HLT-NAACL-2006

Computationally Hard
Problems and
Joint Inference In
Speech and Language
Processing

Proceedings of the Workshop

9 June 2006
New York City, New York, USA

Production and Manufacturing by
Omnipress Inc.

2600 Anderson Street

Madison, W1 53704

(©2006 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

Introduction

We are pleased to present the proceedings of the Workshop on Computationally Hard Problems and
Joint Inference in Speech and Language Processing, held at HLT/NAACL 2006 in New York City, New
York.

Recent work on ranking, sampling and other approximate solutions to natural language processing
problems indicate that researchers are coming back to the hard problems in speech and text, for which
efficient algorithms are not known to exist. In addition, there has been increasing interest in moving
away from systems that make chains of local decisions independently, and instead toward systems that
make multiple decisions jointly using global information. The goal of this workshop is to bring together
researchers working on NLP problems whose solutions are computationally hard—whether because the
problem is not well modeled by only local features, or because the problem is best solved in a joint,
rather than pipelined, manner.

We are grateful to the program committee for providing thoughtful and helpful reviews of the submitted
papers. We also thank our invited speakers, Jeff Bilmes, Chris Manning, Dan Roth, and Giorgio
Satta. Finally, we thank the organizers of the main HLT/NAACL 2006 conference, without which
this workshop would not be possible.

Ryan McDonald, Charles Sutton, Hal Da@mhl, Andrew McCallum, Jeff Bilmes, and Fernando Pereira
organizers

Invited Speakers:

Jeff Bilmes, University of Washington
Chris Manning, Stanford University
Dan Roth, University of lllinois
Giorgio Satta, University of Padua

Organizers:

Ryan McDonald, University of Pennsylvania

Charles Sutton, University of Massachusetts

Hal Daun I, Information Sciences Institute, University of Southern California
Andrew McCallum, University of Massachusetts

Fernando Pereira, University of Pennsylvania

Jeff Bilmes, University of Washington

Program Committee:

Razvan Bunescu, University of Texas

Bill Byrne, University of Cambridge

Xavier Carreras, Technical University of Catalonia
Ozgur Cetin, University of California, Berekely
David Chiang, Information Sciences Institute, University of Southern California
Michael Collins, Massachusetts Institute of Technology
Jason Eisner, Johns Hopkins University

Radu Florian, IBM TJ Watson Research Center
Eric Fosler-Lussier, The Ohio State University
Dan Gildea, University of Rochester

Ralph Grishman, NYU

Julia Hockenmaier, University of Pennsylvania
Eric Horvitz, Microsoft

Liang Huang, University of Pennsylvania
Thorsten Joachims, Cornell University

Katrin Kirchhoff, University of Washington

Philipp Koehn, University of Edinburgh

Shankar Kumar, Google

Chris Manning, Stanford University

Lluis Marquez, Technical University of Catalonia
Gideon Mann, University of Massachusetts

Erik McDermott, NTT

Ray Mooney, University of Texas

Franz Och, Google

Kishore Papineni, IBM TJ Watson Research Center
Chris Quirk, Microsoft

Brian Roark, Oregon Graduate Institute

Dan Roth, University of lllinois

Salim Roukos, IBM TJ Watson Research Center
Libin Shen, University of Pennsylvania

Koichi Shinoda, Tokyo Institute of Technology
Noah Smith, Johns Hopkins University

Andreas Stolcke, SRI

Ben Taskar, University of California, Berkeley

Vi

Table of Contents

A Syntax-Directed Translator with Extended Domain of Locality
Liang Huang, Kevin Knight and Aravind JOShi e 1....

Efficient Dynamic Programming Search Algorithms for Phrase-Based SMT
Christoph TilImanno 9....

Computational Challenges in Parsing by Classification
Joseph Turian and I. Dan Melamed. 17....

All-word Prediction as the Ultimate Confusible Disambiguation
Antal van den BoSCh 25 ...

A Probabilistic Search for the Best Solution Among Partially Completed Candidates
Filip Ginter, Aleksandr Myléri and Tapio Salakoskiccoiiiii i, 33..

Practical Markov Logic Containing First-Order Quantifiers with Application to Identity Uncertainty
Aron Culotta and Andrew McCallum 41. ..

Re-Ranking Algorithms for Name Tagging
Heng Ji, Cynthia Rudin and Ralph Grishman................. oo, 49

Vii

Conference Program

Friday, June 9, 2006

8:45-9:00

9:00-9:40

9:40-10:05

10:05-10:30

10:30-11:00

11:00-11:25

11:25-11:50

11:50-12:30

12:30-14:00

14:00-14:25

14:25-14:50

14:50-15:30

15:30-16:00

16:00-16:25

Opening Remarks
Invited Talk by Giorgio Satta

A Syntax-Directed Translator with Extended Domain of Locality
Liang Huang, Kevin Knight and Aravind Joshi

Efficient Dynamic Programming Search Algorithms for Phrase-Based SMT
Christoph Tillmann

Break

Computational Challenges in Parsing by Classification
Joseph Turian and I. Dan Melamed

All-word Prediction as the Ultimate Confusible Disambiguation
Antal van den Bosch

Invited Talk by Jeff Bilmes
Lunch

A Probabilistic Search for the Best Solution Among Partially Completed Candidates
Filip Ginter, Aleksandr Myl&ri and Tapio Salakoski

Practical Markov Logic Containing First-Order Quantifiers with Application to
Identity Uncertainty
Aron Culotta and Andrew McCallum

Invited Talk by Chris Manning

Break

Re-Ranking Algorithms for Name Tagging
Heng Ji, Cynthia Rudin and Ralph Grishman

Friday, June 9, 2006 (continued)

16:25-17:05 Invited Talk by Dan Roth

| huang3@i s. upenn. edu

1

A Syntax-Directed Translator with Extended Domain of Locality

Liang Huang
Dept. of Comp. & Info. Sci.
Univ. of Pennsylvania
Philadelphia, PA 19104

Abstract

A syntax-directed translator first parses
the source-language input into a parse-
tree, and then recursively converts the tree
into a string in the target-language. We
model this conversion by an extended tree-
to-string transducer that have multi-level
trees on the source-side, which gives our
system more expressive power and flexi-
bility. We also define a direct probabil-
ity model and use a linear-time dynamic
programming algorithm to search for the
best derivation. The model is then ex-
tended to the general log-linear frame-
work in order to rescore with other fea-
tures liken-gram language models. We
devise a simple-yet-effective algorithm to
generate non-duplicatebest translations
for n-gram rescoring. Initial experimen-
tal results on English-to-Chinese transla-
tion are presented.

Introduction

Kevin Knight
Info. Sci. Inst.
Univ. of Southern California
Marina del Rey, CA 90292
kni ght @ si . edu

Aravind Joshi
Dept. of Comp. & Info. Sci.
Univ. of Pennsylvania
Philadelphia, PA 19104
joshi @inc.cis.upenn. edu

SD translation schema specifies translation
(synchronous grammar’ (string relation)

induce\& %}plements

SD translator
(source parser + recursive converter)

Figure 1: The relationship among SD concepts,
adapted from (Aho and Ullman, 1972).

S
S
NPV VP ,
— v NPV NP
v nP?

Figure 2: An example of complex reordering repre-
sented as an STSG rule, which is beyond any SCFG.

from input string to output string. In this context, an
SD translator consists of two components, a source-
language parser and a recursive converter which is
usually modeled as a top-down tree-to-string trans-
ducer (Gecseg and Steinby, 1984). The relationship
among these concepts is illustrated in Fig. 1.

This paper adapts the idea of syntax-directed

The concept ofsyntax-directed (SD) translation translator to statistical machine translation (MT).
was originally proposed in compiling (lrons, 1961;We apply stochastic operations at each node of the
Lewis and Stearns, 1968), where the source prograsource-language parse-tree and search for the best
is parsed into a tree representation that guides tlaerivation (a sequence of translation steps) that con-
generation of the object code. Following Aho andrerts the whole tree into some target-language string
Ullman (1972), aranslation as a set of string pairs, with the highest probability. However, the structural
can be specified by ayntax-directed translation divergence across languages often results in non-
schemgSDTS), which is essentially a synchronoussomorphic parse-trees that is beyond the power of
context-free grammar (SCFG) that generates tw8CFGs. For example, ti&VO)structure in English
languages simultaneously. An SDTS also inducesiatranslated into & SOword-order in Arabic, an in-
translator, a device that performs the transformatiorstance ofcomplex reorderinghot captured by any

1

Workshop on Computationally Hard Problemsand Joint Inference in Speech and Language Propesgsd —8,
New York City, New York, June 200822006 Association for Computational Linguistics

SCFG (Fig. 2). (@) thegunman was [killed] by [the police}
To alleviate the non-isomorphism problem, (syn-

o . parser
chronous) grammars with richer expressive power S

e T
have been proposed whose rules app_ly to larger frag- NPC Up SUNG
ments of the tree. For example, Shieber and Sch- o~ o~ |
abes (1990) introduce synchronous tree-adjoining DT NN VBD VP-C .
grammar (STAG) and Eisner (2003) uses a syn- I I I —
chronous tree-substitution grammar (STSG), which(®) the gunman was VBN PP
. I —
is a restricted version of STAG with no adjunctions. killed IN NP-C
STSGs and STAGs generate muee relationghan | T
SCFGs, e.g. the non-isomorphic tree pair in Fig. 2. by DT NN
This extra expressive power lies in thetended do- ”"e police
main of locality(EDL) (Joshi and Schabes, 1997), r1, 72 vp
i.e., elementary structures beyond the scope of one- o~
level context-free productions. Besides being lin- VBD VP-C
guistically motivated, the need for EDL is also sup- | — T~
ported by empirical findings in MT that one-level (¢) giangshou was V?N /PP\)
rules are often inadequate (Fox, 2002; Galley et al., kiled IN NP-C
2004). Similarly, in the tree-transducer terminology, [T
Graehl and Knight (2004) define extended tree trans- by DT NN
ducers that have multi-level trees on the source-side. trlle po:ice

Since an SD translator separates the source- r3

language analysis from the recursive transformation, NP-C
the domains of locality in these two modules are or- (d) giangshou bei DT/\NN VBlN)
thogonal to each other: in this work, we use a CFG- | | Killed
based Treebank parser but focuses on the extended the police
domain in the recursive converter. Following Gal-
ley et al. (2004), we use a special claserfended rs rq)

tree-to-string transducefxRs for short) with multi-

level left-hand-side (LHS) treés.Since the right- (e) qiangshou bei [jingfand, [jibi]i .
hand-side (RHS) string can be viewed as a flat one-

level tree with the same nonterminal root from LHSigure 3: A synatx-directed translation process for
(Fig. 2), this framework is closely related to STSGsEXample (1).

they both have extended domain of locality on the

source-side, while our framework remains as a CF@) the gunman was killed by the police .

on the target-side. For instance, an equivaldis

rule for the complex reordering in Fig. 2 would be giangshoubei jingfangjibi .

unman] [passive][police] [killed] .
S(xliNP, VP(TQZVB, CEgNP)) — T X1 T3 [g] [p][p] []

While Section 3 will define the model formally, —Figure 3 shows how the translator works. The En-

we first proceed with an example translation fronglish sentence (a) is first parsed into the tree in (b),
English to Chinese (note in particular that the inwhich is then recursively converted into the Chinese

verted phrases between source and target): string in (e) through five steps. First, at the root

_ _ ~ node, we apply the rule; which preserves the top-
__Throughout this paper, we will use LHS and source-sidge\/e| \yord-order and translates the English period
interchangeably (so are RHS and target-side). In accordance .)
with our experiments, we also use English and Chinese as tHato its Chinese counterpart:

source and target languages, opposite to the Foreign-to-English

convention of Brown et al. (1993). (r1) S @1:NP-Cxz5:VP PUNC (\))— 21 22 »

Then, the rule~; grabs the whole sub-tree for “the the packed representation of the forest restricts the
gunman” and translates it as a phrase: scope of each transfer step to a one-level context-
(rs) NP-C (DT (the) NN (gunman) > giangshou free rule, while our approach decou_ples the source-
language analyzer and the recursive converter, so
Now we get a “partial Chinese, partial English” senthat the latter can have an extended domain of local-
tence fiangshowP .” as shown in Fig. 3 (). Our ity. In addition, our translator also enjoys a speed-
recursion goes on to translate the VP sub-tree. Hegg by this decoupling, with each of the two stages

we use the rules for the passive construction: having a smaller search space. In fact, the recursive
VP transfer step can be done by direar-time algo-
———— rithm (see Section 5), and the parsing step is also
VBD VP-C fast with the modern Treebank parsers, for instance
(r3) W'as a;lzvmp . bei 2y 71 (CoIIin_s, 1999; Charniak, 2000). In cqntrast, their
o~ decodings are reported to be computationally expen-
IN 22:NP-C sive and Chiang (2005) uses aggressive pruning to

b' make it tractable. There also exists a compromise
y between these two approaches, which usksast

which captures the fact that the agent (NP-C, “thgst of parse trees (for a relatively smé)ito approx-
police”) and the verb (VBN, “killed”) are always jmate the full forest (see future work).
inverted between EngIISh and Chinese in a passive Besides, our model, as being linguistically mo-
voice. Finally, we apply rules, andr; which per- tjvated, is also more expressive than the formally
form phrasal translations for the two remaining SUbsyntaX_based models of Chiang (2005) and Wu
trees in (d), respectively, and get the completed Chi{41997). Consider, again, the passive example in rule
nese string in (e). r3. In Chiang’s SCFG, there is only one nonterminal
X, so a corresponding rule would be

(was XU by X®, beiX® x(1))

2 Previous Work

It is helpful to compare this approach with recent ef-
forts in statistical MT. Phrase-based models (Koehwhich can also pattern-match the English sentence:
et al., 2003; Och and Ney, 2004) are good at learn-
ing local translations that are pairs of (consecutive)
sub-strings, but often insufficient in modeling the reand translate it into Chinese as a passive voice. This
orderings of phrases themselves, especially betweproduces very odd Chinese translation, because here
language pairs with very different word-order. This'was A by B” in the English sentence isot a pas-
is because the generative capacity of these modealise construction. By contrast, our model applies
lies within the realm of finite-state machinery (Ku-rule 5 only if A is a past participle (VBN) ands
mar and Byrne, 2003), which is unable to procesis a noun phrase (NP-C). This example also shows
nested structures and long-distance dependenciegliat, one-level SCFG rule, even if informed by the
natural languages. Treebank as in (Yamada and Knight, 2001), is not
Syntax-based models aim to alleviate this probenough to capture a common construction like this
lem by exploiting the power of synchronous rewrit-which is five levels deep (from VP to “by”).
ing systems. Both Yamada and Knight (2001) and There are also some variations of syntax-directed
Chiang (2005) use SCFGs as the underlying moddtanslators where dependency structures are used
so their translation schemata are syntax-directed as place of constituent trees (Lin, 2004; Ding and
in Fig. 1, but their translators aret both systems Palmer, 2005; Quirk et al., 2005). Although they
do parsing and transformation in a joint search, eshare with this work the basic motivations and simi-
sentially over a packed forest of parse-trees. To thlar speed-up, it is difficult to specify re-ordering in-
end, their translators are ndirectedby a syntac- formation within dependency elementary structures,
tic tree. Although their method potentially consid-so they either resort to heuristics (Lin) or a sepa-
ers more than one single parse-tree as in our casate ordering model for linearization (the other two

| was [asleep] by [sunset]

3

works)? Our approach, in contrast, explicitly mod- r r

els the re-ordering of sub-trees within individual . —~
T T
transfer rules. ro T3 2 05
3 Extended Tree-to-String Tranducers /N T4 7’|7
L
In this section, we define the formal machinery of rs
our recursive transformation model as a special case (a) (b)

E;;(F;ifragﬁgusiz: (:r:geeh;fhn? I;nlgr:tneZ;)rCME tzz‘f:igure 4: (a) the derivation in Figure 3; (b) another
Y ! N e Is i () gerviation producing the same output by replacing
non-deleting (N) with regarding to variables in the

. r3 with r4 andr7, which provides another way of
source and target sides (henth the namx®LNS). translating the passive construction:

Definition 1. A 1-xRLNs transducer is a tuple ..y vp (vBD (was) VP-C f1:VBN 25:PP))— o5 21
(N, %, A, R) whereN is the set of nonterminal;

is the input alphabet) is the output alphabet, and
R is a set of rules. A rule irR is a tuple(t, s, ¢)
where:

(r7) PP (IN (by)z1:NP-C)— beiz;

tree into a target-language string, with each step ap-

1. t is the LHS tree, whose internal nodes are laplying one tranduction rule. However, it can also
beled by nonterminal symbols, and whose fronbe formalized as a tree, following the notion of
tier nodes are labeled terminals frafor vari- derivation-treein TAG (Joshi and Schabes, 1997):

ables from a set’ = {x1, z9,...}; o o _
Definition 2. A derivation d, its source and target

2. s € (XY UA)" is the RHS string; projections, noted&(d) andC(d) respectively, are

3. ¢ is a mapping fromt’ to nonterminalsV. recursively defined as follows:

We require each variable € X occursexactlyonce 1. If r = (¢, s, ¢) is a purely lexical rule¢ = 0),
in ¢ andexactly oncen s (linear and non-deleting). thend = r is a derivation, wheré€(d) = t and

We denotep(t) to be theroot symbol of treet. C(d) =s;
When writing these rules, we avoid notational over-
head by introducing a short-hand form from Galley
et al. (2004) that integrates the mapping into the tree,
which is used throughout Section 1. Following TSG
termln:)Iogy (see Figure 2), we qall these \{arlable d = r(dy,....dy) is also a derivation, where
nodes” such as4:NP-C substitution nodessince

. . E(d) = [z; — E(di)]t andC(d) = [x; +—

when applying a rule to a tree, these nodes will be (d))]s
matched with a sub-tree with the same root symbol. e

We also defineéX| to be therank of the rule, i.e., Note that we use a short-hand notatjoni— ;]

the number of variables in it. For example, rulgs o denote the result of substituting eachwith ;

no variable, i.e., it is of rank zero, then it is called a
purely lexical rule which performs a phrasal trans-
lation as in phrase-based models. Rule for in-
stance, can be thought of as a phrase {iag gun-
man,giangsholy.

Informally speaking, a derivation in a transducer Galley et al. (2004) presents a linear-time algo-

is a sequence of steps converting a source-languag@m for automatic extraction of theseRs rules

— from a parallel corpora with word-alignment and
Although hybrid approaches, such as dependency gram- ¢ th id hich will b d
mars augmented with phrase-structure information (Alshawi dearse-trees on the source-sidae, wnich will bé use

al., 2000), can do re-ordering easily. in our experiments in Section 6.

2. If r = (t,s,¢) is a rule, andd; is a (sub-)
derivation with the root symbol of its source
projection matches the corresponding substitu-
tion node inr, i.e., p(€(d;)) = é(z;), then

For example, Figure 4 shows two derivations for
the sentence pair in Example (1). In both cases, the
source projection is the English tree in Figure 3 (b),
and the target projection is the Chinese translation.

4 Probability Models wherec(r) is the count (or frequency) of rulein
41 Direct Model the training data.

Departing from the conventional noisy-channel ap4.2 Log-Linear Model

proach of Brown et al. (1993), our basic model is &ollowing Och and Ney (2002), we extend the direct
directone: model into a general log-linear framework in order

¢* = argmax Pr(c | e)) to incorporate other features:
(&

: L . . * = P @ Pr(c)? e (9

where e is the English input string and* is the ¢ arglcnax r(ele) r(e)” e)

best Chinese translation according to the translation) el i
modelPr(c | ¢). We now marginalize over all En- WheréPr(c) is the language model ard "' is the

glish parse treeg (e) that yield the sentenae length penalty term based qgd, the length of the
translation. Parametets 3, and A are the weights
Pr(c|e) = Z Pr(r,c|e) of relevant features. Note that positive prefers
€T (e) longer translations. We use a standard trigram model
— Y Pr(r|e)Pr(c|r) @3 Torbre.
7€T (e)

5 Search Algorithms

Rather than taking the sum, we pick the best tree
. . Wefirst present a linear-time algorithm for searching
and factors the search into two separate steps: pa

ing (4) (a well-studied problem) and tree—to—string{ﬁe best derivation under the direct model, and then

translation (5) (Section 5): Zi(tt)(zr;(t:i;;;:;e log-linear case by a new variant of

7% = argmaxPr(7|e) 4) ' ' .
€T (e) 5.1 Direct Model: Memoized Recursion
¢ = argmaxPr(c| 1) (5) Since our probability model is not based on the noisy

C

_ _ channel, we do not call our search module a “de-
In this sense, our approach can be considered g§der” as in most statistical MT work. Instead, read-
a Viterbi approximation of the computationally ex-ers who speak English but not Chinese can view it as

pensive joint search using (3) directly. Similarly, wezn “encoder” (or encryptor), which corresponds ex-
now marginalize over all derivations actly to ourdirect model.

D(r*) = {d | £(d) = 77} Given a flxeq pgrse-t.ree , We are to sear'c'h

_ . . for the best derivation with the highest probability.

that translates English tree into some Chinese This can be done by a simple top-down traversal
string and apply the Viterbi approximation again tqor depth-first search) from the root of: at each

search for the best derivatiati: noden in 7, try each possible rulewhose English-
¢ = C(d*) = Cargmax Pr(d)) (6) side patterrt(r) matches the subtreef rooted at,
deD(r*) and recursively visit each descendant nogdén 7,;

Assuming different rules in a derivation are ap—that corresponds to a variabledfr). We then col-

Lo ; lect the resulting target-language strings and plug
lied independently, we approximdee(d) as _ . . .
P P y PP (d) them into the Chinese-sid€r) of rule r, getting

Pr(d) = H Pr(r) (7) atranslation for the subtreef. We finally take the
red best of all translations.
where the probabilitr(r) of the ruler is estimated ~ With the extended LHS of our transducer, there
by conditioning on the root symbpl#(r)): may be many different rule§ applicable at one trep
node. For example, consider the VP subtree in
Pr(r) = Pr(t(r),s(r) | p(t(r))) Fig. 3 (c), where bothrs andrg can apply. As a re-

c(r)
2ot p(e(r) =p(t(r) €(T7)

sult, the number of derivations is exponential in the
size of the tree, since there are exponentially many

(8)

decompositions of the tree for a given set of rulegesults in a very small ratio of unique strings among
This problem can be solved bpemoization(Cor- top-k derivations. To alleviate this problem, deter-
men et al., 2001): we cache each subtree that hasnization techniques have been proposed by Mohri
been visited before, so that every tree node is visiteghd Riley (2002) for finite-state automata and ex-
at mostonce. This results in a dynamic program+ended to tree automata by May and Knight (2006).
ming algorithm that is guaranteed to run@rinpq) These methods eliminate spurious ambiguity by ef-
time wheren is the size of the parse treg,is the fectively transforming the grammar into an equiva-
maximum number of rules applicable to one treéent deterministic form. However, this transforma-
node, andy is the maximum size of an applicabletion often leads to a blow-up in forest size, which is
rule. For a given rule-set, this algorithm runs in timeexponential to the original size in the worst-case.
linear to the length of the input sentence, sipce So instead of determinization, here we present a
and ¢ are considered grammar constants, and simple-yet-effective extension to the Algorithm 3 of
proportional to the input length. The full pseudo-Huang and Chiang (2005) that guarantees to output
code is worked out in Algorithm 1. A restricted unique translated strings:

version of this algorithm first appears in compiling,
for optimal code generation from expression-trees ;, ihe hypergraph

(Aho and Johnson, 1976). In computational linguisg \hen asking for the next-best derivation of a ver-

tics, the bottom-up version of this algorithm resem- ., keep asking until we get a new string, and
bles thetree parsingalgorithm for TSG by Eisner inan add it into the hash-table ’

(2003). Similar algorithms have also been proposed

for dependency-based translation (Lin, 2004; Ding 1hiS method should work in general for any
and Palmer, 2005). equivalence relation (say, same derived tree) that can

be defined on derivations.

keep a hash-table of unique strings at each vertex

5.2 Log-linear Model: k-best Search

Under the log-linear model, one still prefers to6 Experiments

search for the globally best derivatidh: Our experiments are on English-to-Chinese trans-
lation, the opposite direction to most of the recent
work in SMT. We are not doing the reverse direction
at this time partly due to the lack of a sufficiently
However, integrating thei-gram model with the good parser for Chinese.
translation model in the search is computationally
very expensive. As a standard alternative, rath&r1
than aiming at the exact best derivation, we seardBur training set is a Chinese-English parallel corpus
for top-k derivations under the direct model usingwith 1.95M aligned sentences (28.3M words on the
Algorithm 1, and then rerank thebest list with the English side). We first word-align them by GIZA++,
language model and length penalty. then parse the English side by a variant of Collins
Like other instances of dynamic programming(1999) parser, and finally apply the rule-extraction
Algorithm 1 can be viewed as a hypergraph searciigorithm of Galley et al. (2004). The resulting rule
problem. To this end, we use an efficient algoset has 24.7MRs rules. We also use the SRI Lan-
rithm by Huang and Chiang (2005, Algorithm 3)guage Modeling Toolkit (Stolcke, 2002) to train a
that solves the generatbest derivations problem Chinese trigram model with Knesser-Ney smooth-
in monotonic hypergraphs. It consists of a normahg on the Chinese side of the parallel corpus.
forward phase for the 1-best derivation and a recur- Our evaluation data consists of 140 short sen-
sive backward phase for the 2nd, 3rd, k" deriva- tences & 25 Chinese words) of the Xinhua portion
tions. of the NIST 2003 Chinese-to-English evaluation set.
Unfortunately, different derivations may have theSince we are translating in the other direction, we
same yield (a problem callespurious ambiguity use the first English reference as the source input
due to multi-level LHS of our rules. In practice, thisand the Chinese as the single reference.

d* = argmax Pr(d)® Pr(C(d))’e M@l (10)
deD(r)

Data Preparation

6

Algorithm 1 Top-down Memoized Recursion
1: function TRANSLATE(n)

2: if cache[n] definedthen > this sub-tree visited before?
3 return cache|n)

4: best «— 0

5: for r € R do > try each ruler

6: matched, sublist « PATTERNMATCH(t(r),n) > tree pattern matching
7 if matched then > if matched,sublist contains a list of matched subtrees
8: prob «— Pr(r) > the probability of ruler

9: for n; € sublist do

10: Di, Si < TRANSLATE(7;) > recursively solve each sub-problem
11 prob < prob - p;

12: if prob > best then

13: best < prob

14: str — [z; — s;)s(r) > plug in the results
15: cache[n] < best, str > caching the best solution for future use
16: return cacheln)] > returns the best string with its prob.

