
Workshop on TextGraphs, at HLT-NAACL 2006, pages 1–8,
New York City, June 2006. c©2006 Association for Computational Linguistics

A Graphical Framework for Contextual Search and Name Disambiguation
in Email

Einat Minkov
Language Technologies Inst.
Carnegie Mellon University

Pittsburgh, PA 15213
einatm@cs.cmu.edu

William W. Cohen
Machine Learning Dept.

Carnegie Mellon University
Pittsburgh, PA 15213
wcohen@cs.cmu.edu

Andrew Y. Ng
Computer Science Dept.

Stanford University
Stanford, CA 94305

ang@cs.stanford.edu

Abstract

Similarity measures for text have histor-
ically been an important tool for solving
information retrieval problems. In this pa-
per we consider extended similarity met-
rics for documents and other objects em-
bedded in graphs, facilitated via a lazy
graph walk. We provide a detailed in-
stantiation of this framework for email
data, where content, social networks and
a timeline are integrated in a structural
graph. The suggested framework is evalu-
ated for the task of disambiguating names
in email documents. We show that rerank-
ing schemes based on the graph-walk sim-
ilarity measures often outperform base-
line methods, and that further improve-
ments can be obtained by use of appropri-
ate learning methods.

1 Introduction

Many tasks in information retrieval can be per-
formed by clever application of textual similarity
metrics. In particular, The canonical IR problem of
ad hoc retrieval is often formulated as the task of
finding documents “similar to” a query. In modern
IR settings, however, documents are usually not iso-
lated objects: instead, they are frequently connected
to other objects, via hyperlinks or meta-data. (An
email message, for instance, is connected via header
information to other emails in the same thread and
also to the recipient’s social network.) Thus it is

important to understand how text-based document
similarity measures can be extended to documents
embedded in complex structural settings.

Our similarity metric is based on a lazy graph
walk, and is closely related to the well-known
PageRank algorithm (Page et al., 1998). PageRank
and its variants are based on a graph walk of infi-
nite length with random resets. In alazygraph walk,
there is a fixed probability of halting the walk at each
step. In previous work (Toutanova et al., 2004), lazy
walks over graphs were used for estimating word
dependency distributions: in this case, the graph
was one constructed especially for this task, and the
edges in the graph represented different flavors of
word-to-word similarity. Other recent papers have
also used walks over graphs for query expansion (Xi
et al., 2005; Collins-Thompson and Callan, 2005).
In these tasks, the walk propagates similarity to a
start node through edges in the graph—incidentally
accumulating evidence of similarity over multiple
connecting paths.

In contrast to this previous work, we consider
schemes for propogating similarity across a graph
that naturally models a structured dataset like an
email corpus: entities correspond to objects includ-
ing email addresses and dates, (as well as the usual
types of documents and terms), and edges corre-
spond to relations likesent-by. We view the simi-
larity metric as atool for performing searchacross
this structured dataset, in which related entities that
are not directly similar to a query can be reached via
multi-step graph walk.

In this paper, we formulate and evaluate this ex-
tended similarity metric. The principal problem we

1

consider isdisambiguating personal names in email,
which we formulate as the task of retrieving the per-
son most related to a particular name mention. We
show that for this task, the graph-based approach im-
proves substantially over plausible baselines. After
retrieval, learning can be used to adjust the ranking
of retrieved names based on the edges in the paths
traversed to find these names, which leads to an ad-
ditional performance improvement. Name disam-
biguation is a particular application of the suggested
general framework, which is also applicable to any
real-world setting in which structural data is avail-
able as well as text.

This paper proceeds as follows. Sections 2 and
3 formalize the general framework and its instanti-
ation for email. Section 4 gives a short summary
of the learning approach. Section 5 includes experi-
mental evaluation, describing the corpora and results
for the person name disambiguation task. The paper
concludes with a review of related work, summary
and future directions.

2 Email as a Graph

A graphG consists of a set of nodes, and a set of la-
beled directed edges. Nodes will be denoted by let-
ters likex, y, or z, and we will denote an edge from

x to y with label ` asx
`

−→ y. Every nodex has
a type, denotedT (x), and we will assume that there
are a fixed set of possible types. We will assume for
convenience that there are no edges from a node to
itself (this assumption can be easily relaxed.)

