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Abstract 
In this paper, we present Espresso, a weakly-supervised iterative algorithm combined with a 
web-based knowledge expansion technique, for extracting binary semantic relations. Given a 
small set of seed instances for a particular relation, the system learns lexical patterns, applies 
them to extract new instances, and then uses the Web to filter and expand the instances. 
Preliminary experiments show that Espresso extracts highly precise lists of a wide variety of 
semantic relations when compared with two state of the art systems. 

1. Introduction 
Recent attention to knowledge-rich problems such as question answering [18] and textual 
entailment [10] has encouraged Natural Language Processing (NLP) researchers to develop 
algorithms for automatically harvesting shallow semantic resources. With seemingly endless 
amounts of textual data at our disposal, we have a tremendous opportunity to automatically 
grow semantic term banks and ontological resources. Methods must be accurate, adaptable 
and scalable to the varying sizes of domain corpora (e.g., textbooks vs. World Wide Web), 
and independent or weakly dependent on human supervision. 

In this paper we present Espresso, a novel bootstrapping algorithm for automatically 
harvesting semantic relations, aiming at effectively supporting NLP applications, 
emphasizing two major points that have been partially neglected by previous systems: 
generality and weak supervision. 

From the one side, Espresso is intended as a general-purpose system able to extract a wide 
variety of binary semantic relations, from the classical is-a and part-of relations, to more 
specific and domain oriented ones like chemical reactants in a chemistry domain and position 
succession in political texts. The system architecture is designed with generality in mind, 
avoiding any relation-specific inference technique. Indeed, for each semantic relation, the 
system builds specific lexical patterns inferred from textual corpora. 

From the other side, Espresso requires only weak human supervision. In order to start the 
extraction process, a user provides only a small set of seed instances of a target relation (e.g. 
Italy-country and Canada-country for the is-a relation.) In our experience, a handful of seed 
instances, in general, is sufficient for large corpora while for smaller corpora, a slightly larger 
set is required. To guarantee weakest supervision, Espresso combines its bootstrapping 
approach with a web-based knowledge expansion technique and linguistic analysis, 
exploiting the seeds as much as possible. 



2. Relevant Work 
To date, most research on lexical relation harvesting has focused on is-a and part-of relations. 
Approaches fall into two main categories: pattern- and clustering-based. 

Most common are pattern-based approaches. Hearst [12] pioneered using patterns to extract 
hyponym (is-a) relations. Manually building three lexico-syntactic patterns, Hearst sketched a 
bootstrapping algorithm to learn more patterns from instances, which has served as the model 
for most subsequent pattern-based algorithms. 

Berland and Charniak [1] propose a system for part-of relation extraction, based on the 
Hearst approach [12]. Seed instances are used to infer linguistic patterns that, in turn, are used 
to extract new instances, ranked according to various statistical measures. While this study 
introduces statistical measures to evaluate instance reliability, it remains vulnerable to data 
sparseness and has the limitation of taking into consideration only one-word terms. 

Improving upon Berland and Charniak [1], Girju et al. [11] employ machine learning 
algorithms and WordNet [8] to disambiguate part-of generic patterns, like [whole-NP’s part-
NP]. This study is the first extensive attempt to solve the problem of generic relational 
patterns, that is, those expressive patterns that have high recall while suffering low precision, 
as they subsume a large set of instances. In order to discard incorrect instances, Girju et al. 
learn WordNet-based selectional restrictions, like [whole-NP(scene#4)’s part-NP(movie#1)]. 
While making huge grounds on improving precision/recall, the system requires heavy 
supervision through manual semantic annotations. 

Ravichandran and Hovy [20] focus on efficiency issues for scaling relation extraction to 
terabytes of data. A simple and effective algorithm is proposed to infer surface patterns from 
a small set of instance seeds by extracting all substrings relating seeds in corpus sentences. 
The frequencies of the substrings in the corpus are then used to retain the best patterns. The 
approach gives good results on specific relations such as birthdates, however it has low 
precision on generic ones like is-a and part-of. Pantel et al. [17] proposed a similar, highly 
scalable approach, based on an edit-distance technique, to learn lexico-POS patterns, showing 
both good performances and efficiency. Espresso uses a similar approach to infer patterns, 
but we then apply refining techniques to deal with various types of relations. 