6.2 Initial Results Table 1: BLEU (rln4) score results

We implemented our system as follows: fpr each in- system BLEU
put sentence, we first run Algorithm 1, which returns Pharaoh 255
]Ehe 1;b?st”trtanslellt|;_3n ar}d atlﬁp bun(ils the d_ﬁ:lvatlon direct model (1-best) 503
orest of afl fransiations for this sentence. Tnen We 144.linear model (rescored 5000-best) 23.8
extract the top 5000 non-duplicate translated strings
from this forest and rescore them with the trigram
model and the length penalty.

We compared our system with a state-of-the-agh 1 against the reference. The results are summa-
phrase-based system Pharaoh (Koehn, 2004) on tfiged in Table 1. The rescored translations are better

evaluation data. Since the target language is Chihan the 1-best results from the direct model, but still
nese, we report character-based BLEU score instegfiyhtly worse than Pharaoh.

of word-based to ensure our results are indepen-

dent of Chinese tokenizations (although our lan-

guage models are word-based). The BLEU SCOres ~onclusion and On-going Work

are based on single reference and up to 4-gram pre-

cisions (rln4). Feature weights of both systems are

tuned on the same data Sefor Pharaoh, we use the This paper presents an adaptation of the clas-

standard minimum error-rate training (Och, 2003)sic syntax-directed translation with linguistically-

and for our system, since there are only two inmotivated formalisms for statistical MT. Currently

dependent features (as we alwaysdix= 1), we we are doing larger-scale experiments. We are also

use a simple grid-based line-optimization along thavestigating more principled algorithms for inte-

language-model weight axis. For a given languageyatingn-gram language models during the search,

model weight3, we use binary search to find the bestather thark-best rescoring. Besides, we will extend

length penalty\ that leads to a length-ratio closestthis work to translating the top parse trees, instead
of committing to the 1-best tree, as parsing errors

T .
In this sense, we are only reporting performances on th§ertainl affect translation gualit
development set at this point. We will report results tuned an y q Y-

tested on separate data sets in the final version of this paper.

7

References Aravind Joshi and Yves Schabes. 1997. Tree-adjoining

. grammars. In G. Rozenberg and A. Salomaa, editors,
A. V. Aho and S. C. J_ohnson. 1976. Optimal code gen- 5ndbook of Formal Languagesolume 3, pages 69
eration for expression tree§. ACM 23(3):488-501. — 124. Springer, Berlin.
Alfred V. Aho and Jeffrey D. Ullman. 1972The The- ppjlipp Koehn, Franz Joseph Och, and Daniel Marcu.

ory of Parsing, Translation, and Compilingolume I: 2003. Statistical phrase-based translation. Ptoc.
Parsing. Prentice Hall, Englewood Cliffs, New Jersey. qf H| T-NAACL pages 127-133.

Hiyan Alshawi, Srinivas Bangalore, and Shona Douglagehilipp Koehn. 2004. Pharaoh: a beam search decoder
2000. Learning dependency translation models as col- for phrase-based statistical machine translation mod-
lections of finite state head transducer€omputa- els. InProc. of AMTA pages 115-124.
tional Linguistics 26(1):45—60.

Shankar Kumar and William Byrne. 2003. A weighted

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della finite state transducer implementation of the alignment
Pietra, and Robert L. Mercer. 1993. The mathematics template model for statistical machine translation. In
of statistical machine translation: Parameter estima- Proc. of HLT-NAACL pages 142—-149.
tion. Computational Linguistics19:263—-311.

P. M. Lewis and R. E. Stearns. 1968. Syntax-directed

Eugene Charniak. 2000. A maximum-entropy-inspired transduction.Journal of the ACM15(3):465-488.

parser. InProc. of NAACL. pages 132—-139.)
Dekang Lin. 2004. A path-based transfer model for ma-

David Chiang. 2005. A hierarchical phrase-based model chine translation. lfProceedings of the 20th COLING

for statistical machine translation. Rroc. of the 43rd) .
ACL Jonathan May and Kevin Knight. 2006. A betiebest

list: Practical determinization of weighted finite tree
Michael Collins. 1999.Head-Driven Statistical Models ~ automata. Submitted to HLT-NAACL 2006.

for Natural Language ParsingPh.D. thesis, Univer- . . . -
sity of gennsylv%%ig g ! V Mehryar Mohri and Michael Riley. 2002. An efficient
' algorithm for then-best-strings problem. IRroceed-
Thomas H. Cormen, Charles E. Leiserson, Ronald L. ings of the International Conference on Spoken Lan-
Rivest, and Clifford Stein. 2001lntroduction to Al- guage Processing 2002 (ICSLP '02penver, Col-
gorithms MIT Press, second edition. orado, September.

Yuan Ding and Martha Palmer. 2005. Machine transFranz Josef Och and Hermann Ney. 2002. Discrimina-
lation using probablisitic synchronous dependency in- Ve training and maximum entropy models for statis-
sertion grammars. IRroceedings of the 43rd ACL tical machine translation. IRroc. of ACL

J. Och and H. Ney. 2004. The alignment template
approach to statistical machine translati@@omputa-
tional Linguistics 30:417-449.

Jason Eisner. 2003. Learning non-isomorphic tree mab:-'
pings for machine translation. Proceedings of ACL
(companion volumepages 205—-208.

Heidi J. Fox. 2002. Phrasal cohesion and statistical mg_rqnz Och. 2.003' M‘”imum error rate training for statis-
chiné tran.slation. It Proc. of EMNLP tical machine translation. IRroc. of ACL

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
pendency treelet translation: Syntactically informed
phrasal smt. IfProceedings of the 43rd ACL

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What's in a translation rule? HLT-
NAACL

Stuart Shieber and Yves Schabes. 1990. Synchronous

F. Gécseg and M. Steinby. 1984.Tree Automata tree-adioining arammars. Rroc. of COLING pages
Akademiai Kiac, Budapest. 253—2518. 99 : : G pag

Jonathan Graehl and Kevin Knight. 2004. Training tre@ngrea Stolcke. 2002. Srilm: an extensible language
transducers. IHLT-NAACL pages 105-112. modeling toolkit. InProc. of ICSLP

Liang Huang and David Chiang. 2005. Betiebest Dekai Wu. 1997. Stochastic inversion transduction
Parsing. InProce_edlngs of the _Nlneth International grammars and bilingual parsing of parallel corpora.
Workshop on Parsing Technologies (IWPT-2005), 9-10 Computational Linguistig23(3):377-404.

October 2005, Vancouver, Canada
Kenji Yamada and Kevin Knight. 2001. A syntax-based

E. T. Irons. 1961. A syntax-directed compiler for AL- statistical translation model. Broc. of ACL

GOL 60. Comm. ACM4(1):51-55.

Efficient Dynamic Programming Search Algorithms for Phrase-BasedSMT

Christoph Tillmann
IBM T.J.WatsonResearciCenter
Yorktown Heights,NY 10598
ctill @s.ibmcom

Abstract

This paper presentsa series of efficient
dynamic-programmingDP) basedalgorithms
for phrase-baseddecoding and alignment
computationin statisticalmachinetranslation
(SMT). TheDP-basedlecodingalgorithmsare
analyzedin termsof shortestpath-findingal-
gorithms, where the similarity to DP-based
decodingalgorithmsin speechrecognitionis
demonstrated The papercontainsthe follow-
ing original contributions: 1) the DP-basedle-
codingalgorithmin (Tillmann andNey, 2003)
is extendedin a formal way to handlephrases
and a novel pruning stratgyy with increased
translationspeeds presente®) a novel align-
ment algorithm is presentedhat computesa
phrasealignmentefficiently in the casethat it
is consistentwith an underlying word align-
ment. Under certain restrictions, both algo-
rithms handleMT-relatedproblemsefficiently
thataregenerallyNP completg(Knight, 1999).

1 Intr oduction

This paperdealswith dynamicprogrammingbasedde-
codingandalignmentalgorithmsfor phrase-base§MT.

Dynamic Programmingbasedsearchalgorithmsare be-
ing usedin speechrecognition(Jelinek, 1998; Ney et
al., 1992) as well as in statistical machinetranslation
(Tillmann et al., 1997; Niessenet al., 1998; Tillmann

and Ney, 2003). Here, the decodingalgorithmsare de-
scribedas shortestpath finding algorithmsin regularly
structuredsearchgraphsor searchgrids. Undercertain
restrictions,e.g. startand end point restrictionsfor the
path, the shortestpath computedcorrespondgo a rec-
ognizedword sequenceor a generatedarget language
translation. In thesealgorithms,a shortest-pattsearch

9

1,2,3}1,3 1,2,3,5},5)
({123})({ })1\
({1,2,4},4) ({1,2,4,5},5)
({1,2,5},5) k\[{ ({1,3,4,5).5)

A\}{A

({1.2.3},2) "
(1.3}43) (f1,3.41.4)
({1.3.5},5)

Iy
)

@212 (123452 |

{12,3444) |
\

==

({1,2,4,5},4) ({1,2,3,4,5}3)

(134544 |

"‘

," {12343 |

({1,2,4}.2) A"
(1,41.4) ({13.41.3) A (12383
({1,4,5:5) ‘é‘ (134513 |

V’)\‘Y

({125).2) f'/“ (12.34}.2)
{q1515) ({13513 /\ (1.2,35},2)
|
({1.4514) (12452 |
Figure 1: lllustration of a DP-basedalgorithmto solve

a traveling salesmarproblemwith 5 cities. The visited
citiescorrespondo processedourcepositions.

==

({13.1)

({1,2,3,4,5},4)

({1.23.4515) |

is carriedout in one passover someinput alonga spe-
cific 'direction’: in speectrecognitionthesearchs time-
synchronousthe single-word basedsearchalgorithmin
(Tillmann et al., 1997)is (source)position-synchronous
or left-to-right, the searchalgorithmin (Niessenet al.,
1998)is (target) position-synchronousr bottom-to-top,
andthe searchalgorithmin (Tillmann andNey, 2003)is
so-calledcardinality-synchronous.

Taking into accountthe differentword order between
sourceandtargetlanguagesentencest becomesessob-
viousthata SMT searchalgorithmcanbe describedasa
shortespathfinding algorithm. But this hasbeenshavn
by linking decodingto a dynamic-programmingolution
for the traveling salesmarproblem. This algorithmdue
to (Held andKarp, 1962)is a specialcaseof a shortest
path finding algorithm (Dreyfus and Law, 1977). The
regularly structuredsearchgraphfor this problemis il-
lustratedin Fig. 1: all pathsfrom the left-mostto the
right-mostvertex correspondo a translationof the in-

Workshop on Computationally Hard Problemsand Joint Inference in Speech and Language Propesmss®—16,
New York City, New York, June 200822006 Association for Computational Linguistics

putsentencewhereeachsourcepositionis processeex-
actly once. In this paper the DP-basedearchalgorithm
in (Tillmann andNey, 2003)is extendedn a formal way
to handlephrase-basetranslation. Two versionsof a
phrase-basedecoderfor SMT that searchslightly dif-
ferentsearctgraphsarepresenteda multi-beamdecoder
reportedn theliteratureanda single-beandecodemwith
increasedranslationspeedt. A commonanalysisof all
the searchalgorithmsabove in termsof a shortest-path
finding algorithm for a directedagyclic graph (dag) is
presented.This analysisprovidesa simpleway of ana-
lyzing the complexity of DP-basedearchalgorithm.

Generally the regular searchspacecan only be fully
searchedor smallsearchgridsunderappropriateestric-
tions, i.e. the monotonicityrestrictionsin (Tillmann et
al., 1997)or theinvertedsearchgraphin (Niesseretal.,
1998). For larger searchspacesasarerequiredfor con-
tinuousspeechecognition(Ney etal., 1992)? or phrase-
baseddecodingn SMT, the searctspacecannotbefully
searched:suitably definedlists of path hypothesisare
maintainedthat partially explore the searchspace. The
numberof hypotheseslependdocally onthe numberhy-
pothesesvhosescoreis closeto thetop scoringhypothe-
sis: this setof hypothesess calledthebeam.

The translationmodel usedin this paperis a phrase-
basedmodel, where the translationunits are so-called
blocks: a block is a pair of phraseswhich are transla-
tionsof eachother For example,Fig. 2 shavsanArabic-
Englishtranslationexamplethat uses5 blocks. During
decoding,we view translationas a block segmentation
processwherethe input sentencés segmentedrom left
to right andthetargetsentencés generatedrom bottom
to top, oneblock at atime. In practice,a largely mono-
toneblock sequencés generatedxceptfor the possibil-
ity to swap someneighborblocks. During decodingwe
try to minimizethe scores,, (b7) of ablock sequencé?
undertherestrictionthatthe concatenatedourcephrases
of the blocksb; yield a sggmentationof the input sen-
tence:

n

Z C(bifl, bz

i=1

s (07))= wh - f(bi1,b:). ()
i=1

Here, f(b;—1,b;) is 7-dimensionalfeature vector with
real-valuedfeaturesand w is the correspondingveight
vectoras describedn Section5. The fact that a given
block coverssomesourcenterval [j/, j] isimplicit in this
notation.

1 Themulti-beamdecodeis similarto thedecodepresented
in (Koehn,2004)which is a standarcddecoderusedin phrase-
basedSMT. A multi-beamdecodeiis alsousedin (Al-Onaizan
etal.,2004)and(Bergeretal., 1996).

2In thatwork, thereis adistinctionbetweernwithin-word and
between-wrd search,which is not relevant for phrase-based
decodingwhereonly exactphrasenatchesaresearched.

10

b
5
airspace O 000 e e 0 b4
Lebanese | O O O Op0O O|@
3
violate | O O @O O O
2
warplanes | @ @ pr O O O
Israeli OO0 @O OO 0O
A A At A A A
1 1 1 n 1 1 1
T HAt m j 1
A r s h j w b
' b r k Ay n
r ¥ A 1 A
A P } n
t y y
1
y
P

Figure2: An Arabic-Englishblock translationexample,
wherethe Arabic wordsareromanized A sequencef 5
blocksis generated.

This paperis structuredas follows: Section?2 intro-
ducesthe multi-beamandthe single-beanDP-basedle-
coders. Section3 presentsan analysisof all the graph-
basedshortest-pattinding algorithm mentionedabove:
a searchalgorithm for a directedacyclic graph (dag).
Section4 shaws anefficient phrasalalignmentalgorithm
thatgivesanalgorithmicjustificationfor learningblocks
from word-alignedtraining. Finally, Section5 presents
anevaluationof the beam-searctecodersn anArabic-
Englishdecodingtask.

2 Beam-Seach DecodingAlgorithms

In this sectionwe introducetwo beam-searchlgorithms
for SMT: a multi-beamalgorithmandsingle-beanalgo-
rithm. Themulti-beamsearchalgorithmis presentedirst,
sinceit is conceptuallysimpler

2.1 Multi-Beam Decoder

For the multi-beamdecodemakes use of searchstates
thatare3-tuplesof thefollowing type:
[C, h;d].)
h is thestatehistory, thatdepend®ntheblock generation
model.In our caseh = ([, '], [u, v]), where([j, j']) is
theinterval wherethe mostrecentblock matchedhein-
put sentenceand [u, v] arethe final two targetwords of
thepartialtranslatiorproducedhusfar. C is theso-called
coveragevectorthatensureshataconsistenblockalign-
mentis obtainedduring decodingandthat the decoding

Table 1: Multi-beam (M -Beam) decodingalgorithm,
whichis similarto (Koehn,2004). Thedecodergliffer in

their pruningstrateyy: here,eachstatelist I'.. is pruned
only once, whereaghe decodeiin (Koehn,2004)prunes
a statelist everytime a new hypothesiss entered.

input: sourcesentencevith words f1,---, f
[p:={op}andl’y :=0for k=1,---,J
for eachc=0,1,---,.Jdo
PrunestatesetI’,
for eachstates in T, do
matcher: foreacho’ : 0 — 1 o/
updateo’ for I' .y (o)
end
end

output: translationfrom lowestcoststatein I ;

canbecarriedoutefficiently. It keepgrackof thealready
processednput sentencepositions. d is the costof the

shortestpath (distance)from someinitial statec, to the

currentstates. The baselinedecodemaintains/ + 1

statelists with entriesof the above type, whereJ is the

numberof input words. The statesare storedin lists or

stacksthat supportlookup operationgo checkwhethera

given statetupleis alreadypresentn a list andwhat its

scored is.

The useof a coveragevector(C is relatedto a DP-based
solutionfor thetraveling salesmarproblemasillustrated
in Fig. 1. The algorithm keepstrack of setsof visited

citiesalongwith theidentity of thelastvisitedcity. Cities

correspondo sourcesentencepositions;. The vertexes
in this graphcorrespondo setof alreadyvisited cities.

Sincethetraveling salesmamproblem(andalsothetrans-
lation model) usesonly local costs,the orderin which

the sourcepositionshave beenprocessedanbeignored.
Conceptually the re-orderingproblemis linearized by

searchinga paththroughthesetinclusiongraphin Fig. 1.

Phrase-basedecodingis handleby an almostidentical
algorithm: the last visited position j is replacedby an

interval [57, 7).

The statesare storedin lists or stacksthat support
lookup operationgo checkwhethera givenstatetupleis
alreadypresentn alist andwhatits scored is. Extending
the partial block translationthatis representety a state
o with a singleblock &’ generates new states’. Here,
[k, k'] is the sourceinterval whereblock &’ matcheshe
input sentenceThe statetransitionis definedasfollows:

[C., h;d] c", n';d]. (3)

The ¢’ statefields are updatedon a component-by-
componenbasis.C’ = C U [k, k] is the coveragevec-

—M

11

Table2: Single-bean{S-Beam) decodingalgorithm(re-
latedto (LowerreandReddy 1980)).

input: sourcesentencavith words fy,---, f
I:= {O’Q}
for eachc =0,1,---,J do

I = {0}

for eachstates in I" do
if CLOSED?(o) then
matcher: foreacho’ : 0 — s o’
else
scanner: forsingles’ : 0 —g o’
update ¢’ for I
end
PrunestatesetI”
SwapT', I
end
end

output: translationfrom lowestcoststatein I"

tor obtainedby addingall the positionsfrom the inter-
val [k, k']. The new statehistory is definedas '’
([k, k'], [u’,']) wherew’ and v’ are the final two tar-
get words of the target phraseT” of . Somespecial
casesg.g. whereT” haslessthantwo targetwords, are
takeninto account.The pathcostd’ is computedasd’
d+ d(o, o), wherethetransitioncostd(o, o’) := ¢(b, V)
is computedrom the history » andthe matchingblock ¢’
asdefinedin Section5.

Thedecodeiin Tablel fills J + 1 statesetsI'y, : k =
{0,---, J}. All thecoveragevector<C for statesn theset
I';, cover the samenumberof sourcepositionsk. When
a statesetl’;, is processedthe decodehasfinishedpro-
cessingall statesn the setsl’; wherel < k. Beforeex-
pandingastateset,thedecodeprunesastatesetbasecn
its coveragevectorandthe pathcostsonly: two different
pruning strat@iesare usedthat have beenintroducedin
(Tillmann andNey, 2003): 1) coveragepruning prunes
statesthat sharethe samecoveragevectorC, 2) cardi-
nality pruning prunesstatesaccordingto the cardinal-
ity ¢(C) of coveredpositions: all statesin the beamare
comparedwith eachother Sincethe statesare keptin
J + 1 separatdists, which are prunedindependentlyof
eachothers,this decoderversionis called multi-beam
decoder Thedecodeusesa matcher functionwhenex-
pandingastate:for astateo it looksfor uncoveredsource
positionsto find sourcephrasematchedor blocks. Up-
dating a statein Table1 includesaddingthe stateif it is
notyet presenor updatingits shortespathcostd: if the

stateis alreadyin I'.. only the statewith the lower path
costd is kept. This inserting/updatingperationis also
called recombination or relaxation in the context of a
dagsearchalgorithm(cf. Section3). The update proce-
durealsostoresfor eachstates’ its predecessatatein a
so-calledback-pointerarray(Ney etal., 1992). Thefinal
block alignmentandtarget translationcan be recovered
from this back-pointerarray oncethe final statesetI";
hasbeencomputed.i(c’) is the sourcephraselength of
the matchingblock & whengoingfrom o to ¢’. Thisal-
gorithmis similarto thebeam-searchlgorithmpresented
in (Koehn,2004): it allows statesto be addedto a stack
thatis notthestackfor thesuccessocardinality o is the
initial decodesstate whereno sourcepositionis covered:
C = (. Forthefinal statesin I'; all sourcepositionsare
covered.

2.2 Single-Beamimplementation

Thesecondmplementatiorusegwo liststo keepasingle
beamof active statesThis correspond$o abeam-search
decoderin speechrecognition, where path hypotheses
correspondingo word sequenceareprocesseth atime-
synchronousvay andat a giventime steponly hypothe-
seswithin somepercentageof the besthypothesisare
kept (Lowerre and Reddy 1980). The single-beande-
coderprocessefiypothesegardinality-synchronously,
i.e. the statesat stagek generatenew statesat position
k + 1. In orderto make the useof asinglebeampossible,
we slightly modify the statetransitionsin Eq. 3:

[C.,1,h;d ', U, h;d,
C. . h;d c'. U=k, K;d.

(4)
(®)

Here,Eq.5 correspondso thematcheefinitionin Eq. 3.
We addan additionalfield thatis a pointerkeepingtrack
of how muchof therecentsourcephrasematchhasbeen
covered. In Eq. 5, whena block is matchedo theinput
sentencethis pointeris setto positionk wherethe most
recentblock matchstarts.We usea dot - to indicatethat
when a block is matched,the matchingposition of the
predecessostatecanbeignored. While the pointer! is
not yet equalto the endpositionof the matchk’, it is in-
creased’ := [+ 1 asshavn in Eqg. 4. The pathcostd
isset:d = d + A, whereA is the statetransitioncost
d(c,c") divided by the sourcephraseengthof block v':
we evenly spreadhecostof generating’ overall source
positionsbeing matched. The new coveragevector C’
is obtainedfrom C by adding the scannedposition I’
C" = CuU{l'}. Thealgorithmthatmakesuseof theabove
definitionsis shovn in Table2. The statesare storedin
only two statesetsI" andT”: T' containsthe mostprob-
able hypotheseshatwerekeptin the last beampruning
stepall of which cover k sourcepositions.I' containsall
thehypothesem thecurrentbeamthatcover k+1 source
positions. The single-beandecodelin Table2 usestwo

S

—M

12

proceduresthe scannerandthe matcher correspondo
thestatetransitionsn Eq.4 andEq.5. Here,thematcher
simply matchesa block to an uncoveredportion of the
input sentence After the matcherhasmatcheda block,
thatblockis processedh a cardinality-synchronousay
using the scannerprocedureas describedabore. The
predicateCLOSED?(0) is usedto switchbetweermatch-
ing and scanningstates. The predicateCLOSED? (o) is
true if the pointer! is equalto the matchend position
k" (this is storedin A’). At this point, the position-by-
positionmatchof the sourcephrases completecandwe
cansearchor additionalblock matches.

3 DP ShortestPath Algorithm for dag

This sectionanalyzeghe relationshipbetweerthe block
decodingalgorithmsin this paperand a single-source
shortestpath finding algorithm for a directed agyclic
graphg(dag). We closelyfollow the presentatiorn (Cor-
menet al., 2001) and only sketchthe algorithmhere: a
dagG = (V, E) is aweightedgraphfor which atopolog-
ical sortof its vertex setV exists: all the vertexescanbe
enumeratedn linear order For sucha weightedgraph,
the shortestpath from a single sourcecan be computed
in O(|V| + |E|) time, where|V| is the numberof ver-
texesand | E| numberof edgesin the graph. The dag
searchalgorithmrunsover all vertexeso in topological
order Assuminganadjacency-listrepresentationf the
dag, for eachvertex o, we loop over all successower-
texeso’, whereeachvertex o with its adjaceng-list is
processeaxactly once. During the searchwe maintain
for eachvertex ¢’ an attribute d[o’], which is an upper
boundon the shortestpathcostfrom the sourcevertex s
to the vertex ¢’. This shortestpath estimateis updated
or relaxedeachtime the vertex ¢’ occursin someadja-
ceng list. Ignoringthe pruning,the M-Beamdecoding
algorithmin Table1 andthe dagsearchalgorithmcanbe
comparedasfollows: statescorrespondo dagvertexes
andstatetransitionscorrespondo dagedges.Usingtwo
loopsfor the multi-beamdecodemwhile generatingstates
in stageds justaway of generatinga topologicalsort of
thesearchstatesonthefly: alinearorderof searctstates
is generatedy appendingthe searchstatesin the state
listsT'g, I'1, etc..

The analysisin termsof a dag shortestpath algorithm
canbe usedfor a simplecompleity analysisof the pro-
posedalgorithms. Local statetransitionscorrespondo
an adjaceng-list traversalin the dag searchalgorithm.
Theseinvolve costly lookup operationse.g. language,
distortionandtranslatiormodelprobabilitylookup. Typ-
ically the computatiortime for updateoperationon lists
I" is nggligible comparedto theseprobability lookups.
So, the searchalgorithmcompleity is simply computed
asthe numberof edgesin the searchgraph: O(|V| +
|E|) ~ O(|E]|) (this analysisis implicit in (Tillmann,

2001)). Without proof, for the searchalgorithmin Sec-
tion 2.1we obsere thatthe numberof stateds finite and
that all the statesare actually reachablefrom the start
stateogy. This way for the single-word basedsearchin
(Tillmann andNey, 2003),acompleity of O(|Vz|? - J? -
27) is shawvn, where |V | is the size of the target vo-
cahulary and J is the length of the input sentence.The
compleity is dominatedby the exponentialnumberof
coveragevectorsC thatoccurin the searchandthecom-
plexity of phrase-basedecodingis higheryet sinceits
hypothesestoreasourceinterval [, j] ratherthanasin-
gle sourceposition j. In the generalcase,no efficient
searchalgorithm exists to searchall word or phrasere-
orderinggKnight, 1999). Efficient searchalgorithmscan
be derivedby therestrictingthe allowable coveragevec-
tors (Tillmann, 2001)to local word re-orderingonly. An
efficientphrasalignmentmethodthatdoesnot make use
of re-orderingestrictionis demonstrateth thefollowing
section.

4 Efficient Block Alignment Algorithm

A commonapproachto phrase-base®MT is to learn
phrasalranslationpairsfrom word-alignedtraining data
(Och and Ney, 2004). Here, a word alignmentA is a
subsebf the Cartesiarproductof sourceandtargetposi-
tions:

A - {17*1} X {17*‘]}

Here, I is thetargetsentencdengthand.J is the source
sentencdength. The phraselearningapproachin (Och

andNey, 2004)takestwo alignments:a source-to-taget
alignmentA; anda target-to-sourcalignmentA;. The
intersectionof thesetwo alignmentsis computedto ob-

tain a high-precisionword alignment.Here,we notethat
if the intersectioncoversall sourceand target positions
(asshavn in Fig. 4), it constitutesa bijection between
sourceandtarget sentencepositions,sincethe intersect-
ing alignmentsarefunctionsaccordingto their definition
in (Brown etal.,1993)3. In this paperanalgorithmicjus-

tification for restrictingblocksbasednword alignments
is given. We assumehat sourceandtarget sentencere
given,andthetaskis to computethelowestscoringblock
alignment.Suchanalgorithmmightbeimportantin some
discriminatie training procedurethatrelieson decoding
thetraining dataefficiently.