We will use these graphs to represent real-world
data. Each node represents some real-world entity,

and each edgex `
−→ y asserts that some binary

relation `(x, y) holds. The entity types used here
to represent an email corpus are shown in the left-
most column of Table 1. They include the tradi-
tional types in information retrieval systems, namely
file andterm. In addition, however, they include the
typesperson, email-addressanddate. These enti-
ties are constructed from a collection of email mes-
sages in the obvious way–for example, a recipient of
“Einat Minkov <einat@cs.cmu.edu>” indicates the
existence of a person node “Einat Minkov” and an
email-address node “einat@cs.cmu.edu”. (We as-
sume here that person names are unique identifiers.)

The graph edges are directed. We will assume

that edge labels determine the source and target

node types: i.e., ifx `
−→ z and w

`
−→ y then

T (w) = T (x) andT (y) = T (z). However, mul-
tiple relations can hold between any particular pair

of nodes types: for instance, it could be thatx
`

−→ y

or x
`′

−→ y, where` 6= `′. (For instance, an email
messagex could besent-fromy, or sent-toy.) Note
also that edges need not denote functional relations:
for a givenx and`, there may be many distinct nodes

y such thatx `
−→ y. For instance, for a filex, there

are many distinct termsy such thatx has-term
−→ y holds.

In representing email, we also create aninverse
label `−1 for each edge label (relation)`. Note that
this means that the graph will definitely be cyclic.
Table 1 gives the full set of relations used in our
email represention scheme.

3 Graph Similarity

3.1 Edge weights

Similarity between two nodes is defined by a lazy
walk process, and a walk on the graph is controlled
by a small set of parametersΘ. To walk away from
a nodex, one first picks an edge label`; then, given

`, one picks a nodey such thatx `
−→ y. We assume

that the probability of picking the label̀ depends
only on the typeT (x) of the nodex, i.e., that the
outgoing probability from nodex of following an
edge typè is:

Pr(` | x) = Pr(` | Ti) ≡ θ`,Ti

Let STi
be the set of possible labels for an edge leav-

ing a node of typeTi. We require that the weights
over all outgoing edge types given the source node
type form a probability distribution, i.e., that

∑

`∈STi

θ`,Ti
= 1

In this paper, we will assume that once` is picked,
y is chosen uniformly from the set of ally such that

x
`

−→ y. That is, the weight of an edge of typel
connecting source nodex to nodey is:

Pr(x
`

−→ y | `) =
θ`,Ti

| y : x
`

−→ y |

This assumption could easily be generalized, how-
ever: for instance, for the typeT (x) = file and

2

source type edge type target type
file sent-from person

sent-from-email email-address
sent-to person
sent-to-email email-address
date-of date
has-subject-term term
has-term term

person sent-from inv. file
sent-to−1 file
alias email-address
has-term term

email-address sent-to-email−1 file
sent-from-email−1 file
alias-inverse person
is-email−1 term

term has-term−1 file
has subject-term−1 file
is-email email-address
has-term−1 person

date date-of−1 file

Table 1: Graph structure: Node and relation types

` = has-term, weights for termsy such thatx `
−→ y

might be distributed according to an appropriate lan-
guage model (Croft and Lafferty, 2003).

3.2 Graph walks

Conceptually, the edge weights above define the
probability of moving from a nodex to some other
nodey. At each step in a lazy graph walk, there
is also some probabilityγ of staying atx. Putting
these together, and denoting byMxy the probability
of being at nodey at timet + 1 given that one is at
x at timet in the walk, we define

Mxy =

{

(1 − γ)
∑

`
Pr(x

`
−→ y|`) · Pr(`|T (x)) x 6= y

γ x = y

If we associate nodes with integers, and makeM

a matrix indexed by nodes, then a walk ofk steps
can then be defined by matrix multiplication: specif-
ically, if V0 is some initial probability distribution
over nodes, then the distribution after ak-step walk
is proportional toVk = V0M

k. Larger values ofγ
increase the weight given to shorter paths between
x andy. In the experiments reported here, we con-
sider small values ofk, and this computation is car-
ried out directly using sparse-matrix multiplication
methods.1 If V0 gives probability 1 to some nodex0

1We have also explored an alternative approach based on
sampling; this method scales better but introduces some addi-
tional variance into the procedure, which is undesirable for ex-
perimentation.

and probability 0 to all other nodes, then the value
given toy in Vk can be interpreted as a similarity
measure betweenx andy.