Other pattern-based algorithms include Riloff and Shepherd [21], who used a semi-automatic 
method for discovering similar words using a few seed examples by using pattern-based 
techniques and human supervision, KnowItAll [7] that performs large-scale extraction of 
facts from the Web, Mann [15] and Fleischman et al. [9] who used part of speech patterns to 
extract a subset of is-a relations involving proper nouns, and Downey et al. [6] who 
formalized the problem of relation extraction in a coherent and effective combinatorial model 
that is shown to outperform previous probabilistic frameworks. 

Clustering approaches to relation extraction are less common and have insofar been applied 
only to is-a extraction. These methods employ clustering algorithms to group words 
according to their meanings in text, label the clusters using its members’ lexical or syntactic 
dependencies, and then extract an is-a relation between each cluster member and the cluster 
label. Caraballo [3] proposed the first attempt, which used conjunction and apposition 
features to build noun clusters. Recently, Pantel and Ravichandran [16] extended this 
approach by making use of all syntactic dependency features for each noun. The advantage of 
clustering approaches is that they permit algorithms to identify is-a relations that do not 
explicitly appear in text, however they generally fail to produce coherent clusters from fewer 
than 100 million words; hence they are unreliable for small corpora. 



3. The Espresso Algorithm 
The Espresso algorithm is based on a similar framework to the one adopted in [12]. For a 
specific semantic binary relation (e.g., is-a), the algorithm requires as input a small set of 
seed instances Is and a corpus C. An instance is a pair of terms x and y governed by the 
relation at hand (e.g., Pablo Picasso is-a artist). Starting from these seeds, the algorithm 
begins a four-phase loop. In the first phase, the algorithm infers a set of patterns P that 
captures as many of the seed instances as possible in C. In the second phase, we define a 
reliability measure to select the best set of patterns P'⊆P. In phase three, the patterns in P' are 
used to extract a set of instances I. Finally, in phase four, Espresso scores each instance and 
then selects the best instances I' as input seeds for the next iteration. The algorithm terminates 
when a predefined stopping condition is met (for our preliminary experiments, the stopping 
condition is set according to the size of the corpus). For each induced pattern p and instance i, 
the information theoretic scores, rπ(p) and rι(i) respectively, aim to express their reliability. 

Below, Sections 3.2–3.5 describe in detail these different phases of Espresso. 

3.1. Term definition 
Before one can extract relation instances from a corpus, it is necessary to define a 
tokenization procedure for extracting terms. Terms are commonly defined as surface 
representations of stable and key domain concepts [19]. Defining regular expressions over 
POS-tagged corpora is the most commonly used technique to both define and extract terms. 
We adopt a slightly modified version of the term definition given in [13], as it is one of the 
most commonly used in the literature: 

 ((Adj|Noun)+|((Adj|Noun)*(NounPrep)?)(Adj|Noun)*)Noun 

We operationally extend the definition of Adj to include present and past participles as most 
noun phrases composed of them are usually intended as terms (e.g., boiling point). Thus, 
unlike many approaches for automatic relation extraction, we allow complex multi-word 
terms as anchor points. Hence, we can capture relations between complex terms, such as 
“record of a criminal conviction” part-of “FBI report”. 

3.2. Phase 1: Pattern discovery 
The pattern discovery phase takes as input a set of instances I' and produces as output a set of 
lexical patterns P. For the first iteration I' = Is, the set of initial seeds. In order to induce P, we 
apply a slight modification to the approach presented in [20]. For each input instance i = {x, 
y}, we first retrieve all sentences Sx,y containing the two terms x and y. Sentences are then 
generalized into a set of new sentences SGx,y by replacing all terminological expressions by a 
terminological label (TR). For example: 

 “Because/IN HF/NNP is/VBZ a/DT weak/JJ acid/NN and/CC x is/VBZ a/DT y” 

is generalized as: 

 “Because/IN TR is/VBZ a/DT TR and/CC x is/VBZ a/DT y” 

All substrings linking terms x and y are then extracted from the set SGx,y, and overall 
frequencies are computed. The most frequent substrings then represent the set of new patterns 
P, where the frequency cutoff is experimentally set. Term generalization is particularly useful 
for small corpora, where generalization is vital to ease the data sparseness. However, the 
generalized patterns are naturally less precise. Hence, when dealing with bigger corpora, the 



system allows the use of Sx,y∪SGx,y in order to extract substrings. For our experiments, we 
used the set SGx,y . 