To restrict the block selectionbasedon word aligned
training data,interval projectionfunctionsaredefinedas
follows #: S is a sourceinterval andT is antargetinter-

3(Tillmann, 2003)reportsanintersectiorcoverageof about
65 % for Arabic-Englishparallel data,and a coverageof 40
% for Chinese-Englistdata. In the caseof uncompletecov-
erage,the currentalgorithm can be extendedas describedin
Sectior4.1.

4(Och and Ney, 2004) definesthe notion of consisteng
for the setof phrasaltranslationghat are learnedfrom word-

13

® O 0|0 @000,
Target O O . O LOO.O
O|®@ 0|0 O .;O @)
ocooe O Oi0 @:
Source Source

Figure 3: Following the definitionin Eq. 6, the left pic-
ture shavs threeadmissible block links while the right
pictureshows threenon-admissibleblock links.

val. proj(S) is thesetof targetpositions: suchthatthe
alignmentpoint (¢, j) occursin thealignmentset.4 and;
is coveredby the sourceintenal S. projg(T) is defined
accordingly Formally, the definitionslook lik e this:

{i](i,j) e Aandj € S}
{jl(i,j) € Aandie T}

projp(S)
projs(T)
In orderto obtaina particularly simpleblock alignment
algorithm, the allowed block links (.S, T") are restricted

by anADMISSIBILITY restrictionwhichis definedasfol-
lows:

(T, S) is admissibldff
projg(T) C S andproj(S) C T

(6)

Admissibility is relatedto theword re-orderingproblem:
for thesourcepositionsin aninterval S andfor thetarget
positionsin aninterval T', all word re-orderinginvolving
thesepositionshasto take placewithin theblock defined
by S andT. Without an underlyingalignment.4 each
pair of sourceandtargetintervals would definea possi-
ble block link: the admissibility reducesthe numberof
block links drastically Examplesof admissibleandnon-
admissibleblocksareshavnin Fig. 3.

If thealignmentA is abijection,by definitioneachtar-
getposition: is alignedto exactly one sourceposition j
and vice versaand sourceand target sentenceéhave the
samelength. Becauseof the admissibility definition, a
targetinterval clumping aloneis sufficient to determine
the sourceinterval clumping and the clump alignment.
In Fig. 4, a bijectionword alignmentfor a sentencepair
thatconsistsof J = 4 sourceand/ = 4 targetwordsis
shawvn, wherethe alignmentlinks thatyield a bijection
are shavn as solid dots. Four admissibleblock align-
mentsareshavn aswell. An admissibleblock alignment
is always guaranteedo exist: the block that coversall
sourceandtargetpositionis admissibleby definition. The
underlyingword alignmentandthe admissibility restric-
tion play togetherto reducethe numberof block align-
ments: out of all eight possibletarget clumpings,only

alignedtrainingdatawhichis equialent.

Table 3: Efficient DP-basedlock alignmentalgorithm
using an underlyingword alignment.A. For simplicity
reasonsthe block scorec(b’) is computedbasedon the
blockidentity b’ only.

input: Parallelsentenceair andalignmentA.
initialization: Q(0) = 0; Q(¢) = oo; (i,1") = oo;
fori,i’ =1,---,1.
foreachi =1,2,--.,1do
Q@) = Hgn'y(i, i') + Q(i'), where
~(i,4") = ¢(b’) if blockd’ resultsfrom admissible
blocklink (T, S), whereT = [i' + 1,1]
traceback:
- find bestendhypothesisQ (1)

A_ A

® OO0 ® O OO
Target O|C @|O O O @|O

O|@® O|O O @ O|O

O O Ole] , [©OOOle| |

A_ Source Source

® O OO ONONG®
Tt [0]O @ O O@@O

O|l®@ OO O|®@|0 O

Olccel , [©0OO[e]

Source Source

Figure4: Four admissibleblock alignmentsin casethe
word alignmentintersectionis a bijection. The block
alignmentwhich coversthe whole sentencepair with a
singleblockis not shawn.

five yield sgmentationsvith admissibleblock links.

The DP-basedhlgorithmto computethe block sequence
with thehighestscoreQ(7) is shavnin Table3. Here,the
following auxiliary quantityis used:

Qi)

scoreof the bestpartial sggmentation
thatcoversthetamgetintenval [1, i].

Targetintervals are processedrom bottomto top. A
targetinterval T = [i’,4] is projectedusing the word
alignmentA, whereagiventargetinterval mightnotyield
anadmissibleblock. For theinitialization, we setQ (i) =
oo andthefinal scoreis obtainedasQ pina = Q(I). The
compleity of the algorithmis O(7?) wherethe time to
computethe coste(b’) andthetime to computetheinter
val projectionsareignored.Usingthealignmentinks A,
the segmentationproblemis essentiallylinearized: the

14

A A A

oool@o| [ooloeo oogfo
Taget |00 O0|lO® |[0ojo0 e |[Ooyoe

O@0l00 [0elooO oapgo

®00[0O, [@0/000O, |®J0QO,

Source Source Source
Figure5: An examplefor a block alignmentinvolving
a non-alignedcolumn. The right-mostalignmentis not

allowedby the closurerestriction.

target clumping is generatedsequentiallyfrom bottom-
to-top andit inducessomesourceclumpingin anorder
whichis definedby theword alignment.

4.1 Incomplete Bijection Coverage

In this section, an algorithm is sketchedthat works if
the intersectioncoverageis not complete. In this case,
a given target interval may produceseveral admissible
block links sinceit canbe coupledwith differentsource
intervalsto form admissibléblocklinks, e.g.in Fig. 5, the
targetinterval [0, 1] is linkedto two sourceintervalsand
bothresultingblock links do notviolatethe admissibility
restriction. The minimum scoreblock translationcanbe
computedusing either the one-beanor the multi-beam
algorithmpresentecaarlier The searctstatedefinitionin
Eq. 2 is modifiedto keeptrack of the currenttargetposi-
tion ¢ the sameway asthe recursve quantity () does
thisin thealgorithmin Table3:
[C,h,isd]. (7)
Additionally, acomple«blockhistoryh asdefinedn Sec-
tion 2 canbeused.Beforethesearclis carriedout, theset
of admissibleblock links for eachtargetintenal is pre-
computedand storedin a table wherea simplelook-up
for eachtargetinterval [i',] is carriedout during align-
ment. The efficiency of the block alignmentalgorithm
depend®nthealignmentintersectiorcoverage.

5 Beam-Seach Results

In this section,we presentresultsfor the beam-search
algorithmsintroducedin Section2. The MT03 Arabic-
EnglishNIST evaluationtestset consistingof 663 sen-
tenceswith 16 278 Arabic wordsis usedfor the experi-
ments.Translatiorresultsin termsof uncase®LEU us-
ing 4 referencetranslationsarereportedin Table 4 and
Table 5 for the single-beam(S-Beam) and the multi-
beam(M-Beam) searchalgorithm. For all re-ordering
experiments,the notion of skipsis used(Tillmann and
Ney, 2003)to restrictthe phrasere-ordering:the number
of skipsrestrictsthenumberof holesin thecoveragevec-
tor for a left-to-right traversalof the input sentence All

Table4: Effect of the skip parametefor the two search
stratgies.t. = 2.5, t¢ = 1.0 andwindow width w = 6.

Table5: Effect of the coveragepruningthresholdt: on
BLEU andthe overall CPU time [secs]. To restrictthe
overall searchspacethe cardinalitypruningis setto ¢, =

Skip BLEU CPU BLEU CPU 10.0 andthe cardinalityhistogranpruningis setto 2500.
S-Beam | [secs]|| M-Beam | [secs]

0 40.7+1.4 | 108 || 40.9+1.5| 116 te BLEU CPU BLEU CPU
1 44.1+1.5 | 729 | 44.1+1.6 | 2459 S-Beam | [secs]| M-Beam | [secs]

2 44.3+ 1.6 | 4408 || 44.4+ 1.6 | 8437 0.001| 37.5+1.4 | 106 | 40.5+1.5 198

3 44.3+ 1.6 | 7467 || 44.5+£ 1.6 | 10048 0.01 [383+14| 109 | 41.0+1.5 | 213

0.05 | 40.7x1.5 139 || 43.24+1.6 | 301

_ , , _ 01 [426=+15]| 215 |[442+1.6 | 508
re-orderingtakesplacein awindow of sizew = 6, such 025 | 441+16 1 1018 | 44416 | 1977
thatonly Iocal_blockre—ordgrmgs handled.. 05 1131161 4527 | 44416 | 6289
The fo_llowmg/] blqck bigram scoring is used: a 10 1131161 6623 | 44516 | 8092
block pair (i), b) vl\nth correspondingsource phrase 55 1131161 6797 445116 | 8187
matcheq[j, j'], [k, k']) is representedsa feature-ector 50 11351161 6810 445116 | 8191

f(b;¥') € R”. The feature-ector componentsare
the negative logarithm of someprobabilitiesas well as
a word-penaltyfeature. The real-valued featuresin-

clude the following: a block translationscorederived
from phraseoccurrencestatistics(1), atrigramlanguage
modelto predicttargetwords (2 — 3), a lexical weight-
ing scorefor the block internal words (4), a distortion
model(5 — 6) aswell asthe negative targetphrasdength
(7). The transitioncostis computedasc¢(b , V')
wT - f(b; V'), wherew € R” is aweightvectorthatsums
upto 1.0: Zzzlwi = 1.0. Theweightsaretrainedus-
ing a proceduresimilar to (Och, 2003) on held-outtest
data. A block setof 9.5 million blocks, which are not
filteredaccordingto ary particulartestsetis usedwhich
hasbeengeneratedy a phrase-paiselectionalgorithm
similarto (Al-Onaizanetal., 2004). The training datais
sentence-alignedonsistingof 3.3 million training sen-
tencepairs.

Beam-searchresults are presentedin terms of two
pruning thresholds: the coveragepruning threshold¢,
and the cardinality pruning thresholdt. (Tillmann and
Ney, 2003). To carry out the pruning,the minimum cost
with respecto eachcoveragesetC andcardinalityc are
computedfor a statesetI’. For the coveragepruning,
statesare distinguishedaccordingto the subsetof cov-
eredpositionsC. The minimum costQr(C) is defined
asQr(C) = ming{d| [C, h;d] € T'}. For thecardinality
pruning, statesare distinguishedaccordingto the cardi-
nality ¢(C) of subset< of coveredpositions. The min-
imum costQr(c) is definedfor all hypothesesvith the
samecardinalityc(C) = ¢: Qr(c) = min_ e Qr(0).

Statess in T" areprunedf theshortespathcostd(o) is
greatethantheminimumcostplusthepruningthreshold:

d(o) > te+Qr(C)
d(o) > te+Qr(c)

Thesamestatesetpruningis usedfor the S-Beamand

15

the M-Beamsearchalgorithms. Table 4 shaws the ef-
fect of the skip sizeon the translationperformance The
pruningthresholdsaresetto conseratively large values:
t. = 2.5 andtc 1.0. Only if no block re-ordering
is allowed (skip = 0), performancedropssignificantly
The S-Beamsearchis consistentlyfasterthan M/-Beam
searchalgorithm. Table5 demonstratethe effect of the
coveragepruningthreshold.Here,a conseratively large
cardinality pruning thresholdof ¢, = 10.0 andthe so-
called histogram pruningto restrictthe overall number
of statesin the beamto a maximum numberof 2500
are usedto restrict the overall searchspace. The S-
Beamsearchalgorithmis consistentlyffasterthanthe M -
Beamsearchalgorithmfor the samepruningthreshold,
but performancdn termsof BLEU scoredropssignifi-
cantlyfor lower coveragepruningthresholdg¢ < 0.5 as
a smallerportion of the overall searchspaceis searched
which leadsto searcherrors. For larger pruningthresh-
oldstes > 0.5, wherethe performanceof the two algo-
rithms in termsof BLEU scoreis nearly identical, the
S-Beamalgorithmrunssignificantlyfaster For a cover-
agethresholdof ¢t = 0.1, the S-Beamalgorithmis as
fastasthe M -Beamalgorithmatt. = 0.01, but obtainsa
significantlyhigherBLEU scoreof 42.6 versus41.0 for
the M-Beamalgorithm. Theresultsin this sectionshov
thatthe S-Beamalgorithmgenerallyrunsfastersincethe
beamsearchpruning is appliedto all statessimultane-
ously makingmoreefficient useof the beamsearchcon-
cept.

6 Discussion

The decodingalgorithm shovn hereis most similar to
the decodingalgorithmspresentedn (Koehn,2004)and
(OchandNey, 2004),the later beingusedfor the Align-
ment TemplateModel for SMT. Thesealgorithmsalso

include an estimateof the path completioncost which
caneasilybeincludedinto this work aswell ((Tillmann,
2001)). (Knight, 1999)shows thatthe decodingproblem
for SMT aswell as somebilingual tiling problemsare
NP-completesono efficient algorithmexistsin the gen-
eral case. But using DP-basedoptimizationtechniques
and appropriaterestrictionsleadsto efficient DP-based
decodingalgorithmsasshawn in this paper

Theefficientblock alignmentalgorithmin Sectiord is
relatedo theinversiontransductiogrammarmapproacho
bilingual parsingdescribedn (Wu, 1997):in both cases
the numberof alignmentsis drasticallyreducedby in-
troducingappropriatere-orderingrestrictions. The list-
baseddecodingalgorithmscan also be comparedo an
Earley-style parsingalgorithmthatprocessesst of parse
statesn asingleleft-to-rightrun overtheinputsentence.
For this algorithm,thecomparisonn termsof a shortest-
pathalgorithmis lessobvious: in the so-calledcomple-
tion stepthe parserre-visitsstatesn previousstacks.But
it is interestingto notethatthereis no multiple lists vari-
antof that parser In phrase-basedecoding,a multiple
list decodeis feasibleonly becausexactphrasematches
occut A block decodingalgorithmthatwould allow for
a’fuzzy’ matchof sourcephrasese.g.insertionsor dele-
tions of somesourcephrasewords are allowed, would
needto carryoutits computationsisingtwo stackssince
thematchendof ablockis unknavn.

7 Acknowledgment

This work was partially supportedoy DARPA andmon-
itored by SFAWAR undercontractNo. N66001-99-2-
8916. The authorwould like to thank the anorymous
reviewersfor their detailedcriticism on this paper

References

YaserAl-Onaizan,Niyu Ge,Young-Sul_ee,KishorePa-
pineni, Fei Xia, and ChristophTillmann. 2004. IBM
Site Report. In NIST 2004 MT Workshop, Alexandria,
VA, JunelBM.

Adam L. Bermer, Peter F. Brown, StephenA. Della
Pietra,VincentJ. Della Pietra,Andrewn S. Kehler and
RobertL. Mercer 1996. LanguageTranslationAp-
paratusand Method of Using Context-BasedTrans-
lation Models. United States Patent, Patent Number
5510981, April.

PeterF. Brown, VincentJ. Della Pietra,StepherA. Della
Pietra,andRobertL. Mercer 1993. The Mathematics
of StatisticalMachineTranslation:ParametefEstima-
tion. Computational Linguistics, 19(2):263—-311.

ThomasH. Cormen, CharlesE. Leiserson,Ronald L.
Rivest,and Clifford Stein. 2001. Introduction to Al-
gorithms. MIT PressCambridgeMassachusetts.

16

StuartE. Dreyfus and Averill M. Law. 1977. The Art
and Theory of Dynamic Programming (Mathematicsin
Science and Engineering; vol. 130). AcadamicPress,
New York, N.Y.

Held andKarp. 1962. A Dynamic ProgrammingAp-
proachto SequencingProblems. SAM, 10(1):196—
210.

Fred Jelinek. 1998. Satistical Methods for Speech
Recognition. TheMIT PressCambridgeMA.

Kevin Knight. 1999. DecodingCompleity in Word-
ReplacementranslationModels. CL, 25(4):607—615.

Philipp Koehn. 2004. Pharaoh:a BeamSearchDecoder
for Phrase-Base8tatisticaMachineTranslatiorMod-
els. In Proceedings of AMTA 2004, WashingtonDC,
SeptembeOctober

BruceLowerreandRajReddy 1980. The Harpy speech
understanding system, in Trends in Speech Recogni-
tion, WA. Lea, Ed. PrenticeHall, EngleWbod Cliffs,
NJ.

H. Ney, D. Mergel, A. Noll, andA. Paeseler1992. Data
Driven SearchOrganizationfor ContinuousSpeech
Recognitionin the SPICOSSystem. |EEE Transac-
tion on Sgnal Processing, 40(2):272—-281.

S. Niessen,S. Vogel, H. Ney, and C. Tillmann. 1998.
A DP-BasedsearchAlgorithm for StatisticalMachine
Translation.In Proc. of ACL/COLING 98, page<960—
967,Montreal,CanadaAugust.

Franz-JoseDch and HermannNey. 2004. The Align-
mentTemplateApproachto StatisticalMachineTrans-
lation. Computational Linguistics, 30(4):417-450.

Franz JosefOch. 2003. Minimum error rate training
in statisticalmachinetranslation. In Proceedings of
ACL' 03, pagesl60-167 SapporoJapan.

ChristophTillmann andHermannNey. 2003. Word Re-
orderinganda DP BeamSearchAlgorithm for Statis-
tical MachineTranslation.CL, 29(1):97-133.

Christoph Tillmann, Stefan Vogel, HermannNey, and
Alex Zubiaga. 1997. A DP-basedSearchUsing
Monotone Alignmentsin Statistical Translation. In
Proc. of ACL 97, page<289—-296 Madrid,SpainJuly.

ChristophTillmann. 2001. Word Re-Ordering and Dy-
namic Programming based Search Algorithm for Sta-
tistical Machine Trandation. Ph.D.thesis,University
of TechnologyAachen,Germayy.

ChristophTillmann. 2003. A ProjectionExtensionAl-
gorithmfor StatisticalMachineTranslation. In Proc.
of EMNLP 03, pagesl—8,Sapporo,Japan,July.

Dekai Wu. 1997. Stochasticlnversion Transduction
Grammarsand Bilingual Parsingof Parallel Corpora.
Computational Linguistics, 23(3):377-403.

1

Discriminative machine learning methods have im

Computational Challenges in Parsing by Classification

Joseph Turian and I. Dan Melamed
{lastname}@cs.nyu.edu
Computer Science Department
New York University
New York, New York 10003

Abstract

This paper presents a discriminative
parser that does not use a generative
model in any way, yet whose accu-
racy still surpasses a generative base-
line. The parser performs feature selec-
tion incrementally during training, as op-
posed toa priori, which enables it to
work well with minimal linguistic clever-
ness. The main challenge in building this
parser was fitting the training data into
memory. We introduce gradient sampling,
which increased training speed 100-fold.
Our implementation is freely available at
http://nlp.cs.nyu.edu/parser/.

Introduction

trial and error with diferent hyper-parameter values
and types of features.

In the present work, we make progress towards
overcoming these obstacles. We propose a flexible,
well-integrated method for training discriminative
parsers, demonstrating techniques that might also
be useful for other structured learning problems.
The learning algorithm projects the hand-provided
atomic features into a compound feature space and
performs incremental feature selection from this
large feature space. We achieve higher accuracy than
a generative baseline, despite not using the standard
trick of including an underlying generative model.
Our training regime does model selection without
ad-hoc smoothing or frequency-based feature cut-
offs, and requires no heuristics to optimize the single
hyper-parameter.

We discuss the computational challenges we over-
came to build this parser. The mairffatiulty is that
the training data fitin memory only using an indirect

éepresentatioﬁ,so the most costly operation during

proved accuracy on many NLP tasks, including™"" ~>>" .)
POS-tagging, shallow parsing, relation extraction@ining is accessing the features of a particular ex-

and machine translation. However, only limited adgmple. We show how to train a parséieetively un-

vances have been made on full syntactic constitueﬂ?r thesz con(j|t|ons. _Ne_allsc(; show ?OW to sEesd up
parsing. Successful discriminative parsers have us g'ning by using a principied sampling metho '_(0
generative models to reduce training time and raiestimate thg loss gradlen_ts used in feature selection.
accuracy above generative baselines (Coliins & S2 describes the parsing algorith§8 presents

Roark, 2004: Henderson, 2004: Taskar et al., 2004tjje learning method and techniques used to reduce

However, relying upon information from a gener—_tra'r_"ng time.§4 pre_sent§ experiments with dls_crlm—
inative parsers built using these methogs. dis-

ative model might limit the potential of these ap-
proaches to realize the accuracy gains achieved bysimilar memory limitations exist in other large-scale NLP
discriminative methods on other NLP tasks. Anothejgsks. Syntax-driven SMT systems are typically trained on

. . R . an order of magnitude more sentences than English parsers,
difficulty is that discriminative parsing approaChe%nd unsupervised estimation methods can generate an arbitrary
can be very task-specific and require quite a bit afumber of negative examples (Smith & Eisner, 2005).

17

Workshop on Computationally Hard Problemsand Joint Inference in Speech and Language Propeggsd 7—24,
New York City, New York, June 200822006 Association for Computational Linguistics

cusses possible issues in scaling to larger exam@e Training Method
sets. _
3.1 General Setting

2 Parsing Algorithm From each training inferendec | we generate the

The following terms will help to explain our work. tUPI€ ¢X(i), (i), b(i)). X(i) is a feature vector de-

A spanis a range over contiguous words in the inSCrPingi, with each element if0, 1). The observed
—-1,+1} is determined by whether

put. Spangrossif they overlap but neither contains Y-Valuey(i) € { w
the other. Aritemis a (sparlabel) pair. Astateis a IS @ CorTect inference or not. Some training exam-
partial parse, i.e. a set of items, none of whose spaRi€S might be more |mportflnt than others, so each is
cross. A parsénferenceis a (stateitem) pair, i.e. a 9Iven aninitial biad(i) e R*.

state and a (consequent) item to be added to it. The QUr goal during training is to induce a real-valued
frontier of a state consists of the items with no parinférence scoring function (hypothesid)(i; @),
ents yet. Thehildrenof an inference are the frontier Which is a linear model parameterized by a vector
items below the item to be inferred, and theadof @ Of reals:

an in'ference is the child item chosen by_head rules h(i; @) = @ - X(i) = Z at - X (i) 2)
(Collins, 1999, pp. 238-240). A parpathis a se- i

guence of parse inferences. For some input sentenlg

and training parse tree, a state@@rectif the parser) . . .
. ") : -value ofi and the magnitude gives the confidence
can infer zero or more additional items to obtain th . -~
in this prediction.

training parse tree and an inference is correct if | . - L
The training procedure optimizesto minimize
leads to a correct state. :
. .) the expected risk:
Now, given input sentencewe compute:

R(l; @) = L(I; @) + Q(a) (3)
p=arg min[z I(i)]

_ (1) In principle, L can be any loss function, but in the
peP(9) |iep

present work we use the log-loss (Collins et al.,
whereP(s) are possible parses of the sentence, anghp2):

the loss (or cost)| of parsep is summed over the , , ,
inferencesi that lead to the parse. To finp, the L(lie) = Z (@) = Zb(')"f(:“('?“)))
parsing algorithm considers a sequence of states. i€l i€l

The initial state contains terminal items, whose lawhere:

bels are the POS tags given by Ratnaparkhi (1996). o(u) = In(1+ expp)) (5)
The parser considers a set of (bottom-up) inferences

. ; and themargin of inferencei under the current
at each state. Each inference results in a successor

state to be placed on the agenda. The loss functicr>rr110de|a IS

| can consider arbitrary properties of the input and u(i; @) = y() - h(i; @) (6)

parse staté,which precludes a tractable dynamic . . o . .

programming solution to Equation 1. Therefore, Wé:or a particular choice o, I(i) in Equation 1 is

do standard agenda-based parsing, but instead c&mputed according to Equation 4 usiy(@ = +1

. . andb(i) = 1.

items our agenda stores entire states, as per moreQ in Equation 3 i lari hich |

general best-first search over parsing hypergraphs (@) in Equation 3 is a regularizer, w ICh penal-

(Klein & Manning, 2001). Each time we pop a statdZ€S overly complex models to reduce overfitting and

from the agendd, computes a loss for the bottom-generalIzatlon error. We use thiepenalty:

up inferences generated from that state. If the loss Qa) = Z Aol (7)
f

of the popped state exceeds that of the current best

complgte parse, search is done and we have fOUMereﬂ is the, parameter that controls the strength
the optimal parse. of the regularizer. This choice of objectifis mo-
2|.e. we make no context-free assumptions. tivated by Ng (2004), who suggests that, given a

gchf is a feature. The sign df(i; @) predicts the

18

learning setting where the number of irrelevant feakisting 1 Training algorithm.
tures is exponential in the number of training exam- 1: procedure Train(l)

ples, we can nonetheless leafieetively by build- 2: ensemble— 0

ing decision trees to minimize th&-regularized 3: h(i) < O foralli €
log-loss. Conversely, Ng (2004) suggests that most: forT=1...00do

of the learning algorithms commonly used by dis- 5: S « priority samplel
criminative parsersvill overfit when exponentially 6: extractX(i) for alli € S
many irrelevant features are presént. 7 build decision tre¢ usingS

Learning over an exponential feature space is thes: percolate every € | to a leaf node it
very setting we have in mindA priori, we define 9 for eachleaf f int do
only a setA of simple atomic features (se€4). 10: choosear to minimizeR
However, the learner inducesompoundfeatures, 11: addas to h(i) for all i in this leaf

each of which is a conjunction of possibly negated
atomic features. Each atomic feature can have thr&/mine the accuracy of the parser on a held-out de-
values (yesg/don't care), so the size of the com-Vvelopment set using the previousvalue (before it
pound feature space i$3 exponential in the num- Was decreased), and can stop training when this ac-
ber of atomic features. It was also exponential ifuracy plateaus. In this way, instead of choosing the
the number of training examples in our experiment@€st1 heuristically, we can optimize it during a sin-
(A ~ [1]). gle training run (Turian & Melamed, 2005).