In our framework, aquery is an initial distribu-
tion Vq over nodes, plus a desired output typeTout ,
and the answer is a list of nodesy of type Tout ,
ranked by their score in the distributionVk. For in-
stance, for an ordinaryad hocdocument retrieval
query (like “economic impact of recycling tires”)
would be an appropriate distributionVq over query
terms, withTout = file. ReplacingTout with person
would find the person most related to the query—
e.g., an email contact heavily associated with the
retread economics. ReplacingVq with a point dis-
tribution over a particular document would find the
people most closely associated with the given docu-
ment.

3.3 Relation to TF-IDF

It is interesting to view this framework in compar-
ison to more traditional IR methods. Suppose we
restrict ourselves to two types, terms and files, and
allow only in-file edges. Now consider an initial
query distributionVq which is uniform over the two
terms “the aardvark”. A one-step matrix multiplica-
tion will result in a distributionV1, which includes
file nodes. The common term “the” will spread
its probability mass into small fractions over many
file nodes, while the unusual term “aardvark” will
spread its weight over only a few files: hence the
effect will be similar to use of an IDF weighting
scheme.

4 Learning

As suggested by the comments above, this graph
framework could be used for many types of tasks,
and it is unlikely that a single set of parameter val-
ues will be best for all tasks. It is thus important to
consider the problem oflearninghow to better rank
graph nodes.

Previous researchers have described schemes for
adjusting the parametersθ using gradient descent-
like methods (Diligenti et al., 2005; Nie et al., 2005).
In this paper, we suggest an alternative approach of
learning to re-order an initial ranking. This rerank-
ing approach has been used in the past for meta-
search (Cohen et al., 1999) and also several natural-

3

language related tasks (Collins and Koo, 2005). The
advantage of reranking over parameter tuning is that
the learned classifier can take advantage of “global”
features that are not easily used in walk.

Note that node reranking, while can be used as
an alternative to weight manipulation, it is better
viewed as a complementary approach, as the tech-
niques can be naturally combined by first tuning the
parametersθ, and then reranking the result using a
classifier which exploits non-local features. This hy-
brid approach has been used successfully in the past
on tasks like parsing (Collins and Koo, 2005).

We here give a short overview of the reranking ap-
proach, that is described in detail elsewhere (Collins
and Koo, 2005). The reranking algorithm is pro-
vided with a training set containingn examples. Ex-
amplei (for 1 ≤ i ≤ n) includes a ranked list of
li nodes. Letwij be thejth node for examplei,
and letp(wij) be the probability assigned towij by
the graph walk. A candidate nodewij is represented
throughm features, which are computed bym fea-
ture functionsf1, . . . , fm. We will require that the
features be binary; this restriction allows a closed
form parameter update. Theranking functionfor
nodex is defined as:

F (x, ᾱ) = α0L(x) +
m

∑

k=1

αkfk(x)

whereL(x) = log(p(x)) andᾱ is a vector of real-
value parameters. Given a new test example, the out-
put of the model is the given node list re-ranked by
F (x, ᾱ).

To learn the parameter weightsᾱ, we use a boost-
ing method (Collins and Koo, 2005), which min-
imizes the following loss function on the training
data:

ExpLoss(ᾱ) =
∑

i

li
∑

j=2

e−(F (xi,1,ᾱ)−F (xi,j ,ᾱ))

wherexi,1 is, without loss of generality, a correct
target node. The weights for the function are learned
with a boosting-like method, where in each itera-
tion the featurefk that has the most impact on the
loss function is chosen, andαk is modified. Closed
form formulas exist for calculating the optimal ad-
ditive updates and the impact per feature (Schapire
and Singer, 1999).