3.3. Phase 2: Pattern filtering 
In this phase, Espresso selects among the patterns P those that are most reliable. Intuitively, a 
reliable pattern is one that is both highly precise and one that extracts many instances. The 
recall of a pattern p can be approximated by the fraction of input instances in I' that are 
extracted by p. Since it is difficult at run-time to estimate the precision of a pattern, we are 
weary of keeping patterns that generate many instances (i.e., patterns that generate high recall 
but potentially disastrous precision). We thus prefer patterns that are highly associated with 
the input patterns I'. Pointwise mutual information [4] is a commonly used metric for 
measuring the strength of association between two events x and y: 
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We define the reliability of a pattern p, rπ(p), as its average strength of association across 
each input instance i in I', weighted by the reliability of each instance i: 
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where rι(i) is the reliability of instance i (defined in Section 3.5) and maxpmi is the maximum 
pointwise mutual information between all patterns and all instances. rπ(p) ranges from [0,1]. 
The reliability of the manually supplied seed instances are rι(i) = 1. The pointwise mutual in-
formation between instance i = {x, y} and pattern p is estimated using the following formula: 
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where |x, p, y| is the frequency of pattern p instantiated with terms x and y and where the 
asterisk (*) represents a wildcard. A well-known problem is that pointwise mutual 
information is biased towards infrequent events. To address this, we multiply pmi(i, p) with 
the discounting factor suggested in [16]. 

The set of highest n scoring patterns P', according to rπ(p), are then selected and retained for 
the next phase, where n is the number of patterns of the previous iteration incremented by 1. 
In general, we expect that the set of patterns is formed by those of the previous iteration plus 
a new one. Yet, new statistical evidence can lead the algorithm to discard a pattern that was 
previously discovered. 

Moreover, to further discourage too generic patterns that might have low precision, a 
threshold t is set for the number of instances that a pattern retrieves. Patterns firing more than 
t instances are then discarded, no matter what their score is. In this paper, we experimentally 
set t to a value dependent on the size of the corpus. In future work, this parameter can be 
learned using a development corpus. 

Our reliability measure ensures that overly generic patterns, which may potentially have very 
low precision, are discarded. However, we are currently exploring a web-expansion algorithm 
that could both help detect generic patterns and also filter out their incorrect instances. We 
estimate the precision of the instance set generated by a new pattern p by looking at the 
number of these instances that are instantiated on the Web by previously accepted patterns. 



Generic patterns will generate instances with higher Web counts than incorrect patterns. 
Then, the Web counts can also be used to filter out incorrect instances from the generic 
patterns’ instantiations. More details are discussed in Section 4.3. 

3.4. Phase 3: Instance discovery 
In this phase, Espresso retrieves from the corpus the set of instances I that match any of the 
lexical patterns in P'. 

In small corpora, the number of extracted instances can be too low to guarantee sufficient 
statistical evidence for the pattern discovery phase of the next iteration. In such cases, the 
system enters a web expansion phase, in which new instances for the given patterns are 
retrieved from the Web, using the Google search engine. Specifically, for each instance i∈ I, 
the system creates a set of queries, using each pattern in P' with its y term instantiated with i’s 
y term. For example, given the instance “Italy ; country” and the pattern [Y such as X] , the 
resulting Google query will be “country such as *”. New instances are then created from the 
retrieved Web results (e.g. “Canada ; country”) and added to I. We are currently exploring 
filtering mechanisms to avoid retrieving too much noise. 

Moreover, to cope with data sparsity, a syntactic expansion phase is also carried out. A set of 
new instances is created for each instance i∈ I by extracting sub-terminological expressions 
from x corresponding to the syntactic head of terms. For example, expanding the relation 
“new record of a criminal conviction” part-of “FBI report”, the following new instances are 
obtained: “new record” part-of “FBI report”, and “record” part-of “FBI report”. 