We use an ensemble of confidence-rated deci- OUr Stratégy for optimizing to minimize the ob-

sion trees (Schapire & Singer, 1999) to represeht jecting(Equation 3) is a variant (_)f ;tee_pest _descent
Each node in a decision tree corresponds to a corfferkins et al., _2003). Each training iteration has
pound feature, and the leaves of the decision treS§Veral steps. First, we choose some new compound
keep track of the parameter values of the compourf§iatures that have high magnitude gradient with re-
features they represent. To score an inference usif§ect t0 the objective function. We do this by build-

a decision tree, we percolate the inference down {§9 & new decision tree, whose leaves represent the
a leaf and return that leaf’s confidence. The overafleW compound fegt_urésSecondz we confidence-
score given to an inference by the whole ensembl@te each leaf to minimize the objective over the ex-
is the sum of the confidences returned by the trees #NPles that percolate down to that leaf. Finally, we

the ensemble. append the decision tree to the ensemble and up-
date parameter vectaraccordingly. In this manner,
3.2 Boostingfi-Regularized Decision Trees compound feature selection is performed incremen-

- . _ . tally duringtraining, as opposed @priori.
Listing 1 presents our training algorithm. (Sampling 14, p,iiq each decision tree, we begin with a root
will be explained in§3.3. Until then, assume that node, and we recursively split nodes by choosing a

the sampleS is the entire training sdt) Atthe be- giing feature that will allow us to decrease the
ginning of training, the ensemble is empty,= 0, objective. We have:

and thef; parameten is set toco. We train until the aL(l; @) _ Z (i) duli:) .
i€l

objective cannot be further reduced for the current

. o P ou(i;a) @
choice ofi. We then relax the regularization penalty o u(i; @) o
by decreasing and continuing training. We also de-Where: .

ou(i; @) . .
T . . = y(i) - Xt (i) 9)
3|nclud|ng_the foIIc_)w_lng Iearnlng algorithms: Oat

o unregularized logistic regression ___ We define thaveightof an example under the cur-
e |ogistic regression with afy, penalty (i.e. a Gaussian prior) .
« SVMs using most kernels rent model agl.(') L
o multilayer neural nets trained by backpropagation .. _ Lha) .]
* the perceptron algorithm wis @) = ou(i; @) = b() 1+expu(i; @) (10)

4Turian and Melamed (2005) show that that decision treesap-
plied to parsing have higher accuracy and training speed tharPAny given compound feature can appear in more than one
decision stumps. tree.

19

and: 3.3 Sampling for Faster Feature Selection

Yer- o\ — L
Wi(lie) = Z: w(i; @) (11) Building a decision tree using the entire example set
X ()~ Ly(i)=y | can be very expensive, which we will demonstrate
o) . in §4.2. However, feature selection can leetive
Combining Equations 8-11 givés: even if we don’t examine every example. Since the
oL weight of high-margin examples can be several or-
- Wf—l _ W?—l (12) g g g p

ders of magnitude lower than that of low-margin ex-
amples (Equation 10), the contribution of the high-
margin examples to feature weights (Equation 11)
oL will be insignificant. Therefore, we can ignore most
G = max(O, ‘% B ’l) (13) examples during feature selection as long as we have
r%md estimates of feature weights, which in turn give

. . N . 0od estimates of the loss gradients (Equation 12).
penalty term is undefined at = 0. This discontinu- g 9 (Eq)

ity is why ¢1 regularization tends to produce sparse As ShO_W_” in Step 1.5 of L'?t”.‘g L, befqre building
models. IfG; = 0, then the objectivR s at its min- each decision tree we use priority sampling fizld

imum with respect to parametef;. Otherwise G¢ et aII., 2005) éo ctlootshe a smalll sub_ser:tof Fhe et;< i
is the magnitude of the gradient of the objective a mpies according fo the example WeIghts given by

we adjust; in the appropriate direction. t _ecurrent classifier, and the tree is built using only
: . : . this subset. We make the sample small enough that
The gain of splitting nodd using some atomic . . . T
. . its entire atomic feature matrix will fit in memory.
featurea is defined as o - o
To optimize decision tree building, we compute and
Gi(@) = Gipa + Gip-a (14) cache the sample’s atomic feature matrix in advance
: . Step 1.6).
We allow nodef to be split only by atomic features (Step)) L .
Even if the sample is missing important informa-

athat increase the gain, i.6(a) > Gj. If no such tion i teration. the traini d .
feature exists, thefi becomes a leaf node of the de- lon In one iteration, the training procedure IS capa-

cision tree andrs becomes one of the values to be_ble Of_ recovering it from sam_ples used |n1 sub_seque_nt
lferations. Moreover, even if a sample’s gain esti-

optimized during the parameter update step. Othe _ .
wise, we choose atomic featuaed split nodef: mates are inaccurate and the feature selectlgn step
) chooses irrelevant compound features, confidence
a = argmaxG:(a) (15) updates are based upon the entire training set and
ach the regularization penalty will prevent irrelevant fea-
This split creates child nodesa dandf A-a&. 1fno tures from having their parameters move away from
root node split has positive gain, then training hagero.
converged for the current choice &if parameten.
Parameter update is done sequentially on only tt®4 The Training Set

most recently added compound features, which cor- o _ _ _
respond to the leaves of the new decision tree. Aft&pUr training set contains all inferences considered

the entire tree is built, we percolate examples dowif €Very state along the correct path for each gold-
to their appropriate leaf nodes. We then choose f&iandard parse tree (Sagae & Lavie, 2005his
each leaf nodé the parametat; that minimizes the Method of generating training examples does not re-
objectiveR over the examples in that leaf. DecisiondUiré & working parser and can be run prior to any
trees ensure that these compound features are nf{@ining. The downside of this approach is that it
tually exclusive, so they can be directly optimizedninimizes the error of the parser aprrect states

independently of each other using a line search ov@lY- It does not account for compounded error or
the objectiveR. teach the parser to recover from mistakes gracefully.

oat

We define theyain G; of featuref as:

Equation 13 has this form because the gradient of t

6Sincea is fixed during a particular training iteration ahds Since parsing is done deterministically right-to-left, there can
fixed throughout training, we omit parametelrsa) henceforth. be no more than one correct inference at each state.

20

Turian and Melamed (2005) observed that unifeatures over.2 Extraction is 100-1000 times more
form example biaseb(i) produced lower accuracy expensive than a single test, but is necessary during
as training progressed, because the induced clasdecision tree building (Step 1.7) because we need
fiers minimized theexample-wiseerror. Since we the entire vectorX(i) to accumulate inferences in
aim to minimize the state-wise error, we express thishildren nodes. Essentially, for each inferenteat
bias by assigning every trainirgfateequal value, falls in some nodd, we accumulatev(i) in W}’(A')a
and—for the examples generated from that state-fer all a with X(i) = 1. After all the inferences in a
sharing half the value uniformly among the neganode have been accumulated, we try to split the node
tive examples and the other half uniformly amondEquation 15). The negative child weights are each

the positive examples. determined ayv!, =W/ -W/ _.

Although there areD(n?) possible spans over a4 Experiments
frontier containingn items, we reduce this to the _
O(n) inferences that cannot have more than 5 chil/Ve follow Taskar et al. (2004) and Turian and
dren. With no restriction on the number of childrenMeélamed (2005) in training and testing en 15
there would beO(n?) bottom-up inferences at eachWword sentences in the English _Penn Treebank (T_ay-
state. However, only 0.57% of non-terminals in thd0r €t al., 2003). We used sections 02-21 for train-

preprocessed development set have more than fif#g: Section 22 for development, and section 23,
children. for testing. We use the same preprocessing steps as

Turian and Melamed (2005): during both training

Like Turian and Melamed (2005), we parallelizeand testing, the parser is given text POS-tagged by
training by inducing 26 label classifiers (one forthe tagger of Ratnaparkhi (1996), with capitalization
each non-terminal label in the Penn Treebank). Pastripped and outermost punctuation removed.
allelization might not uniformly reduce training time For reasons given in Turian and Melamed (2006),
because dierent label classifiers train atfférent items are inferred bottom-up right-to-left. As men-
rates. However, parallelization uniformly reducesioned in §2, the parser cannot infer any item that
memoryusage because each label classifier traingosses an item already in the state. To ensure the
only on inferences whose consequent item has thparser does not enter an infinite loop, no two items
label. Even after parallelization, the atomic featurén a state can have both the same span and the same
matrix cannot be cached in memory. We can storbel. Given these restrictions, there were roughly 40
the training inferences in memory using onlyian million training examples. These were partitioned
directrepresentation. More specifically, for each in-among the constituent label classifiers.
ferencei in the training set, we cache in memory Our atomic feature sef contains features of
several values: a pointerto a tree cut, ity-value the form “is there an item in groug whose la-
y(i), its biasb(i), and its confidencé(i) under the belheadwor¢headtagheadtagclassis ‘X’?”. Pos-
current model. We cach€i) throughout training be- sible values of ‘X’ for each predicate are collected
cause it is needed both in computing the gradient éfom the training data. Some examples of possible
the objective during decision tree building (Step 1.7yalues forJ include the lash child items, the firsh
as well as subsequent minimization of the objectivieft context items, all right context items, and the ter-
over the decision tree leaves (Step 1.10). We updateinal items dominated by the non-head child items.
the confidences at the end of each training iteratioBpace constraints prevent enumeration of the head-
using the newly added tree (Step 1.11). tagclasses and atomic feature templates, which are

The most costly operation during training is to ac- °Extraction need not take theiia approach of performingy

. . different tests, and can be optimized by using knowledge about
cess the feature values X(i). An atomic feature . \-iure of the atomic feature templates,

testdetermines the valuX,(i) for a single atomic °The predicate headtagclass is a supertype of the headtag.
featurea by examining the tree cut pointed to by in-Given our compound features, these are not strictly neces-

. . sary, but they accelerate training. An example is “proper noun,”
ferencei. Alternately, we can perform atomic fea’which contains the POS tags given to singular and plural proper
ture extraction i.e. determineall non-zero atomic nouns.

21

Figure 1 F; score of our parser on the developmenTable 1 PARSEVAL results of parsers on the test
set of the Penn Treebank, using orlyL5 word sen- set, using onl 15 word sentences.

tences. The dashed line indicates the percemtPof F1 % Rec. % Prec. %
example weight lost due to sampling. The bottonTyrian and Melamed (2005) 87.13 86.47 87.80
x-axis shows the number of non-zero parameters igjke| (2004) 88.30 8785 88.75
each parser, summed over all label classifiers. Taskar et al. (2004) 89.12 89.10 89.14
training time (days) our parser 89.40 89.26 89.55

0.5 1.0 2.5 5.4

35%

91%

Table 2 Profile of anNP training iteration, given

£30% in seconds, using an AMD Opteron 242 (64-bit,

1 90%

g 2% f 189% % 1.6Ghz). Steps refer to Listing 1.

‘; 20% | 188% g Step Description mean stddev %
AR {87% = 15 Sample 15s 0.07s 0.7%
% 10% ¢ {86% & 1.6 Extraction 38.2s 0.13s 18.6%
2 5%} { 85% 1.7 Buildtree 127.6s 27.60s 62.3%
0% P — ‘ 84% 1.8 Percolation 31.4s 491s 15.3%
b toljiumber o‘zf.iSn zero paramitKers e 1.9-11 Leaf updates 6.2s 1.75s 3.0%
1.5-11 Total 204.9s 32.6s 100.0%

instead provided at the URL given in the abstract.
These templates gave 1.1 millionfigrent atomic 2004)1° the only one that we were able to train and

features. We experimented with smaller feature set@st under exactly the same experimental conditions
but found that accuracy was lower. Charniak an§including the use of POS tags from Ratnaparkhi

Johnson (2005) use linguistically more sophisticated996)). Table 1 shows the PARSEVAL results of

features, and Bod (2003) and Kudo et al. (2005) ud@ese four parsers on the test set.

sub-tree features, all of which we plan to try in fu—4'2 Efficiency
ture work.

We evaluated our parser using the standard PARO% of non-terminals in the Penn Treebank are
SEVAL measures (Black et al., 1991): labelled'Ps. Consequently, the bottleneck in training is
precision, labelled recall, and labelled F-measur@duction of theNP classifier. It was trained on
(Prec., Rec., andiFrespectively), which are based1-65 million examples. Each example had an aver-
on the number of non-terminal items in the parserdgde of 440 non-zero atomic features (stddev 123),
output that match those in the gold-standard pars&® the direct representation of each example re-
The solid curve Figure 1 shows the accuracy ofiuires a minimum 440 sizeof(int) = 1760 bytes,
the parser over the development set as training prghd the entire atomic feature matrix would re-
gressed. The parser exceeded 89% F-measure @¢ire 1760 bytes 1.65 million = 2.8 GB. Con-
ter 2.5 days of training. The peak F-measure wadersely, an indirectly represent inference requires
90.55%, achieved at 5.4 days using 6.3K actiyB0 more 32 bytes: two floats (the cached confi-
parameters. We omit details given by Turian andenceh(i) and the bias terni(i)), a pointer to a
Melamed (2006) in favor of a longer discussion irfree cut), and a bool (they-value y(i)). Indi-

§4.2. rectly storing the entire example set requires only
32 bytes 1.65 million = 53 MB plus the treebank
4.1 Test Set Results and tree cuts, a total of 400 MB in our implementa-

To situate our results in the literature, we comparﬂon-

our results to those reported by Taskar et al. (2004) We used a sample size|& = 100 000 examples
and Turian and Melamed (2005) for their discrimi-to build each decision tree, 16.5 times fewer than
native parsers, which were also trained and tested &€ entire example set. The dashed curve in Figure 1
< 15 word sentences. We also compare our parsedgiye| (2004) is a “clean room” reimplementation of the
to a representative non-discriminative parser (Bikekollins (1999) model with comparable accuracy.

22

shows the percent afP example weight lost due 100 timesas long as it does currently.
to sampling. As training progresses, fewer examples Our decision tree ensembles contain over two or-
are informative to the model. Even though we ignoréers of magnitude more compound features than
94% of examples during feature selection, samplinghose in Turian and Melamed (2005). Our overall
loses less than 1% of the example weight after a dayaining time was roughly equivalent to theirs. This
of training. ratio corroborates the above estimate.

The NP classifier used in our final parser was
an ensemble containing 2316 trees, which tooE Discussion
five days to build. Overall, there were 96871 de-
cision tree leaves, only 2339 of which were nonTheNP classifier was trained only on the 1.65 mil-
zero. There were an average of 40.4 (7.4 stdion NP examples inthe 9753 training sentences with
dev) decision tree splits between the root of & 15 words (168.8 examplgentence). The number
tree and a non-zero leaf, and nearly all nonof examples generated is quadratic in the sentence

zero leaves were conjunctions of atomic fealength, so there are 41.7 milliafP examples in all
ture negations(e.g. -(some child item is a verb) 39832 training sentences of the whole Penn Tree-
—(some child item is a preposition)). The non-zerdank (1050 exampl¢sentence), 25 times as many
leaf confidences were quite small in magnitud@s we are currently using.
(0.107 mean, 0.069 stddev) but the training exam- The time complexity of each step in the train-
ple margins over the entire ensemble were nonethig loop (Steps 1.5-11) is linear over the number
less quite high: 11.7 mean (2.92 stddev) for corre@f examples used by that step. When we scale up
inferences, 30.6 mean (11.2 stddev) for incorrect irfo the full treebank, feature selection will not re-
ferences. quire a sample 25 times larger, so it will no longer
Table 2 profiles aiP training iteration, in which be the bottleneck in training. Instead, each itera-
one decision tree is created and added to tH®n will be dominated by choosing leaf confidences
NP ensemble. Feature selection in our algorithnand then updating the cached example confidences,
(Steps 1.5-1.7) takes5k38.2+127.6 = 167.3s, far which would require 25 (314s+ 6.2s) = 940s per
faster than in nize approaches. If we didn’t do sam-iteration. These steps are crucial to the current train-
pling but had 2.8GB to spare, we could eliminate thég algorithm, because it is important to have exam-
extraction step (Step 1.6) and instead cache the gple confidences that are current with respect to the
tire atomic feature matrix before the loop. Howevernodel. Otherwise, we cannot determine the exam-
tree building (Step 1.7) scales linearly in the numbeples most poorly classified by the current model, and
of examples, and would take $6127.6s= 21054s will have no basis for choosing an informative sam-
using the entire example set. If we didn’t do sample.
pling and couldn’t cache the atomic feature matrix, We might try to save training time by building
tree building would also require repeatedly performmanydecision trees over a single sample and then
ing extraction. The number of individual feature ex-updating the confidences of the entire example set
tractions needed to build a single decision tree is thasing all the new trees. But, if this confidence up-
sum over the internal nodes of the number of exanttate is done using feature tests, then we have merely
ples that percolate down to that node. There are ateferred the cost of the confidence update over the
average of 40.8 (7.8 stddev) internal nodes in eaantire example set. The amount of training done on
tree and most of the examples fall in nearly all of particular sample is proportional to the time sub-
them. This property is caused by the lopsided treesequently spent updating confidences over the entire
induced unde¥; regularization. A conservative es-example set. To spend less time doing confidence
timate is that each decision tree requires 25 extraopdates, we must use a training regime thaduls
tions times the number of examples. So extractiolinear with respect to the training time. For exam-
would add at least 2616.5 - 382s = 157575s0n ple, Riezler (2004) reports that tife regularization
top of 2105.40s, and hence building each decisiaerm drives many of the model's parameters to zero
tree would take at least (15754 210540)/167.3 ~ during conjugate gradient optimization, which are

23

then pruned before subsequent optimization stepsttee model to other structured learning tasks, such as
avoid numerical instability. Instead of building de-syntax-driven SMT.

cision tree(s) at each iteration, we could perfarm

best feature selection followed by parallel optimizaReferences

tion of the objective over the sample. Bikel, D. M. (2004). Intricacies of Collins’ parsing model.

The main limitation of our work so far is that Computational Linguistics , ,
lack, E., Abney, S., Flickenger, D., Gdaniec, C., Grishman,

we can do training reasonably qu'Ck!y only on ShOI‘?R_, Harrison, P., et al. (1991). A procedure for quantitatively
sentences, because a sentence witlvords gen- comparing the syntactic coverage of English grammars. In

eratesO(n?) training inferences in total. Although SPeech and Natural Language. _
. Bod, R. (2003). An fficient implementation of a new DOP
generating training examples in advance without a,,04el. InEACL.

working parser (Sagae & Lavie, 2005) is much fastea:_harniak, E., & Johnson, M. (2005). Coarse-to-fine n-best pars-
than using inference (Collins & Roark, 2004; Hen- ing and MaxEnt discriminative reranking. ACL.

. . : ollins, M. (1999).Head-driven statistical models for natural
derson, 2004; Taskar et al., 2004), our training tlmglanguage parsingDoctoral dissertation,

can probably be decreased further by choosing @iiins, M., & Roark, B. (2004). Incremental parsing with the

parsing strategy with a lower branching factor. Like perceptron algorithm. I1ACL.

; ollins, M., Schapire, R. E., & Singer, Y. (2002). Logistic re-
our work, Ratnaparkhi (1999) and Sage_le and_LaV@gression, AdaBoost and Bregman distanddachine Learn-
(2005) generate examplefitine, but their parsing ing, 48(1-3).
strategies are essentially shift-reduce so each sewifield, N., Lund, C., & Thorup, M. (2005). Prior-

n ner n®(n) trainina examoles. ity sampling estimating arbitrary subset sums.(http:
tence gene ates o Q()ta g examples //arxiv.org/abs/cs.DS/0509026)

] Henderson, J. (2004). Discriminative training of a neural net-
6 Conclusion work statistical parser. IACL.
Klein, D., & Manning, C. D. (2001). Parsing and hypergraphs.
Our work has made advances in both accuracy ar&df‘d'W_TT-s . 3. & Isozaki, H. (2005). Boosting-based
.. udo, T., Suzuki, J., sozaki, H. . Boosting-base
training speed of dlscrlmln.atlve. parsing. .As far as parse reranking with subtree featuresAfL.
we know, we present the first discriminative parsemg, A. Y. (2004). Feature selectiofy, vs. £, regularization, and
that surpasses a generative baseline on constituergtational invariance. fiCML. .
parsing without using a generative component, arfgfkins: S., Lacker, K., & Theiler, J. (2003). Grafting: Fast,
! . o . O incremental feature selection by gradient descent in function
it does so with minimal linguistic cleverness. space Journal of Machine Learning Reseatch
The main bottleneck in our setting was memoryR€=1tn€=1par:<fllzi,N| AN I_|(31996)- A maximum entropy part-of-speech
. .~ _tagger. In .
We _COl_Jld store the examples in memory only uSIn%atnaparkhi, A. (1999). Learning to parse natural language
an indirect representation. The most costly opera-with maximum entropy modelsviachine Learning34(1-3).
tion during training was accessing the features of Biezler, S. (2004). Incremental feature selectiod,afegular-
particular example from this indirect representation, z2tion for relaxed maximum-entropy modeling. BMNLP.
. . Sagae, K., & Lavie, A. (2005). A classifier-based parser with
We showeq how to train a parseffectively u_ndgr linear run-time complexity. IMWPT.
these conditions. In particular, we used principledchapire, R. E., & Singer, Y. (1999). Improved boosting using
sampling to estimate loss gradients and reduce théc’_tr‘r:'dﬁ”:egaé?d preg"?(tz'%g%")""cé"“i '-ef_‘r”'”gt3_’7(3t)_- Tl
. . . . mitn, N. A., Isher, J. . contrastive estimation: Ifrain-
_number of feature extractions. This gpproxmatlor?mg log-linear models on unlabeled data AGL.
increased the speed of feature selection 100-fold. Taskar, B., Klein, D., Collins, M., Koller, D., & Manning, C.
We are exploring methods for scaling training_{(z?o“k MMaX'margl\'A“ p;fss'”%- '5'_\’”;'-2003) The Pern T
. . 9y or, A., Marcus, M., antorini, b. . e renn lree-
_Up to larger .exam'ple sets. We are alsf) '”Ves_t'ga bank: an overview. In A. Abe# (Ed.), Treebanks: Building
ing the relationship between sample size, trainingand using parsed corpor&chap. 1).
time, classifier complexity, and accuracy. In addiTulrian,.fJ-, & Mellrc'iivn\wlgt# I. D. (2005). Constituent parsing by
. . classification. .
tion, we shall make some Stand?'rd IrT‘provemem:lsﬁrian,J.,&Melamed,I.D. (2006). Advances in discriminative
to our parser. Our parser should infer its own POSparsing. InaCL.
tags. A shift-reduce parsing strategy will generate
fewer examples, and might lead to shorter training
time. Lastly, we plan to give the model linguistically

more sophisticated features. We also hope to apply

24

1

All-word prediction as the ultimate confusable disambiguaion

Antal van den Bosch
ILK / Dept. of Language and Information Science, Tilburg ubsity
P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands
Ant al . vdnBosch@vt . nl

Abstract

We present a classification-based word
prediction model based on IKREE, a
decision-tree induction algorithm with fa-
vorable scaling abilities and a functional
equivalence tm-gram models with back-
off smoothing. Through a first series of
experiments, in which we train on Reuters
newswire text and test either on the same
type of data or on general or fictional text,
we demonstrate that the system exhibits
log-linear increases in prediction accuracy
with increasing numbers of training ex-
amples. Trained on 30 million words
of newswire text, prediction accuracies
range between 12.6% on fictional text and
42.2% on newswire text. In a second se-
ries of experiments we compare all-words
prediction with confusable prediction, i.e.,
the same task, but specialized to predict-
ing among limited sets of words. Con-
fusable prediction yields high accuracies
on nine example confusable sets in all
genres of text. The confusable approach
outperforms the all-words-prediction ap-
proach, but with more data the difference
decreases.

Introduction

(Even-Zohar and Roth, 2000). It is usually not an
engineering end in itself to predict the next word in a
sequence, or fill in a blanked-out word in a sequence.
Yet, it could be an asset in higher-level proofing or
authoring tools, e.g. to be able to automatically dis-
cern among confusables and thereby to detect con-
fusable errors (Golding and Roth, 1999; Even-Zohar
and Roth, 2000; Banko and Brill, 2001; Huang and
Powers, 2001). It could alleviate problems with low-
frequency and unknown words in natural language
processing and information retrieval, by replacing
them with likely and higher-frequency alternatives
that carry similar information. And also, since the
task of word prediction is a direct interpretation of
language modeling, a word prediction system could
provide useful information for to be used in speech
recognition systems.

A unique aspect of the word prediction task, as
compared to most other tasks in natural language
processing, is that real-world examples abound in
large amounts. Any digitized text can be used as
training material for a word prediction system capa-
ble of learning from examples, and nowadays gigas-
cale and terascale document collections are available
for research purposes.

A specific type of word prediction is confus-
able prediction, i.e., learn to predict among lim-
ited sets of confusable words suchtedwao/too and
therdtheir/they're (Golding and Roth, 1999; Banko
and Brill, 2001). Having trained a confusable pre-
dictor on occurrences of words within a confusable

Word prediction is an intriguing language engineerset, it can be applied to any new occurrence of a
ing semi-product. Arguably it is the “archetypicalword from the set; if its prediction based on the con-
prediction problem in natural language processingtext deviates from the word actually present, then

Workshop on Computationally Hard Problemsand Joint Inference in Speech and Language Propegms®@5-32,
New York City, New York, June 200822006 Association for Computational Linguistics

this word might be a confusable error, and the class2 Data preparation and experimental
fier's prediction might be its correction. Confusable setup

prediction and correction is a strong asset in proof-_]]
ing tools. First, we identify the textual corpora used. We then

describe the general experimental setup of learn-
Ang curve experiments, and the I@EE decision-

In this paper we generalize the word predictio .) i)
tree induction algorithm used throughout all experi-

task to predictinganyword in context. This is basi-
cally the task of a generic language model. An exTeNts.
plicit choice for the particular study on “all-words” 21 D

T . ata
prediction is to encode context only by words,
and not by any higher-level linguistic non-terminalsTo generate our word prediction examples, we used
which have been investigated in related work ofhe “Reuters Corpus Volume 1 (English Language,
word prediction (Wu et al., 1999; Even-Zohar andl996-08-20 to 1997-08-19)" We tokenized this
Roth, 2000). This choice leaves open the questicfPrpus with a rule-based tokenizer, and used all
how the same tasks can be learned from examplé§0,396,703 word and punctuation tokens for exper-

when non-terminal symbols are taken into accourinentation. In the remainder of the article we make
as well. no difference between words and punctuation mark-

ers; both are regarded as tokens. We separated the
The choice for our a|gorithm, a decision-tree apﬁnal 100,000 tokens as a held-out test set, hence-

proximation of k-nearest-neigborktNN) based or forth referred to aReUTERS and kept the rest as
memory-based learning, is motivated by the fadfaining set, henceforthRAIN-REUTERS

that, as we describe later in this paper, this particular Additionally, we selected two test sets taken
algorithm can scale up to predicting tens of thoufrom different corpora. First, we used the Project
sands of words, while simultaneously being able t&utenberg version of the noveRlice’'s Adventures
scale up to tens of millions of examples as training? Wonderlandby Lewis Carroll (Carroll, 1865),
material, predicting words at useful rates of hunhenceforthaLICE. As the third test set we selected
dreds to thousands of words per second. Anothé&tl tokens of the Brown corpus part of the Penn Tree-
motivation for our choice is that our decision-treebank (Marcus et al., 1993), a selected portion of
approximation of-nearest neighbor classification isthe original one-million word Brown corpus (KucCera
functionally equivalent to back-off smoothing (Za-and Francis, 1967), a collection of samples of Amer-
vrel and Daelemans, 1997); not only does it sharéan English in many different genres, from sources
its performance capacities withgram models with printed in 1961; we refer to this test setB8OWN.
back-off smoothing, it also shares its scaling abili!n sum, we have three test sets, covering texts from

ties with these models, while being able to handlghe same genre and source as the training data, a
large values of.. fictional novel, and a mix of genres wider than the

training set.