5 Evaluation

We experiment with three separate corpora.
TheCspacecorpus contains email messages col-

lected from a management course conducted at
Carnegie Mellon University in 1997 (Minkov et
al., 2005). In this course, MBA students, orga-
nized in teams of four to six members, ran simu-
lated companies in different market scenarios. The
corpus we used here includes the emails of all
teams over a period of four days. TheEnron cor-
pus is a collection of mail from the Enron cor-
pus that has been made available for the research
community (Klimt and Yang, 2004). Here, we
used the saved email of two different users.2 To
eliminate spam and news postings we removed
email files sent from email addresses with suf-
fix “.com” that are not Enron’s; widely distributed
email files (sent from “enron.announcement”, to
“all.employees@enron.com” etc.). Text from for-
warded messages, or replied-to messages were also
removed from the corpus.

Table 2 gives the size of each processed corpus,
and the number of nodes in the graph representation
of it. In deriving terms for the graph, terms were
Porter-stemmed and stop words were removed. The
processed Enron corpora are available from the first
author’s home page.

corpus Person set
files nodes train test

Cspace 821 6248 26 80
Sager-E 1632 9753 11 51
Shapiro-R 978 13174 11 49

Table 2: Corpora Details

5.1 Person Name Disambiguation

5.1.1 Task definition

Consider an email message containing a common
name like “Andrew”. Ideally an intelligent mailer
would, like the user, understand which person “An-
drew” refers to, and would rapidly perform tasks like
retrieving Andrew’s prefered email address or home
page. Resolving the referent of a person name is also
an important complement to the ability to perform
named entity extraction for tasks like social network
analysis or studies of social interaction in email.

2Specifially, we used the “alldocuments” folder, including
both incoming and outgoing files.

4

However, although the referent of the name is
unambiguous to the recipient of the email, it can
be non-trivial for an automated system to find out
which “Andrew” is indicated. Automatically de-
termining that “Andrew” refers to “Andrew Y. Ng”
and not “Andrew McCallum” (for instance) is espe-
cially difficult when an informal nickname is used,
or when the mentioned person does not appear in the
email header. As noted above, we model this prob-
lem as a search task: based on a name-mention in an
email messagem, we formulate query distribution
Vq, and then retrieve a ranked list ofpersonnodes.

5.1.2 Data preparation

Unfortunately, building a corpus for evaluating
this task is non-trivial, because (if trivial cases are
eliminated) determining a name’s referent is often
non-trivial for a human other than the intended re-
cipient. We evaluated this task using three labeled
datasets, as detailed in Table 2.

The Cspace corpus has been manually annotated
with personal names (Minkov et al., 2005). Addi-
tionally, with the corpus, there is a great deal of
information available about the composition of the
individual teams, the way the teams interact, and
the full names of the team members. Using this
extra information it is possible to manually resolve
name mentions. We collected 106 cases in which
single-token names were mentioned in the the body
of a message but did not match any name from the
header. Instances for which there was not suffi-
cient information to determine a unique person en-
tity were excluded from the example set. In addition
to names that refer to people that are simply not in
the header, the names in this corpus include people
that are in the email header, but cannot be matched
because they are referred to using:initials–this is
commonly done in the sign-off to an email;nick-
names, including common nicknames (e.g., “Dave”
for “David”), unusual nicknames (e.g., “Kai” for
“Keiko”); or American names adopted in place of
a foreign name (e.g., “Jenny” for “Qing”).

For Enron, two datasets were generated automat-
ically. We collected name mentions which corre-
spond uniquely a names that is in the email “Cc”
header line; then, to simulate a non-trivial matching
task, we eliminate the collected person name from
the email header. We also used a small dictionary of

16 common American nicknames to identify nick-
names that mapped uniquely to full person names
on the “Cc” header line.

For each dataset, some examples were picked ran-
domly and set aside for learning and evaluation pur-
poses.

initials nicknames other
Cspace 11.3% 54.7% 34.0%
Sager-E - 10.2% 89.8%
Shapiro-R - 15.0% 85.0%

Table 3: Person Name Disambiguation Datasets

5.2 Results for person name disambiguation

5.2.1 Evaluation details

All of the methods applied generate a ranked list
of person nodes, and there is exactly one correct an-
swer per example.3 Figure 1 gives results4 for two
of the datasets as a function of recall at rankk, up
to rank 10. Table 4 shows the mean average preci-
sion (MAP) of the ranked lists as well as accuracy,
which we define as the percentage of correct answers
at rank 1 (i.e., precision at rank 1.)

