
component is implemented using the SOM (Self Or-
ganized Map) (Kohonen, 1995) architecture, known
to provide non linear bidimensional ordering of in-
put vectors by unsupervised mechanisms. It is the
only component of the model that cannot be concep-
tually referred to as a precise cortical area. It is an
abstraction of processes that actually involve several
brain areas in a complex way, and as such departs
computationally from realistic cortical architecture.

2.3 The visual pathway
As shown in Fig. 1, the architecture here used in-
cludes hardwired extracortical maps with simple on-

center and off-center receptive fields. There are
three pairs of sheets in the LGN maps: one con-
nected to the intensity image plane, and the other
two connected to the medium and long wavelength
planes. In the color channels the internal excita-
tory portion of the receptive field is connected to the
channel of one color, and the surrounding inhibitory
part to the opposite color. The cortical process pro-
ceeds along two different streams: the achromatic
component is connected to the primary visual map
V1 followed by V2, the two spectral components are
processed by map VO, the color center, also called
hV4 or V8 (Brewer et al., 2005). The two streams
rejoin in the cortical map LOC, the area recently
suggested as being the first involved in object recog-
nition in humans (Malach et al., 1995; Kanwisher,
2003). Details of the visual path are in (Plebe and
Domenella, 2006).

2.4 The auditory pathway
The hardwired extracortical MGN component is
just a placeholder for the spectrogram represen-
tation of the sound pressure waves, which is ex-
tracted with tools of the Festival software (Black
and Taylor, 1997). It is justified by evidence
of the spectro-temporal process performed by the
cochlear-thalamic circuits (Escabi and Read, 2003).
The auditory primary cortex is simulated by a double
sheet of neurons, taking into account a double popu-
lation of cells found in this area (Atzori et al., 2001),
where the so-called LPC (Low-Probability Connec-
tions) is sensitive to the stationary component of
the sound signal and the HPC (High-Probability
Connections) population responds to transient inputs
mainly. The next map in the auditory path of the
model is STS, because the superior temporal sulcus
is believed to be the main brain area responsive to
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vocal sounds (Belin et al., 2002).

2.5 The Abstract Associative Map
The upper AAM map in the model reflects how the
system associates certain sound forms with the vi-
sual appearance of objects, and has the main pur-
pose of showing what has been achieved in the cor-
tical part of the model. It is trained using the outputs
of the STS and the LOC maps of the model. Af-
ter training, each neuron x in AAM is labeled, ac-
cording to different test conditions X . The labeling
function l(·) associates the neuron x with an entity
e, which can be an object o of the COIL set O, when
X ∈ {A, B} or a category c of the set C for the test
condition X ∈ {C, D}. The general form of the la-
beling function is:

l(X)(x) = arg max
e∈E

{
∣

∣

∣
W(e)

x

∣

∣

∣

}

(5)

where W
(e)
x is a set of sensorial stimuli related to

the element e ∈ E , such that their processing in
the model activate x as winner in the AMM map.
The set E can be O or C depending on X . The
neuron x elicited in the AAM map as the conse-
quence of presenting a visual stimulus vo of an ob-
ject o and a sound stimulus sc of a tagory c is given
by the function x = w(vo, sc) with the convention
that w(v, ε) computes the winning neuron in AAM
comparing only the LOC portion of the coding vec-
tor, and w(ε, s) only the STS portion. The function
b(o) : O → C associates an object o to its category.
Here four testing conditions are used:

• A object recognition by vision and audio
• B object recognition by vision only
• C category recognition by vision and audio
• D category recognition by audio only

corresponding to the following W sets in (5):

A :
{

vo : x = w(vo, sc(o))
}

(6)
B : {vo : x = w(vo, ε)} (7)
C : {vo : c = b(o) ∧ x = w(ε, sc)} (8)
D : {sc : x = w(ε, sc)} (9)

From the labeling functions the possibility of esti-
mating the accuracy of recognition immediately fol-
lows, simply by weighing the number of cases where

the category or the object has been classified as the
prevailing one in each neuron of the AAM SOM.

2.6 Exposure to stimuli
The visual path in the model develops in two stages.
Initially the inputs to the network are synthetic ran-
dom blobs, simulating pre-natal waves of sponta-
neous activity, known to be essential in the early de-
velopment of the visual system (Sengpiel and Kind,
2002). In the second stage, corresponding to the pe-
riod after eye opening, natural images are used. In
order to address one of the main problems in recog-
nition, the identifying of an object under different
views, the COIL-100 collection has been used (Na-
yar and Murase, 1995) where 72 different views are
available for each of the 100 objects. Using natural
images where there is only one main object is cleary
a simplification in the vision process of this model,
but it does not compromise the realism of the con-
ditions. It always could be assumed that the single
object analysis corresponds to a foval focusing as
consequence of a saccadic move, cued by any atten-
tive mechanism.

In the auditory path there are different stages
as well. Initially, the maps are exposed to ran-
dom patches in frequency-time domain, with
shorter duration for HPC and longer for LPC.
Subsequently, all the auditory maps are exposed
to the 7200 most common English words (from
http://www.bckelk.uklinux.net/menu.html)
with lengths between 3 and 10 characters. All words
are converted from text to waves using Festival
(Black and Taylor, 1997), with cepstral order 64 and
a unified time window of 2.3 seconds. Eventually,
the last stage of training simulates events when
an object is viewed and a word corresponding to
its basic category is heard simultaneously. The
100 objects have been grouped manually into
38 categories. Some categories, such as cup
or medicine count 5 exemplars in the object
collection, while others, such as telephone, have
only one exemplar.

3 Results
3.1 Developed functions in the cortical maps
At the end of development each map in the model
has evolved its own function. Different functions
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have emerged from identical computational archi-
tectures. The differences are due to the different po-
sitions of a maps in the modules hierarchy, to differ-
ent exposure to environmental stimuli, and different
structural parameters. The functions obtained in the
experiment are the following. In the visual path ori-
entation selectivity emerged in the model’s V1 map
as demonstrated in (Sirosh and Miikkulainen, 1997)
and (Plebe and Domenella, 2006). Orientation se-
lectivity is the main organization in primary visual
cortex, where the responsiveness of neurons to ori-
ented segments is arranged over repeated patterns of
gradually changing orientations, broken by few dis-
continuities (Vanduffel et al., 2002). Angle selec-
tivity emerged in the model’s V2 map. In the sec-
ondary visual cortex the main recently discovered
phenomena is the selectivity to angles (Ito and Ko-
matsu, 2004), especially in the range between 60
and 150 degrees. The essential features of color
constancy are reproduced in the model’s VO map,
which is the ability of neurons to respond to specific
hues, regardless of intensity. Color constancy is the
tendency of the color of a surface to appear more
constant that it is in reality. This property is help-
ful in object recognition, and develops sometime be-
tween two and four months of age. (Dannemiller,
1989). One of the main functions shown by the LOC
layer in the model is visual invariance, the prop-
erty of neurons to respond to peculiar object fea-
tures despite changes in the object’s appearance due
to different points of view. Invariance indeed is one
of the main requirements for an object-recognition
area, and is found in human LOC (Grill-Spector et
al., 2001; Kanwisher, 2003). Tonotopic mapping is
a known feature of the primary auditory cortex that
represents the dimensions of frequency and time se-
quences in a sound pattern (Verkindt et al., 1995).
In the model it is split into a sheet where neurons
have receptive fields that are more elongated along
the time dimension (LPC) and another where the
resulting receptive fields are more elongated along
the frequency dimension (HPC). The spectrotempo-
ral mapping obtained in STS is a population coding
of features, in frequency and time domains, repre-
sentative of the sound patterns heard during the de-
velopment phase. It therefore reflects the statistical
phonemic regularities in common spoken English,
extracted from the 7200 training samples.

category test A test B test C test D

medicine 0.906 0.803 1.0 1.0
fruit 1.0 0.759 1.0 1.0
boat 0.604 0.401 1.0 1.0
tomato 1.0 0.889 1.0 1.0
sauce 1.0 1.0 1.0 1.0
car 0.607 0.512 0.992 1.0
drink 0.826 0.812 1.0 1.0
soap 0.696 0.667 1.0 1.0
cup 1.0 0.919 1.0 0.0
piece 0.633 0.561 1.0 1.0
kitten 1.0 0.806 1.0 1.0
bird 1.0 1.0 1.0 1.0
truck 0.879 0.556 1.0 1.0
dummy 1.0 0.833 1.0 1.0
tool 0.722 0.375 1.0 1.0
pottery 1.0 1.0 1.0 1.0
jam 1.0 1.0 1.0 1.0
frog 1.0 0.806 1.0 1.0
cheese 0.958 0.949 1.0 1.0
bottle 0.856 0.839 1.0 1.0
hanger 1.0 0.694 1.0 1.0
sweets 1.0 0.701 1.0 1.0
tape 1.0 0.861 1.0 1.0
mug 0.944 0.889 1.0 1.0
spoon 1.0 0.680 1.0 1.0
cigarettes 0.972 0.729 0.972 1.0
ring 1.0 1.0 1.0 1.0
pig 1.0 0.778 1.0 1.0
dog 1.0 0.917 1.0 1.0
toast 1.0 0.868 1.0 1.0
plug 1.0 0.771 1.0 1.0
pot 1.0 0.681 1.0 1.0
telephone 1.0 0.306 1.0 1.0
pepper 1.0 0.951 1.0 1.0
chewinggum 0.954 0.509 1.0 1.0
chicken 1.0 0.944 1.0 1.0
jug 1.0 0.917 1.0 1.0
can 1.0 0.903 1.0 1.0

Table 2: Accuracy in recognition measured by labeling in the
AAM, for objects grouped by category.

3.2 Recognition and categorization in AAM

The accuracy of object and category recognition un-
der several conditions is shown in Table 2. All tests
clearly prove that the system has learned an efficient
capacity of object recognition and naming, with re-
spect to the small world of object and names used in
the experiment. Tests C and D demonstrate that the
recognition of categories by names is almost com-
plete, both when hearing a name or when seeing an
object and hearing its name. In tests A and B, the
recognition of individual objects is also very high.
In several cases, it can be seen that names also help
in the recognition of individual objects. One of the
clearest cases is the category tool (shown in Fig. 2),
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shape test A test B ∆

h-parallelepiped 0.921 0.712 0.209
round 1.0 0.904 0.096
composed 0.702 0.565 0.137
q-cylindrical 0.884 0.861 0.023
q-h-parallelepiped 0.734 0.513 0.221
cylindrical 0.926 0.907 0.019
cup-shaped 0.975 0.897 0.078
q-v-parallelepiped 0.869 0.754 0.115
body 1.0 0.869 0.131
conic 1.0 1.0 0.0
parallelepiped 0.722 0.510 0.212
q-parallelepiped 1.0 0.634 0.366

Table 3: Accuracy in recognition measured by labeling in the
AAM, for objects grouped by their visual shape, ∆ is the im-
provement gained with naming.

where the accuracy for each individual object dou-
bles when using names. It seems to be analogous to
the situation described in (Smith, 1999), where the
word contributes to the emergence of patterns of reg-
ularity. The 100% accuracy for the category, in this
case, is better accounted for as an emergent example
of synonymy, where coupling with the same word is
accepted, despite the difference in the output of the
visual process.

In table 3 accuracy results for individual objects
are listed, grouped by object shape. In this case cat-
egory accuracy cannot be computed, because shapes
cross category boundaries. It can be seen that the im-
provement ∆ is proportional to the salience in shape:
it is meaningless for common, obvious shapes, and
higher when object shape is uncommon. This result
is in agreement with findings in (Gershkoff-Stowe
and Smith, 2004).

4 Conclusions
The model here described attempts to simulate lexi-
cal acquisition from auditory and visual stimuli from
a brain processes point of view. It models these pro-
cesses in a biologically plausible way in that it does
not begin with a predetermined design of mature
functions, but instead allows final functions of the
components to emerge as a result of the plastic de-
velopment of neural circuits. It grounds this choice
and its design principles in what is known of the
cerebral cortex. In this model, the overall important
result achieved so far, is the emergence of naming
and recognition abilities exclusively through expo-
sure of the system to environmental stimuli, in terms

of activities similar to pre-natal spontaneous activi-
ties, and later to natural images and vocal sounds.
This result has interesting theoretical implications
for developmental psychologists and may provide
a useful computational tool for future investigations
on phenomena such as the effects of shape on object
recognition and naming.

In conclusion this model represents a first step in
simulating the interaction of the visual and the audi-
tory cortex in learning object recognition and nam-
ing, and being a model of high level complex cog-
nitive functions, it necessarily lacks several details
of the biological cortical circuits. It lacks biologi-
cal plausibility in the auditory path because of the
state of current knowledge of the processes going on
there. Future developments of the model will fore-
see the inclusion of backprojections between maps
in the hierarchy, trials on preliminary categorization
at the level of phonemes and syllables in the auditory
path, as well as exposure to images with multiple ob-
jects in the scene.
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constraints on the grammar of the human 
languages and the human mind (Pinker, 1984; 
Wexler, 1982). This report uses an iterative 
procedure to demonstrate that what appears to be 
near magical could result mostly from mechanisms 
that do not require the existence of innate 
principles of grammar, as they are based on 
children’s inherent capacities for perception, 
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showed that young children grammatical 
capabilities (before age three) could be the 
results of simple mechanisms and that 
complex linguistic mastery does not need 
to be available so early in the course of lan-
guage development. 