3.5. Phase 4: Instance filtering 
Estimating the reliability of an instance is similar to estimating the reliability of a pattern. 
Intuitively, a reliable instance is one that is highly associated with as many reliable patterns 
as possible (i.e., we have more confidence in an instance when multiple reliable patterns 
instantiate it.) Hence, analogous to our pattern reliability measure in Section 3.3, we define 
the reliability of an instance i, rι(i), as: 

 ( )
( )

P

prpipmi

ir Pp pmi

′

∗

=
∑

′∈
π

ι

max
),(

 

where rπ(p) is the reliability of pattern p (defined in Section 3.3) and maxpmi is the maximum 
pointwise mutual information between all patterns and all instances, as in Section 3.3. 

Espresso finally selects the highest scoring m instances, I', and retains them as input for the 
subsequent iteration. In this paper, we experimentally set m = 200. 

4. Experimental Results 

4.1. Experimental Setup 
In this section, we present a preliminary comparison of Espresso with two state of the art 
systems on the task of extracting various semantic relations. 

4.1.1. Datasets 
We perform our experiments using the following two datasets: 



 TREC-9: This dataset consists of a sample of articles from the Aquaint (TREC-9) 
newswire text collection. The sample consists of 5,951,432 words extracted from the 
following data files: AP890101 – AP890131, AP890201 – AP890228, and AP890310 
– AP890319. 

 CHEM: This small dataset of 313,590 words consists of a college level textbook of 
introductory chemistry [2]. 

We preprocess the corpora using the Alembic Workbench POS-tagger [5]. 

4.1.2. Systems 
We compare the results of Espresso with the following two state of the art extraction 
systems: 

 RH02: This algorithm by Ravichandran and Hovy [20] learns lexical extraction 
patterns from a set of seed instances of a particular relation (see Section 2.) 

 PR04: This is-a extraction algorithm from Pantel and Ravichandran [16] first 
automatically induces concepts (clusters) from a raw corpus, names the concepts, and 
then extracts an is-a relation between each cluster member and its cluster label. For 
each cluster member, the system may generate multiple possible is-a relations, but in 
this evaluation we only keep the highest scoring one. To apply this algorithm, both 
datasets were first analyzed using the Minipar parser [14]. 

 ESP: This is the algorithm described in this paper (details in Section 3). 

4.1.3. Semantic Relations 
Espresso is designed to extract various semantic relations exemplified by a given small set of 
seed instances. For our preliminary evaluation, we consider the standard is-a and part-of 
relations as well as three novel relations: 

 succession: This relation indicates that one proper noun succeeds another in a position 
or title. For example, George Bush succeeded Bill Clinton and Pope Benedict XVI 
succeeded Pope John Paul II. We evaluate this relation on the TREC-9 corpus. 

 reaction: This relation occurs between chemical elements/molecules that can be 
combined in a chemical reaction. For example, hydrogen gas reacts-with oxygen gas 
and zinc reacts-with hydrochloric acid. We evaluate this relation on the CHEM 
corpus. 

 production: This relation occurs when a process or element/object produces a result. 
For example, ammonia produces nitric oxide. We evaluate this relation on the CHEM 
corpus. 

For each semantic relation, we manually extracted a set of seed examples. The seeds were 
used for both Espresso as well as RH021. Table 1 lists a sample of the seeds as well as sample 
outputs from Espresso. 

4.2. Precision and Recall 
We implemented each of the three systems outlined in Section 4.1.2 and applied them to the 
TREC and CHEM datasets. For each output set, per relation, we evaluate the precision of the 
system by extracting a random sample of instances (50 for the TREC corpus and 20 for the 
                                                 
1 PR04 does not require any seeds. 



CHEM corpus) and evaluating their quality manually using one human judge2. For each 
instance, the judge may assign a score of 1 for correct, 0 for incorrect, and ½ for partially 
correct. Example instances that were judged partially correct include “analyst is-a manager” 
and “pilot is-a teacher”. The precision for a given set of relation instances is the sum of the 
judge’s scores divided by the number of instances. 

Although knowing the total number of instances of a particular relation in any non-trivial 
corpus is impossible, it is possible to compute the recall of a system relative to another 
system’s recall. The recall of a system A, RA, is given by the following formula: 

 C
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where CA is the number of correct instances of a particular relation extracted by A and C is 
the total number of correct instances in the corpus. Following [17], we define the relative 
recall of system A given system B, RA|B, as: 
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Using the precision estimates, PA, from our precision experiments, we can estimate CA ≈ PA × 
|A|, where A is the total number of instances of a particular relation discovered by system A. 
                                                 
2 In future work, we will perform this evaluation using multiple judges in order to obtain confidence bounds and 
agreement scores. 