5.2.2 Baseline method

To our knowledge, there are no previously re-
ported experiments for this task on email data. As a
baseline, we apply a reasonably sophisticated string
matching method (Cohen et al., 2003). Each name
mention in question is matched against all of the per-
son names in the corpus. The similarity score be-
tween the name term and a person name is calculated
as the maximal Jaro similarity score (Cohen et al.,
2003) between the term and any single token of the
personal name (ranging between 0 to 1). In addition,
we incorporate a nickname dictionary5, such that if
the name term is a known nickname of a name, the
similarity score of that pair is set to 1.

The results are shown in Figure 1 and Table 4. As
can be seen, the baseline approach is substantially
less effective for the more informal Cspace dataset.
Recall that the Cspace corpus includes many cases
such as initials, and also nicknames that have no
literal resemblance to the person’s name (section

3If a ranking contains a block of items with the same score,
a node’s rank is counted as the average rank of the “block”.

4Results refer to test examples only.
5The same dictionary that was used for dataset generation.

5

5.1.2), which are not handled well by the string sim-
ilarity approach. For the Enron datasets, the base-
line approach perfoms generally better (Table 4). In
all the corpora there are many ambiguous instances,
e.g., common names like ”Dave” or “Andy” that
match many people with equal strength.

5.2.3 Graph walk methods

We perform two variants of graph walk, corre-
sponding to different methods of forming the query
distributionVq. Unless otherwise stated, we will use
a uniform weighting of labels—i.e.,θ`,T = 1/ST ;
γ = 1/2; and a walk of length 2.

In the first variant, we concentrate all the prob-
ability in the query distribution on the name term.
The column labeledterm gives the results of the
graph walk from this probability vector. Intuitively,
using this variant, the name term propagates its
weight to the files in which it appears. Then, weight
is propagated to person nodes which co-occur fre-
quently with these files. Note that in our graph
scheme there is a direct path between terms to per-
son names, so that they recieve weight as well.

As can be seen in the results, this leads to very
effective performance: e.g., it leads to 61.3% vs.
41.3% accuracy for the baseline approach on the
CSpace dataset. However, it does not handle am-
biguous terms as well as one would like, as the query
does not include any information of thecontextin
which the name occurred: the top-ranked answer for
ambiguous name terms (e.g., ”Dave”) will always
be the same person. To solve this problem, we also
used afile+term walk, in which the queryVq gives
equal weight to the name term node and the file in
which it appears.

We found that adding the file node toVq provides
useful context for ambiguous instances—e.g., the
correct ”David” would in general be ranked higher
than other persons with this same name. On the
other hand, though, adding the file node reduces
the the contribution of the term node. Although the
MAP and accuracy are decreased, file+term has bet-
ter performance than term at higher recall levels, as
can be seen in Figure 1.

5.2.4 Reranking the output of a walk

We now examine reranking as a technique for im-
proving the results. After some preliminary exper-

imentation, we adopted the following types of fea-
turesf for a nodex. The set of features are fairly
generic. Edge unigram featuresindicate, for each
edge label̀ , whether̀ was used in reachingx from
Vq. Edge bigram featuresindicate, for each pair of
edge labels̀1, `2, whether̀ 1 and`2 were used (in
that order) in reachingx from Vq. Top edge bigram
featuresare similar but indicate if̀ 1, `2 were used
in one of the two highest-scoring paths betweenVq

andx (where the “score” of a path is the product of

Pr(y
`

−→ z) for all edges in the path.)

We believe that these features could all be com-
puted using dynamic programming methods. Cur-
rently, however, we compute features by using a
method we callpath unfolding, which is simi-
lar to theback-propagation through timealgorithm
(Haykin, 1994; Diligenti et al., 2005) used in train-
ing recurrent neural networks. Graph unfolding is
based on a backward breadth-first visit of the graph,
starting at the target node at time stepk, and expand-
ing the unfolded paths by one layer per each time
step. This procedure is more expensive, but offers
more flexibility in choosing alternative features, and
was useful in determining an optimal feature set.