1 Introduction 

Between the ages of two and three, most children 
go through a syntactic burst. In other words, they 
progress from uttering one word at a time to 
constructing utterances with a mean length of more 
than three words, and frequently longer, and they 
do this without any negative evidence and with 
limited input data (Ritchie & Bhatia, 1999). This 
represents quite a mystery, which is often 
explained by postulating the existence of innate 

memory and association (Jusczyk & Hohne, 199

parisse

Abstract 

A testing procedure is proposed to re-
evaluate the syntactic burst in children over 
age two. The experimentation is based on 
the children’s capacities in perception, 
memory, association and cognition, and 
does not presuppose any specific innate 
grammatical capaciti

he CHILDES 

acquisition of complex ‘across the board’ gra
does not appear to be necessary to explain 
children’s behavior before age three or more. At 
that age, much more complex and structured input 
data will be available to children, thereby 
increasing their learning capacities and reducing 
the limitations on knowledge they may acquire. 

2 A testing procedure in three parts 

The testing procedure for grammatical 
development that will be implemented in this 
report is made of three parts.

The goal of the first and the second part is to de-
termine the basic elements that children use to con-
struct language. Two assumptions are made about 
young children’s perceptive and mnemonic ca

s: anything they have once produced, they can 
produce again; and, when their language exactly 
reproduces an adult’s, this can be explained as a 
simple copy of their input.  

Part 1: All single-word utterances produced by 
children are meaningful to them; they are directly 
derived from adults’ output. They are the basic 
elements that children use to build language. 

Part 2: Children’s multi-word utterances con-
taining only one word already produced in isola-

er produced in isolation (n
re also basic elements 

ak. They are also directly derived
 is facilit

ces are manipulated and understo
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dren as single blocks, just as isolated words are. 
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 account for the children’s multiword utter-
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f unfinished 
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e been carried out in order to answer this 
question. 

3 

 token (SD = 9,653) and 1,913 in type (SD 
= 

nt 
co

, 
L-

ed from the adult’s output (list L-adult 
ab

 do not include ut-
te

ey may also be called frozen forms. 
The goal of the third part is to check whether the 

basic elements identified in part 1 and 2 are suffi-
cient to

ces. 
Part 3: Children link utterances produced at 

parts 1 and 2 to produce multi-word utterances 
with more than one word already produced in iso-
lation (words produced in part 1). They do this us-
ing a simple concatenation mechanism and the fact 
that the utterances they create have a pertinent 
meaning pr

terances. 
Since the productions of children and their adult 

partners are easy to record, it is possible to test 
whether the testing procedure has sufficient gen-
erative power to account for all children’s produc-
tions. However, some points could make such a 
demonstration more difficult than it appears. First 
of all, the assumption made in part 1 is not always 
true, as it is quite possible for a child to reproduce 
any sequence of sounds while playing with lan-
guage. This uncertainty about part 1 is only impor-
tant in conjunction with part 2, as isolated words 
are the key used to parse the elements of part 2. To 
decide that a word has meaning in isolation for a 
child, it has been assumed that it must first have 
meaning in isolation for an adult. Words in the 
categories of determiner and auxiliary produced in 
isolation have been considered as not having 
meaning in isolation and have therefore been re-
moved from the elements gathered at part 1. 
Analysis of language data demonstrated that this 
assumption is quite reasonable, as the use of these 
words in isolation is often the result o

terances, with incomplete prosody.  
Measuring the generative power of the testing 

procedure implies evaluating the accuracy of the 
assumptions made in parts 1, 2 and 3. These as-
sumptions are quite easy to accept for very young 
children, at the time of the first multi-word utter-
ances, i.e. before age two. The question is: to what 
extent is this true and until what age? Two experi-
ments hav

Experiment 1 

The experiment 1 used a corpus extracted from 
the CHILDES database (MacWhinney, 2000). It is 

referred to as the Manchester corpus (Theakston, 
Lieven, Pine, & Rowland, 1999) and consists of 
recordings of 12 children from the age of 1;10 to 
2;9. Their mean length of utterance varies from 1.5 
to 2.9 words. Each child was seen 34 times and 
each recording lasted one hour. This results in a 
total production of 537,811 words in token and 
7,840 in type. For each child, the average is 44,817 
words in

372). 
The testing procedure was run in three steps in 

an iterative way. Each step from the experime
rresponds to one of the parts described above. 
Step 1: For each transcript, the child’s single-

word utterances are extracted and added to a cumu-
lative list of words uttered in isolation, referred to 
as L1. It is possible to measure at this point 
whether the words on L1 can be derived from the 
adult’s output. In order to do this, a cumulative list

adult, of all adult utterances is also maintained. 
Step 2: For each multi-word utterance in the 

transcript, the number of words previously uttered 
in isolation is computed using list L1. Multi-word 
utterances with only one word uttered in isolation 
are added to a list called L2. It is possible to meas-
ure at this point whether the utterances on L2 can 
be deriv

ove). 
Step 3: the remaining utterances (list L3), which 

contain more than one word previously uttered in 
isolation, are used to test the final step of the algo-
rithm. The test consists in trying to reconstruct 
these utterances using a catenation of the utter-
ances from lists L1 and L2 only. Two measure-
ments can be obtained: the percentage of utter-
ances on list L3 that can be fully reconstructed (re-
ferred to below as the ‘percentage of exact recon-
struction’) and the percentage of words in the ut-
terances on list L3 that contribute to a reconstruc-
tion (referred to below as the ‘percentage of recon-
struction covering’). For example, for the utterance 
‘The boy has gone to school’, if L1 and L2 contain 
‘the boy’ and ‘has gone’ but not ‘to school’, only 
‘the boy has gone’ can be reconstructed, thus lead-
ing to a percentage of reconstruction covering of 
66%. Thus, the percentage of exact reconstruction 
is the percentage of utterances with a 100% recon-
struction covering. The percentages of list L3 that 
are reconstructed or recovered

rances from L1 and L2 lists. 
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The testing procedure is iterative because it is 
performed in turn for each of the transcripts of the 
corpus. List L1, L2 and L-adult are cumulative, 
which means that the list obtained with transcript 1 
are used as a starting point for the analysis of tran-
script 2, and so on. This presupposes that children 
ca

ercentage of elements of L2 present in adult 

t does not evolve much, 
varying between 6 and 8.  

n reuse data they heard only once a long time 
after they heard it. 

In Step 1 it was found that the percentage of 
words on L1 present in adult speech has a mean 
value of 91% (SD = 0.03). Step 2 revealed that the 

speech has a mean value of 67% (SD = 0.05). 
These two results are stable across ages—even 
though lists L1, L2 and L-adult are growing con-
tinuously. After two transcripts, for all 12 children, 
lists L1 + L2 represent 11,979 words in token and 
L-adult contains 82,255 words in token. After 17 
transcripts, these totals are 89,479 and 688,802, 
respectively. After 34 transcripts, they total 
167,149 and 1,370,565. The ratio comparing the 
size of L1 + L2 and L-adul

p
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The results for Step 3 are presented in Figures 1 
and 2. Each point in the series corresponds to the 
nth iteration performed with the nth transcript. The 
mean value is the mean of the percentage for all 
children considered as individuals (reconstruction 
between a child’s corpus and his/her parents’ 
corpus only). The algorithm is also applied to all 
corpora: for each point in the series of recordings, 
the 12 files corresponding to 12 children are 
gathered into a single file used to run the nth 
iteration of the algorithm. Percentages for all 
corpora are shown with a bold line. The 
percentages are clearly higher for the aggregated 
corpora, although the number of unknown 
utterances (list L3) increased more than the 
number of known utterances (lists L1 and L2). 
After two transcripts, there are half as many 
elements in list L3 as in L1 + L2. But after 17 
transcripts, L3 is 42% larger than L1 + L2, and 
after 34 transcripts, it is 127% larger. As children 
grow older, there is a decrease in the scores for 
exact reconstruction and reconstruction covering. 
This decrease is greater in individuals than for the 
children as a group, which suggests a size effect. 

4 Experiment 2 

The second experiment uses the same corpus and 
reproduces the same tests but assumes that children 
have knowledge of the syntactic categories Noun 
and Verb. The conditions of step 2 and step 3 are 
more easily fulfilled if the children have a certain 
amount of syntactic class knowledge. As described 
by Maratsos and Chalkley (1980), it is possible for 
children to learn syntactic classes from the con-
texts in which words occur. However, knowledge 
of part of speech is unlikely in very young children 
on the basis of syntactic distribution. Semantic 
knowledge can also help to construct syntactic 
knowledge (Bloom, 1999) for classes such as 
common nouns, proper nouns and verbs, and per-
haps also adjectives and adverbs. To simulate the 
fact that children are able to construct the classes 
of common nouns, proper nouns and non-auxiliary 

verbs, it suffices to substitute every occurrence of 
common or proper nouns in the Manchester corpus 
by the symbol ‘noun’ and every occurrence of non-
auxiliary verbs by the symbol ‘verb’. This is easy 
to realize because the Manchester corpus has been 
fully tagged for part of speech, as described in the 
MOR section of the CHILDES manual 
(MacWhinney, 2000). The result is that list L1 now 
includes all nouns, all verbs plus all words occur-
ring in isolation, as in the first experiment. In list 
L2, in utterances that include a word from the 
categories Noun or Verb, this word is substituted 
by the symbol ‘noun’ or ‘verb’. These utterances 
now form rule-like productive patterns known as 
formulaic frames (Peters, 1995) or slot-and-frame 
structures (Lieven, Pine, & Baldwin, 1997) — for 
example, ‘my + NOUN’. 

When we reproduce the first experiment under 
these conditions, the new results obtained at steps 
2 and 3 should be better, in the sense that they 
should correspond more closely to the adult input, 
and should hold up longer on the age scale.  

The results for Step 1 and Step 2 are indeed bet-
ter than before. The percentage of utterances on L2 
present in adult speech has a mean value of 91% 
(SD = 0.02). 

The results for Step 3 are presented in Figure 3 
(for exact reconstruction) and Figure 4 (for recon-
struction covering). In each of these figures, two 
results are presented for the whole Manchester 
corpus: one assuming no category knowledge, and 
one assuming the knowledge of the three catego-
ries proper noun, common noun and verb. The per-
centages of reconstruction become markedly 
higher, as any combination that contains some of 
three categories proper noun, common noun and 
verb is known for all occurrences of words from 
these categories. The mean for exact reconstruction 
with ‘no category’ knowledge is 67% (SD = 5.7) 
and 87% (SD = 2.0) for reconstruction covering. 
These values increase to 83% (SD = 5.2) and 95% 
(SD = 2.6) for ‘noun and verb’ knowledge. 
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Figure 3: Percentage of utterances exactly reconstructed, depending on the degree of knowledge of noun 
and verb categories 
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Figure 4: Percentage of reconstruction covering in all utterances, depending on the degree of knowledge 
of noun and verb categories 
 
5 Experiment 3 

A limit of experiments 1 and 2 is that nothing indi-
cates how long the three-step mechanisms would 
remain efficient and appropriate. We supposed that 
these mechanisms would remain operational at an 
older age. This can be checked using other material 
from the CHILDES database with recordings 
spanning a longer period. The corpus chosen for 
the test is Brown’s (1973) Sarah corpus, which 
ranges from age 2;3 to age 5;1; with its 139 differ-

ent transcripts, it follows the development of the 
child’s language quite well and is well suited for 
the purposes of this study, which requires lengthy 
corpora. The mean length of utterance varies from 
1.47 to 4.85 words. This results in a total produc-
tion of 99,918 words in token and 3,990 in type. 

Step 1 found the percentage of words on L1 pre-
sent in adult speech to have a mean value of 77% 
(SD = 14.5). Step 2 revealed that the percentage of 
elements of L2 present in adult speech had a mean 
value of 38% (SD = 11.5). These two results are 
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stable across ages. With the assumption of a 
knowledge of the Noun and Verb categories, re-
sults for Step 1 and 2 are, respectively, 83% (SD = 
13.8) and 55% (SD = 16.6). 

The results for Step 3 are presented in Figure 5 
(for exact reconstruction) and Figure 6 (for recon-
struction covering). In each of these figures, two 
results are presented: one assuming no category 

knowledge and one assuming knowledge of the 
three categories Proper Noun, Common Noun and 
Verb. The mean for exact reconstruction with “no 
category” knowledge is 54% (SD = 17.6) and 84% 
(SD = 6.6) for reconstruction covering. These val-
ues increase 72% (SD = 11.9) and 93% (SD = 4.0) 
for “Noun and Verb” knowledge. 
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Figure 5: Percentage of utterances in the Sarah corpus exactly reconstructed, depending on the degree of 
knowledge of vocabulary and syntactic categories 
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Figure 6: Percentage of reconstruction covering in all utterances in the Sarah corpus, depending on the 
degree of knowledge of vocabulary and syntactic categories 
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The average percentages of reconstruction are 
lower for the Sarah corpus than for the Manchester 
corpus. Comparing Figures 3 and 6 and Figures 4 
and 7, one can see that there is a drop in the recon-
struction performances in the third year. The per-
centages for Sarah in her second year were as high 
as those for the Manchester corpus children. Part 
of this drop in performance may be attributed to 
the smaller corpus. Indeed, comparing Figures 1 
and 3 and Figures 2 and 4, it appears that the drop 
in performance that became visible when single 
child corpora were used was not in evidence when 
all the corpora were amalgamated into one big cor-
pus. It is also possible that the drop in performance 
found in the Sarah corpus reflects a progressive 
decrease in the systematic use of a simple concate-
nation procedure by the child. 

6 Discussion 

The testing procedure does not achieve a full 100% 
reconstruction in the test conditions described 
above, where the database consists of only 34 one-
hour recordings for each of the 12 children in the 
corpus. This corresponds globally to a pseudo-
corpus of 408 hours, which amounts to 8 to 10 
weeks of speech. With a larger corpus, the results 
would probably be better, as indicated by the 
increase in percentage of recovery when one 
moves from children in isolation to children as a 
group (see Figures 1 and 2). In addition, there are 
bound to be words that children utter for the first 
time in multi-word utterances even though they 
could have been produced as isolated utterances. 
The percentage of reconstruction, however, is still 
quite high, as was the case for results obtained 
using a similar methodology with Hungarian 
children (MacWhinney, 1975). With the 
assumption of a benefit from the use of the Noun 
and Verb categories, which somewhat circumvents 
the limited size of the corpus, the results are very 
high. 