The article is structured as follows. In Section 2 Table 1 summarizes the key training and test set
we describe what data we selected for our expergtatistics. As the table shows, the cross-domain cov-
ments, and we provide an overview of the expererages for unigrams and bigrams are rather low; not
imental methodology used throughout the experonly are these numbers the best-case performance
ments, including a description of the IREE algo- ceilings, they also imply that a lot of contextual
rithm central to our study. In Section 3 the results ofrformation used by the machine learning method
the word prediction experiments are presented, ant$ed in this paper will be partly unknown to the
the subsequent Section 4 contains the experimelgarner, especially in texts from other domains than
tal results of the experiments on confusables. \Wée training set.
briefly relate our work to earlier work that inspired—F————_

. . . For availability of the Reuters corpus, see
the current study in Section 5. The results are disy t p: // about . reut er s. cont r esear chandst andar ds/ cor pus/ .
cussed, and conclusions are drawn in Section 6. %Project Gutenberdht t p: / / www. gut enber g. net .

26

Data set Genre| # Tokeng Coverage (%)| 2.3 1GTree
TRAIN-REUTERS News |30 million [unigram bigran

CEUTERS news | 100000 910 834 |CGTree (Daelemans et al.,, 1997) is an algorithm
ALICE fiction 33’361 85.2 70'1 for the top-down induction of decision trees. It
BROWN mixed 453’446 75'9 72}‘ compresses a database of labeled examples into

a lossless-compression decision-tree structure that
Table 1: Training and test set sources, genres, sizegeserves the labeling information of all examples,
in terms of numbers of tokens, and unigram and band technically should be namedtrée according
gram coverage (%) of the training set on the test sett® (Knuth, 1973). A labeled example is a feature-
value vector, where features in our study represent
a sequence of tokens representing context, associ-
2.2 Experimental setup ated with a symbolic class label representing the
word to be predicted. An IGREE is composed of
All experiments described in this article take thenodes that each represent a partition of the original
form of learning curve experiments (Banko andexample database, and are labeled by the most fre-
Brill, 2001), in which a sequence of training setquent class of that partition. The root node of the
is generated with increasing size, where each sizge thus represents the entire example database and
training set is used to train a model for word predicearries the most frequent value as class label, while
tion, which is subsequently tested on a held-out tegihd nodes (leafs) representi@mogeneoupartition
set — which is fixed throughout the whole learningf the database in which all examples have the same
curve experiment. Training set sizes are exponeiiass label. A node is either a leaf, or is a non-ending
tially grown, as earlier studies have shown that atode that branches out to nodes at a deeper level of
a linear scale, performance effects tend to decreatiee trie. Each branch represents a test on a feature
in size, but that when measured with exponentiallyalue; branches fanning out of one node test on val-
growing training sets, near-constant (i.e. log-linearjes of the same feature.
improvements are observed (Banko and Brill, 2001). To attain high compression levels, IGEE

We create incrementally-sized training sets for thadopts the same heuristic that most other decision-
word prediction task on the basis of tli®AIN- tree induction algorithms adopt, such@k5 (Quin-
REUTERSset. Each training subset is created bacKan, 1993), which is to always branch out testing on
ward from the point at which the final 100,000-wordthe most informative, or most class-discriminative
REUTERSSet starts. The increments are exponentidéatures first. Likec4.5, IGTREE uses information
with base number 10, and for every power of 10 wgain (IG) to estimate the most informative features.
cut off training sets at times that power, where = The IG of featurei is measured by computing the
1,2,3,...,8,9 (for example,10, 20, ..., 80, 90). difference in uncertainty (i.e. entropy) between the

The actual examp|es to learn from are created [ﬁtuations without and with knOWIGdge of the value
windowingover all sequences of tokens. We encodef that feature with respect to predicting the class la-
examples by taking a left context window spannind€l: IGi = H(C) —>_,y, P(v) x H(C|v), where
seven tokens, and a right context also spanning sevenis the set of class labels; is the set of values
tokens. Thus, the task is represented by a growirfgr featurei, andH(C) = — >~ . P(c)log, P(c)
number of examples, each characterized by 14 pis the entropy of the class labels. In contrast with
sitional features carrying tokens as values, and ore#-5, IGTREE computes the IG of all features once
class label representing the word to be predicte@n the full database of training examples, makes a
The choice for 14 is intended to cover at least théeature ordering once on these computed |G values,
superficially most important positional features. Weind uses this ordering throughout the whole trie.
assume that a word more distant than seven positionsAnother difference withc4.5 is that IGTREE
left or right of a focus word will almost never be does not prune its produced trie, so that it performs
more informative for the task than any of the words lossless compression of the labeling information
within this scope. of the original example database. As long as the

27

database does not contain fully ambiguous examples | S&eom

ITEST-REUTERS s

(with the same features, but different class labels),
the trie produced by IGREE is able to reproduce
the classifications of all examples in the original ex- §
ample database perfectly.

Due to the fact that IGREE computes the IG
of all features once, it is functionally equivalent to
IB1-1G (Daelemans et al., 1999),kanearest neigh-
bor classifier for symbolic features, with = 1
and using a particular feature weighting in the sim- | ‘ ‘ ‘ ‘ -
ilarity function in which the weight of each fea- 1°° T e 0000
ture is larger than the sum of all weights of features

with a lower weight (e.g. as in the exponential SeI_:lgure 1. Learning curves of word prediction accu-

quencel,2,4,8,... where2 > 1,4 > (1 + 2), racies of IGTREE trained onTRAIN-REUTERS and
8 > (14 2+ 4), etc.). Both algorithms will base tested OIREUTERS ALICE, andBROWN.
their classification on the example that matches on
most features, ordered by their IG, and guess a ma-
jority class of the set of examples represented at tfFam models, and its implementation allows it to
level of mismatching. IGREE, therefore, can be handle large values of.
seen as an approximation @1-1G with £ = 1 that
has favorable asymptotic complexities as compared
to IB1-IG. 3 All-words prediction
IGTREES computational bottleneck is the trie
construction process, which has an asymptotic co
plexity of O(n lg(v) f) of CPU, wheren is the num-

ber of training examples; is the average branching h d predicti | ,
factor of IGTREE (how many branches fan out of e word prediction accuracy learning curves com-

a node, on average), antlis the number of fea- puted on the three test sets, and trained on increasing
tgortions Of TRAIN-REUTERS are displayed in Fig-
ure 1. The best accuracy observed is 42.2% with
30 million training examples, OREUTERS Appar-
ently, training and testing on the same type of data
yields markedly higher prediction accuracies than
testing on a different-type corpus. Accuracies on

30

20 A

word prediction accut

10 1

"Y1 Learning curve experiments

tures. Storing the trie, on the other hand, cos
O(n) in memory, which is less than ti@(n f) of

IB1-1G. Classification in IGREE takes an efficient
O(f lg(v)) of CPU, versus the cumbersome worst
caseO(n f) of 1B1-IG, that is, in the typical case

thatn is much higher tharf or v.
1S M 9 I orv BROWN are slightly higher than oaLICE, but the

Interestingly, IGREE is functionally equiva- giff _ I at 30 mili . |
lent to back-off smoothing (Zavrel and Daelemans ffference is small; at 30 million training examples,

1997), with the IG of the features determining théhe z;lccuracy OALICE is 12.6%, and orBROWN
order in which to back off, which in the case of word15'8 %.

prediction tends to be from the outer context to the A second observation is that all three learning
inner context of the immediately neighboring wordscurves are progressing upward with more training
Like with probabilistic n-gram based models with examples, and roughly at a constant log-linear rate.
a back-off smoothing scheme, IGEE will prefer When estimating the rates after about 50,000 exam-
matches that are as exact as possible (e.g. matgles (before which the curves appear to be more
ing on all 14 features), but will back-off by dis- volatile), with every tenfold increase of the num-
regarding lesser important features first, down to ker of training examples the prediction accuracy on
simple bigram model drawing on the most imporREUTERSIncreases by a constant rate of about 8%,
tant feature, the immediately preceding left wordwhile the increases omLICE andBROWN are both

In sum, IGTREE shares its scaling abilities with- about 2% at every tenfold.

28

3.2 Memory requirements and classification TSRETALGE St

TEST-REUTERS s

speed

10000 -

The numbers of nodes exhibit an interesting sublin-
ear relation with respect to the number of training
examples, which is in line with the asymptotic com-
plexity orderO(n), wheren is the number of train-
ing instances. An increasingly sublinear amount
of nodes is necessary; while at 10,000 training in-
stances the number of nodes is 7,759 (0.77 nodes .
per instance), at 1 million instances the number of - om0 10000 tomon 1o0mom0 |
nodes is 652,252 (0.65 nodes per instance), and at 30 waing xamples
million instances the number of nodes is 15,956,87§igure 2. Word prediction speed, in terms of the

(0.53 nodes per instance). number of classified test examples per second, mea-
A factor in classification speed is the averag&ured on the three test sets, with increasing training

amount of branching. Conceivably, the word predicexamples. Both axes have a logarithmic scale.

tion task can lead to a large branching factor, espe-

cially in the higher levels of the tree. However, not _ .

every word can be the neighbor of every other wor@" @ low log-linear rate after about one million ex-

in finite amounts of text. To estimate the averag@MPles. Thus, while trees grow linearly, and accu-

branching factor of a tree we compute tfith root 'aCy increases Igg-llnearly, the speed of classifica-

of the total number of nodesf (being the number tion slowly diminishes at decreasing rates.

of features, i.e. 14). The largest decision tree cur-

rently constructed is the one on the basis of a traift Confusables

ing set of 30 million examples, having 15’956’87§N0rd prediction from context can be considered a

nodes. This tree has an average branching factor\%ry hard task, due to the many choices open to the
14/ ~ : . '
15,956,878 ~ 3.27; all other trees have smaller redictor at many points in the sequence. Predicting

branching factors. Together with the fact that w ontent words, for example, is often only possible

have but 14 featg_res,' a”?' the asymptotic Cor,nple)fﬁrough subtle contextual clues or by having the ap-
ity order of classification I€)(f ig(v)), wherevis ., iate domain or world knowledge, or intimate

. I r
the average branching factor, cIaSS|f!cat|on can t{%nowledge of the writer's social context and inten-
expected to be fast. Indeed, depending on the Mians. In contrast, certain function words tend to be

chine’s CPU on which the experiment is run, W%redictable due to the positions they take in syntac-

observe_ quite favorabl_e classmcatlor_] speeds. F ic phrase structure; their high frequency tends to en-
ure 2 displays the various speeds (in terms of th

Syre that plenty of examples of them in context are
number of test tokens predicted per second) attain%g/ailable peny P

on the three test séts The best prediction accu-

. .) . Due to the important role of function words in
racies are still attained at classification speeds of , . o .
. syntactic structure, it can be quite disruptive for a
over a hundred predicted tokens per second. Tw .
. , éoarser and for human readers alike to encounter a
other relevant observations are that first, the clas - <tvped function word that in its intended form
fication speed hardly differs between the three test yp

) - . is another function word. In fact, confusable er-
sets BROWN is classified only slightly slower than .
rors between frequent forms occur relatively fre-

the other two test sets), indicating that the Classmeruently. Examples of these so-called confusables

1S spending a roughly (_:omparable amount of searciy English arethere versustheir and the contrac-
ing through the decision trees regardless of gente

. . Fon they're or the duothan and then Confus-
differences. Second, the decrease in speed settebﬁ , . L
ables can arise from having the same pronunciation

*Measurements were made on a GNU/Linux x86-based méhomOphoneS)’ or havmg_very similar pronunciation
chine with 2.0 Ghz AMD Opteron processors. (countryor county or spelling flessertdeser}, hav-

test examples

1000 -

29

ing very close lexical semantics (as betwegnong ‘ ‘ tere e ey e
andbetwee), or being inflections or case variants of e
the same stenl {versusme or walk versuswalksg,
and may stem from a lack of concentration or expe- _
rience by the writer.
Distinguishing between confusables is essentially§
the same task as word prediction, except that theg R
number of alternative outcomes is small, e.g. two
or three, rather than thousands or more. The typical
application setting is also more specific: giventhata |
writer has produced a text (e.g. a sentence in a word
processor), it is possible to check the correctness of

each occurrence of a word known to be part of a paI:r'gure 3: Learnln% cu_r(;/_es 'E terms ofhword pfredlct;
or triple of confusables. tion accuracy on deciding between the confusable

We performed a series of experiments on dispair therg their, andthey're by IGTREE trained
ambiguating nine frequent confusables in Englisﬁm TRAIN-REUTERS and tested OREUTERS AL-

adopted from (Golding and Roth, 1999). We emlc_E, andBROWN. The top graphs are accuracies at-
ployed an experimental setting in which we use th}aalned by the confusable expert; the bottom graphs

same experimental data as before, in which only ef'® aftained by the_ aII—word_s i predictor trained on
amples of the confusable words are drawn — note}AIN-REUTERS until 130 million exampl_es, and
that we ignore possible confusable errors in botR" TRAIN-NYT beyond (marked by the vertical bar).
training and test set. This data set generation proce-
dure reduces the amount of examples considerably. In

Despite having over 130 million words MRAIN- - :

plotted the word prediction accuracies on the three
REUTERS frequent words such aere and than : , .

words there their, andthey’re attained by the all-

occur just over 100,000 times. To be able to run !
. . . . ords predictor described in the previous section on
learning curves with more than this relatively smal .
the three test sets. The accuracies, or rather recall

amount of examples, we expanded our training ma- .
Ples, P g ?’lgures (i.e. the percentage of occurrences of the

terial with the New York Times of 1994 to 2002 three words in the test sets which are correctly pre-

g:l\r;gredf%rgl};st/; r: _pNJk;?éh%adrtbsft t:ZeLiEgglilsS:[?c gla_\t a;jicted as such), are considerably lower than those on
he confusable disambiguation task.

Consortium, offering 1,096,950,281 tokens.
As a first illustration of the experimental out- 1able 2 presents the experimental results obtained

comes, we focus on the three-way confusdhtere 0N nine confusable sets when training and testing on
— their — they're for which we trained one classi- Reuters material. The third column lists the accu-
fier, which we henceforth refer to as a confusabl&acy (or recall) scores of the all-words word predic-
expert. The learning curve results of this confustion system at the maximal training set size of 30
able expert are displayed in Figure 3 as the top thréBillion labeled examples. The fourth columns lists
graphs. The logarithmic x-axis displays the fullthe accuracies attained by the confusable expert for
number of instances fromRAIN-REUTERS up to the particular confusable pair or triple, measured at
130.3 million examples, and fromrRAIN-NYT after 30 million training examples, from which each par-
this point. Counter to the learning curves in the alificular confusable expert's examples are extracted.
words prediction experiments, and to the observalhe amount of examples varies for the selected con-
tion by (Banko and Brill, 2001), the learning curvesfusable sets, as can be seen in the second column.
of this confusable triple in the three different data Scores attained by the all-words predictor on
sets flatten, and converge, remarkably, to a roughthese words vary from below 10% for relatively low-
similar score of about 98%. The convergence onlfrequent words to around 60% for the more frequent
occurs after examples fromRAIN-NYT are added. confusables; the latter numbers are higher than the

confusible expert

generic word predictor

u .‘._“..t'..-‘
Reuters | NYT
T

y u ? T T T
100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

training examples

the bottom of the same Figure 3 we have also

30

Accuracy (%) by Accuracy on test set (%)
Number of| all-words| confus. Confusable set | REUTERS| ALICE | BROWN
Confusable set | exampleg prediction| expert| | cite- site- sight 100.0| 100.0 69.0
cite - site- sight 2,286 0.0/ 100.0 accept- except 84.6| 100.0 97.0
accept- except 3,833 46.2 76.9 affect- effect 92.3| 100.0 89.5
affect- effect 4,640 7.7 87.9 fewer- less 90.5| 100.0 97.2
fewer- less 6,503 4.7 05.2 among- between 94.4 77.8 74.4
among- between 27,025 18.9| 96.7 I - me 99.0 98.3 98.3
I -me 28,835 55.9] 98.0 than- then 97.2| 929 95.8
than- then 31,478 59.4 97.2 there- their - they’re 98.1 97.8 97.3
there- their - they're 58,081 23.1) 96.8 to - too - two 94.3| 934 92.9
to - too - two 553,453 60.6 93.4

Table 3: Disambiguation scores on nine confusable

Table 2: Disambiguation scores on nine confusablget, attained by confusable experts trained on ex-

set, attained by the all-words prediction classifieamples extracted from 1 billion words of text from

trained on 30 million examples ORAIN-REUTERS ~ TRAIN-REUTERSPIUSTRAIN-NYT, on the three test

and by confusable experts on the same training se&ets.

The second column displays the number of exam-

ples of each confusable set in the 30-million word

training set; the list is ordered on this column. and Roth, 2000; Banko and Brill, 2001). Our dis-
crete, classificatio-nased approach has the same goal
as probabilistic methods for language modeling for

overall accuracy of this system ®EUTERS Nev- automatic speech recognition (Jelinek, 1998), and is

ertheless they are considerably lower than the scoraio functionally equivalent ta-gram models with

attained by the confusable disambiguation classback-off smoothing (Zavrel and Daelemans, 1997).

fiers, while being trained on many more examples The papers by Golding and Roth, and Banko and
(i.e., all 30 million available). Most of the confus- gyl on confusable correction focus on the more
able disambiguation classifiers attain accuracies @fmmon type othan'then confusion that occurs a
well above 90%. lot in the process of text production. Both pairs of
When the learning curves are continued beyongthors use the confusable correction task to illus-
TRAIN-REUTERS into TRAIN-NYT, about a thou- {rate scaling issues, as we have. Golding and Roth
sand times as many training examples can be gatfjystrate that multiplicative weight-updating algo-
ered as training data for the confusable experts. Tagthms such as Winnow can deal with immense in-
ble 3 displays the nine confusable expert's scores aly feature spaces, where for each single classifica-
ter being trained on examples extracted from a totglyn only a small number of features is actually rel-
of one billion words of text, measured on all threesgnt (Golding and Roth, 1999). With IGEE we
test sets. Apart from a few outliers, most scores algyye an arguably competitive efficient, but one-shot
above 90%, and more importantly, the scoreabn |earning algorithm; IGREE does not need an itera-
ICE andBROWN do not seriously lag behind those ongjye procedure to set weights, and can also handle a
REUTERS some are even better. large feature space. Instead of viewing all positional
features as containers of thousands of atomic word
5> Related work features, it treats the positional features as the basic

As remarked in the cases reported in the literature diests, branching on the word values in the tree.
rectly related to the current article, word prediction More generally, as a precursor to the above-
is a core task to natural language processing, and omentioned work, confusable disambiguation has
of the few that takes no annotation layer to provid®een investigated in a string of papers discussing the
data for supervised machine learning and probabiligpplication of various machine learning algorithms
tic modeling (Golding and Roth, 1999; Even-Zohato the task (Yarowsky, 1994; Golding, 1995; Mangu

31

and Brill, 1997; Huang and Powers, 2001). W. Daelemans, A. Van den Bosch, and A. Weijters. 1997.
IGTree: using trees for compression and classification

6 Discussion in lazy learning algorithmsArtificial Intelligence Re-
view, 11:407-423.

In this article we explored the scaling abilities ofwW. Daelemans, A. Van den Bosch, and J. Zavrel. 1999.

IGTREE, a simple decision-tree algorithm with fa- Forgetting exceptions is harmful in language learning.

vorable asymptotic complexities with respect to Machine Learning, Special issue on Natural Language

Iti-label classificati ks, IGREE i lied Learning 34:11-41.
0 word prodction. a task for =E 1S apPIed v eyen.zohar and D. Roth. 2000. A classification ap-

to yvord prediction, a'ta'\sk for which virtually. UN- " proach to word prediction. IRroceedings of the First
limited amounts of training examples are available, North-American Conference on Computational Lin-
with very large amounts of predictable class labels; guistics pages 124-131, New Brunswick, NJ. ACL.
and confusable disambiguation, a specialization @.R. Golding and D. Roth. 1999. A Winnow-Based Ap-
word prediction focusing on small sets of confusable Proach to Context-Sensitive Spelling Correctidfia-
. chine Learning34(1-3):107-130.

words. Best results are 42.2% correctly predicted to- _ . .
kens (words and punctuation markers) when traininA' R. Golding. 1995. A Bayesian hybrid method for

P 9 context-sensitive spelling correction. Rroceedings

and testing on data from th@eutel’sneWSWire cor- of the 3rd Workshop onvery |arge corpora, ACL-95

pus; and confusable disambiguation accuracies 9f H, Huang and D. W. Powers. 2001. Large scale ex-
well above 90%. Memory requirements and speeds periments on correction of confused words. Aas-
were shown to be realistic. tralasian Computer Science Conference Proceedings

Analysing the results of the learning curve experi- pa‘-?’es 7782, Que'erTsIand AU. Bond University.
ments with increasing amounts of training exampleéz,' Jelinek. 1998 Statistical Methods for Speech Recog-

- nition. The MIT Press, Cambridge, MA.
we observe that better word prediction accuracy c

. . . e . E. Knuth. 1973.The art of computer programming
be attained simply by adding more training exam-"\gjyme 3: Sorting and searching. Addison-Wesley,

ples, and that the progress in accuracy proceeds at &Reading, MA.
log-linear rate. The best rate we observed was an 88 Kugera and W. N. Francis. 1967Computational
increase in performance every tenfold multiplication Analysis of Present-Day American EnglistBrown

of the number of training examples, when training University Press, Providence, RI.
and testing on the same data. L. Mangu and E. Brill. 1997. Automatic rule acquisition

. - for spelling correction. IfProceedings of the Interna-
Despite the fact that all-words prediction lags be- tional Conference on Machine Learningages 187—

hind in disambiguating confusibles, in comparison 194.
with classifiers that are focused on disambiguatin§y. Marcus, S. Santorini, and M. Marcinkiewicz. 1993.
single sets of confusibles, we see that this lag is only Building a Large Annotated Corpus of English:
relative to the amount of training material available. the Penn Treebank. Computational Linguistics
19(2):313-330.
Acknowledgements J.R. Quinlan. 1993c4.5: Programs for Machine Learn-
hi h ; h herl ing. Morgan Kaufmann, San Mateo, CA.
_T '? researc .Wa.s' unded by the Netherlands OrgaB-. Wu, Z. Sui, and J. Zhao. 1999. An information-based
Isation fOI’ SCIentIfIC Reseal’Ch (NWO) The authOF method for Selecting fea‘[ure types for Word predic-
wishes to thank Ko van der Sloot for programming tion. In Proceedings of the Sixth European Confer-
assistance. ence on Speech Communication and Technology, EU-
ROSPEECH’99Budapest.
D. Yarowsky. 1994. Decision lists for lexical ambiguity
resolution: application to accent restoration in Spanish
References and French. IrProceedings of the Annual Meeting of
M. Banko and E. Brill. 2001. Scaling to very very large the ACL, pages 88-95.

corpora for natural language disambiguation.Pho- J. Zavrel and W. Daelemans. 1997. Memory-based
ceedings of the 39th Annual Meeting of the Association |earning: Using similarity for smoothing. IRroceed-

for Computational Linguisticpages 26—33. Associa- ings of the 35th Annual Meeting of the Association for
tion for Computational Linguistics. Computational Linguisticpages 436—443.

L. Carroll. 1865. Alice’s Adventures in Wonderland
Project Gutenberg.

32

A Probabilistic Search for the Best Solution Among Partially Completed
Candidates

Filip Ginter, Aleksandr Myllari, and Tapio Salakoski
Turku Centre for Computer Science (TUCS) and
Department of Information Technology
University of Turku
Lemminkadisenkatu 14 A
20520 Turku, Finland
first.last@t.utu.fi

Abstract

We consider the problem of identifying
among many candidates a single best so-
lution which jointly maximizes several
domain-specific target functions. Assum-
ing that the candidate solutions can be
generated incrementally, we model the er-
ror in prediction due to the incomplete-
ness of partial solutions as a normally
distributed random variable. Using this
model, we derive a probabilistic search al-
gorithm that aims at finding the best solu-
tion without the necessity to complete and
rank all candidate solutions. We do not as-
sume a Viterbi-type decoding, allowing a
wider range of target functions.

We evaluate the proposed algorithm on the
problem of best parse identification, com-
bining simple heuristic with more com-
plex machine-learning based target func-
tions. We show that the search algorithm
is capable of identifying candidates with a
very high score without completing a sig-
nificant proportion of the candidate solu-
tions.

1 Background

Most of the current NLP systems assume a pipeline
architecture, where each level of analysis is imple-
mented as a module that produces a single, locally
optimal solution that is passed to the next module in
the pipeline. There has recently been an increased

33

interest in the application of joint inference, which
identifies a solution that is globally optimal through-
out the system and avoids some of the problems of
the pipeline architecture, such as error propagation.

We assume, at least conceptually, a division of
the joint inference problem into two subproblems:
that of finding a set of solutions that are structurally
compatible with each of the modules, and that of se-
lecting the globally best of these structurally correct
solutions. Many of the modules define a target func-
tion that scores the solutions by some domain cri-
teria based on local knowledge. The globally best
solution maximizes some combination of the target
functions, for example a sum.

For illustration, consider a system comprising of
two modules: a POS tagger and a parser. The POS
tagger generates a set of tag sequences that are com-
patible with the sentence text. Further, it may im-
plement a target function, based, for instance, on
tag n-grams, that scores these sequences according
to POS-centric criteria. The parser produces a set
of candidate parses and typically also implements a
target function that scores the parses based on their
structural and lexical features. Each parse that is
compatible with both the POS tagger and the parser
is structurally correct. The best solution may be de-
fined, for instance, as such a solution that maximizes
the sum of the scores of the POS- and parser-centric
target functions.

In practice, the set of structurally correct solu-
tions may be computed, for example, through the
intersection or composition of finite-state automata
as in the formalism of finite-state intersection gram-
mars (Koskenniemi, 1990). Finding the best so-

Workshop on Computationally Hard Problemsand Joint Inference in Speech and Language Propegms@3—40,
New York City, New York, June 200822006 Association for Computational Linguistics

lution may be implemented as a best-path search
through Viterbi decoding, given a target function
that satisfies the Viterbi condition.