In addition, we used for this task some addi-
tional problem-specific features. One feature indi-
cates whether the set of paths leading to a node orig-
inate from one or two nodes inVq. (We conjecture
that in the file+term walk, nodes are connected to
both the source term and file nodes are more rele-
vant comparing to nodes that are reached from the
file node or term node only.) We also form features
that indicate whether the given term is a nickname of
the person name, per the nicknames dictionary; and
whether the Jaro similarity score between the term
and the person name is above 0.8. This information
is similar to that used by the baseline method.

The results (for the test set, after training on the
train set) are shown in Table 4 and (for two represen-
tative cases) Figure 1. In each case the top 10 nodes
were reranked. Reranking substantially improves
performance, especially for the file+term walk. The
accuracy rate is higher than 75% across all datasets.
The features that were assigned the highest weights
by the re-ranker were the literal similarity features
and thesource countfeature.

6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
um

ul
at

iv
e

R
at

e
CSPACE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

C
um

ul
at

iv
e

R
at

e

Rank

SHAPIRO-R

baseline

term

term reranked

file+term

file+term re-ranked

Figure 1: Person name disambiguation results: Re-
call at rank k

6 Related Work

As noted above, the similarity measure we use is
based on graph-walk techniques which have been
adopted by many other researchers for several dif-
ferent tasks. In the information retrieval commu-
nity, infinite graph walks are prevalent for deter-
mining document centrality (e.g., (Page et al., 1998;
Diligenti et al., 2005; Kurland and Lee, 2005)). A
related venue of research is ofspreading activa-
tion over semantic or association networks, where
the underlying idea is to propagate activation from
source nodes via weighted links through the network
(Berger et al., 2004; Salton and Buckley, 1988).

The idea of representing structured data as a
graph is widespread in the data mining community,
which is mostly concerned with relational or semi-
structured data. Recently, the idea of PageRank

MAP Accuracy
Cspace
Baseline 49.0 41.3
Graph - term 72.6 61.3
Graph - file+term 66.3 48.8
Reranking - term 85.6 72.5
Reranking - file+term 89.0 83.8
Sager-E
Baseline 67.5 39.2
Graph - term 82.8 66.7
Graph - file+term 61.7 41.2
Reranking - term 83.2 68.6
Reranking - file+term 88.9 80.4
Shapiro-R
Baseline 60.8 38.8
Graph - term 84.1 63.3
Graph - file+term 56.5 38.8
Reranking - term 87.9 65.3
Reranking - file+term 85.5 77.6

Table 4: Person Name Disambiguation Results

has been applied to keyword search in structured
databases (Balmin et al., 2004). Analysis of inter-
object relationships has been suggested for entity
disambiguation for entities in a graph (Kalashnikov
et al., 2005), where edges are unlabelled. It has been
suggested to model similarity between objects in re-
lational data in terms of structural-context similarity
(Jeh and Widom, 2002).

We propose the use of learned re-ranking schemes
to improve performance of a lazy graph walk.
Earlier authors have considered instead using hill-
climbing approaches to adjust the parameters of a
graph-walk (Diligenti et al., 2005). We have not
compared directly with such approaches; prelimi-
nary experiments suggest that the performance gain
of such methods is limited, due to their inability to
exploit the global features we used here6. Related
research explores random walks for semi supervised
learning (Zhu et al., 2003; Zhou et al., 2005).

The task of person disambiguation has been stud-
ied in the field of social networks (e.g., (Malin et
al., 2005)). In particular, it has been suggested to
perform name disambiguation in email using traf-
fic information, as derived from the email headers
(Diehl et al., 2006). Our approach differs in that it
allows integration of email content and a timeline in
addition to social network information in a unified

6For instance, re-ranking using a set of simple locally-
computable features only modestly improved performance of
the “random” weight set for the CSpace threading task.

7

framework. In addition, we incorporate learning to
tune the system parameters automatically.

7 Conclusion

We have presented a scheme for representing a cor-
pus of email messages with a graph of typed entities,
and an extension of the traditional notions of docu-
ment similarity to documents embedded in a graph.
Using a boosting-based learning scheme to rerank
outputs based on graph-walk related, as well as other
domain-specific, features provides an additional per-
formance improvement. The final results are quite
strong: for the explored name disambiguation task,
the method yields MAP scores in the mid-to-upper
80’s. The person name identification task illustrates
a key advantage of our approach—that context can
be easily incorporated in entity disambiguation.