A problem with the second experiment is that it 
is not sure that children can have a knowledge of 
part of speech (even very general part of speech 
such as noun and verb) with semantic knowledge 
only. However, the experiment 2 is interesting as it 
can be viewed as a way to extend artificially a lim-
ited corpus. Instead of saying that children have 
the knowledge of part of speech, we propose that 
noun and verb as so common in adult speech that 

an extended corpus will contain all basic utterances 
with a single content word and the appropriate 
grammatical context. In other words, list L2 will 
contain all the most basic syntactic constructions. 
Although this will not be the case in reality, it is 
indeed possible that a full corpus covering all ut-
terances produced by adults will contains a very 
large number of L2 structures. In this way, exper-
irment 2 provides a measure of the upper limit that 
can be reached by the crude mechanism presented 
in this article (L3 constructions). 

The testing procedure does not cover all lan-
guage acquisition processes before the age of three. 
Its rather crude mechanisms would, on their own, 
produce many aberrant utterances if they were not 
regulated by other mechanisms. The first of these 
regulatory mechanisms is semantics, as children 
produce language that, for them, makes sense. 
They will articulate thoughts with two or three 
elements that complement each other logically and 
thus create utterances interpretable by adults. 
Strange utterances may be produced on occasion 
but none will sound alien. Secondly, even though 
children sometimes join words or groups of words 
randomly when very young, they soon start to fol-
low a systematic order probably copied from 
adults’ utterances (Sinclair & Bronckart, 1972). To 
do this, they merely have to concentrate on the 
words or groups of words that they already master, 
having previously uttered them as single words. 
Indeed, form-function mapping is easier with sin-
gle-word utterances than with multi-word utter-
ances and this helps to manipulate single-word 
forms consciously. Thus, single-word utterances 
are better candidates than most to become the first 
elements in a combinatorial system and to undergo 
representational redescription (Karmiloff-Smith, 
1992). Their semantic values allow one to perform 
semantic combinations. By the age of two, associa-
tions words or frozen forms may be sufficient to 
allow children to produce and control language. 

The fact that children can learn to produce com-
plex speech patterns quickly without complex 
grammatical knowledge casts a whole new light on 
the problem of the acquisition of syntax. The test-
ing procedure relies heavily on semantics because 
it is assumed that what children understand, they 
will remember and manipulate. This does not nec-
essarily contradict all the theories that claim that 
there are some innate principles specific to gram-
mar acquisition (Pinker, 1984; Wexler, 1982). If 
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children acquire high-level grammatical rules at a 
later period of their development than is usually 
admitted in these theories, then the structure of 
their input—the couple ‘base phrase marker’ plus 
‘surface sentence’ (Wexler, 1982) — will be more 
complex. The more complex these structures, the 
lower the innate conditions on grammars. It would 
then be possible to progress from a simple system 
such as the association of frozen elements to a 
more complex one. Late grammatical acquisition is 
a very important notion as it goes a long way to-
wards explaining why there do not seem to be any 
neuronal structures specific to language or gram-
mar (Elman et al., 1996; Muller, 1996). Late 
grammatical acquisition is also highly compatible 
with constructivist proposals such as Tomasello’s 
(2003) and Goldberg’s (2006). 

It has often been said that children already mas-
ter syntax by the age of three, which is quite re-
markable considering the complexity of what they 
are acquiring. This report suggests that some sim-
ple generative mechanisms can explain the explo-
sive acquisition of an apparent mastery of language 
observed in young children. It demonstrates once 
again that, as already shown for other linguistic 
developmental features (Elman et al., 1996), an 
apparently complex output may be the product of a 
simple system. The need for large-scale corpora to 
better tackle the problem of language acquisition 
with improved tools is also highlighted here. 
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Abstract

Semantic networks have been used suc-
cessfully to explain access to the men-
tal lexicon. Topological analyses of these
networks have focused on acquisition and
generation. We extend this work to look
at models that distinguish semantic rela-
tions. We find the scale-free properties
of association networks are not found in
synonymy-homonymy networks, and that
this is consistent with studies of childhood
acquisition of these relationships. We fur-
ther find that distributional models of lan-
guage acquisition display similar topolog-
ical properties to these networks.

1 Introduction

Semantic networks have played an important role in
the modelling of the organisation of lexical knowl-
edge. In these networks, words are connected by
graph edges based on their semantic relations. In re-
cent years, researchers have found that many seman-
tic networks aresmall-world, scale-freenetworks,
having a high degree of structure and a short distance
between nodes (Steyvers and Tenenbaum, 2005).

Early models were taxonomic and explained some
aspects of human reasoning (Collins and Quillian,
1969) (and are still used in artificial reasoning sys-
tems), but were replaced by models that focused on
general graph structures (e.g. Collins and Loftus,
1975). These better modelled many observed phe-
nomena but explained only the searching of seman-

tic space, not its generation or properties that exist
at a whole-network level.

Topological analyses, looking at the statistical
regularities of whole semantic networks, can be
used to model phenomena not easily explained from
the smaller scale data found in human experiments.
These networks are typically formed from corpora,
expert compiled lexical resources, or human word-
association data.

Existing work has focused language acquisition
(Steyvers and Tenenbaum, 2005) and generation
(Cancho and Solé, 2001). These models use the gen-
eral notion of semanticassociationwhich subsumes
all specific semantic relations, e.g. synonymy.

There is evidence that there are distinct cogni-
tive processes for different semantic relations (e.g.
Casenhiser, 2005). We perform a graph analysis
of synonymy, nearness of meaning, andhomonymy,
shared lexicalisation.

We find that synonymy and homonymy produce
graphs that are topologically distinct from those pro-
duced using association. They still produce small-
world networks with short path lengths but lack
scale-free properties. Adding edges of different se-
mantic relations, in particular hyponymy, produces
graphs more similar to the association networks. We
argue our analyses consistent with other semantic
network models where nodes of a common type
share edges of different types (e.g. Collins and Lof-
tus, 1975).

We further analyse the distributional model of lan-
guage acquisition. We find that it does not well
explain whole-language acquisition, but provides a
model for synonym and homonym acquisition.
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2 Graph Theory

Our overview of graph theory follows Watts (1999).
A graph consists of a set ofn vertices(nodes) and
a set ofedges, or arcs, which join pairs of ver-
tices. Edges areundirectedand arcs aredirected.
Edges and arcs can beweighted or unweighted,
with weights indicating the relative strength or im-
portance of the edges. We will only consider un-
weighted, undirected networks. Although there is
evidence that semantic relations are both directed
(Tversky, 1977) and weighted (Collins and Loftus,
1975), we do not have access to this information in
a consistent and meaningful format for all our re-
sources.

Two vertices connected by an edge are called
neighbours. The degreek of a vertex is the count
of it neighbours. From this we measure the average
degree〈k〉 for the graph and the degree distribution
P(k) for all values ofk. The degree distribution is
the probability of a vertex having a degreek.

TheneighbourhoodΓv of a vertexv is the set of all
neighbours ofv not includingv. The neighbourhood
ΓS of a subgraphS is the set of all neighbours ofS,
not including the members ofS.

The distancebetween any two vertices is the
shortest path length, or the minimum number of
edges that must be traversed, to reach the first from
the second. Thecharacteristic path lengthL is the
average distance between vertices.1 The diameter
D of a graph is the maximum shortest path length
between any two vertices. At mostD steps are re-
quired to reach any vertex from any other vertex but,
on average, onlyL are required.

For very large graphs, calculating the values forL
andD is computationally difficult. We instead sam-
ple n′ � n nodes and find the mean values ofL and
D across the samples. The diameter produced will
always be less than or equal to the true diameter. We
foundn′ = 100to be most efficient.

It is not a requirement that every vertex be reach-
able from every other vertex and in these cases both
L andD will be infinite. In these cases we analyse
the largest connected subgraph.

1Here we follow Steyvers and Tenenbaum (2005) as it is
more commonly used in the cognitive science literature. Watts
(1999) defines the characteristic path length as themedianof
the means of shortest path lengths for each vertex.

2.1 Small-world Networks

Traditional network models assume that networks
are either completely random or completely regu-
lar. Many natural networks are somewhere between
these two extremes. Thesesmall-worldnetworks a
have the high degree of clustering of a regularlattice
and the short average path length of a random net-
work (Watts and Strogatz, 1998). The clustering is
indicative of organisation, and the short paths make
for easier navigation.

The clustering coefficientCv is used to measure
the degree of clustering around a vertexv:

Cv =
|E(Γv)|(

kv
2

)
where|E(Γv)| is the number of edges in the neigh-
bourhoodΓv and

(
kv
2

)
is the total number of possible

edges inΓv. The clustering coefficientC of a graph
is the average over the coefficients of all the vertices.

2.2 The Scale of Networks

Amaral et al. (2000) describe three classes of small
world networks based on their degree distributions:

Scale-free networksare characterised by their
degree distribution decaying as a power law, having
a small number of vertices with many links (hubs)
and many vertices with few links. Networks in this
class include the internet (Faloutsos et al., 1999)
and semantic networks (Steyvers and Tenenbaum,
2005).

Broad-scale networksare characterised by their
degree distribution decaying as a power law fol-
lowed by a sharp cut-off. This class includes col-
laborative networks (Watts and Strogatz, 1998).

Single-scale networksare characterised by fast
decaying degree distribution, such exponential or
Gaussian, in which hubs are scarce or nonexistent.
This class includes power grids (Watts and Strogatz,
1998) and airport traffic (Amaral et al., 2000).

Amaral et al. (2000) model these differences us-
ing a constrained preferential attachment model,
where new nodes prefer to attach to highly con-
nected nodes. Scale-free networks result when there
are no constraints. Broad-scale networks are pro-
duced when ageing and cost-to-add-link constraints
are added, making it more difficult to produce very
high degree hubs. Single-scale networks occur when
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these constraints are strengthened. This is one of
several models for scale-free network generation,
and different models will result in different internal
structures and properties (Keller, 2005).

3 Semantics Networks

Semantic networks represent the structure of hu-
man knowledge through the connections of words.
Collins and Quillian (1969) proposed a taxonomic
representation of knowledge, where words are con-
nected by hyponym relations, like in the WordNet
noun hierarchy (Fellbaum, 1998). While this struc-
ture predicted human reaction times for verifying
facts it allows only a limited portion of knowledge
to be expressed. Later models represented knowl-
edge as semi-structured networks, and focused on
explaining performance in memory retrieval tasks.
One such model isspreading-activation, in which
the degree to which a concept is able to be recalled is
related to its similarity both to other concepts in gen-
eral and to some particularprimeor primes (Collins
and Loftus, 1975). In this way, if one is asked to
name ared vehicle, fire truck is more likely re-
sponse thancar: while both are strongly associated
with vehicle, fire truck is more strongly associated
with red than iscar.

More recently, graph theoretic approaches have
examined the topologies of various semantic net-
works. Cancho and Solé (2001) examine graphs of
English modelled from the British National Corpus.
Since co-occurrence is non-trivial — words in a sen-
tence must share some semantic content for the sen-
tence to be coherent — edges were formed between
adjacent words, with punctuation skipped. Two
graphs were formed: one from all co-occurrences
and the other from only those co-occurrences with
a frequency greater than chance. Both models pro-
duced scale-free networks. They find this model
compelling for word choice during speech, not-
ing function words are the most highly connected.
These give structure without conveying significant
meaning, so can be omitted without rendering a
sentence incoherent, but when unavailable render
speech non-fluent. This is consistent with work by
Albert et al. (2000) showing that scale-free networks
are tolerant to random deletion but sensitive to tar-
geted removal of highly connected vertices.

Sigman and Cecchi (2002) investigate the struc-
ture of WordNet to study the effects of nounal pol-
ysemy on graph navigation. Beginning with synsets
and the hyponym tree, they find adding polysemy
both reduces the characteristic path length and in-
creases the clustering coefficient, producing a small-
world network. They propose, citing word priming
experiments as evidence, that these changes in struc-
ture give polysemy a role in metaphoric thinking and
generalisation by increasing the navigability of se-
mantic networks.

Steyvers and Tenenbaum (2005) examine the
growth of semantic networks using graphs formed
from several resources: the free association index
collected by Nelson et al. (1998), Wordnet and
the 1911 Roget’s thesaurus. All these produced
scale-free networks, and, using an age of acquisi-
tion and frequency weighted preferential attache-
ment model, show that this corresponds to age-of-
acquisition norms for a small set of words. This is
compared to networks produced by Latent Semantic
Analysis (LSA, Landauer and Dumais, 1997), and
conclude thatLSA is an inadequate model for lan-
guage growth as it does not produce the same scale-
free networks as their association models.

3.1 Synonymy and Homonymy

While there have been many studies using human
subjects on the acquisition of particular semantic re-
lations, there have been no topological studies differ-
entiating these from the general notion of semantic
association. This is interesting as psycholinguistic
studies have shown that semantic relationships are
distinguishable (e.g. Casenhiser, 2005). Here we
considersynonymyandhomonymy.

There are very few cases of true synonymy, where
two words are substitutable in all contexts. Near-
synonymy, where two words share some close com-
mon meaning, is more common. Sets of synonyms
can be grouped together intosynsets, representing a
common idea.

Homonymy occurs when a word has multiple
meanings. Formally, homonymy is occurs when
words do not share an etymological root (in lin-
guistics) or when the distinction between meanings
is coarse (in cognitive science). When the words
share a root or meanings are close, the relationship
is called polysemy. This distinction is significant
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in language acquisition, but as yet little research
has been performed on the learning of polysemes
(Casenhiser, 2005). It is also significant for Natural
Language Processing. The effect of disambiguating
homonyms is markedly different from polysemes in
Information Retrieval (Stokoe, 2005).