Table 1. Sample seeds used for each semantic relation and sample outputs from Espresso. The 
number in the parentheses for each relation denotes the total number of seeds. 

  SEEDS ESP 

Is-a (12) 

wheat :: crop 
George Wendt :: star 
Miami :: city 
shark :: predator 

Picasso :: artist 
tax :: charge 
drug dealers :: felons 
Italy :: country 

Part-Of (12) 

leader :: panel 
city :: region 
plastic :: explosive 
United States :: alliance 

shield :: nuclear missile 
biblical quotations :: book 
trees :: land 
material :: FBI report 

T
R
E
C
9 

Succession (12) 

Khrushchev :: Stalin 
Carla Hills :: Yeutter 
George Bush :: Ronald Reagan 
Julio Barbosa de Aquino :: Mendes 

Ford :: Nixon 
Setrakian :: John Griesemer 
Camero Cardiel :: Camacho 
Susan Weiss :: editor 

Is-a (12) 

NaCl :: ionic compounds 
diborane :: substance 
nitrogen :: element 
gold :: precious metal 

Na :: element 
protein :: biopolymer 
HCl :: strong acid 
electromagnetic radiation :: energy 

Part-Of (12) 

ion :: matter 
oxygen :: water 
light particle :: gas 
element :: substance 

oxygen :: air 
powdered zinc metal :: battery 
atom :: molecule 
ethylene glycol :: automotive antifreeze 

Reaction (13) 

magnesium :: oxygen 
hydrazine :: water 
aluminum metal :: oxygen 
lithium metal :: fluorine gas 

hydrogen :: oxygen 
Ni :: HCl 
carbon dioxide :: methane 
boron :: fluorine 

C
H
E
M 

Production (14) 

bright flame :: flares 
hydrogen :: solid metal hydrides 
ammonia :: nitric oxide 
copper :: brown gas 

electron :: ions 
glycerin :: nitroglycerin 
kidneys :: kidney stones 
ions :: charge 

 



Table 8. System performance on the production
relation on the CHEM dataset. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 197 57.5% 0.80 

ESP 196 72.5% 1.00 
* Precision estimated from 20 randomly sampled instances. 
† Relative recall is given in relation to ESP. 

Tables 2 – 8 reports the total number of 
instances, precision, and relative recall of 
each system on the TREC-9 and CHEM 
corpora. The relative recall is always given in 
relation to the Espresso system. For example, 
in Table 2, RH02 has a relative recall of 5.31 
with Espresso, which means that the RH02 
system output 5.31 times more correct 
relations than Espresso (at a cost of much 
lower precision). Similarly, PR04 has a relative recall of 0.23 with Espresso, which means 
that PR04 outputs 4.35 fewer correct relations than Espresso (also with a smaller precision). 

4.3. Discussion 
Experimental results, for all relations and the two different corpus sizes, show that Espresso 
greatly outperforms the other two methods on precision. However, Espresso fails to match 
the recall level of RH02 in all but the experiment on the production relation. Indeed, the 
filtering of unreliable patterns and instances during the bootstrapping algorithm not only 
discards the patterns that are unrelated to the actual relation, but also patterns that are too 
generic and ambiguous – hence resulting in a loss of recall. 

As underlined in Section 3.2, the ambiguity of generic patterns often introduces much noise 
in the system (e.g, the pattern [X of Y] can ambiguously refer to a part-of, is-a or possession 

Table 2. System performance on the is-a
relation on the TREC-9 dataset. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 57,525 28.0% 5.31 

PR04 1,504 47.0% 0.23 

ESP 4,154 73.0% 1.00 
* Precision estimated from 50 randomly sampled instances. 
† Relative recall is given in relation to ESP. 

Table 3. System performance on the is-a
relation on the CHEM dataset. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 2556 25.0% 3.76 

PR04 108 40.0% 0.25 

ESP 200 85.0% 1.00 
* Precision estimated from 20 randomly sampled instances. 
† Relative recall is given in relation to ESP. 

Table 4. System performance on the part-of
relation on the TREC-9 dataset. 