In future work, we plan to further explore the
scalability of the approach, and also ways of inte-
grating this approach with language-modeling ap-
proaches for document representation and retrieval.
An open question with regard to contextual (multi-
source) graph walk in this framework is whether it is
possible to further focus probability mass on nodes
that are reached from multiple source nodes. This
may prove beneficial for complex queries.

References
Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstanti-

nou. 2004. ObjectRank: Authority-based keyword search in
databases. InVLDB.

Helmut Berger, Michael Dittenbach, and Dieter Merkl. 2004.
An adaptive information retrieval system. based on associa-
tive networks. InAPCCM.

William W. Cohen, Robert E. Schapire, and Yoram Singer.
1999. Learning to order things.Journal of Artificial Intelli-
gence Research (JAIR), 10:243–270.

William W. Cohen, Pradeep Ravikumar, and Stephen Fienberg.
2003. A comparison of string distance metrics for name-
matching tasks. InIIWEB.

Michael Collins and Terry Koo. 2005. Discriminative rerank-
ing for natural language parsing.Computational Linguistics,
31(1):25–69.

Kevyn Collins-Thompson and Jamie Callan. 2005. Query ex-
pansion using random walk models. InCIKM.

W. Bruce Croft and John Lafferty. 2003.Language Modeling
for Information Retrieval. Springer.

Christopher P. Diehl, Lise Getoor, and Galileo Namata. 2006.
Name reference resolution in organizational email archives.
In SIAM.

Michelangelo Diligenti, Marco Gori, and Marco Maggini.
2005. Learning web page scores by error back-propagation.
In IJCAI.

Simon Haykin. 1994.Neural Networks. Macmillan College
Publishing Company.

Glen Jeh and Jennifer Widom. 2002. Simrank: A measure of
structural-context similarity. InSIGKDD.

Dmitri Kalashnikov, Sharad Mehrotra, and Zhaoqi Chen. 2005.
Exploiting relationship for domain independent data clean-
ing. In SIAM.

Brown Klimt and Yiming Yang. 2004. The enron corpus: A
new dataset for email classification research. InECML.

Oren Kurland and Lillian Lee. 2005. Pagerank without hyper-
links: Structural re-ranking using links induced by language
models. InSIGIR.

Bradely Malin, Edoardo M. Airoldi, and Kathleen M. Carley.
2005. A social network analysis model for name disam-
biguation in lists.Journal of Computational and Mathemat-
ical Organization Theory, 11(2).

Einat Minkov, Richard Wang, and William Cohen. 2005. Ex-
tracting personal names from emails: Applying named entity
recognition to informal text. InHLT-EMNLP.

Zaiqing Nie, Yuanzhi Zhang, Ji-Rong Wen, and Wei-Ying Ma.
2005. Object-level ranking: Bringing order to web objects.
In WWW.

Larry Page, Sergey Brin, R. Motwani, and T. Winograd. 1998.
The pagerank citation ranking: Bringing order to the web. In
Technical Report, Computer Science department, Stanford
University.

Gerard Salton and Chris Buckley. 1988. On the use of spread-
ing activation methods in automatic information retrieval. In
SIGIR.

Robert E. Schapire and Yoram Singer. 1999. Improved boost-
ing algorithms using confidence-rated predictions.Machine
Learning, 37(3):297–336.

Kristina Toutanova, Christopher D. Manning, and Andrew Y.
Ng. 2004. Learning random walk models for inducing word
dependency distributions. InICML.

Wensi Xi, Edward Allan Fox, Weiguo Patrick Fan, Benyu
Zhang, Zheng Chen, Jun Yan, and Dong Zhuang. 2005.
Simfusion: Measuring similarity using unified relationship
matrix. InSIGIR.

Dengyong Zhou, Bernhard Scholkopf, and Thomas Hofmann.
2005. Semi-supervised learning on directed graphs. In
NIPS.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. 2003.
Semi-supervised learning using gaussian fields and harmonic
functions. InICML.

8