We do not have access to these distinctions, as
they are not available in most resources, nor are
there techniques to automatically acquire these dis-
tinctions (Kilgarriff and Yallop, 2000). For simplic-
ity, will conflate the categories under homonymy.

There have been several studies into synonymy
and homonymy acquisition in children, and these
have shown that it lags behind vocabulary growth
(Doherty and Perner, 1998; Garnham et al., 2000).
A child will associate bothrabbit andbunny with
the same concept, but before the age of four, most
children have difficulty in choosing the wordbunny
if they have already been presented with the word
rabbit. Similarly, a young child asked to point to two
pictures that have the same name but mean different
things will have difficulty, despite knowing each of
the things independently.

Despite this improvement with age, there are
tendencies for language to avoid synonyms and
homonyms as a more general principle of economy
(Casenhiser, 2005). This is balanced by the utility of
ambiguous relations for mental navigation (Sigman
and Cecchi, 2002) which goes some way to explain-
ing why they still play such a large role in language.

4 The Topology of Synonymy and
Homonymy Relations

For each of our resources we form a graph based on
the relations between lexical items. This differs to
the earlier work of Sigman and Cecchi (2002), who
use synsets as vertices, and Steyvers and Tenenbaum
(2005) who use both lexical items and synsets..

This is motivated largely by our automatic ac-
quisition techniques, and also by human studies, in
which we can only directly access relationships be-
tween words. This also allows us to directly com-
pare resources where we have information about
synsets to those without. We distinguish parts of
speech as disambiguation across them is relatively
easy psychologically (Casenhiser, 2005) and com-
putationally (e.g. Ratnaparkhi, 1996).

4.1 Lexical Semantic Resources

A typical resource for providing this information
are manually constructed lexical semantic resources.
We will consider three: Roget’s, WordNet and Moby

Roget’s thesaurus is a common language the-
saurus providing a hierarchy of synsets. Synsets
with the same general or overlapping meaning and
part of speech are collected into paragraphs. The
parts of speech covered are nouns, verbs, adjectives,
adverbs, prepositions, phrases, pronouns, interjec-
tions, conjunctions, and interrogatives. Paragraphs
with similar meaning are collated by part of speech
into labeled categories. Categories are then collected
into classes using a three-tiered hierarchy, with the
most general concept at the top. Where a word has
several senses, it will appear in several synsets. Sev-
eral editions of Roget’s have been released repre-
senting the change in language since the first edi-
tion in 1852. The last freely available edition is the
1911, which uses outdated vocabulary, but the global
topology has not changed with more recent editions
(Old, 2003). As our analysis is not concerned with
the specifics of the vocabulary, this is the edition we
will use. It consists of a vocabulary of 29,460 nouns,
15,173 verbs, 13,052 adjectives and 3,005 adverbs.

WordNet (Fellbaum, 1998) is an electronic lex-
ical database. Like Roget’s, it main unit of or-
ganisation is the synset, and a word with several
senses will appear in several synsets. These are di-
vided into four parts of speech: nouns, verbs, ad-
jectives and adverbs. Synsets are connected by se-
mantic relationships, e.g antonymy, hyponymy and
meronym. WordNet 2.1 provides a vocabulary of
117,097 nouns, 11,488 verbs, 22,141 adjectives and
4,601 adverbs.

The Moby thesaurus provides synonymy lists
for over 30,000 words, with a total vocabulary of
322,263 words. These lists are not distinguished by
part of speech. A separate file is supplied containing
part of speech mappings for words in the vocabu-
lary. We extracted separate synonym lists for nouns,
verbs, adjectives and adverbs using this list com-
bined with WordNet part of speech information.2

This produces a vocabulary of 42,821 nouns, 11,957
verbs, 16,825 adjectives and 3,572 adverbs.

Table 1 presents the statistics for the largest con-

2http://aspell.sourceforge.net/wl/
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Roget’s WordNet Moby
Noun Verb Adj Adv Noun Verb Adj Adv Noun Verb Adj Adv

n 15,517 8,060 6,327 626 11,746 6,506 4,786 62 42,819 11,934 16,784 3501
〈k〉 8.97 8.46 7.40 7.17 4.58 6.34 5.16 4.97 34.65 51.98 39.26 16.07
L 6.5 6.0 6.4 10.5 9.8 6.0 9.5 5.6 3.7 3.1 3.4 3.7
D 21.4 17 17 31 27 15.3 26.4 14 9.6 9.8 9.3 9.8
C 0.74 0.68 0.69 0.77 0.63 0.62 0.66 0.57 0.60 0.49 0.57 0.55
Lr 4.7 4.5 4.6 3.5 6.3 5.0 5.9 3.3 3.4 2.8 2.9 3.2
Dr 8.5 8.4 9.0 7 13.3 10.1 11.8 8 5.5 5 5 6
Cr 0.00051 0.0011 0.0012 0.00900.00036 0.00099 0.00094 0.0280.00081 0.0043 0.0023 0.0047

Table 1: Topological statistics for nouns, verbs, adjectives and adverbs for our three gold standard resources

 1e-04

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000

P(
k)

k

Roget’s
WordNet

Moby
Random

Figure 1: Degree distributions for nouns

nected subgraph for the four parts of speech con-
sidered, along with statistics for random graphs of
equivalent size and average degree (subscriptr). In
all cases the clustering coefficient is significantly
higher than that for the random graph. While the
characteristic path length and diameter are larger
than for the random graphs, they are still short in
comparison to an equivalent latice. This, combined
with the high clustering coefficient, indicates that
they are producing small-world networks. The di-
ameter is larger still than for the random graphs. To-
gether these indicate a more lattice like structure,
which is consistent with the intuition that dissimi-
lar words are unlikely to share similar words. This
is independent of part of speech.

Figure 1 shows the degree distributions for nouns,
and for a random graph plotted on log-log axes.
Other parts of speech produce equivalent graphs.
These clearly show that we have not produced scale-
free networks as we are not seeing straight line
power law distributions. Instead we are seeing what
is closer to single- or broad-scale distributions.

The differences in the graphs is explained by the

WordNet Roget’s
Hyp Synset Para Cat

n 11,746 118,264 15,517 27,989 29,431
〈k〉 4.58 6.61 8.97 26.84 140.36
L 9.8 6.3 6.5 4.3 2.9
D 27 16.4 21.4 12.6 7
C 0.63 0.74 0.74 0.85 0.86

Table 2: Effect of adding hyponym relations

granularity of the synonymy relations presented, as
indicated by the characteristic path length. WordNet
has fine grained synsets and the smallest characteris-
tic path length, while Moby has coarse grained syn-
onyms and the largest characteristic path length.

4.2 Synonymy-Like Relations

Having seen that synonymy and homonymy alone
do not produce scale-free networks, we investigate
the synonymy-like relations ofhyponymyand topic
relatedness. Hyponymy is the IS-A class subsump-
tion relationship and occurs between noun synsets in
WordNet. Topic relatedness occurs in the grouping
of synsets in Roget’s in paragraphs and categories.

Table 2 compares adding hyponym edges to the
graph of WordNet nouns and increasing the gran-
ularity of Roget’s synsets using edges between all
words in a paragraph or category. Adding hyponymy
relations increases the connectivity of the graph sig-
nificantly and there are no longer any disconnected
subgraphs. At the same time the diameter is nearly
halved and characteristic path length reduce one
third, but average degree only increases by one third.
To achieving the same reduction in path length and
diameter by the granularity of Roget’s requires the
average degree to increase by nearly three times.

Figure 2 shows the degree distributions when hy-
ponyms are added to WordNet nouns and the granu-
larity of Roget’s is increased. Roget’s category level
graph is omitted for clarity. We can see that the orig-
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Figure 2: Degree distributions adding hyponym re-
lations to nouns

inally broad-scale structure of the Roget’s distribu-
tion is tending to have a more gaussian distribution.
The addition of hyponyms produces a power law dis-
tribution fork > 10of P(k) ≈ k−1.7.

Additional constraints on attachment reduce the
ability of networks to be scale-free (Amaral et
al., 2000). The difference between synonymy-
homonymy networks and association networks can
be explained by this. Steyvers and Tenenbaum
(2005) propose a plausible attachment model for
their association networks which has no additional
constraint function. If we use the tendency for lan-
guages to avoid lexical ambiguity from synonymy
and homonymy as a constraint to the production of
edges we will produce broad-scale networks rather
than scale-free networks.

As hyponymy is primarily semantic and does not
produce lexical ambiguity, adding hyponym edges
weakens the constraint on ambiguity, producing a
scale-free network. Generalising synonymy to in-
clude topicality weakens the constraints, but at the
same time reduces preference in attachment. The
results of this is the gaussian-like distribution with
very few low degree nodes. The difference between
this thesaurus based topicality and that found in hu-
man association data is that human association data
only includes the most similar words.

5 Distributional Similarity Networks

Lexical semantic resources can be automatically ex-
tracted using distributional similarity. Here words
are projected into a vector space using the contexts
in which they appear as axes. Contexts can be as
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Figure 3: Degree distributions of Jaccard

wide as document (Landauer and Dumais, 1997)
or close as grammatical dependencies (Grefenstette,
1994). The distance between words in this space ap-
proximates the similarity measured by synonymy.

We use the noun similarities produced by Gor-
man and Curran (2006) using theweighted Jac-
card measure and thet-test weight and grammat-
ical relations extracted from their LARGE corpus,
the method found to perform best against their gold-
standard evaluation. Only words with a corpus fre-
quency higher than 100 are included. This method
is comparable to that used inLSA, although using
grammatical relations as context produces similar-
ity much more like synonymy than those taken at a
document level (Kilgarriff and Yallop, 2000).

Distributional similarity produces a list of vocab-
ulary words, their similar neighbours and the sim-
ilarity to the neighbours. These lists approximate
synonymy by measuring substitutability in context,
and do not only find synonyms as near neighbours
as both antonyms and hyponyms are frequently sub-
stitutable in a grammatical context (Weeds, 2003).
From this we generate graphs by taking either thek
nearest neighbours to each word (k-NN), or by us-
ing a threshold. To produce a threshold we take the
mean similarity of thekth neighbour of all words (*k-
NN). We compare both these methods.

Figure 3 compares the degree distributions of
these. Usingk-NN produces a degree distribution
that is close to a Gaussian, where as *k-NN pro-
duces a distribution much more like that of our ex-
pert compiled resources. This is unsurprising when
the distribution of distributional distances is consid-
ered. Some words will have many near neighbours,
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Roget’s WordNet Hyp k-NN *k-NN

n 15,517 11,746 118,264 35,592 19,642
〈k〉 8.97 4.58 6.61 8.26 13.86
L 6.5 9.8 6.3 6.2 6.4
D 21.4 27 16.4 12 25.6
C 0.74 0.63 0.74 0.18 0.37

Table 3: Comparing nouns in expert and distribu-
tional resources

and other few. In the first case,k-NN will fail to in-
clude some near neighbours, and in the second will
include some distant neighbours that are note se-
mantically related. This result is consistent between
k = 5 and 50. Introduction of random edges from
the noise of distant neighbours reduces the diameter
and missing near neighbours reduces the clustering
coefficient (Table 3).

In Table 3 we also compare these to noun syn-
onymy in Roget’s, and to synonymy and hyponymy
in WordNet. Distributional similarity (*k-NN) pro-
duces a network with similar degree, characteristic
path length and diameter. The clustering coefficient
is much less than that from expert resources, is still
several orders of magnitude larger than an equivalent
random graph (Table 1).

Figure 4 compares a distributional network to net-
works WordNet and Moby. We can see the same
broad-scale in the distributional and synonym net-
works, and a distinct difference with the scale-free
WordNet hyponym distribution.

The distributional similarity distribution is sim-
ilar to that found in networks formed fromLSA

by Steyvers and Tenenbaum (2005). Steyvers and
Tenenbaum hypothesise that the distributions pro-
duced byLSA might be due more to frequency dis-
tribution effects that correct language modelling.

In light of our analysis of synonymy relations,
we propose a new explanation. Given that: dis-
tributional similarity has been shown to approx-
imate the semantic similarity in synonymy rela-
tions found in thesaurus type resources (Curran,
2004); distributional similarity produces networks
with similar statistical properties to those formed by
synonym and homonymy relations; and, the syn-
onym and homonymy relations found in thesauri
produce networks with different statistical proper-
ties to those found in the association networks anal-
ysed by Steyvers and Tenenbaum; it can be plausibly
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Figure 4: Degree distributions for nouns

hypothesised that distributional techniques are mod-
eling the acquisition of synonyms and homonyms,
rather than all semantic relationships.

This is given further credence by experimental
findings that acquisition of homonyms occurs at a
different rate to the acquisition of vocabulary. This
indicates that there are different mechanisms for
learning the meaning of lexical items and learning
to relate the meanings of lexical items. Any whole-
language model would then be composed of a com-
mon set of lexical items related by disparate rela-
tions, such as synonymy, homonymy and hyponymy.
This type of model is predicted by spreading activa-
tion (Collins and Loftus, 1975).

It is unfortunate that there is a lack of data
with which to validate this model, or our constraint
model, empirically. This should not prevent further
analysis of network models that distiguish semantic
relations, so long as this limitation is understood.

6 Conclusion

Semantic networks have been used successfully to
explain access to the mental lexicon. We use both
expert-compiled and automatically extracted seman-
tic resources, we compare the networks formed from
semantic association and synonymy and homonymy.
These relations produce small-world networks, but
do not share the same scale-free properties as for se-
mantic association.