Most of the recent approaches to NLP tasks like
parse re-ranking make, however, use of feature-
based representations and machine-learning induced
target functions, which do not allow efficient search
strategies that are guaranteed to find the global op-
timum. In general case, all structurally correct so-
lutions have to be generated and scored by the tar-
get functions in order to guarantee that the globally
optimal solution is found. Further, each of the vari-
ous problems in natural language processing is typ-
ically approached with a different class of models,
ranging from n-gram statistics to complex regressors
and classifiers such as the support vector machines.
These different approaches need to be combined in
order to find the globally optimal solution. There-
fore, in our study we aim to develop a search strat-
egy that allows to combine a wider range of target
functions.

An alternative approach is that of propagating n
best solutions through the pipeline system, where
each step re-ranks the solutions by local criteria
(Ji et al., 2005). Incorporating a wide range of
features representing information from all levels of
analysis into a single master classifier is other com-
monly used method (Kambhatla, 2004; Zelenko et
al., 2004).

In this paper, we assume the possibility of gen-
erating the structurally correct solutions incremen-
tally, through a sequence of partially completed so-
lutions. We then derive a probabilistic search algo-
rithm that attempts to identify the globally best solu-
tion, without fully completing all structurally correct
solutions. Further, we do not impose strong restric-
tions, such as the Viterbi assumption, on the target
functions.

To a certain extent, this approach is related to the
problem of cost-sensitive learning, where obtaining
a feature value is associated with a cost and the
objective is to minimize the cost of training data
acquisition and the cost of instance classification
(Melville et al., 2004). However, the crucial dif-
ference is that we do not assume the possibility to
influence when advancing a partial solution, which
feature will be obtained next.

34

2 Method

Let us consider a system in which there are N so-
lutions si,...,sy € S to a problem and M tar-
get functions f1,..., fasr, where fr : S — R, that
assign a score to each of the solutions. The score
fr(si) expresses the extent to which the solution
s; satisfies the criterion implemented by the target
function f%. The overall score of a solution s;

M
F(si) = falsi) (L)
k=1

is the sum of the scores given by the individual target
functions. The objective is to identify s, the best
among the IV possible solutions, that maximizes the
overall score:

§=arg max f(si) . 2

Suppose that the solutions are generated in-
crementally so that each solution s; can be
reached through a sequence of F' partial solutions
5i1,8i2,---,5 F, Where s; p = s;. Let further
u : 8§ — (0,1] be a measure of a degree of com-
pletion for a particular solution. For a complete so-
lution s;, u(s;) = 1, and for a partial solution s; ,,,
u(s;) < 1. For instance, when assigning POS tags
to the words of a sentence, the degree of completion
could be defined as the number of words assigned
with a POS tag so far, divided by the total number of
words in the sentence.

The score of a partial solution s; ,, is, to a certain
extent, a prediction of the score of the correspond-
ing complete solution s;. Intuitively, the accuracy of
this prediction depends on the degree of completion.
The score of a partial solution with a high degree
of completion is generally closer to the final score,
compared to a partial solution with a low degree of
completion.

Let

Ok(sin) = fr(si) — fr(sin) 3)

be the difference between the scores of s; and s; ,,.
That s, 0 (s,) isthe error in score caused by the in-
completeness of the partial solution s; ,,. As the so-
lutions are generated incrementally, the exact value
of 6x(si.») is not known at the moment of generating
si n because the solution s; has not been completed

yet. However, we can model the error based on the
knowledge of s; ,,. We assume that, for a given s; ,,,
the error 0y (s;) is arandom variable distributed ac-
cording to a probability distribution with a density
function Ay, denoted as

Ok(8in) ~ Ar(d58i0) - 4)
The partial solution s; ,, is a parameter to the distri-
bution and, in theory, each partial solution gives rise
to a different distribution of the same general shape.

We assume that the error 6(s;) is distributed
around a mean value and for a ‘reasonably behav-
ing’ target function, the probability of a small error
is higher than the probability of a large error. Ideally,
the target function will not exhibit any systematic er-
ror, and the mean value would thus be zero®. For in-
stance, a positive mean error indicates a systematic
bias toward underestimating the score. The mean
error should approach 0 as the degree of completion
increases and the error of a complete solution is al-
ways 0. We have further argued that the reliability
of the prediction grows with the degree of comple-
tion. That is, the error of a partial solution with a
high degree of completion should exhibit a smaller
variance, compared to that of a largely incomplete
solution. The variance of the error for a complete
solution is always 0.

Knowing the distribution A, of the error &y, the
density of the distribution d(f;s;) of the final
score fx(s;) is obtained by shifting the density of
the error 6 (s;n) bY fr(sin), thatis,

Jr(si) ~ dp(fisin) , (5)

where

dk(fa Si,n> = Ak(f - fk(si,n)) Si,n) . (6)

So far, we have discussed the case of a single tar-
get function f;. Let us now consider the general
case of M target functions. Knowing the final score
density dy, for the individual target functions fy, itis
now necessary to find the density of the overall score
f(s;). By Equation 1, it is distributed as the sum

We will see in our evaluation experiments that this is not
the case, and the target functions may exhibit a systematic bias
inthe error §.

35

f(Sm)

N(S’L.Jz) U(Sz,n)

Figure 1: The probability density d(f;s;) of the
distribution of the final score f(s;), given a partial
solution s; ,,. The density is assumed normally dis-
tributed, with mean p(s;,,) and variance o2 (s;).
With probability 1 — &, the final score is less than
n(sin)-

of the random variables f1(s;), ..., far(s;). There-
fore, assuming independence, its density is the con-
volution of the densities of these variables, that is,
given s; ,,,

d(f;sin) = (di*...xdy)(f38i0) , ()

and
f(si) ~d(f;sin) - (8)

We have assumed the independence of the target
function scores. Further, we will make the assump-
tion that d takes the form of the normal distribution,
which is convolution-closed, a property necessary
for efficient calculation by Equation 7. We thus have

d(f7 Si,n) = ’I’L(f, M(Si,n) 70-2(32',71)) > (9)

where n is the normal density function. While it
is unlikely that independence and normality hold
strictly, it is a commonly used approximation, nec-
essary for an analytical solution of (7). The notions
introduced so far are illustrated in Figure 1.

2.1 Thesearch algorithm

We will now apply the model introduced in the pre-
vious section to derive a probabilistic search algo-
rithm.

Let us consider two partial solutions s; ,, and s; ,,,
with the objective of deciding which one of them is
‘more promising’, that is, more likely to lead to a
complete solution with a higher score. The condi-
tion of ‘more promising’ can be defined in several
ways. For instance, once again assuming indepen-
dence, it is possible to directly compute the proba-

bility P(f(s:) < f(s)):

P(f(si) < £(s,)
— P(f(si) — f(s;) < 0)

0
- / (dav,, * (~ds,,))(F) df

where d, , refers to the function d(f;s;,). Since
d is the convolution-closed normal density, Equa-
tion 10 can be directly computed using the normal
cumulative distribution. The disadvantage of this
definition is that the cumulative distribution needs
to be evaluated separately for each pair of partial
solutions. Therefore, we assume an alternate defi-
nition of “‘more promising’ in which the cumulative
distribution is evaluated only once for each partial
solution.

Let £ € [0, 1] be a probability value and 7(s;)
be the score such that P(f(s;) > 1(sin)) = €. The
value of 7(s;) can easily be computed from the in-
verse cumulative distribution function correspond-
ing to the density function d(f; s;,). The interpre-
tation of 7(s;,) is that with probability of 1 — ¢,
the partial solution s; ,,, once completed, will lead
to a score smaller than 7(s;,). The constant ¢ is
a parameter, set to an appropriate small value. See
Figure 1 for illustration.

We will refer to n(s;,,) as the maximal expected
score of s; ,,. Of the two partial solutions, we con-
sider as ‘more promising’ the one, whose maximal
expected score is higher. As illustrated in Figure 2,
it is possible for a partial solution s;,, to be more
promising even though its score f(s; ,,) is lower than
that of some other partial solution s; ,,.

Further, given a complete solution s; and a partial
solution s; ,,,, a related question is whether s; ,,, is a
promising solution, that is, whether it is likely that
advancing it will lead to a score higher than f(s;).
Using the notion of maximal expected score, we say
that a solution is promising if 7(s;) > f(si).

With the definitions introduced so far, we are

(10)

d<f7 SiJI,)

f(si.n> f(sj.m) n(si.n)

1(8j.m)

Figure 2: Although the score of s;,, is lower than
the score of s, ,,, the partial solution s;,, is more
promising, since 7(s;) > n(s;m). Note that for
the sake of simplicity, a zero systematic bias of the
error § is assumed, that is, the densities are centered
around the partial solution scores.

now able to perform two basic operations: compare
two partial solutions, deciding which one of them is
more promising, and compare a partial solution with
some complete solution, deciding whether the par-
tial solution is still promising or can be disregarded.
These two basic operations are sufficient to devise
the following search algorithm.

e Maintain a priority queue of partial solutions,
ordered by their maximal expected score.

e In each step, remove from the queue the par-
tial solution with the highest maximal expected
score, advance it, and enqueue any resulting
partial solutions.

e |terate while the maximal expected score of the
most promising partial solution remains higher
than the score of the best complete solution dis-
covered so far.

The parameter ¢ primarily affects how early the
algorithm stops, however, it influences the order in
which the solutions are considered as well. Low val-
ues of ¢ result in higher maximal expected scores

and therefore partial solutions need to be advanced
to a higher degree of completion before they can be
disregarded as unpromising.

While there are no particular theoretical restric-
tions on the target functions, there is an important
practical consideration. Since the target function is
evaluated every time a partial solution s; ,, is ad-
vanced into s; ,41, being able to use the informa-
tion about s; ,, to efficiently compute fi(sin+1) is
necessary.

The algorithm is to a large extent related to the A*
search algorithm, which maintains a priority queue
of partial solutions, ordered according to a score
g(z) + h(x), where g(z) is the score of = and h(x)
is a heuristic overestimate? of the final score of the
goal reached from z. Here, the maximal expected
score of a partial solution is an overestimate with
the probability of 1 — e and can be viewed as a prob-
abilistic counterpart of the A* heuristic component
h(z). Note that A* only guarantees to find the best
solution if h(z) never underestimates, which is not
the case here.

2.2 Estimation of yix(sin) and o2(sin)

So far, we have assumed that for each partial so-
lution s; ,, and each target function f;,, the density
A (65 si5) is defined as a normal density specified
by the mean 1 (s;) and variance a,%(si,n). This
density models the error d(s;) that arises due to
the incompleteness of s; ,,. The parameters jux(si)
and Jz(sim) are, in theory, different for each s; ,, and
reflect the behavior of the target function f; as well
as the degree of completion and possibly other at-
tributes of s, ,,. It is thus necessary to estimate these
two parameters from data.

Let us, for each target function f;, consider a
training set of observations 7, € S x R. Each
training observation ¢; = (s, 0k(Sjn;)) € Tk
corresponds to a solution s; ,, with a known error
Sk (sjm;) = fr(s5) = fr(8jm;)-

Before we introduce the method to estimate the
density A(d;s;,,) for a particular s; ,,, we discuss
data normalization. The overall score f(s;) is de-
fined as the sum of the scores assigned by the in-
dividual target functions fi. Naturally, it is desir-

2Inthe usual application of A* to shortest-path search, h(x)
is a heuristic underestimate since the objective is to minimize
the score.

37

able that these scores are of comparable magnitudes.
Therefore, we normalize the target functions using
the z-normalization

x — mean(z)
2z) = stdev(x) (1)
Each target function f, is normalized separately,
based on the data in the training set 7;. Throughout
our experiments, the values of the target function are
always z-normalized.

Let us now consider the estimation of the mean
i (sin) and variance a,%(sm) that define the den-
sity A, (d;s;,). Naturally, it is not possible to es-
timate the distribution parameters for each solution
si n separately. Instead, we approximate the parame-
ters based on two most salient characteristics of each
solution: the degree of completion u(s;,,) and the
score fx(sin). Thus,

fe(u(sin) fe(sin))

or(u(sin) s fr(sin)) -

(12)
(13)

Let us assume the following notation: u; = u(s;),
fi = fe(sin) uj = u(sjn,)s fi = fe(sjm,), and
8; = 0r(sjn,). The estimate is obtained from 7;
using kernel smoothing (Silverman, 1986):

ZtverjK
o) = <=5 14
R S a4
and
8; — pu(ui, f:))* K
op(ui, fi) = Zyer O — il 1) , (195)

th cT K

where K stands for the kernel value K, , (u;, f;).
The kernel K is the product of two Gaussians, cen-
tered at u; and f;, respectively.

Ku,. g, (g, f5)
= n(uj;ui,ai) -n(fj;fszJ%) , (16)

where n(z;pu,0?) is the normal density function.
The variances o; and o} control the degree of
smoothing along the « and f axes, respectively.
High variance results in stronger smoothing, com-
pared to low variance. In our evaluation, we set the

o
©

Hp

\
1.0

R

4
I I I I I I I I I I
0.2 0.6 1.0

/
O
(e

7

7

Figure 3: Mean and variance of the error 6(s;).
By (12) and (13), the error is approximated as a
function of the degree of completion w(s; ,,) and the
score fi(sin). The degree of completion is on the
horizontal and the score on the vertical axis. The
estimates (p4,0%) and (up,0%) correspond to the
RLSC regressor and average link length target func-
tions, respectively.

variance such that o, and o y equal to 10% of the dis-
tance from min(u;) to max(u;) and from min(f;)
to max(f;), respectively.

The kernel-smoothed estimates of x and o2 for
two of the four target functions used in the evalua-
tion experiments are illustrated in Figure 3. While
both estimates demonstrate the decrease both in
mean and variance for u approaching 0, the tar-
get functions generally exhibit a different behav-
ior. Note that the values are clearly dependent on
both the score and the degree of completion, indi-
cating that the degree of completion alone is not suf-
ficiently representative of the partial solutions. Ide-
ally, the values of both the mean and variance should
be strictly 0 for « = 1, however, due to the effect of
smoothing, they remain non-zero.

38

3 Evaluation

We test the proposed search algorithm on the prob-
lem of dependency parsing. We have previously de-
veloped a finite-state implementation (Ginter et al.,
2006) of the Link Grammar (LG) parser (Sleator and
Temperley, 1991) which generates the parse through
the intersection of several finite-state automata. The
resulting automaton encodes all candidate parses.
The parses are then generated from left to right, pro-
ceeding through the automaton from the initial to
the final state. A partial parse is a sequence of n
words from the beginning of the sentence, together
with string encoding of their dependencies. Advanc-
ing a partial parse corresponds to appending to it the
next word. The degree of completion is then defined
as the number of words currently generated in the
parse, divided by the total number of words in the
sentence.

To evaluate the ability of the proposed method to
combine diverse criteria in the search, we use four
target functions: a complex state-of-the-art parse re-
ranker based on a regularized least-squares (RLSC)
regressor (Tsivtsivadze et al., 2005), and three mea-
sures inspired by the simple heuristics applied by
the LG parser. The criteria are the average length of
a dependency, the average level of nesting of a de-
pendency, and the average number of dependencies
linking a word. The RLSC regressor, on the other
hand, employs complex features and word n-gram
statistics.

The dataset consists of 200 sentences ran-
domly selected from the Biolnfer corpus of
dependency-parsed sentences extracted from ab-
stracts of biomedical research articles (Pyysalo et
al., 2006). For each sentence, we have randomly
selected a maximum of 100 parses. For sentences
with less than 100 parses, all parses were selected.
The average number of parses per sentence is 62.
Further, we perform 5 x 2 cross-validation, that is,
in each of five replications, we divide the data ran-
domly to two sets of 100 sentences and use one set to
estimate the probability distributions and the other
set to measure the performance of the search algo-
rithm. The RLSC regressor is trained once, using a
different set of sentences from the Biolnfer corpus.
The results presented here are averaged over the 10
folds. As a comparative baseline, we use a simple

greedy search algorithm that always advances the
partial solution with the highest score until all so-
lutions have been generated.

3.1 Resaults

For each sentence s with parses S {s1,...,sn}, let
Sc C S be the subset of parses fully completed be-
fore the algorithm stops and Sy = S\ S¢ the sub-
set of parses not fully completed. Let further T be
the number of iterations taken before the algorithm
stops, and T be the total number of steps needed to
generate all parses in S. Thus, |S| is the size of the
search space measured in the number of parses, and
T is the size of the search space measured in the
number of steps. For a single parse s;, rank(s;) is
the number of parses in S with a score higher than
f(s;) plus 1. Thus, the rank of all solutions with
the maximal score is 1. Finally, ord(s;) corresponds
to the order in which the parses were completed by
the algorithm (disregarding the stopping criterion).
For example, if the parses were completed in the
order ss, ss, s1, then ord(s3) = 1, ord(ss) = 2,
and ord(s1) = 3. While two solutions have the
same rank if their scores are equal, no two solutions
have the same order. The best completed solution
$c € S¢ is the solution with the highest rank in S¢
and the lowest order among solutions with the same
rank. The best solution § is the solution with rank 1
and the lowest order among solutions with rank 1. If
§ € S¢, then ¢ = § and the objective of the algo-
rithm to find the best solution was fulfilled. We use
the following measures of performance: rank(sc),

ord($), % and TTC The most important criteria
are rank(5c) which measures how good the best
found solution is, and TTC which measures the pro-
portion of steps actually taken by the algorithm of
the total number of steps needed to complete all the
candidate solutions. Further, ord(8), the number
of parses completed before the global optimum was
reached regardless the stopping criterion, is indica-
tive about the ability of the search to reach the global
optimum early among the completed parses. Note
that all measures except for ord(s) equal to 1 for
the baseline greedy search, since it lacks a stopping
criterion.

The average performance values for four settings
of the parameter ¢ are presented in Table 1. Clearly,

39

e | rank(8c) ord(8) % TTC
0.01 1.6 88 0.78 0.94
0.05 2.8 11.2 0.62 0.85
0.10 4.0 12.2 053 0.79
0.20 6.0 135 041 0.73
Base 1.0 28.7 1.00 1.00

Table 1: Average results over all sentences.

the algorithm behaves as expected with respect to
the parameter €. While with the strictest setting
e = 0.01, 94% of the search space is explored, with
the least strict setting of ¢ = 0.2, 73% is explored,
thus pruning one quarter of the search space. The
proportion of completed parses is generally consid-
erably lower than the proportion of explored search
space. This indicates that the parses are generally
advanced to a significant level of completion, but
then ruled out. The behavior of the algorithm is
thus closer to a breadth-first, rather than depth-first
search. We also notice that the average rank of the
best completed solution is very low, indicating that
although the algorithm does not necessarily identify
the best solution, it generally identifies a very good
solution. In addition, the order of the best solution is
low as well, suggesting that generally good solutions
are identified before low-score solutions. Further,
compared to the baseline, the globally optimal solu-
tion is reached earlier among the completed parses,
although this does not imply that it is reached earlier
in the number of steps. Apart from the overall aver-
ages, we also consider the performance with respect
to the number of alternative parses for each sentence
(Table 2). Here we see that even with the least strict
setting, the search finds a reasonably good solution
while being able to reduce the search space to 48%.

4 Conclusions and future work

We have considered the problem of identifying a
globally optimal solution among a set of candidate
solutions, jointly optimizing several target functions
that implement domain criteria. Assuming the solu-
tions are generated incrementally, we have derived
a probabilistic search algorithm that aims to identify
the globally optimal solution without completing all
of the candidate solutions. The algorithm is based on
a model of the error in prediction caused by the in-

e =0.01 e=0.2 Base

S| # | rank(Sc) ord(8) % TTC rank(Sc) ord(8) HSTC“ TTC ord(8)
1-10 40 1.0 16 100 1.00 12 18 084 095 2.85
11-20 18 11 44 088 0.97 28 70 054 0.79 9.82
21-30 8 1.0 29 100 1.00 1.0 24 080 0.98 14.75
31-40 12 78 079 0.95 26 108 048 074 20.67
41-50 6 1.0 44 080 0.89 4.9 98 028 061 18.07
51-60 3 1.0 23 064 088 7.1 59 030 059 | 3867
61-70 5 11 269 086 0.99 34 232 022 0.68 32.60
71-80 3 1.0 87 078 098 9.2 196 030 0.71 | 4967
81-90 6 25 82 061 094 9.3 166 024 076 47.67
91-100 102 5.2 209 050 o081 18.9 382 015 048 | 52.69

Table 2: Average results with respect to the number of alternative parses. The column # contains the number
of sentences in the dataset which have the given number of parses.

completeness of a partial solution. Using the model,
the order in which partial solutions are explored is
defined, as well as a stopping criterion for the algo-
rithm.

We have performed an evaluation using best parse
identification as the model problem. The results in-
dicate that the method is capable of combining sim-
ple heuristic criteria with a complex regressor, iden-
tifying solutions with a very low average rank.

The crucial component of the method is the model
of the error §. Improving the accuracy of the model
may potentially further improve the performance of
the algorithm, allowing a more accurate stopping
criterion and better order in which the parses are
completed. We have assumed independence be-
tween the scores assigned by the target functions. As
a future work, a multivariate model will be consid-
ered that takes into account the mutual dependencies
of the target functions.

References

Filip Ginter, Sampo Pyysalo, Jorma Boberg, and Tapio
Salakoski. 2006. Regular approximation of Link
Grammar. Manuscript under review.

Heng Ji, David Westbrook, and Ralph Grishman. 2005.
Using semantic relations to refine coreference deci-
sions. In Proceedings of Human Language Technol-
ogy Conference and Conference on Empirical Methods
in Natural Language Processing (HLT/EMNLP’05),
Vancouver, Canada, pages 17-24. ACL.

Nanda Kambhatla. 2004. Combining lexical, syntactic,
and semantic features with maximum entropy models
for information extraction. In The Companion \ol-
ume to the Proceedings of 42st Annual Meeting of the

40

Association for Computational Linguistics (ACL’04),
Barcelona, Spain, pages 178-181. ACL.

Kimmo Koskenniemi. 1990. Finite-state parsing and
disambiguation. In Proceedings of the 13th In-
ternational Conference on Computational Linguis-
tics (COLING' 90), Helsinki, Finland, pages 229-232.
ACL.

Prem Melville, Maytal Saar-Tsechansky, Foster Provost,
and Raymond Mooney. 2004. Active feature-value
acquisition for classifier induction. In Proceedings
of the Fourth |EEE International Conference on Data
Mining (ICDM'’04), pages 483-486. IEEE Computer
Society.

Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari
Bjorne, Jorma Boberg, Jouni Jarvinen, and Tapio
Salakoski. 2006. Bio Information Extraction Re-
source: A corpus for information extraction in the
biomedical domain. Manuscript under review.

Bernard W. Silverman. 1986. Density Estimation for
Statistics and Data Analysis. Chapman & Hall.

Daniel D. Sleator and Davy Temperley. 1991. Pars-
ing English with a link grammar. Technical Report
CMU-CS-91-196, Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA.

Evgeni Tsivtsivadze, Tapio Pahikkala, Sampo Pyysalo,
Jorma Boberg, Aleksandr Mylléari, and Tapio
Salakoski. 2005. Regularized least-squares for parse
ranking. In Proceedings of the 6th International
Symposium on Intelligent Data Analysis (IDA 05),
Madrid, Spain, pages 464-474. Springer, Heidelberg.

Dmitry Zelenko, Chinatsu Aone, and Jason Tibbets.
2004. Binary integer programming for information ex-
traction. In Proceedings of the ACE Evaluation Meet-

ing.

Practical Markov Logic Containing First-Order Quantifiers
with Application to Identity Uncertainty

Aron Culotta and Andrew McCallum
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

{culotta, mccallum}@cs.umass.edu

Abstract

Markov logic is a highly expressive language
recently introduced to specify the connec-
tivity of a Markov network using first-order
logic. While Markov logic is capable of
constructing arbitrary first-order formulae
over the data, the complexity of these for-
mulae is often limited in practice because
of the size and connectivity of the result-
ing network. In this paper, we present ap-
proximate inference and estimation meth-
ods that incrementally instantiate portions
of the network as needed to enable first-
order existential and universal quantifiers
in Markov logic networks. When applied
to the problem of identity uncertainty, this
approach results in a conditional probabilis-
tic model that can reason about objects,
combining the expressivity of recently in-
troduced BLOG models with the predic-
tive power of conditional training. We vali-
date our algorithms on the tasks of citation
matching and author disambiguation.

1 Introduction

Markov logic networks (MLNs) combine the proba-
bilistic semantics of graphical models with the ex-
pressivity of first-order logic to model relational de-
pendencies (Richardson and Domingos, 2004). They
provide a method to instantiate Markov networks
from a set of constants and first-order formulae.
While MLNs have the power to specify Markov
networks with complex, finely-tuned dependencies,
the difficulty of instantiating these networks grows
with the complexity of the formulae. In particular,
expressions with first-order quantifiers can lead to

41

networks that are large and densely connected, mak-
ing exact probabilistic inference intractable. Because
of this, existing applications of MLNs have not ex-
ploited the full richness of expressions available in
first-order logic.

For example, consider the database of researchers
described in Richardson and Domingos (2004),
where predicates include PROFESSOR(PERSON),
STUDENT(PERSON), ADVISEDBY(PERSON, PER-
SON), and PUBLISHED(AUTHOR, PAPER). First-
order formulae include statements such as “students
are not professors” and “each student has at most
one advisor.” Consider instead statements such as
“all the students of an advisor publish papers with
similar words in the title” or “this subset of stu-
dents belong to the same lab.” To instantiate an
MLN with such predicates requires existential and
universal quantifiers, resulting in either a densely
connected network, or a network with prohibitively
many nodes. (In the latter example, it may be nec-
essary to ground the predicate for each element of
the power set of students.)

However, as discussed in Section 2, there may
be cases where these aggregate predicates increase
predictive power. For example, in predicting

the value of HAVESAMEADVISOR(q;...ait+k),
it may be useful to know the values
of aggregate evidence predicates such as

COAUTHOREDATLEASTTWOPAPERS(a; . . . ai1),
which indicates whether there are at least two papers
that some combination of authors from a;...a;1x
have co-authored. Additionally, we can construct
predicates such as NUMBEROFSTUDENTS(a;) to
model the number of students a researcher is likely
to advise simultaneously.

These aggregate predicates are examples of uni-
versal and existentially quantified predicates over ob-
served and unobserved values. To enable these sorts

Workshop on Computationally Hard Problemsand Joint Inference in Speech and Language Propeggsghl—48,
New York City, New York, June 200822006 Association for Computational Linguistics

of predicates while limiting the complexity of the
ground Markov network, we present an algorithm
that incrementally expands the set of aggregate pred-
icates during the inference procedure. In this paper,
we describe a general algorithm for incremental ex-
pansion of predicates in MLNs, then present an im-
plementation of the algorithm applied to the problem
of identity uncertainty.