SYSTEM INSTANCES PRECISION* REL RECALL†

RH02 12,828 35.0% 42.52 

ESP 132 80.0% 1.00 
* Precision estimated from 50 randomly sampled instances. 
† Relative recall is given in relation to ESP. 

Table 5. System performance on the part-of
relation on the CHEM dataset. 

SYSTEM INSTANCES PRECISION* REL RECALL†

RH02 11,582 33.8% 58.78 

ESP 111 60.0% 1.00 
* Precision estimated from 20 randomly sampled instances. 
† Relative recall is given in relation to ESP. 

Table 6. System performance on the succession
relation on the TREC-9 dataset. 

SYSTEM INSTANCES PRECISION* REL RECALL†

RH02 49,798 2.0% 36.96 

ESP 55 49.0% 1.00 
* Precision estimated from 50 randomly sampled instances. 
† Relative recall is given in relation to ESP. 

Table 7. System performance on the reaction
relation on the CHEM dataset. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 6,083 30% 53.67 

ESP 40 85% 1.00 
* Precision estimated from 20 randomly sampled instances. 
† Relative recall is given in relation to ESP. 



relation). However, generic patterns, while having low precision, yield a high recall, as also 
reported by [11]. We ran an experiment on the reaction relation, retaining the generic patterns 
produced during Espresso’s selection process. As expected, we obtained 1923 instances 
instead of the 40 reported in Table 7, but precision dropped from 85% to 30%. 

The challenge, then, is to harness the expressive power of the generic patterns whilst 
maintaining the precision of Espresso. We propose the following solution that helps both in 
distinguishing generic patterns from incorrect patterns and also in filtering incorrect instances 
produced by generic patterns. Unlike Girju et al. [11] that propose a highly supervised 
machine learning approach based on selectional restriction, ours is an unsupervised method 
based on statistical evidence obtained from the Web. At a given iteration in Espresso, the 
intuition behind our solution is that the Web is large enough that correct instances will be 
instantiated by many of the currently accepted patterns P. Hence, we can distinguish between 
generic patterns and incorrect patterns by inspecting the relative frequency distribution of 
their instances using the patterns in P. More formally, given an instance i produced by a 
generic or incorrect pattern, we count how many times i instantiates on the Web with every 
pattern in P, using Google. The instance i is then considered correct if its web count surpasses 
a given threshold. The pattern in question is accepted as a generic pattern if a sufficient 
number of its instances are considered correct, otherwise it is rejected as an incorrect pattern. 

Although our results in Section 4.2 do not include this algorithm, we performed a small 
experiment by adding an a-posteriori generic pattern recovery phase to Espresso. We tested 
the 7,634 instances extracted by the generic pattern [X of Y] on the CHEM corpus for the 
part-of relation. We randomly sample 200 of these instances and then queried Google for 
these instances using the pattern [X consists of Y]. Manual evaluation of the 25 instances that 
occurred at least once on Google showed 50% precision. Adding these instances to the results 
from Table 5 decreases the system precision from 60% to 51%, but dramatically increases 
Espresso’s recall by a factor of 8.16. Furthermore, it is important to note that there are several 
other generic patterns, like [X’s Y], from which we expect a similar precision of 50% with a 
continual increase of recall. This is a very exciting avenue of further investigation. 

5. Conclusions 
We proposed a weakly supervised bootstrapping algorithm, called Espresso, for 
automatically extracting a wide variety of binary semantic relations from raw text. Given a 
small set of seed instances for a particular relation, the system learns reliable lexical patterns, 
applies them to extract new instances ranked by an information theoretic definition of 
reliability, and then uses the Web to filter and expand the instances. 

There are many avenues of future work. Preliminary results show that Espresso generates 
highly precise relations, but at the expense of lower recall. As mentioned above in Section 
4.3, we are working on improving system recall with a web-based method to identify generic 
patterns and filter their instances. Early results appear very promising. We also plan to 
investigate the use of WordNet selectional constraints, as proposed by [11]. We expect here 
that negative instances will play a key role in determining the selectional restriction on 
generic patterns. 

Espresso is the first system, to our knowledge, to emphasize both minimal supervision and 
generality, both in identification of a wide variety of relations and in extensibility to various 
corpus sizes. It remains to be seen whether one could enrich existing ontologies with relations 
harvested by Espresso, and if these relations can benefit NLP applications such as QA. 
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