We find that this difference can be explained using
a constrained attachment model informed by child-
hood language acquisition experiments. It is also
predicted by spreading-activation theories of seman-
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tic access where a common set of lexical items is
connected by a disparate set of relations. We further
find that distributional models of language acquisi-
tion produce relations that approximate synonymy
and networks topologically similar to synonymy-
homonymy networks.
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Abstract

We compare three recent proposals adding
a topology to OT: McCarthy’sPersistent
OT, Smolensky’s ICS and Bı́ró’s SA-OT. To
test their learnability, constraint rankings are
learnt from SA-OT’s output. The errors in
the output, being more than mere noise, fol-
low from the topology. Thus, the learner has
to reconstructs hercompetencehaving ac-
cess only to the teacher’sperformance.

1 Introduction: topology and OT

The year 2006 witnessed the publication of sev-
eral novel approaches within Optimality Theory
(OT) (Prince and Smolensky, 1993 aka 2004) intro-
ducing some sort ofneighbourhood structure(topol-
ogy, geometry) on the candidate set. This idea has
been already present since the beginnings of OT but
its potentialities had never been really developed un-
til recently. The present paper examines the learn-
ability of such an enriched OT architecture.

Traditional Optimality Theory’s GEN function
generates a hugecandidate setfrom the underlying
form (UF) and then EVAL finds the candidatew that
optimises theHarmony functionH(w) on thisunre-
strictedcandidate set.H(w) is derived from the vi-
olation marks assigned by a ranked set of constraints
to w. The surface form SF corresponding to UF is
the (globally) optimal element ofGEN(UF):

SF(UF) = argoptw∈GEN(UF)H(w) (1)

Yet, already Prince and Smolensky
(1993/2004:94-95) mention the possibility of

restricting GEN, creating an alternative closer to
standard derivations. Based the iterative syllabifi-
cation in Imdlawn Tashlhiyt Berber, they suggest:
“some general procedure (Do-α) is allowed to
make a certain single modification to the input,
producing the candidate set of all possible outcomes
of such modification.” The outputs of Do-α are
“neighbours” of its input, so Do-α defines atopol-
ogy. Subsequently, EVAL finds the most harmonic
element of thisrestrictedcandidate set, which then
serves again as the input of Do-α. Repeating this
procedure again and again produces a sequence of
neighbouring candidates with increasing Harmony,
which converges toward the surface form.

Calling Do-α a restricted GEN, as opposed to the
freedom of analysis offered by the traditional GEN,
McCarthy (2006) develops this idea into thePer-
sistent OT architecture(aka. harmonic serialism,
cf. references in McCarthy 2006). He demonstrates
on concrete examples how repeating the GEN→
EVAL → GEN → EVAL →... cycle until reach-
ing somelocal optimum will produce a more restric-
tive language typology that conforms rather well to
observation. Importantly for our topic, learnabil-
ity, he claims that Persistent OT “can impose stricter
ranking requirements than classic OT because of the
need to ensure harmonic improvement in the inter-
mediate forms as well as the ultimate output”.

In two very different approaches, both based on
the traditional concept of GEN, Smolensky’sInte-
grated Connectionist/Symbolic(ICS) Cognitive Ar-
chitecture (Smolensky and Legendre, 2006) and
the strictly symbolicSimulated Annealing for Op-
timality Theory Algorithm(SA-OT) proposed by
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Bı́ró (2005a; 2005b; 2006a), usesimulated anneal-
ing to find the best candidatew in equation (1).
Simulated annealing performs a random walk on the
search space, moving to a similar (neighbouring) el-
ement in each step. Hence, it requires a topology on
the search space. In SA-OT this topology is directly
introduced on the candidate set, based on a linguis-
tically motivated symbolic representation. At the
same time, connectionist OT makes small changes in
the state of the network; so, to the extent that states
correspond to candidates, we obtain again a neigh-
bourhood relation on the candidate set.

Whoever introduces a neighbourhood structure
(or a restricted GEN) also introduceslocal optima:
candidates more harmonic than all their neighbours,
independently of whether they are globally opti-
mal. Importantly, each proposal is prone to be
stuck in local optima. McCarthy’s model repeats the
generation-evaluation cycle as long as the first local
optimum is not reached; whereas simulated anneal-
ing is a heuristic optimisation algorithm that some-
times fails to find the global optimum and returns
another local optimum. How do these proposals in-
fluence the OT “philosophy”?

For McCarthy, the first local optimum reached
from UF is the grammatical form (the surface form
predicted by the linguistic competence model), so
he rejects equation (1). Yet, Smolensky and Bı́ró
keep the basic idea of OT as in (1), and Bı́ró (2005b;
2006a) shows the errors made by simulated anneal-
ing can mimic performance errors (such as stress
shift in fast speech). So mainstream Optimality
Theory remains the model of linguistic competence,
whereas its cognitively motivated, though imperfect
implementation with simulated annealing becomes
a model of linguistic performance. Or, as Bı́ró puts
it, a model of the dynamic language production pro-
cess in the brain. (See also Smolensky and Legen-
dre (2006), vol. 1, pp. 227-229.)

In the present paper we test the learnability of an
OT grammar enriched with a neighbourhood struc-
ture. To be more precise, we focus on the latter ap-
proaches: how can a learner acquire a grammar, that
is, the constraint hierarchy defining the Harmony
functionH(w), if the learning data are produced by
a performance model prone to make errors? What is
the consequence of seeing errors not simply as mere
noise, but as the result of a specific mechanism?

2 Walking in the candidate set

First, we introduce the production algorithms (sec-
tion 2) and a toy grammar (section 3), before we can
run the learning algorithms (section 4).

Equation (1) defines Optimality Theory as an op-
timisation problem, but finding the optimal candi-
date can be NP-hard (Eisner, 1997). Past solutions—
chart parsing (Tesar and Smolensky, 2000; Kuhn,
2000) and finite state OT (see Biro (2006b) for an
overview)—require conditions met by several, but
not by all linguistic models. They are also “too per-
fect”, not leaving room for performance errors and
computationally too demanding, hence cognitively
not plausible. Alternative approaches are heuris-
tic optimization techniques: genetic algorithms and
simulated annealing.

These heuristic algorithms do not always find the
(globally) optimal candidate, but are simple and still
efficient because they exploit the structure of the
candidate set. This structure is realized by aneigh-
bourhood relation: for each candidatew there exists
a setNeighbours(w), the set of the neighbours
of w. It is often supposed that neighbours differ
only minimally, whatever this means. The neigh-
bourhood relation is usually symmetric, irreflexive
and results in a connected structure (any two candi-
dates are connected by a finite chain of neighbours).

The topology (neighbourhood structure) opens
the possibility to a (random)walk on the candi-
date set: a seriesw0, w1, w2, ..., wL such that for
all 0 ≤ i < L, candidatewi+1 is wi or a neigh-
bour ofwi. (Candidatew0 will be calledwinit , and
wL will be wfinal, henceforth.) Genetic algorithms
start with a random population ofwinit ’s, and em-
ploy OT’s EVAL function to reach a population of
wfinal’s dominated by the (globally) optimal candi-
date(s) (Turkel, 1994). In what follows, however,
we focus on algorithms using a single walk only.

The simplest algorithm,gradient descent, comes
in two flavours. The version on Fig. 1 defineswi+1

as the best element of set{wi}∪Neighbours(wi).
It runs as long aswi+1 differs fromwi, and is deter-
ministic for eachwinit . Prince and Smolensky’s and
McCarthy’s serial evaluation does exactly this:winit

is the underlying form, Do-α (the restricted GEN)
creates the set{w} ∪Neighbours(w), and EVAL
finds its best element.
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ALGORITHM Gradient Descent: OT with restricted GEN
w := w_init;
repeat

w_prev := w;
w := most_harmonic_element( {w_prev} U Neighbours(w_prev) );

until w = w_prev
return w # w is an approximation to the optimal solution

Figure 1: Gradient Descent: iterated Optimality Theory with a restricted GEN (Do-α).

ALGORITHM Randomized Gradient Descent
w := w_init ;
repeat

Randomly select w’ from the set Neighbours(w);
if (w’ not less harmonic than w) then w := w’;

until stopping condition = true
return w # w is an approximation to the optimal solution

Figure 2: Randomized Gradient Descent

The second version ofgradient descent is
stochastic (Figure 2). In stepi, a ran-
dom w′ ∈ Neighbours(wi) is chosen us-
ing some pre-defined probability distribution on
Neighbours(wi) (often a constant function). If
neighbourw′ is not worse thanwi, then the next el-
ementwi+1 of the random walk will bew′; other-
wise, wi+1 is wi. The stopping condition requires
the number of iterations reach some value, or the
average improvement of the target function in the
last few steps drop below a threshold. The output is
wfinal, a local optimum if the walk is long enough.

Simulated annealing(Fig. 3) plays with this sec-
ond theme to increase the chance of finding the
global optimum and avoid unwanted local optima.
The idea is the same, but ifw′ is worse thanwi, then
there is still a chance to move tow′. The transition
probability of moving tow′ depends on the target
function E at wi andw′, and on ‘temperature’T :

P (wi → w′|T ) = exp
(

−E(w′)−E(wi)
T

)

. Using a

randomr, we move tow′ iff r < P (wi → w′|T ).
TemperatureT is gradually decreased following the
cooling schedule. Initially the system easily climbs
larger hills, but later it can only descend valleys. Im-
portantly, the probabilitywfinal is globally optimal
converges to1 as the number of iterations grows.

But the target function is not real-valued in Op-
timality Theory, so how can we calculate the tran-
sition probability? ICS (Smolensky and Legendre,
2006) approximates OT’s harmony function with a
real-valued target function, while Bı́ró (2006a) in-

troduces a novel algorithm (SA-OT, Figure 4) to
guarantee the principle ofstrict dominationin the
constraint ranking. The latter stays on the purely
symbolic level familiar to the linguist, but does not
always display the convergence property of tradi-
tional simulated annealing.

Temperature in the SA-OT Algorithm is a pair
(K, t) with t > 0, and is diminished in two, em-
bedded loops. Similarly, the difference in the target
function (Harmony) is not a single real number but a
pair (C, d). HereC is thefatal constraint, the high-
est ranked constraint by whichwi andw′ behave dif-
ferently, whiled is the difference of the violations of
this constraint. (ForH(wi) = H(w′) let the differ-
ence be(0, 0).) Each constraint is assigned a real-
valued rank (most often an integer; we shall call it
a K-value) such that a higher ranked constraint has
a higher K-value than a lower ranked constraint (hi-
erarchies are fully ranked). The K-value of the fatal
constraint corresponds to the first component of the
temperature, and the second component of the dif-
ference in the target function corresponds to the sec-
ond component of the temperature. The transition
probability fromwi to its neighbourw′ is 1 if w′ is
not less harmonic thanwi; otherwise, the originally
exponential transition probability becomes

P
(

wi → w′| (K, t)
)

=











1 if K-value of C< K

e−
d

t if K-value of C= K

0 if K-value of C> K

83



ALGORITHM Simulated Annealing
w := w_init ; T := T_max ;
repeat

CHOOSE random w’ in Neighbours(w);
Delta := E(w’) - E(w);
if ( Delta < 0 ) then w := w’;
else # move to w’ with transition probability P(Delta;T) = exp(-Delta/T):

generate random r uniformly in range (0,1);
if ( r < exp(-Delta / T) ) then w := w’;

T := alpha(T); # decrease T according to some cooling schedule
until stopping condition = true
return w # w is an approximation to the minimal solution

Figure 3:Minimizinga real-valued energy functionE(w) with simulated annealing.

Again,wi+1 is w′ if the random numberr generated
between0 and1 is less than this transition proba-
bility; otherwisewi+1 = wi. Bı́ró (2006a, Chapt.
2-3) argues that this definition fits best the underly-
ing idea behind both OT and simulated annealing.

In the next part of the paper we focus on SA-OT,
and return to the other algorithms afterwards only.

3 A string grammar

To experiment with, we now introduce an abstract
grammar that mimics real phonological ones.

Let the set of candidates generated by GEN for
any input be{0, 1, ..., P − 1}L, the set of strings of
lengthL over an alphabet ofP phonemes. We shall
useL = P = 4. Candidatew′ is a neighbour of
candidatew if and only if a single minimal oper-
ation (abasic step) transformsw into w′. A min-
imal operation naturally fitting the structure of the
candidates is to change one phoneme only. In or-
der to obtain a more interesting search space and in
order to meet some general principles—the neigh-
bourhood relation should be symmetric, yielding a
connected graph but be minimal—a basic step can
only change the value of a phoneme by1 moduloP .
For instance, in theL = P = 4 case, neighbours of
0123 are among others1123, 3123, 0133 and0120,
but not1223, 2123 or0323. If the four phonemes are
represented as a pair of binary features (0 = [−−],
1 = [+−], 2 = [++] and3 = [−+]), then this basic
step alters exactly one feature.

We also need constraints. Constraint No-n counts
the occurrences of phonemen (0 ≤ n < P )
in the candidate (i.e., assigns one violation mark
per phonemen). Constraint No-initial-n punishes
phonemen word initially only, whereas No-final-n

does the same word finally. Two more constraints
sum up the number of dissimilar and similar pairs of
adjacent phonemes. Letw(i) be theith phoneme in
stringw, and let[b] = 1 if b is true and[b] = 0 if b is
false; then we have3P + 2 markedness constraints:

No-n: non(w) =
∑

L−1
i=0 [w(i) = n]

No-initial-n: nin(w) = [w(0) = n]

No-final-n: nfn(w) = [w(L−1) = n]

Assimilate: ass(w) =
∑

L−2
i=0 [w(i) 6= w(i+1)]

Dissimilate: dis(w) =
∑

L−2
i=0 [w(i) = w(i+1)]

Grammars also include faithfulness constraints
punishing divergences from a reference stringσ,
usually the input. Ours sums up the distance of the
phonemes inw from the corresponding ones inσ:

FAITH σ(w) =
∑

L−1
i=0 d(σ(i), w(i))

where d(a, b) = min((a − b) mod P, (b − a)
mod P )) is the minimal number of basic steps trans-
forming phonemea into b. In our case, faithfulness
is also the number of differing binary features.