2 Related Work

MLNs were designed to subsume various previously
proposed statistical relational models. Probabilistic
relational models (Friedman et al., 1999) combine
descriptive logic with directed graphical models, but
are restricted to acyclic graphs. Relational Markov
networks (Taskar et al., 2002) use SQL queries to
specify the structure of undirected graphical mod-
els. Since first-order logic subsumes SQL, MLNs
can be viewed as more expressive than relational
Markov networks, although existing applications of
MLNs have not fully utilized this increased expres-
sivity. Other approaches combining logic program-
ming and log-linear models include stochastic logic
programs (Cussens, 2003) and MACCENT (Dehaspe,
1997), although MLNs can be shown to represent
both of these.

Viewed as a method to avoid grounding an in-
tractable number of predicates, this paper has similar
motivations to recent work in lifted inference (Poole,
2003; de Salvo Braz et al., 2005), which performs
inference directly at the first-order level to avoid in-
stantiating all predicates. Although our model is not
an instance of lifted inference, it does attempt to re-
duce the number of predicates by instantiating them
incrementally.

Identity uncertainty (also known as record linkage,
deduplication, object identification, and co-reference
resolution) is the problem of determining whether a
set of constants (mentions) refer to the same object
(entity). Successful identity resolution enables vi-
sion systems to track objects, database systems to
deduplicate redundant records, and text processing
systems to resolve disparate mentions of people, or-
ganizations, and locations.

Many probabilistic models of object identification
have been proposed in the past 40 years in databases
(Fellegi and Sunter, 1969; Winkler, 1993) and nat-
ural language processing (McCarthy and Lehnert,
1995; Soon et al., 2001). With the introduction
of statistical relational learning, more sophisticated
models of identity uncertainty have been developed
that consider the dependencies between related con-
solidation decisions.

Most relevant to this work are the recent relational

42

models of identity uncertainty (Milch et al., 2005;
McCallum and Wellner, 2003; Parag and Domingos,
2004). McCallum and Wellner (2003) present exper-
iments using a conditional random field that factor-
izes into a product of pairwise decisions about men-
tion pairs (Model 3). These pairwise decisions are
made collectively using relational inference; however,
as pointed out in Milch et al. (2004), there are short-
comings to this model that stem from the fact that it
does not capture features of objects, only of mention
pairs. For example, aggregate features such as “a re-
searcher is unlikely to publish in more than 2 differ-
ent fields” or “a person is unlikely to be referred to by
three different names” cannot be captured by solely
examining pairs of mentions. Additionally, decom-
posing an object into a set of mention pairs results
in “double-counting” of attributes, which can skew
reasoning about a single object (Milch et al., 2004).
Similar problems apply to the model in Parag and
Domingos (2004).

Milch et al. (2005) address these issues by con-
structing a generative probabilistic model over pos-
sible worlds called BLOG, where realizations of ob-
jects are typically sampled from a generative process.
While BLOG model provides attractive semantics for
reasoning about unknown objects, the transition to
generatively trained models sacrifices some of the at-
tractive properties of the discriminative model in Mc-
Callum and Wellner (2003) and Parag and Domin-
gos (2004), such as the ability to easily incorporate
many overlapping features of the observed mentions.
In contrast, generative models are constrained either
to assume the independence of these features or to
explicitly model their interactions.

Object identification can also be seen as an in-
stance of supervised clustering. Daumé III and
Marcu (2004) and Carbonetto et al. (2005) present
similar Bayesian supervised clustering algorithms
that use a Dirichlet process to model the number
of clusters. As a generative model, it has similar ad-
vantages and disadvantages as Milch et al. (2005),
with the added capability of integrating out the un-
certainty in the true number of objects.

In this paper, we present of identity uncertainty
that incorporates the attractive properties of Mc-
Callum and Wellner (2003) and Milch et al. (2005),
resulting in a discriminative model to reason about
objects.

3 Markov logic networks

Let F = {F;} be a set of first order formulae with
corresponding real-valued weights w = {w;}. Given
a set of constants C' = {¢;}, define n;(x) to be the
number of true groundings of F; realized in a setting

of the world given by atomic formulae x. A Markov
logic network (MLN) (Richardson and Domingos,
2004) defines a joint probability distribution over
possible worlds x. In this paper, we will work with
discriminative MLNs (Singla and Domingos, 2005),
which define the conditional distribution over a set
of query atoms y given a set of evidence atoms .
Using the normalizing constant Z,, the conditional
distribution is given by

| Fy |
1
PY=ylX=2)= 7 eXPp Zwmz(gc, Y)

i=1

(1)

where F,, C F'is the set of clauses for which at least
one grounding contains a query atom, and n;(z,y)
is the number of true groundings of the ith clause
containing evidence atom x and query atom y.

3.1 Inference Complexity in Ground
Markov Networks

The set of predicates and constants in Markov logic
define the structure of a Markov network, called a
ground Markov network. In discriminative Markov
logic networks, this resulting network is a conditional
Markov network (also known as a conditional ran-
dom field (Lafferty et al., 2001)).

From Equation 1, the formulae Fj, specify the
structure of the corresponding Markov network as
follows: Each grounding of a predicate specified in
F, has a corresponding node in the Markov network;
and an edge connects two nodes in the network if and
only if their corresponding predicates co-occur in a
grounding of a formula Fj. Thus, the complexity
of the formulae in F, will determine the complexity
of the resulting Markov network, and therefore the
complexity of inference. When Fj, contains complex
first-order quantifiers, the resulting Markov network
may contain a prohibitively large number of nodes.

For example, let the set of constants C' be the set of
authors {a;}, papers {p; }, and conferences {¢;} from
a research publication database. Predicates may in-
clude AUTHOROF(a;,p;), ADVISOROF(a;,a;), and
PROGRAMCOMMITTEE(q;, ¢;). Each grounding of a
predicate corresponds to a random variable in the
corresponding Markov network.

It is important to notice how query predicates and
evidence predicates differ in their impact on inference
complexity. Grounded evidence predicates result in
observed random variables that can be highly con-
nected without resulting in an increase in inference
complexity. For example, consider the binary evi-
dence predicate HAVESAMELASTNAME(a; . . . Gtk)-

43

This aggregate predicate reflects informa-
tion about a subset of (kK — ¢ + 1) constants.
The value of this predicate is dependent on
the values of HAVESAMELASTNAME(a;,a;+1),
HAVESAMELASTNAME(a;, ai12), etc. However,
since all of the corresponding variables are observed,
inference does not need to ensure their consistency
or model their interaction.

In contrast, complex query predicates can make
inference more difficult. Consider the query
predicate HAVESAMEADVISOR(q; ... ai+k). Here,
the related predicates HAVESAMEADVISOR(a;, @;+1),
HAVESAMEADVISOR(a;, a;12), etc., all correspond
to unobserved binary random variables that the
model must predict. To ensure their consistency,
the resulting Markov network must contain depen-
dency edges between each of these variables, result-
ing in a densely connected network. Since inference
in general in Markov networks scales exponentially
with the size of the largest clique, inference in the
grounded network quickly becomes intractable.

One solution is to limit the expressivity of the
predicates. In the previous example, we can decom-
pose the predicate HAVESAMEADVISOR(a; . . . Gitk)
into its (k — i + 1) corresponding pairwise pred-
icates, such as HAVESAMEADVISOR(a;, a;11). An-
swering an aggregate query about the advisors of a
group of students can be handled by a conjunction
of these pairwise predicates.

However, as discussed in Sections 1 and 2, we
would like to reason about objects, not just pairs
of mentions, because this enables richer evidence

predicates. For example, the evidence predicates
ATLEASTTWOCOAUTHOREDPAPERS(q; . . . @i 1)

and NUMBEROFSTUDENTS(a;) can be
highly predictive of the query predicate

HAVESAMEADVISOR(@; . . . Giyf)-

Below, we describe a discriminative MLN for iden-
tity uncertainty that is able to reason at the object
level.

3.2 Identity uncertainty

Typically, MLNs make a unique names assumption,
requiring that different constants refer to distinct ob-
jects. In the publications database example, each
author constant a; is a string representation of one
author mention found in the text of a citation. The
unique names assumption assumes that each a; refers
to a distinct author in the real-world. This simplifies
the network structure at the risk of weak or fallacious
predictions (e.g., ADVISOROF(a;,a;) is erroneous if
a; and a; actually refer to the same author). The
identity uncertainty problem is the task of removing
the unique names assumption by determining which

constants refer to the same real-world objects.

Richardson and Domingos (2004) address this con-
cern by creating the predicate EQUALS(c;,c;) be-
tween each pair of constants. While this retains the
coherence of the model, the restriction to pairwise
predicates can be a drawback if there exist informa-
tive features over sets of constants. In particular,
by only capturing features of pairs of constants, this
solution cannot model the compatibility of object at-
tributes, only of constant attributes (Section 2).

Instead, we desire a conditional model that allows
predicates to be defined over a set of constants.

One approach is to introduce constants that repre-
sent objects, and connect them to their mentions by
predicates such as ISMENTIONOF(¢;, ¢;). In addition
to computational issues, this approach also some-
what problematically requires choosing the number
of objects. (See Richardson and Domingos (2004) for
a brief discussion.)

Instead, we propose instantiating aggregate pred-
icates over sets of constants, such that a setting of
these predicates implicitly determines the number of
objects. This approach allows us to model attributes
over entire objects, rather than only pairs of con-
stants. In the following sections, we describe aggre-
gate predicates in more detail, as well as the approx-
imations necessary to implement them efficiently.

3.3 Aggregate predicates

Aggregate predicates are predicates that take as ar-
guments an arbitrary number of constants. For ex-
ample, the HAVESAMEADVISOR(a; .. .a;4+k) predi-
cate in the previous section is an example of an ag-
gregate predicate over k — i + 1 constants.

Let Ic = {1... N} be the set of indices into the set
of constants C', with power set P(I¢). For any subset
d € P(I¢), an aggregate predicate A(d) defines a
property over the subset of constants d.

Note that aggregate predicates can be trans-
lated into first-order formulae. For example,
HAVESAMEADVISOR(a; . .. a;4f) can be re-written
as Y(ag,ay) € {a;...ait+r} SAMEADVISOR(ag,ay).
By using aggregate predicates we make explicit the
fact that we are modeling the attributes at the object
level.

We distinguish between aggregate query predi-
cates, which represent unobserved aggregate vari-
ables, and aggregate evidence predicates, which rep-
resent observed aggregate variables. Note that using
aggregate query predicates can complicate inference,
since they represent a collection of fully connected
hidden variables. The main point of this paper is
that although these aggregate query predicates are
specifiable in MLNs, they have not been utilized be-

44

cause of the resulting inference complexity. We show
that the gains made possible by these predicates of-
ten outweigh the approximations required for infer-
ence.

As discussed in Section 3.1, for each aggregate
query predicates A(d), it is critical that the model
predict consistent values for every related subset of d.
Enforcing this consistency requires introducing de-
pendency edges between aggregate query predicates
that share arguments. In general, this can be a diffi-
cult problem. Here, we focus on the special case for
identity uncertainty where the main query predicate
under consideration is AREEQUAL(d).

The aggregate query predicate AREEQUAL(d) is
true if and only if all constants d; € d refer to the
same object. Since each subset of constants corre-
sponds to a candidate object, a (consistent) setting
of all the AREEQUAL predicates results in a solution
to the object identification problem. The number
of objects is chosen based on the optimal grounding
of each of these aggregate predicates, and therefore
does not require a prior over the number of objects.
That is, once all the AREEQUAL predicates are set,
they determine a clustering with a fixed number of
objects. The number of objects is not modeled or set
directly, but is implied by the result of MAP infer-
ence. (However, a posterior over the number of ob-
jects could be modeled discriminatively in an MLN
(Richardson and Domingos, 2004).)

This formulation also allows us to compute aggre-
gate evidence predicates over objects to help predict
the values of each AREEQUAL predicate. For exam-
ple, NUMBERFIRSTNAMES(d) returns the number of
different first names used to refer to the object ref-
erenced by constants d. In this way, we can model
aggregate features of an object, capturing the com-
patibility among its attributes.

For a given C, there are |P(I¢)| possible ground-
ings of the AREEQUAL query predicates. Naively im-
plemented, such an approach would require enumer-
ating all subsets of constants, ultimately resulting in
an unwieldy network.

An equivalent way to state the problem is that
using N-ary predicates results in a Markov network
with one node for each grounding of the predicate.
Since in the general case there is one grounding
for each subset of C, the size of the corresponding
Markov network will be exponential in |C]. See Fig-
ure 1 for an example instantiation of an MLN with
three constants (a,b,c) and one AREEQUAL predi-
cate.

In this paper, we provide algorithms to per-
form approximate inference and parameter estima-
tion by incrementally instantiating these predicates

{AreEqual(a,b)HAreEqual(a,c)HAreEqual(b,c)}
AreEqual(a,b,c)

Figure 1: An example of the network instantiated
by an MLN with three constants and the aggregate
predicate AREEQUAL, instantiated for all possible
subsets with size > 2.

as needed.

3.4 MAP Inference

Maximum a posteriori (MAP) inference seeks the so-
lution to

y* =argmax P(Y = y|X = x)
Y

where y* is the setting of all the query predicates
F, (e.g. AREEQUAL) with the maximal conditional
density.

In large, densely connected Markov networks, a
common approximate inference technique is loopy
belief propagation (i.e. the max-product algorithm
applied to a cyclic graph). However, the use of ag-
gregate predicates makes it intractable even to in-
stantiate the entire network, making max-product
an inappropriate solution.

Instead, we employ an incremental inference tech-
nique that grounds aggregate query predicates in
an agglomerative fashion based on the model’s cur-
rent MAP estimates. This algorithm can be viewed
as a greedy agglomerative search for a local opti-
mum of P(Y|X), and has connections to recent work
on correlational clustering (Bansal et al., 2004) and
graph partitioning for MAP estimation (Boykov et
al., 2001).

First, note that finding the MAP estimate does not
require computing Z,, since we are only interested in
the relative values of each configuration, and Z, is
fixed for a given z. Thus, at iteration ¢, we compute
an unnormalized score for y* (the current setting of
the query predicates) given the evidence predicates
x as follows:

|F*|

Sy, x) =exp | Y wini(z,y")
=0

where F' C F, is the set of aggregate predicates
representing a partial solution to the object identifi-
cation task for constants C, specified by %°.

45

Algorithm 1 Approximate MAP Inference Algo-
rithm
1: Given initial predicates F©
: while ScorelsIncreased do
F? < FindMostLikelyPredicate(F")
F! < true
F' < ExpandPredicates(F}", F')
: end while

2
3
4:
5
6

Algorithm 1 outlines a high-level description of the
approximate MAP inference algorithm. The algo-
rithm first initializes the set of query predicated F°
such that all AREEQUAL predicates are restricted
to pairs of constants, i.e. AREEQUAL(c;,¢;) V(3,7).
This is equivalent to a Markov network containing
one unobserved random variable for each pair of con-
stants, where each variable indicates whether a pair
of constants refer to the same object.

Initially, each AREEQUAL predicate is assumed
false. In line 3, the procedure FINDMOSTLIKE-
LYPREDICATE iterates through each query predicate
in F*, setting each to true in turn and calculating its
impact on the scoring function. The procedure re-
turns the predicate F;* such that setting F;* to TRUE
results in the greatest increase in the scoring function
Sy,).

Let (cf...cj) be the set of constants “merged”
by setting their AREEQUAL predicate to true. The
EXPANDPREDICATES procedure creates new predi-
cates AREEQUAL(c] ... ¢}, ¢k ... ¢) corresponding to
all the potential predicates created by merging the
constants ¢} ...c; with any of the other previously
merged constants. For example, after the first it-
eration, a pair of constants (cz‘,c;?) are merged.
The set of predicates are expanded to include
AREEQUAL(c], ¢}, cx) Vey, reflecting all possible ad-
ditional references to the proposed object referenced
by ¢

s, c;f.
This algorithm continues until there is no predi-
cate that can be set to true that increases the score

function.

In this way, the final setting of F}, is a local max-
imum of the score function. As in other search
algorithms, we can employ look-ahead to reduce
the greediness of the search (i.e., consider multiple
merges simultaneously), although we do not include
look-ahead in experiments reported here.

It is important to note that each expansion of the
aggregate query predicates I, has a corresponding
set of aggregate evidence predicates. These evidence
predicates characterize the compatibility of the at-
tributes of each hypothesized object.

3.4.1 Pruning

The space required for the above algorithm scales
Q(|C|?), since in the initialization step we must
ground a predicate for each pair of constants. We use
the canopy method of McCallum et al. (2000), which
thresholds a “cheap” similarity metric to prune un-
necessary comparisons. This pruning can be done
at subsequent stages of inference to restrict which
predicates variables will be introduced.

Additionally, we must ensure that predicate set-
tings at time ¢ do not contradict settings at t — 1
(e.g. if F'(a,b,c) = 1, then F'*l(a,b) = 1). By
greedily setting unobserved nodes to their MAP es-
timates, the inference algorithm ignores inconsistent
settings and removes them from the search space.

3.5 Parameter estimation

Given a fully labeled training set D of constants an-
notated with their referent objects, we would like to
estimate the value of w that maximizes the likelihood
of D. That is, w* = argmax,, P, (y|x).

When the data are few, we can explicitly instan-
tiate all AREEQUAL(d) predicates, setting their cor-
responding nodes to the values implied by D. The
likelihood is given by Equation 1, where the normal-

izer is Zx =}, exp (Z (z, y’))
Although this sum over y’ to calculate Zy is ex-

ponential in |y|, many inconsistent settings can be
pruned as discussed in Section 3.4.1.

|Fy |
i=1 Will;

In general, however, instantiating the entire set
of predicates denoted by y and calculating Zy is
intractable. Existing methods for MLN parame-
ter estimation include pseudo-likelihood and voted
perceptron (Richardson and Domingos, 2004; Singla
and Domingos, 2005). We instead follow the recent
success in piecewise training for complex undirected
graphical models (Sutton and McCallum, 2005) by
making the following two approximations. First, we
avoid calculating the global normalizer Z, by calcu-
lating local normalizers, which sum only over the two
values for each aggregate query predicate grounded
in the training data. We therefore maximize the sum
of local probabilities for each query predicate given
the evidence predicates.

This approximation can be viewed as constructing
a log-linear binary classifier to predict whether an
isolated set of constants refer to the same object.
Input features include arbitrary first-order features
over the input constants, and the output is a binary
variable. The parameters of this classifier correspond
to the w weights in the MLN. This simplification
results in a convex optimization problem, which we
solve using gradient descent with L-BFGS, a second-

46

order optimization method (Liu and Nocedal, 1989).

The second approximation addresses the fact that
all query predicates from the training set cannot be
instantiated. We instead sample a subset Fg € F),
and maximize the likelihood of this subset. The sam-
pling is not strictly uniform, but is instead obtained
by collecting the predicates created while perform-
ing object identification using a weak method (e.g.
string comparisons). More explicitly, predicates are
sampled from the training data by performing greedy
agglomerative clustering on the training mentions,
using a scoring function that computes the similar-
ity between two nodes by string edit distance. The
goal of this clustering is not to exactly reproduce the
training clusters, but to generate correct and incor-
rect clusters that have similar characteristics (size,
homogeneity) to what will be present in the testing
data.

4 Experiments

We perform experiments on two object identification
tasks: citation matching and author disambiguation.
Citation matching is the task of determining whether
two research paper citation strings refer to the same
paper. We use the Citeseer corpus (Lawrence et al.,
1999), containing approximately 1500 citations, 900
of which are unique. The citations are manually la-
beled with cluster identifiers, and the strings are seg-
mented into fields such as author, title, etc. The cita-
tion data is split into four disjoint categories by topic,
and the results presented are obtained by training on
three categories and testing on the fourth.

Using first-order logic, we create a number of ag-
gregate predicates such as ALLTITLESMATCH, AL-
LAUTHORSMATCH, ALLJOURNALSMATCH, etc., as
well as their existential counterparts, THEREEXIST-
STITLEMATCH, etc. We also include count predi-
cates, which indicate the number of these matches in
a set of constants.

Additionally, we add edit distance predicates,
which calculate approximate matches' between title
fields, etc., for each pair of citations in a set of cita-
tions. Aggregate features are used for these, such as
“there exists a pair of citations in this cluster which
have titles that are less than 30% similar” and “the
minimum edit distance between titles in a cluster is
greater than 50%.”

We evaluate using pairwise precision, recall, and
F1, which measure the system’s ability to predict
whether each pair of constants refer to the same ob-
ject or not. Table 1 shows the advantage of our

"We wuse the Secondstring package, found at

http://secondstring.sourceforge.net

Table 1: Precision, recall, and F1 performance for
citation matching task, where OBJECTS is an MLN
using aggregate predicates, and PAIRS is an MLN us-
ing only pairwise predicates. OBJECTS outperforms
PAIRS on three of the four testing sets.

Objects Pairs
pr re fi pr re il
constraint | 85.8 | 79.1 | 82.3 || 63.0 | 98.0 | 76.7
reinforce | 97.0 | 90.0 | 93.4 || 65.6 | 98.2 | 78.7
face 93.4 | 84.8 | 88.9 || 74.2 | 94.7 | 83.2
reason 97.4 | 69.3 | 81.0 || 76.4 | 95.5 | 84.9

Table 2: Performance on the author disambiguation
task. OBJECTS outperforms PAIRS on two of the
three testing sets.

Objects Pairs
pr re f1l pr | re f1
miller d | 73.9 | 29.3 | 41.9 || 44.6 | 1.0 | 61.7
i w 39.4 | 479 | 43.2 || 22.1 | 1.0 | 36.2
smith b | 61.2 | 70.1 | 65.4 || 14.5 | 1.0 | 25.4

proposed model (OBJECTS) over a model that only
considers pairwise predicates of the same features
(PAIrs). Note that PAIRS is a strong baseline that
performs collective inference of citation matching de-
cisions, but is restricted to use only ISEQUAL(c;, ¢;)
predicates over pairs of citations. Thus, the perfor-
mance difference is due to the ability to model first-
order features of the data.

Author disambiguation is the task of deciding
whether two strings refer to the same author. To in-
crease the task complexity, we collect citations from
the Web containing different authors with matching
last names and first initials. Thus, simply performing
a string match on the author’s name would be insuffi-
cient in many cases. We searched for three common
last name / first initial combinations (MILLER, D;
L1, W; SMmITH, B). From this set, we collected 400
citations referring to 56 unique authors. For these
experiments, we train on two subsets and test on the
third.

We generate aggregate predicates similar to those
used for citation matching. Additionally, we in-
clude features indicating the overlap of tokens from
the titles and indicating whether there exists a pair
of authors in this cluster that have different mid-
dle names. This last feature exemplifies the sort of
reasoning enabled by aggregate predicates: For ex-
ample, consider a pairwise predicate that indicates
whether two authors have the same middle name.

a7

Very often, middle name information is unavailable,
so the name “Miller, A.” may have high similarity to
both “Miller, A. B.” and “Miller, A. C.”. However,
it is unlikely that the same person has two different
middle names, and our model learns a weight for this
feature. Table 2 demonstrates the advantage of this
method.

Overall, OBJECTS achieves F'1 scores superior to
PAIRS on 5 of the 7 datasets. These results indicate
the potential advantages of using complex first-order
quantifiers in MLNs. The cases in which PAIRS out-
performs OBJECTS are likely due to the fact that the
approximate inference used in OBJECTS is greedy.
Increasing the robustness of inference is a topic of
future research.

5 Conclusions and Future Work

We have presented an algorithm that enables practi-
cal inference in MLNs containing first-order existen-
tial and universal quantifiers, and have demonstrated
the advantages of this approach on two real-world
datasets. Future work will investigate efficient ways
to improve the approximations made during infer-
ence, for example by reducing its greediness by revis-
ing the MAP estimates made at previous iterations.

Although the optimal number of objects is cho-
sen implicitly by the inference algorithm, there may
be reasons to explicitly model this number. For ex-
ample, if there exist global features of the data that
suggest there are many objects, then the inference al-
gorithm should be less inclined to merge constants.
Additionally, the data may exhibit “preferential at-
tachment” such that the probability of a constant
being added to an existing object is proportional to
the number of constants that refer to that object.
Future work will examine the feasibility of adding
aggregate query predicates to represent these values.

More subtly, one may also want to directly model
the size of the object population. For example, given
a database of authors, we may want to estimate not
only how many distinct authors exist in the database,
but also how many distinct authors exist outside of
the database, as discussed in Milch et al. (2005).
Discriminatively-trained models cannot easily reason
about objects for which they have no observations;
so a generative/discriminative hybrid model may be
required to properly estimate this value.

Finally, while the inference algorithm we describe
is evaluated only on the object uncertainty task, we
would like to extend it to perform inference over ar-
bitrary query predicates.

6 Acknowledgments

We would like to thank the reviewers, and Pallika Kanani
for helpful discussions. This work was supported in
part by the Center for Intelligent Information Retrieval,
in part by U.S. Government contract #NBCH040171
through a subcontract with BBNT Solutions LLC, in
part by The Central Intelligence Agency, the National
Security Agency and National Science Foundation un-
der NSF grant #115-0326249, and in part by the Defense
Advanced Research Projects Agency (DARPA), through
the Department of the Interior, NBC, Acquisition Ser-
vices Division, under contract number NBCHDO030010.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are the author(s)’ and do
not necessarily reflect those of the sponsor.

References

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004.
Correlation clustering. Machine Learining, 56:89-113.

Yuri Boykov, Olga Veksler, and Ramin Zabih. 2001. Fast
approximate energy minimization via graph cuts. In
IEEE transactions on Pattern Analysis and Machine
Intelligence (PAMI), 23(11):1222-1239.

Peter Carbonetto, Jacek Kisynski, Nando de Freitas, and
David Poole. 2005. Nonparametric bayesian logic. In
UAL

J. Cussens. 2003. Individuals, relations and structures
in probabilistic models. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence,
pages 126—133, Acapulco, Mexico.

Hal Daumé I1I and Daniel Marcu. 2004. Supervised clus-
tering with the dirichlet process. In NIPS’0j Learn-
ing With Structured Outputs Workshop, Whistler,
Canada.

Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. 2005.
Lifted first-order probabilistic inference. In IJCAI,
pages 1319-1325.

L. Dehaspe. 1997. Maximum entropy modeling with
clausal constraints. In Proceedings of the Seventh
International Workshop on Inductive Logic Program-
ming, pages 109-125, Prague, Czech Republic.

I. P. Fellegi and A. B. Sunter. 1969. A theory for record
linkage. Journal of the American Statistical Associa-
tion, 64:1183-1210.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pf-
effer. 1999. Learning probabilistic relational models.
In IJCAI pages 1300—1309.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proc.
18th International Conf. on Machine Learning, pages
282-289. Morgan Kaufmann, San Francisco, CA.