To illustrate SA-OT, we shall use grammarH:

H: no0≫ ass≫ Faithσ=0000 ≫ ni1 ≫
ni0≫ ni2≫ ni3≫ nf0≫ nf1≫ nf2≫
nf3≫ no3≫ no2≫ no1≫ dis

A quick check proves that the global optimum
is candidate3333, but there are many other local
optima: 1111, 2222, 3311, 1333, etc. Table 1
shows the frequencies of the outputs as a function
of t step, all other parameters kept unchanged.

Several characteristics of SA-OT can be observed.
For hight step, the thirteen local optima ({1, 3}4
and 2222) are all produced, but as the number of
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ALGORITHM Simulated Annealing for Optimality Theory
w := w_init ;
for K = K_max to K_min step K_step

for t = t_max to t_min step t_step
CHOOSE random w’ in Neighbours(w);
COMPARE w’ to w: C := fatal constraint

d := C(w’) - C(w);
if d <= 0 then w := w’;
else w := w’ with transition probability

P(C,d;K,t) = 1 , if K-value(C) < K
= exp(-d/t) , if K-value(C) = K
= 0 , if K-value(C) > K

end-for
end-for
return w # w is an approximation to the optimal solution

Figure 4: The Simulated Annealing for Optimality Theory Algorithm (SA-OT).

iterations increases (parametert step drops), the
probability of finding the globally optimal candidate
grows. In many grammars (e.g., ni1 and ni3 moved
to between no0 and ass inH), the global optimum
is the only output for smallt step values. Yet,H
also yieldsirregular forms: 1111 and2222 are not
globally optimal but their frequencies grow together
with the frequency of3333.

4 Learning grammar from performance

To summarise, given a grammar, that is, a constraint
hierarchy, the SA-OT Algorithm produces perfor-
mance forms, including the grammatical one (the
global optimum), but possibly also irregular forms
and performance errors. The exact distribution de-
pends on the parameters of the algorithm, which
arenot part of the grammar, but related to external
(physical, biological, pragmatic or sociolinguistic)
factors, for instance, to speech rate.

Our task of learning agrammarcan be formulated
thus: given the output distribution of SA-OT based
on the target OT hierarchy (thetarget grammar),
the learner seeks a hierarchy that produces a simi-
lar performance distribution using the same SA-OT
Algorithm. (See Yang (2002) on grammar learning
as parameter setting in general.) Without any infor-
mation on grammaticality, her goal is not to mimic
competence, not to find a hierarchy with the same
globaloptima. The grammar learnt can diverge from
the target hierarchy, as long as their performance is
comparable (see also Apoussidou (2007), p. 203).
For instance, if ni1 and ni3 change place in gram-
marH, the grammaticality of1111 and3333 are re-

versed, but the performance stays the same. This re-
sembles two native speakers whose divergent gram-
mars are revealed only when they judge differently
forms otherwise produced by both.

We suppose that the learner employs the same
SA-OT parameter setting. The acquisition of the
parameters is deferred to future work, because this
task is not part of language acquisition but of social
acculturation: given a grammar, how can one learn
which situation requires what speed rate or what
level of care in production? Consequently, fine-
tuning the output frequencies, which can be done
by fine-tuning the parameters (such ast step) and
not the grammar, is not our goal here. But language
learners do not seem to do it, either.

Learning algorithms in Optimality Theory belong
to two families: off-line and on-line algorithms. Off-
line algorithms, the prototype of which isRecur-
sive Constraint Demotion(RCD) (Tesar, 1995; Tesar
and Smolensky, 2000), first collect the data and then
attempt to build a hierarchy consistent with them.
On-line algorithms, such as Error Driven Constraint
Demotion (ECDC) (Tesar, 1995; Tesar and Smolen-
sky, 2000) and Gradual Learning Algorithm (GLA)
(Boersma, 1997; Boersma and Hayes, 2001), start
with an initial hierarchy and gradually alter it based
on discrepancies between the learning data and the
data produced by the learner’s current hierarchy.

Since infants gather statistical data on their
mother tongue-to-be already in pre-linguistic stages
(Saffran et al., 1996; Gervain et al., submitted), an
off-line algorithm created our initial grammar. Then,
on-line learning refined it, modelling child language
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output t step = 1 t step = 0.1 t step = 0.01 t step = 0.001

3333 0.1174± 0.0016 0.2074± 0.0108 0.2715± 0.0077 0.3107± 0.0032
1111 0.1163± 0.0021 0.2184± 0.0067 0.2821± 0.0058 0.3068± 0.0058
2222 0.1153± 0.0024 0.2993± 0.0092 0.3787± 0.0045 0.3602± 0.0091
1133 0.0453± 0.0018 0.0485± 0.0038 0.0328± 0.0006 0.0105± 0.0014
3311 0.0436± 0.0035 0.0474± 0.0054 0.0344± 0.0021 0.0114± 0.0016
others 0.5608 0.1776 < 0.0002 –

Table 1: Outputs of SA-OT for hierarchyH. “Others” are twelve forms, each with a frequency between 2%
and 8% fort step = 1, and lower than 4.5% fort step = 0.1. (Forms produced in 8% of the cases at
t step = 1 are not produced ift step = 0.01!) An experiment consisted of running 4096 simulations
and counting relative frequencies; each cell contains the mean and standard deviation of three experiments.

development. (Although on-line algorithms require
virtual production only, not necessarily uttered in
communication, we suppose the two go together.)
We defer for future work issues as parsing hidden
structures, learning underlying forms and biases for
ranking markedness above faithfulness.

4.1 Learning SA-OT

We first implemented Recursive Constraint Demo-
tion with SA-OT. To begin with, RCD creates awin-
ner/loser table, in which rows correspond to pairs
(w, l) such that winnerw is a learning datum, and
loser l is less harmonic thanw. Column winner
markscontains the constraints that are more severely
violated by the winner than by the loser, and vice-
versa for columnloser marks. Subsequently, RCD
builds the hierarchy from top. It repeatedly collects
the constraints not yet ranked that do not occur as
winner marks. If no such constraint exists, then the
learning data are inconsistent. These constraints are
then added to the next stratum of the hierarchy in a
random order, while the rows in the table containing
them as loser marks are deleted (because these rows
have been accounted for by the hierarchy).

Given the complexity of the learning data pro-
duced by SA-OT, it is an advantage of RCD that
it recognises inconsistent data. But how to collect
the winner-loser pairs for the table? The learner has
no information concerning the grammaticality of the
learning data, and only knows that the forms pro-
duced are local optima for the target (unknown) hi-
erarchy and the universal (hence, known) topology.
Thus, we constructed the winner-loser table from all
pairs(w, l) such thatw was an observed form, and

l was a neighbour ofw. To avoid the noise present
in real-life data, we considered onlyw’s with a fre-
quency higher than

√
N , whereN was the number

of learning data. Applying then RCD resulted in a
hierarchy that produced the observed local optima—
and most often also many others, depending on the
random constraint ranking in a stratum. These un-
wanted local optima suggest a new explanation of
some “child speech forms”.

Therefore, more information is necessary to find
the target hierarchy. As learners do not use nega-
tive evidence (Pinker, 1984), we did not try to re-
move extra local optima directly. Yet, the learners do
collect statistical information. Accordingly, we en-
riched the winner/loser table with pairs(w, l) such
that w was a form observed significantly more fre-
quently thanl; l’s were observed forms and the extra
local optima. (A difference in frequency was signifi-
cant if it was higher than

√
N .) The assumption that

frequency reflects harmony is based on the heuris-
tics of SA-OT, but is far not always true. So RCD
recognised this new table often to be inconsistent.

Enriching the table could also be done gradually,
adding a new pair only if enough errors have sup-
ported it (Error-Selective Learning, Tessier (2007).
The pair is then removed if it proves inconsistent
with stronger pairs (pairs supported by more errors,
or pairs of observed forms and their neighbours).

Yet, we instead turned to real on-line algorithms,
namely to Boersma’s Gradual Learning Algorithm
(GLA) (Boersma, 1997). (Error Driven Constraint
Demotion is not robust, and gets stuck for incon-
sistent data.) Similarly to Error-Selective Learn-
ing, GLA accumulates gradually the arguments for
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reranking two constraints. The GLA Algorithm as-
signs a real-valuedrank r to each constraint, so that
a higher ranked constraint has a higherr. Then, in
each learning step the learning datum (the winner)
is compared to the output produced by the learner’s
actual hierarchy (the loser). Every constraint’s rank
is decreased by a small value (the plasticity) if the
winner violates it more than the loser, and it is in-
creased by the same value if the loser has more vi-
olations than the winner. Often—still, not always
(Pater, 2005)—these small steps accumulate to con-
verge towards the correct constraint ranking.

When producing an output (the winner) for the
target hierarchy and another one (the loser) for the
learner’s hierarchy, Boersma uses Stochastic OT
(Boersma, 1997). But one can also employ tradi-
tional OT evaluation, whereas we used SA-OT with
t step = 0.1. The learner’s actual hierarchy in
GLA is stored by the real-valued ranksr. So the
fatal constraint in the core of SA-OT (Fig. 4) is
the constraint that has the highestr among the con-
straints assigning different violations tow andw′.
(A random one of them, if more constraints have the
same r-values, but this is very rare.). The K-values
were thefloor of the r-values. (Note the possibil-
ity of more constraints having the same K-value.)
The r-values could also be directly the K-values; but
since parametersK max,K min andK step are in-
tegers, this would cause the temperature not enter
the domains of the constraints, which would skip an
important part of simulated annealing.

Similarly to Stochastic OT, our model also dis-
played different convergence properties of GLA.
Quite often, GLA reranked its initial hierarchy (the
output of RCD) into a hierarchy yielding the same
or a similar output distribution to that produced by
the target hierarchy. The simulated child’s perfor-
mance converged towards the parent’s performance,
and “child speech forms” were dropped gradually.

In other cases, however, the GLA algorithm
turned the performance worse. The reason for that
might be more than the fact that GLA does not al-
ways converge. Increasing or decreasing the con-
straints’ rank by a plasticity in GLA is done in or-
der to make the winners gradually better and the
losers worse. But in SA-OT the learner’s hierarchy
can produce a form that is indeed more harmonic
(but not a local optimum) for the target ranking than

the learning datum; then the constraint promotions
and demotions miss the point. Moreover, unlike
in Stochastic OT, these misguided moves might be
more frequent than the opposite moves.

Still, the system performed well with our gram-
marH. Although the initial grammars returned by
RCD included local optima (“child speech forms”,
e.g.,0000), learning with GLA brought the learner’s
performance most often closer to the teacher’s. Still,
final hierarchies could be very diverse, with different
global optima and frequency distributions.

In another experiment the initial ranking was the
target hierarchy. Then, 13 runs returned the target
distribution with some small changes in the hierar-
chy; in five cases the frequencies changed slightly,
but twice the distribution became qualitatively dif-
ferent (e.g.,2222 not appearing).

4.2 Learning in other architectures

Learning in the ICS architecture involves similar
problems to those encountered with SA-OT. The
learner is faced again with performance forms that
are local optima and not always better than unat-
tested forms. The learning differs exclusively as a
consequence of the connectionist implementation.

In McCarthy’s Persistent OT, the learner only
knows that the observed form is a local optimum,
i. e., it is better than all its neighbours. Then, she has
to find a path backwards, from the surface form to
the underlying form, such that in each step the can-
didate closer to the SF is better than all other neigh-
bours of the candidate closer to the UF. Hence, the
problem is more complex, but it results in a similar
winner/loser table of locally close candidates.

5 Conclusion and future work

We have tested the learnability of an OT grammar
enriched with a neighbourhood structure. The learn-
ing data were produced by a performance model
(viz., SA-OT), so the learner only had access to the
teacher’sperformance. But by knowing the mecha-
nism distorting production, she still could learn the
targetcompetencemore or less. (Minor differences
in competence are possible, as long as the perfor-
mance is very similar.) She made use of the struc-
ture (the topology) of the candidate set, but also of
the observed error patterns. Future work may exploit
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the fact that different parameter settings of SA-OT
yield different distributions.

Not correctly reconstructed grammars often lead
to different grammaticality judgements, but also to
quantitative differences in the performance distribu-
tion, despite the qualitative similarity. This fact can
explain diachronic changes and why some grammars
are evolutionarily more stable than others.

Inaccuratereconstruction, as opposed to exact
learning, is similar to what Dan Sperber and oth-
ers said about symbolic-cultural systems: “The tacit
knowledge of a participant in a symbolic-cultural
system is neither taught nor learned by rote. Rather
each new participant [...] reconstructsthe rules
which govern the symbolic-cultural system in ques-
tion. These reconstructions may differ considerably,
depending upon such factors as the personal his-
tory of the individual in question. Consequently, the
products of each individual’s symbolic mechanism
are idiosyncratic to some extent.” (Lawson and Mc-
Cauley, 1990, p. 68, italics are original). This obser-
vation has been used to argue that cultural learning
is different from language learning; now we turn the
table and claim that acquiring a language is indeed
similar in this respect to learning a culture.
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Tamás Bı́ró. 2005b. When the hothead speaks: Sim-
ulated Annealing Optimality Theory for Dutch fast
speech. In C. Cremers et al., editor,Proc. of the 15th
CLIN, pages 13–28, Leiden. Also ROA-898.
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Abstract

The ability to correctly interpret and pro-
duce noun-noun compounds such as WIND

FARM or CARBON TAX is an important part
of the acquisition of language in various do-
mains of discourse. One approach to the
interpretation of noun-noun compounds as-
sumes that people make use of distributional
information about how the constituent words
of compounds tend to combine; another as-
sumes that people make use of information
about the two constituent concepts’ features
to produce interpretations. We present an ex-
periment that examines how people acquire
both the distributional information and con-
ceptual information relevant to compound
interpretation. A plausible model of the in-
terpretation process is also presented.

1 Introduction

People frequently encounter noun-noun compounds
such as MEMORY STICK and AUCTION POLITICS

in everyday discourse. Compounds are particu-
larly interesting from a language-acquisition per-
spective: children as young as two can comprehend
and produce noun-noun compounds (Clark & Bar-
ron, 1988), and these compounds play an important
role in adult acquisition of the new language and ter-
minology associated with particular domains of dis-
course. Indeed, most new terms entering the English
language are combinations of existing words (Can-
non, 1987; consider FLASH MOB, DESIGNER BABY,
SPEED DATING and CARBON FOOTPRINT).

These noun-noun compounds are also interest-
ing from a computational perspective, in that they
pose a significant challenge for current computa-
tional accounts of language. This challenge arises

from the fact that the semantics of noun-noun com-
pounds are extremely diverse, with compounds uti-
lizing many different relations between their con-
stituent words (consider the examples at the end of
the previous paragraph). Despite this diversity, peo-
ple typically interpret even completely novel com-
pounds extremely quickly, in the order of hundredths
of seconds in reaction time studies.

One approach that has been taken in both cog-
nitive psychology and computational linguistics can
be termed the relation-based approach (e.g. Gagné
& Shoben, 1997; Kim & Baldwin, 2005). In this
approach, the interpretation of a compound is rep-
resented as the instantiation of a relational link be-
tween the modifier and head noun of the compound.
Such relations are usually represented as a set of
taxonomic categories; for example the meaning of
STUDENT LOAN might be specified with a POSSES-
SOR relation (Kim & Baldwin, 2005) or MILK COW

might be specified by a MAKES relation (Gagné &
Shoben, 1997). However, researchers are not close
to any agreement on a taxonomy of relation cate-
gories classifying noun-noun compounds; indeed a
wide range of typologies have been proposed (e.g.
Levi, 1977; Kim & Baldwin, 2005).

In these relation-based approaches, there is often
little focus on how the meaning of the relation inter-
acts with the intrinsic properties of the constituent
concepts. Instead, extrinsic information about con-
cepts, such as distributional information about how
often different relations are associated with a con-
cept, is used. For example, Gagné & Shoben’s
CARIN model utilizes the fact that the modifier
MOUNTAIN is frequently associated with the LO-
CATED relation (in compounds such as MOUNTAIN

CABIN or MOUNTAIN GOAT); the model does not
utilize the fact that the concept MOUNTAIN has in-
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trinsic properties such as is large and is a geological
feature: features which may in general precipitate
the LOCATION relation.

An approach that is more typical of psycholog-
ical theories of compound comprehension can be
termed the concept-based approach (Wisniewski,
1997; Costello and Keane, 2000). With such the-
ories, the focus is on the intrinsic properties of
the constituent concepts, and the interpretation of a
compound is usually represented as a modification
of the head noun concept. So, for example, the com-
pound ZEBRA FISH may involve a modification of
the FISH concept, by asserting a feature of the ZE-
BRA concept (e.g. has stripes) for it; in this way, a
ZEBRA FISH can be understood as a fish with stripes.
Concept-based theories do not typically use distrib-
utional information about how various relations are
likely to be used with concepts.

The information assumed relevant to compound
interpretation is therefore quite different in relation-
based and concept-based theories. However, neither
approach typically deals with the issue of how peo-
ple acquire the information that allows them to in-
terpret compounds. In the case of the relation-based
approaches, for example, how do people acquire the
knowledge that the modifier MOUNTAIN tends to
be used frequently with the LOCATED relation and
that this information is important in comprehend-
ing compounds with that modifier? In the case of
concept-based approaches, how do people acquire
the knowledge that features of ZEBRA are likely to
influence the interpretation of ZEBRA FISH?

This paper presents an experiment which exam-
ines how both distributional information about re-
lations and intrinsic information about concept fea-
tures influence compound interpretation. We also
address the question of how such information is ac-
quired. Rather than use existing, real world con-
cepts, our experiment used laboratory generated
concepts that participants were required to learn dur-
ing the experiment. As well as learning the meaning
of these concepts, participants also built up knowl-
edge during the experiment about how these con-
cepts tend to combine with other concepts via re-
lational links. Using laboratory-controlled concepts
allows us to measure and control various factors that
might be expected to influence compound compre-
hension; for example, concepts can be designed to

vary in their degree of similarity to one another, to
be associated with potential relations with a certain
degree of frequency, or to have a feature which is
associated with a particular relation. It would be ex-
tremely difficult to control for such factors, or in-
vestigate the aquisition process, using natural, real
world concepts.

2 Experiment

Our experiment follows a category learning para-
digm popular in the classification literature (Medin
& Shaffer, 1978; Nosofsky, 1984). The experiment
consists of two phases, a training phase followed
by a transfer phase. In the training phase, partic-
ipants learned to identify several laboratory gener-
ated categories by examining instances of these cat-
egories that were presented to them. These cate-
gories were of two types, conceptual and relational.
The conceptual categories consisted of four “plant”
categories and four “beetle” categories, which par-
ticipants learned to distinguish by attending to dif-
ferences between category instances. The relational
categories were three different ways in which a bee-
tle could eat a plant. Each stimulus consisted of
a picture of a beetle instance and a picture of a
plant instance, with a relation occurring between
them. The category learning phase of our experi-
ment therefore has three stages: one for learning to
distinguish between the four beetle categories, one
for learning to distinguish between the four plant
categories, and one for learning to distinguish be-
tween the three relation categories.

The training phase was followed by a transfer
phase consisting of two parts. In the first part par-
ticipants were presented with some of the beetle-
plant pairs that they had encountered in the train-
ing phase together with some similar, though previ-
ously unseen, pairs. Participants were asked to rate
how likely each of the three relations were for the
depicted beetle-plant pair. This part of the transfer
phase therefore served as a test of how well partic-
ipants had learned to identify the appropriate rela-
tion (or relations) for pairs of conceptual category
exemplars and also tested their ability to generalize
their knowledge about the learned categories to pre-
viously unseen exemplar pairs. In the second part of
the transfer phase, participants were presented with
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pairs of category names (rather than pairs of cat-
egory items), presented as noun-noun compounds,
and were asked to rate the appropriateness of each
relation for each compound.

In the experiment, we aim to investigate three is-
sues that may be important in determining the most
appropriate interpretation for a compound. Firstly,
the experiment aims to investigate the influence of
concept salience (i.e. how important to participants
information about the two constituent concepts are,
or how relevant to finding a relation that information
is) on the interpretation of compounds. For example,
if the two concepts referenced in a compound are
identical with respect to the complexity of their rep-
resentation, how well they are associated with vari-
ous alternative relations (and so on), but are of dif-
fering levels of animacy, we might expect the rela-
tion associated with the more animate concept to be
selected by participants more often than a different
relation associated equally strongly with the less an-
imate concept. In our experiment, all three relations
involve a beetle eating a plant. Since in each case the
beetle is the agent in the EATS(BEETLE,PLANT) sce-
nario, it is possible that the semantics of the beetle
concepts might be more relevant to relation selection
than the semantics of the plant concepts.

Secondly, the experiment is designed to inves-
tigate the effect of the ordering of the two nouns
within the compound: given two categories named
A and B, our experiment investigates whether the
compound “A B” is interpreted in the same way as
the compound “B A”. In particular, we were in-
terested in whether the relation selected for a com-
pound would tend to be dependent on the concept in
the head position or the concept in the modifier posi-
tion. Also of interest was whether the location of the
more animate concept in the compound would have
an effect on interpretation. For example, since the
combined concept is an instance of the head concept,
we might hypothesize that compounds for which the
head concept is more animate than the modifier con-
cept may be easier to interpret correctly.

Finally, were interested in the effect of concept
similarity: would compounds consisting of similar
constituent categories tend to be interpreted in simi-
lar ways?

learn trans. Nr Rel Bcat Pcat B1 B2 B3 P1 P2 P3

l 1 1 1 3 4 1 1 3 2 3
l 2 1 1 3 4 4 1 2 3 3
l t 3 1 1 3 1 1 1 3 3 2
l t 4 1 1 3 4 1 2 3 3 3

l t 5 2 2 2 2 2 2 2 2 3
l 6 2 2 2 2 2 1 2 3 2
l 7 2 2 2 2 3 2 2 2 1
l t 8 2 2 2 2 2 3 2 2 2

l t 9 3 3 1 3 3 3 4 1 2
l t 10 3 3 1 3 3 2 1 1 1
l 11 3 3 1 2 3 3 4 4 1
l 12 3 3 1 3 2 3 4 1 1

l t 13 1 4 4 1 1 4 4 4 4
l t 14 2 4 4 4 1 4 4 1 4
l t 15 3 4 4 4 4 4 1 1 4

t 16 - 1 1 4 1 1 4 1 1
t 17 - 3 3 3 3 3 3 3 3
t 18 - 2 4 2 2 2 4 1 4
t 19 - 4 2 4 1 4 2 2 2

Table 1: The experiment’s abstract category struc-
ture

2.1 Method

2.1.1 Participants
The participants were 42 university students.

2.1.2 Materials
The abstract category structure used in the exper-

iment is presented in Table 1. There are 19 items
in total; the first and second columns in the table
indicate if the item in question was one of the 15
items used in the learning phase of the experiment
(l) or as one of the 13 items used in the transfer stage
of the experiment (t). There were four beetle cate-
gories (Bcat), four plant categories (Pcat) and three
relation categories used in the experiment. Both the
beetle and plant categories were represented by fea-
tures instantiated on three dimensions (B1, B2 & B3
and P1, P2 & P3, respectively). The beetle and plant
categories were identical with respect to their ab-
stract structure (so, for example, the four exemplars
of Pcat1 have the same abstract features as the four
exemplars of Bcat1).

Beetles and plants were associated with particu-
lar relations; Bcat1, Bcat2 and Bcat3 were associ-
ated with Relations 1, 2 and 3, respectively, whereas
Pcat1, Pcat2 and Pcat3 were associated with Rela-
tions 3, 2 and 1, respectively. Bcat4 and Pcat4 were
not associated with any relations; the three exemplar
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instances of these categories in the learning phase
appeared once with each of the three relations. The
features of beetles and plants were sometimes diag-
nostic of a category (much as the feature has three
wheels is diagnostic for TRICYCLE); for example, a
particular feature associated with Bcat1 is a 1 on the
B3 dimension: 3 of the 4 Bcat1 training phase exem-
plars have a 1 on dimension B3 while only one of the
remaining 11 training phase exemplars do. Also, the
intrinsic features of beetles and plants are sometimes
diagnostic of a relation category (much as the intrin-
sic feature has a flat surface raised off the ground is
diagnostic for the relational scenario sit on); values
on dimensions B1, P1, B2 and P2 are quite diag-
nostic of relations. Participants learned to identify
the plant, beetle and relation categories used in the
experiment by attending to the associations between
beetle, plant and relation categories and feature di-
agnosticity for those categories.

The beetle and plant categories were also de-
signed to differ in terms of their similarity. For ex-
ample, categories Bcat1 and Bcat4 are more simi-
lar to each other than Bcat3 and Bcat4 are: the fea-
tures for Bcat1 and Bcat4 overlap to a greater extent
than the features for Bcat3 and Bcat4 do. The aim
of varying categories with respect to their similarity
was to investigate whether similar categories would
yield similar patterns of relation likelihood ratings.
In particular, Bcat4 (and Pcat4) occurs equally often
with the three relations; therefore if category simi-
larity has no effect we would expect people to select
each of the relations equally often for this category.
However, if similarity influences participants’ rela-
tion selection, then we would expect that Relation 1
would be selected more often than Relations 2 or 3.

The abstract category structure was mapped to
concrete features in a way that was unique for each
participant. Each beetle dimension was mapped ran-
domly to the concrete dimensions of beetle shell
color, shell pattern and facial expression. Each plant
dimension was randomly mapped to the concrete di-
mensions of leaf color, leaf shape, and stem color.
The three relations were randomly mapped to eats
from leaf, eats from top, and eats from trunk.

2.1.3 Procedure
The experiment consisted of a training phase and

a transfer phase. The training phase itself consisted

Figure 1: Example of a relation learning stimulus

of three sub-stages in which participants learned to
distinguish between the plant, beetle and relation
categories. During each training sub-stage, the 15
training items were presented to participants sequen-
tially on a web-page in a random order. Underneath
each item, participants were presented with a ques-
tion of the form “What kind of plant is seen in this
picture?”, “What type of beetle is seen in this pic-
ture?” and “How does this 〈Bcat〉 eat this 〈Pcat〉?”
in the plant learning, beetle learning, and relation
learning training sub-stages, respectively (e.g. Fig-
ure 1). Underneath the question were radio but-
tons on which participants could select what they
believed to be the correct category; after participants
had made their selection, they were given feedback
about whether their guess had been correct (with the
correct eating relation shown taking place). Each of
the three substages was repeated until participants
had correctly classified 75% or more of the items.
Once they had successfully completed the training
phase they moved on to the transfer phase.

The transfer phase consisted of two stages, an
exemplar transfer stage and a compound transfer
stage. In the exemplar transfer stage, participants
were presented with 13 beetle-plant items, some of
which had appeared in training and some of which
were new items (see Table 1). Underneath each
picture was a question of the form “How does this
〈Bcat〉 eat this 〈Pcat〉?” and three 5-point scales
for the three relations, ranging from 0 (unlikely) to
4 (likely).

The materials used in the compound transfer stage
of the experiment were the 16 possible noun-noun
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compounds consisting of a beetle and plant category
label. Participants were presented with a sentence of
the form “There are a lot of 〈Pcat〉 〈Bcat〉s around
at the moment.” and were asked “What kind of eat-
ing activity would you expect a 〈Pcat〉 〈Bcat〉 to
have?”. Underneath, participants rated the likeli-
hood of each of the three relations on 5-point scales.
One half of participants were presented with the
compounds in the form “〈Bcat〉 〈Pcat〉” whereas
the other half of participants saw the compounds in
the form “〈Pcat〉 〈Bcat〉”.

2.2 Results

2.2.1 Performance during training
Two of the participants failed to complete the

training phase. For the remaining 40 participants,
successful learning took on average 5.8 iterations of
the training items for the plant categories, 3.9 itera-
tions for the beetle categories, and 2.1 iterations for
the relation categories. The participants therefore
learned to distinguish between the categories quite
quickly, which is consistent with the fact that the cat-
egories were designed to be quite easy to learn.

2.2.2 Performance during the exemplar
transfer stage

Participants’ mean ratings of relation likelihood
for the nine previously seen exemplar items is pre-
sented in Figure 2 (items 3 to 15). For each of these
items there was a correct relation, namely the one
that the item was associated with during training.
The difference between the mean response for the
correct relation (M = 2.76) and the mean response
for the two incorrect relations (M = 1.42) was sig-
nificant (ts(39) = 7.50, p < .01; ti(8) = 4.07,
p < .01). These results suggest that participants
were able to learn which relations tended to co-occur
with the items in the training phase.

Participants’ mean ratings of relation likelihood
for the four exemplar items not previously seen in
training are also presented in Figure 2 (items 16 to
19). Each of these four items consisted of a proto-
typical example of each of the four beetle categories
and each of the four plant categories (with each bee-
tle and plant category appearing once; see Table 1
for details). For these four items there was no cor-
rect answer; indeed, the relation consistent with the
beetle exemplar was always different to the relation

Figure 2: Participants’ mean responses for the ex-
emplar transfer items.

suggested by the plant exemplar. For each trial, then,
one relation is consistent with the beetle exemplar
(rb), one is consistent with the plant exemplar (rp)
and one is neutral (rn). One-way repeated measures
ANOVAs with response type (rb, rp or rn) as a fixed
factor and either subject or item as a random factor
were used to investigate the data. There was a signif-
icant effect of response type in both the by-subjects
and by-items analysis (Fs(2, 39) = 19.10, p < .01;
Fi(2, 3) = 24.14, p < .01). Pairwise differences be-
tween the three response types were investigated us-
ing planned comparisons in both the by-subject and
by-items analyses (with paired t-tests used in both
cases). The difference between participants’ mean
response for the relation associated with the beetle
exemplar, rb (M = 2.68), and their mean response
for the neutral relation, rn (M = 1.44) was sig-
nificant (ts(39) = 5.63, p < .001; ti(3) = 5.34,
p = .01). These results suggest that participants
were strongly influenced by the beetle exemplar
when making their category judgments. However,
the difference between participants’ mean response
for the relation associated with the plant exemplar,
rp (M = 1.62), and their mean response for the
neutral relation was not significant (ts(39) = 1.11,
p = .27; ti(3) = 0.97, p = .40). These re-
sults suggest that participants were not influenced
by the plant exemplar when judging relation like-
lihood. Since the beetle and plant categories have
identical abstract structure, these results suggest that
other factors (such as the animacy of a concept or the
role it plays in the relation) are important to interpre-
tation.

The data from all 13 items were also analysed
taken together. To investigate possible effects of cat-
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egory similarity, a repeated measures ANOVA with
beetle category and response relation taken as within
subject factors and subject taken as a random fac-
tor was undertaken. There was a significant effect
of the category that the beetle exemplar belonged to
on participants’ responses for the three relations (the
interaction between beetle category and response re-
lation was significant; F (6, 39) = 26.83, p < .01.
Planned pairwise comparisons (paired t-tests) were
conducted to investigate how ratings for the cor-
rect relation (i.e. the relation consistent with train-
ing) differed for the ratings for the other two rela-
tions. For Bcat1, Bcat2 and Bcat3, the ratings for
the relation consistent with learning was higher than
the two alternative relations (p < .01 in all cases).
However, for the Bcat4 items, there was no evi-
dence that participants we more likely to rate Re-
lation 1 (M = 2.09) higher than either Relation 2
(M = 1.97; t(39) = 0.54, p = .59) or Relation
3 (M = 1.91; t(39) = 0.69, p > .50). Though
the difference is in the direction predicted by Bcat4’s
similarity to Bcat1, there is no evidence that partici-
pants made use of Bcat4’s similarity to Bcat1 when
rating relation likelihood for Bcat4.

In summary, the results suggest that participants
were capable of learning the training items. Partici-
pants appeared to be influenced by the beetle exem-
plar but not the plant exemplar. There was some evi-
dence that conceptual similarity played a role in par-
ticipants’ judgments of relation likelihood for Bcat4
exemplars (e.g. the responses for item 19) but over
all Bcat4 exemplars this effect was not significant.

2.2.3 Performance on the noun-noun
compound transfer stage

In the noun-noun compound transfer stage, each
participant rated relation likelihood for each of the
16 possible noun-noun compounds that could be
formed from combinations of the beetle and plant
category names. Category name order was a be-
tween subject factor: half of the participants saw the
compounds with beetle in the modifier position and
plant in the head position whilst the other half of
participants saw the reverse. First of all, we were
interested in whether or not the training on exem-
plar items would transfer to noun-noun compounds.
Another question of interest is whether or not par-
ticipants’ responses would be affected by the order

in which the categories were presented. For exam-
ple, perhaps it is the concept in the modifier position
that is most influential in determining the likelihood
of different relations for a compound. Alternatively
perhaps it is the concept in the head position that is
most influential.

To answer such questions a 4×4×3×2 repeated
measures ANOVA with beetle category, plant cate-
gory and response relation as within subject factors
and category label ordering as a between subject fac-
tor was used to analyze the data. The interaction
between beetle category and response relation was
significant (F (6, 38) = 59.79, p < .001). There-
fore, the beetle category present in the compound
tended to influence participants’ relation selections.
The interaction between plant category and response
relation was weaker, but still significant (F (6, 38) =
5.35, p < 0.01). Therefore, the plant category
present in the compound tended to influence partic-
ipants’ relation selections. These results answer the
first question above; training on exemplar items was
transferred to the noun-noun compounds. However,
there were no other significant interactions found. In
particular, the interaction between category order-
ing, beetle category and response relation was not
significant (F (6, 38) = 1.82, p = .09). In other
words, there is no evidence that the influence of bee-
tle category on participants’ relation selections when
the beetle was in the modifier position differed from
the influence of beetle category on participants’ rela-
tion selections when the beetle was in the head-noun
position. Similarly, the interaction between noun or-
dering, plant category and response relation was not
significant (F (6, 38) = 0.68, p = .67); there is no
evidence that the influence of the plant category on
relation selection differed depending on the location
of the plant category in the compound.

Planned pairwise comparisons (paired t-tests)
were used to investigate the significant interactions
further: for Bcat1, Bcat2 and Bcat3, the ratings
for the relation consistent with learning was sig-
nificantly higher than the two alternative relations
(p < .001 in all cases). However, for Bcat4, there
were no significant differences between the ratings
for the three relations (p > .31 for each of the three
comparisons). For the plants, however, the only sig-
nificant differences were between the response for
Relation 1 and Relation 2 for Pcat2 (t(39) = 2.12,
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p = .041) and between Relation 2 and Relation 3 for
Pcat2 (t(39) = 3.08, p = .004), although the dif-
ferences for Pcat1 and Pcat3 are also in the expected
direction.

In summary, the results of the noun-noun com-
pound stage of the experiment show that partici-
pants’ learning of the relations and their associa-
tions with beetle and plant categories during training
transferred to a task involving noun-noun compound
interpretation. This is important as it demonstrates
how the interpretation of compounds can be derived
from information about how concept exemplars tend
to co-occur together.

2.3 Modelling relation selection

One possible hypothesis about how people decide
on likely relations for a compound is that the men-
tion of the two lexemes in the compound activates
stored memory traces (i.e. exemplars) of the con-
cepts denoted by those lexemes. Exemplars differ
in how typical they are for particular conceptual cat-
egories and we would expect the likelihood of an
exemplar’s activation to be in proportion to its typ-
icality for the categories named in the compound.
As concept instances usually do not happen in isola-
tion but rather in the context of other concepts, this
naturally results in extensional relational informa-
tion about activated exemplars also becoming acti-
vated. This activated relational information is then
available to form a basis for determining the likely
relation or relations for the compound. A strength
of this hypothesis is that it incorporates both inten-
sional information about concepts’ features (in the
form of concept typicality) and also extrinsic, dis-
tributional information about how concepts tend to
combine (in the form of relational information asso-
ciated with activated exemplars). In this section, we
present a model instantiating this hybrid approach.

The hypothesis proposed above assumes that ex-
tensional information about relations is associated
with exemplars in memory. In the context of our
experiment, the extensional, relational information
about beetle and plant exemplars participants held in
memory is revealed in how they rated relational like-
lihood during the exemplar transfer stage of the ex-

1This is not significant if Bonferroni correction is used to
control the familywise Type I error rate amongst the multiple
comparisons

periment. For each of the 13 beetle and plant exem-
plars, we therefore assume that the average ratings
for each of the relations describes our participants’
knowledge about how exemplars combine with other
exemplars. Also, we can regard the three relation
likelihood ratings as being a 3-dimensional vector.
Given that category ordering did not appear to have
an effect on participants’ responses in the compound
transfer phase of the experiment, we can calculate
the relation vector ~rB,P for the novel compounds “B
P ” or “P B” as

~rB,P =

∑
e∈U

(typ(eb, B) + typ(ep, P ))α · ~re∑
e∈U

(typ(eb, B) + typ(ep, P ))α

where e denotes one of the 13 beetle-plant ex-
emplar items rated in the exemplar transfer stage,
typ(eb, B) denotes the typicality of the beetle ex-
emplar present in item e in beetle category B and
typ(ep, P ) denotes the typicality of the plant exem-
plar present in item e in plant category P . U is
the set of 13 beetle-plant exemplar pairs and α is a
magnification parameter to be estimated empirically
which describes the relative importance of exemplar
typicality.

In this model, we require a measure of how typical
of a conceptual category an exemplar is (i.e. a mea-
sure of how good a member of a category a partic-
ular category instance is). In our model, we use the
Generalized Context Model (GCM) to derive mea-
sures of exemplar typicality. The GCM is a success-
ful model of category learning that implements an an
exemplar-based account of how people make judg-
ments of category membership in a category learn-
ing task. The GCM computes the probability Pr of
an exemplar e belonging in a category C as a func-
tion of pairwise exemplar similarity according to:

Pr(e, C) =

∑
i∈C

sim(e, i)∑
i∈U

sim(e, i)

where U denotes the set of all exemplars in mem-
ory and sim(e, i) is a measure of similarity between
exemplars e and i. Similarity between exemplars is
in turn defined as a negative-exponential transforma-
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tion of distance:

sim(i, j) = e−cdist(i,j) (1)

where c is a free parameter, corresponding to how
quickly similarity between the exemplars diminishes
as a function of their distance. The distance between
two exemplars is usually computed as the city-block
metric summed over the dimensions of the exem-
plars, with each term weighted by empirically esti-
mated weighting parameters constrained to sum to
one. According to the GCM, the probability that
a given exemplar belongs to a given category in-
creases as the average similarity between the exem-
plar and the exemplars of the category increases; in
other words, as it becomes a more typical member
of the category. In our model, we use the proba-
bility scores produced by the GCM as a means for
computing concept typicality (although other meth-
ods for measuring typicality could have been used).

We compared the relation vector outputted by the
model for the 16 possible compounds to the rela-
tion vectors derived from participants’ ratings in the
compound transfer phase of the experiment. The
agreement between the model and the data was high
across the three relations (for Relation 1, r = 0.84,
p < 0.01; for Relation 2, r = 0.90, p < 0.01; for
Relation 3, r = 0.87, p < 0.01), using only one free
parameter, α, to fit the data2.

3 Conclusions

The empirical findings we have described in this pa-
per have several important implications. Firstly, the
findings have implications for relation-based theo-
ries. In particular, the finding that only beetle exem-
plars tended to influence relation selection suggest
that factors other than relation frequency are rele-
vant to the interpretation process (since the beetle
and plants in our experiment were identical in their
degree of association with relations). Complex inter-
actions between concepts and relations (e.g. agency
in the EATS(AGENT,OBJECT) relation) is informa-
tion that is not possible to capture using a taxonomic
approach to relation meaning.

Secondly, the fact that participants could learn to
identify the relations between exemplars and also

2In the GCM, c was set equal to 1 and the three dimensional
weights in the distance calculation were set equal to 1/3

transfer that knowledge to a task involving com-
pounds has implications for concept-based theories
of compound comprehension. No concept-based
theory of conceptual combination has ever adopted
an exemplar approach to concept meaning; mod-
els based on concept-focused theories tend to rep-
resent concepts as frames or lists of predicates. Our
approach suggests an exemplar representation is a
viable alternative. Also, distributional knowledge
about relations forms a natural component of an ex-
emplar representation of concepts, as different con-
cept instances will occur with instances of other con-
cepts with varying degrees of frequency. Given the
success of our model, assuming an exemplar repre-
sentation of concept semantics would seen to offer a
natural way of incorporating both information about
concept features and information about relation dis-
tribution into a single theory.
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