. Lawrence, C. L. Giles, and K. Bollaker. 1999. Digi-
tal libraries and autonomous citation indexing. IEEFE
Computer, 32:67-T1.

48

D. C. Liu and J. Nocedal. 1989. On the limited mem-
ory BFGS method for large scale optimization. Math.
Programming, 45(3, (Ser. B)):503-528.

A. McCallum and B. Wellner. 2003. Toward condi-
tional models of identity uncertainty with application
to proper noun coreference. In IJCAI Workshop on
Information Integration on the Web.

Andrew K. McCallum, Kamal Nigam, and Lyle Ungar.
2000. Efficient clustering of high-dimensional data sets
with application to reference matching. In Proceed-
ings of the Sixth International Conference On Knowl-
edge Discovery and Data Mining (KDD-2000), Boston,
MA.

Joseph F. McCarthy and Wendy G. Lehnert. 1995. Us-
ing decision trees for coreference resolution. In IJCAI,
pages 1050-1055.

Brian Milch, Bhaskara Marthi, and Stuart Russell. 2004.
Blog: Relational modeling with unknown objects. In
ICML 2004 Workshop on Statistical Relational Learn-
ing and Its Connections to Other Fields.

Brian Milch, Bhaskara Marthi, and Stuart Russell. 2005.
BLOG: Probabilistic models with unknown objects. In
IJCAL

Parag and Pedro Domingos. 2004. Multi-relational
record linkage. In Proceedings of the KDD-2004 Work-
shop on Multi-Relational Data Mining, pages 31-48,
August.

D. Poole. 2003. First-order probabilistic inference. In
Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence, pages 985—991, Aca-
pulco, Mexico. Morgan Kaufman.

M. Richardson and P. Domingos. 2004. Markov logic
networks. Technical report, University of Washington,
Seattle, WA.

Parag Singla and Pedro Domingos. 2005. Discriminative
training of markov logic networks. In Proceedings of
the Twentieth National Conference of Artificial Intel-
ligence, Pittsburgh, PA.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong
Lim. 2001. A machine learning approach to corefer-
ence resolution of noun phrases. Comput. Linguist.,
27(4):521-544.

Charles Sutton and Andrew McCallum. 2005. Piecewise
training of undirected models. In Submitted to 21st
Conference on Uncertainty in Artificial Intelligence.

Ben Taskar, Abbeel Pieter, and Daphne Koller. 2002.
Discriminative probabilistic models for relational data.
In Uncertainty in Artificial Intelligence: Proceedings of
the Eighteenth Conference (UAI-2002), pages 485-492,
San Francisco, CA. Morgan Kaufmann Publishers.

William E. Winkler. 1993. Improved decision rules in
the fellegi-sunter model of record linkage. Technical
report, Statistical Research Division, U.S. Census Bu-
reau, Washington, DC.

Re-Ranking Algorithms for Name Tagging

Heng Ji
Dept. of Computer Science

Cynthia Rudin
Center for Neural Science and Courant

Ralph Grishman
Dept. of Computer Science

Institute of Mathematical Sciences
New York University
New York, N.Y. 10003

hengji@cs.nyu.edu

Abstract

Integrating information from different
stages of an NLP processing pipeline can
yield significant error reduction. We dem-
onstrate how re-ranking can improve name
tagging in a Chinese information extrac-
tion system by incorporating information
from relation extraction, event extraction,
and coreference. We evaluate three state-
of-the-art re-ranking algorithms (MaxEnt-
Rank, SVMRank, and p-Norm Push Rank-
ing), and show the benefit of multi-stage
re-ranking for cross-sentence and cross-
document inference.

1 Introduction

In recent years, re-ranking techniques have been
successfully applied to enhance the performance
of NLP analysis components based on generative
models. A baseline generative model produces N-
best candidates, which are then re-ranked using a
rich set of local and global features in order to
select the best analysis. Various supervised learn-
ing algorithms have been adapted to the task of re-
ranking for NLP systems, such as MaxEnt-Rank
(Charniak and Johnson, 2005; Ji and Grishman,
2005), SVMRank (Shen and Joshi, 2003), Voted
Perceptron (Collins, 2002; Collins and Dufty,
2002; Shen and Joshi, 2004), Kernel Based Meth-
ods (Henderson and Titov, 2005), and RankBoost
(Collins, 2002; Collins and Koo, 2003; Kudo et al.,
2005).

These algorithms have been used primarily
within the context of a single NLP analysis com-
ponent, with the most intensive study devoted to

rudinenyu.edu

49

grishmane@ecs.nyu.edu

improving parsing performance. The re-ranking
models for parsing, for example, normally rely on
structures generated within the baseline parser
itself. Achieving really high performance for some
analysis components, however, requires that we
take a broader view, one that looks outside a sin-
gle component in order to bring to bear knowl-
edge from the entire NL analysis process. In this
paper we will demonstrate the potential of this
approach in enhancing the performance of Chi-
nese name tagging within an information extrac-
tion application.

Combining information from other stages in the
analysis pipeline allows us to incorporate informa-
tion from a much wider context, spanning the en-
tire document and even going across documents.
This will give rise to new design issues; we will
examine and compare different re-ranking algo-
rithms when applied to this task.

We shall first describe the general setting and
the special characteristics of re-ranking for name
tagging. Then we present and evaluate three re-
ranking algorithms — MaxEnt-Rank, SVMRank
and a new algorithm, p-Norm Push Ranking — for
this problem, and show how an approach based on
multi-stage re-ranking can effectively handle fea-
tures across sentence and document boundaries.

2 Prior Work

2.1 Ranking

We will describe the three state-of-the-art super-
vised ranking techniques considered in this work.
Later we shall apply and evaluate these algorithms
for re-ranking in the context of name tagging.
Maximum Entropy modeling (MaxEnt) has
been extremely successful for many NLP classifi-

Workshop on Computationally Hard Problemsand Joint Inference in Speech and Language Propegmsgto-56,
New York City, New York, June 200822006 Association for Computational Linguistics

cation tasks, so it is natural to apply it to re-
ranking problems. (Charniak and Johnson, 2005)
applied MaxEnt to improve the performance of a
state-of-art parser; also in (Ji and Grishman, 2005)
we used it to improve a Chinese name tagger.

Using SVMRank, (Shen and Joshi, 2003)
achieved significant improvement on parse re-
ranking. They compared two different sample
creation methods, and presented an efficient train-
ing method by separating the training samples into
subsets.

The last approach we consider is a boosting-
style approach. We implement a new algorithm
called p-Norm Push Ranking (Rudin, 2006). This
algorithm is a generalization of RankBoost
(Freund et al. 1998) which concentrates specifi-
cally on the top portion of a ranked list. The pa-
rameter “p” determines how much the algorithm
concentrates at the top.

2.2 Enhancing Named Entity Taggers

There have been a very large number of NE tagger
implementations since this task was introduced at
MUC-6 (Grishman and Sundheim, 1996). Most
implementations use local features and a unifying
learning algorithm based on, e.g., an HMM, Max-
Ent, or SVM. Collins (2002) augmented a baseline
NE tagger with a re-ranker that used only local,
NE-oriented features. Roth and Yih (2002) com-
bined NE and semantic relation tagging, but
within a quite different framework (using a linear
programming model for joint inference).

3 A Framework for Name Re-Ranking

3.1 The Information Extraction Pipeline

The extraction task we are addressing is that of the

Automatic Content Extraction (ACE)' evaluations.

The 2005 ACE evaluation had 7 types of entities,
of which the most common were PER (persons),
ORG (organizations), LOC (natural locations) and
GPE (‘geo-political entities’ — locations which are
also political units, such as countries, counties,
and cities). There were 6 types of semantic rela-
tions, with 18 subtypes. Examples of these rela-
tions are “the CEO of Microsoft” (an
organization-affiliation relation), “Fred’s wife” (a

! The ACE task description can be found at
http://www.itl.nist.gov/iad/894.01/tests/ace/

50

personal-social relation), and “a military base in

Germany” (a located relation). And there were 8

types of events, with 33 subtypes, such as “Kurt

Schork died in Sierra Leone yesterday” (a Die

event), and “Schweitzer founded a hospital in

1913” (a Start-Org event).

To extract these elements we have developed a
Chinese information extraction pipeline that con-
sists of the following stages:

e Name tagging and name structure parsing
(which identifies the internal structure of some
names);

e Coreference resolution, which links "men-
tions" (referring phrases of selected semantic
types) into "entities": this stage is a combina-
tion of high-precision heuristic rules and
maximum entropy models;

e Relation tagging, using a K-nearest-neighbor
algorithm to identify relation types and sub-
types;

e« Event patterns, semi-automatically extracted
from ACE training corpora.

3.2 Hypothesis Representation and Genera-

tion

Again, the central idea is to apply the baseline
name tagger to generate N-Best multiple hypothe-
ses for each sentence; the results from subsequent
components are then exploited to re-rank these
hypotheses and the new top hypothesis is output
as the final result.

In our name re-ranking model, each hypothesis
is an NE tagging of the entire sentence. For ex-
ample, “<PER>John</PER> was born in
<GPE>New York</GPE>.” is one hypothesis
for the sentence “John was born in New York™.

We apply a HMM tagger to identify four named
entity types: Person, GPE, Organization and Loca-
tion. The HMM tagger generally follows the
Nymble model (Bikel et al, 1997), and uses best-
first search to generate N-Best hypotheses. It also
computes the “margin”, which is the difference
between the log probabilities of the top two hy-
potheses. This is used as a rough measure of con-
fidence in the top hypothesis. A large margin
indicates greater confidence that the first hypothe-
sis is correct. The margin also determines the
number of hypotheses (N) that we will store. Us-
ing cross-validation on the training data, we de-
termine the value of N required to include the best

hypothesis, as a function of the margin. We then
divide the margin into ranges of values, and set a
value of N for each range, with a maximum of 30.

To obtain the training data for the re-ranking
algorithm, we separate the name tagging training
corpus into k folders, and train the HMM name
tagger on k-1 folders. We then use the HMM to
generate N-Best hypotheses H = {h,, hy,...,hy} for
each sentence in the remaining folder. Each #; in
H is then paired with its NE F-measure, measured
against the key in the annotated corpus.

We define a “crucial pair” as a pair of hypothe-
ses such that, according to F-Measure, the first
hypothesis in the pair should be more highly
ranked than the second. That is, if for a sentence,
the F-Measure of hypothesis #4; is larger than that
of 4, then (h; h;) is a crucial pair.

3.3 Re-Ranking Functions

We investigated the following three different for-
mulations of the re-ranking problem:

Direct Re-Ranking by Score
For each hypothesis #;, we attempt to learn a scor-
ing function /- H - R, such that f(h;) > f(h;) if the
F-Measure of #; is higher than the F-measure of ;.

Direct Re-Ranking by Classification
For each hypothesis 4, we attempt to learn f: H
- {-1, 1}, such that f(h;) = 1 if h; has the top F-
Measure among H; otherwise f(h;) = -1. This can
be considered a special case of re-ranking by
score.

Indirect Re-Ranking Function

For each “crucial” pair of hypotheses (h;, h;), we
learn /- H X H - {-1, 1}, such that f(h; h) =1 if
h; is better than hj; f'(h;, h;) = -1 if h; is worse than
h;. We call this “indirect” ranking because we
need to apply an additional decoding step to pick
the best hypothesis from these pair-wise compari-
son results.

4 Features for Re-Ranking

4.1 Inferences From Subsequent Stages

Information extraction is a potentially symbiotic
pipeline with strong dependencies between stages
(Roth and Yih, 2002&2004; Ji and Grishman,
2005). Thus, we use features based on the output

51

of four subsequent stages — name structure parsing,
relation extraction, event patterns, and coreference
analysis — to seek the best hypothesis.

We included ten features based on name struc-
ture parsing to capture the local information
missed by the baseline name tagger such as details
of the structure of Chinese person names.

The relation and event re-ranking features are
based on matching patterns of words or constitu-
ents. They serve to correct name boundary errors
(because such errors would prevent some patterns
from matching). They also exert selectional pref-
erences on their arguments, and so serve to correct
name type errors. For each relation argument, we
included a feature whose value is the likelihood
that relation appears with an argument of that se-
mantic type (these probabilities are obtained from
the training corpus and binned). For each event
pattern, a feature records whether the types of the
arguments match those required by the pattern.

Coreference can link multiple mentions of
names provided they have the same spelling
(though if a name has several parts, some may be
dropped) and same semantic type. So if the
boundary or type of one mention can be deter-
mined with some confidence, coreference can be
used to disambiguate other mentions, by favoring
hypotheses which support more coreference. To
this end, we incorporate several features based on
coreference, such as the number of mentions re-
ferring to a name candidate.

Each of these features is defined for individual
name candidates; the value of the feature for a
hypothesis is the sum of its values over all names
in the hypothesis. The complete set of detailed
features is listed in (Ji and Grishman, 2006).

4.2 Handling Cross-Sentence Features by

Multi-Stage Re-Ranking

Coreference is potentially a powerful contributor
for enhancing NE recognition, because it provides
information from other sentences and even docu-
ments, and it applies to all sentences that include
names. For a name candidate, 62% of its corefer-
ence relations span sentence boundaries. How-
ever, this breadth poses a problem because it
means that the score of a hypothesis for a given

sentence may depend on the tags assigned to the
same names in other sentences.’

Ideally, when we re-rank the hypotheses for one
sentence S, the other sentences that include men-
tions of the same name should already have been
re-ranked, but this is not possible because of the
mutual dependence. Repeated re-ranking of a sen-
tence would be time-consuming, so we have
adopted an alternative approach. Instead of incor-
porating coreference evidence with all other in-
formation in one re-ranker, we apply two re-
rankers in succession.

In the first re-ranking step, we generate new
rankings for all sentences based on name structure,
relation and event features, which are all sentence-
internal evidence. Then in a second pass, we ap-
ply a re-ranker based on coreference between the
names in each hypothesis of sentence S and the
mentions in the top-ranking hypothesis (from the
first re-ranker) of all other sentences.” In this way,
the coreference re-ranker can propagate globally
(across sentences and documents) high-confidence
decisions based on the other evidence. In our final
MaxEnt Ranker we obtained a small additional
gain by further splitting the first re-ranker into
three separate steps: a name structure based re-
ranker, a relation based re-ranker and an event
based re-ranker; these were incorporated in an
incremental structure.

4.3 Adding Cross-Document Information

The idea in coreference is to link a name mention
whose tag is locally ambiguous to another men-
tion that is unambiguously tagged based on local
evidence. The wider a net we can cast, the greater
the chance of success. To cast the widest net pos-
sible, we have used cross-document coreference
for the test set. We cluster the documents using a
cross-entropy metric and then treat the entire clus-
ter as a single document.

We take all the name candidates in the top NV
hypotheses for each sentence in each cluster 7 to
construct a “query set” Q. The metric used for the
clustering is the cross entropy H(7, d) between the
distribution of the name candidates in 7 and

2 For in-document coreference, this problem could be avoided if the tagging of
an entire document constituted a hypothesis, but that would be impractical ... a
very large N would be required to capture sufficient alternative taggings in an
N-best framework.

3 This second pass is skipped for sentences for which the confidence in the top
hypothesis produced by the first re-ranker is above a threshold.

52

document d. If H(T, d) is smaller than a threshold
then we add d to T. H(T, d) is defined by:
H(T,d)=-)_ prob(T,x)xlog prob(d,x).
xeQ
We built these clusters two ways: first, just
clustering the test documents; second, by aug-
menting these clusters with related documents
retrieved from a large unlabeled corpus (with

document relevance measured using cross-
entropy).
5 Re-Ranking Algorithms

We have been focusing on selecting appropriate
ranking algorithms to fit our application. We
choose three state-of-the-art ranking algorithms
that have good generalization ability. We now
describe these algorithms.

5.1 MaxEnt-Rank

5.1.1 Sampling and Pruning

Maximum Entropy models are useful for the task
of ranking because they compute a reliable rank-
ing probability for each hypothesis. We have tried
two different sampling methods — single sampling
and pairwise sampling.

The first approach is to use each single hy-
pothesis 4; as a sample. Only the best hypothesis
of each sentence is regarded as a positive sample;
all the rest are regarded as negative samples. In
general, absolute values of features are not good
indicators of whether a hypothesis will be the best
hypothesis for a sentence; for example, a co-
referring mention count of 7 may be excellent for
one sentence and poor for another. Consequently,
in this single-hypothesis-sampling approach, we
convert each feature to a Boolean value, which is
true if the original feature takes on its maximum
value (among all hypotheses) for this hypothesis.
This does, however, lose some of the detail about
the differences between hypotheses.

In pairwise sampling we used each pair of hy-
potheses (h;, h;) as a sample. The value of a fea-
ture for a sample is the difference between its
values for the two hypotheses. However, consid-
ering all pairs causes the number of samples to
grow quadratically (O(N?)) with the number of
hypotheses, compared to the linear growth with
best/non-best sampling. To make the training and

test procedures more efficient, we prune the data
in several ways.

We perform pruning by beam setting, removing
candidate hypotheses that possess very low prob-
abilities from the HMM, and during training we
discard the hypotheses with very low F-measure
scores. Additionally, we incorporate the pruning
techniques used in (Chiang 2005), by which any
hypothesis with a probability lower than a times
the highest probability for one sentence is dis-
carded. We also discard the pairs very close in
performance or probability.

5.1.2 Decoding

If f is the ranking function, the MaxEnt model
produces a probability for each un-pruned “cru-
cial” pair: prob(f(h;, h) = 1), i.e., the probability
that for the given sentence, 4; is a better hypothe-
sis than /;. We need an additional decoding step to
select the best hypothesis. Inspired by the caching
idea and the multi-class solution proposed by
(Platt et al. 2000), we use a dynamic decoding
algorithm with complexity O(n) as follows.

We scale the probability values into three types:
CompareResult (h;, hy) = “better” if prob(f(h;, h;) =
1) > 84, “worse” if prob(f(h;, h) = 1) <6 ,, and
“unsure” otherwise, where & = 6 ,.*

Prune
fori=1ton
Num = 0;

for j =1 to n and j=#i
If CompareResult(h;, h)) = “worse”
Num++;
if Num> B then discard h; from H

Select
Initialize: i=1,j=n
while (i<j)
if CompareResult(h;, h;) = “better”
discard h; from H;
J-=
else if CompareResult(h;, h;) = “worse”
discard h; from H;
i+t

else break;

4
In the final stage re-ranker we use 6 ;= 6 , so that we don’t generate the
output of “unsure”, and one hypothesis is finally selected.

53

Output
If the number of remaining hypotheses in H is 1,
then output it as the best hypothesis; else propa-
gate all hypothesis pairs into the next re-ranker.

52 SVMRank

We implemented an SVM-based model, which
can theoretically achieve very low generalization
error. We use the SVMLight package (Joachims,
1998), with the pairwise sampling scheme as for
MaxEnt-Rank. In addition we made the following
adaptations: we calibrated the SVM outputs, and
separated the data into subsets.

To speed up training, we divided our training
samples into k subsets. Each subset contains N(N-
1)/k pairs of hypotheses of each sentence.

In order to combine the results from these dif-
ferent SVMs, we must calibrate the function val-
ues; the output of an SVM yields a distance to the
separating hyperplane, but not a probability. We
have applied the method described in (Shen and
Joshi, 2003), to map SVM’s results to probabili-
ties via a sigmoid. Thus from the £ SVM, we get
the probability for each pair of hypotheses:

prOb(fk(hishj) = 1) ’
namely the probability of h; being better than h;.
Then combining all £ SVMs’ results we get:

Z(hi’hj) ZHpr()b(fk(hi’hj) =1).

So the hypothesis /; with maximal value is cho-
sen as the top hypothesis:

arg max(H Z(h,,h))).
h; j

5.3 P-Norm Push Ranking

The third algorithm we have tried is a general
boosting-style supervised ranking algorithm called
p-Norm Push Ranking (Rudin, 2006). We de-
scribe this algorithm in more detail since it is quite
new and we do not expect many readers to be fa-
miliar with it.

The parameter “p” determines how much em-
phasis (or “push”) is placed closer to the top of the
ranked list, where p>1. The p-Norm Push Ranking
algorithm generalizes RankBoost (take p=1 for
RankBoost). When p is set at a large value, the
rankings at the top of the list are given higher pri-
ority (a large “push”), at the expense of possibly
making misranks towards the bottom of the list.

Since for our application, we do not care about the
rankings at the bottom of the list (i.e., we do not
care about the exact rank ordering of the bad hy-
potheses), this algorithm is suitable for our prob-
lem. There is a tradeoff for the choice of p; larger
p yields more accurate results at the very top of
the list for the training data. If we want to consider
more than simply the very top of the list, we may
desire a smaller value of p. Note that larger values
of p also require more training data in order to
maintain generalization ability (as shown both by
theoretical generalization bounds and experi-
ments). If we want large p, we must aim to choose
the largest value of p that allows generalization,
given our amount of training data. When we are
working on the first stage of re-ranking, we con-
sider the whole top portion of the ranked list, be-
cause we use the rank in the list as a feature for
the next stage. Thus, we have chosen the value
pi=4 (a small “push”) for the first re-ranker. For
the second re-ranker we choose p,=16 (a large
“push”).

The objective of the p-Norm Push Ranking al-
gorithm is to create a scoring function - H>R
such that for each crucial pair (h; h;), we shall
have f(h;) > f(h;). The form of the scoring function
is f(h) = >ougi(h;), where g is called a weak
ranker: g; - H > [0,1]. The values of oy are de-
termined by the p-Norm Push algorithm in an it-
erative way.

The weak rankers g; are the features described
in Section 4. Note that we sometimes allow the
algorithm to use both g, and g’y(h;)=1-gi(h;) as
weak rankers, namely when g; has low accuracy
on the training set; this way the algorithm itself
can decide which to use.

As in the style of boosting algorithms, real-
valued weights are placed on each of the training
crucial pairs, and these weights are successively
updated by the algorithm. Higher weights are
given to those crucial pairs that were misranked at
the previous iteration, especially taking into ac-
count the pairs near the top of the list. At each
iteration, one weak ranker g is chosen by the al-
gorithm, based on the weights. The coefficient oy
is then updated accordingly.

6 Experiment Results

6.1 Data and Resources

54

We use 100 texts from the ACE 04 training corpus
for a blind test. The test set included 2813 names:
1126 persons, 712 GPEs, 785 organizations and
190 locations. The performance is measured via
Precision (P), Recall (R) and F-Measure (F).

The baseline name tagger is trained from 2978
texts from the People’s Daily news in 1998 and
also 1300 texts from ACE training data.

The 1,071,285 training samples (pairs of hy-
potheses) for the re-rankers are obtained from the
name tagger applied on the ACE training data, in
the manner described in Section 3.2.

We use OpenNLP” for the MaxEnt-Rank ex-
periments. We use SVM"® (Joachims, 1998) for
SVMRank, with a linear kernel and the soft mar-
gin parameter set to the default value. For the p-
Norm Push Ranking, we apply 33 weak rankers,
1.e., features described in Section 4. The number
of iterations was fixed at 110, this number was
chosen by optimizing the performance on a devel-
opment set of 100 documents.

6.2 Effect of Pairwise Sampling

We have tried both single-hypothesis and pairwise
sampling (described in section 5.1.1) in MaxEnt-
Rank and p-Norm Push Ranking. Table 1 shows
that pairwise sampling helps both algorithms.
MaxEnt-Rank benefited more from it, with preci-
sion and recall increased 2.2% and 0.4% respec-
tively.

Model P R F
MaxEnt- Single Sampling 89.6 | 90.2 | 89.9
Rank Pairwise Sampling | 91.8 | 90.6 | 91.2
p-Norm Single Sampling 91.4 | 89.6 | 90.5
Push Pairwise Sampling | 91.2 | 90.8 | 91.0

Table 1. Effect of Pairwise Sampling

6.3 Overall Performance

In Table 2 we report the overall performance for
these three algorithms. All of them achieved im-
provements on the baseline name tagger. MaxEnt
yields the highest precision, while p-Norm Push
Ranking with p, = 16 yields the highest recall.

A larger value of “p” encourages the p-Norm
Push Ranking algorithm to perform better near the
top of the ranked list. As we discussed in section

3 http://maxent.sourceforge.net/index.html

5.3, we use p; = 4 (a small “push”) for the first re-
ranker and p, = 16 (a big “push”) for the second
re-ranker. From Table 2 we can see that p, = 16
obviously performed better than p, = 1. In general,
we have observed that for p, <16, larger p, corre-
lates with better results.

Model P R F
Baseline 87.4 | 87.6 | 87.5
MaxEnt-Rank 91.8 1 90.6 | 91.2
SVMRank 89.5 1 90.1 | 89.8
p-Norm Push Ranking (p,=16) | 91.2 | 90.8 | 91.0
p-Norm Push Ranking 89.3 | 89.7 | 89.5
(p.=1, RankBoost)

Table 2. Overall Performance

The improved NE results brought better per-
formance for the subsequent stages of information
extraction too. We use the NE outputs from Max-
Ent-Ranker as inputs for coreference resolver and
relation tagger. The ACE value® of entity detec-
tion (mention detection + coreference resolution)
is increased from 73.2 to 76.5; the ACE value of
relation detection is increased from 34.2 to 34.8.

6.4 Effect of Cross-document Information

As described in Section 4.3, our algorithm incor-
porates cross-document coreference information.
The 100 texts in the test set were first clustered
into 28 topics (clusters). We then apply cross-
document coreference on each cluster. Compared
to single document coreference, cross-document
coreference obtained 0.5% higher F-Measure, us-
ing MaxEnt-Ranker, improving performance for
15 of these 28 clusters.

These clusters were then extended by selecting
84 additional related texts from a corpus of 15,000
unlabeled Chinese news articles (using a cross-
entropy metric to select texts). 24 clusters gave
further improvement, and an overall 0.2% further
improvement on F-Measure was obtained.

6.5 Efficiency
Model Training Test
MaxEnt-Rank 7 hours 55 minutes
SVMRank 48 hours 2 hours
p-Norm Push Ranking 3.2 hours | 10 minutes

Table 3. Efficiency Comparison

6 The ACE04 value scoring metric can be found at:
http://www.nist.gov/speech/tests/ace/ace04/doc/ace04-evalplan-v7.pdf

55

In Table 3 we summarize the running time of
these three algorithms in our application.

7 Discussion

We have shown that the other components of an
IE pipeline can provide information which can
substantially improve the performance of an NE
tagger, and that these improvements can be real-
ized through a variety of re-ranking algorithms.
MaxEnt re-ranking using binary sampling and p-
Norm Push Ranking proved about equally effec-
tive.” p-Norm Push Ranking was particularly ef-
ficient for decoding (about 10 documents /
minute), although no great effort was invested in
tuning these procedures for speed.

We presented methods to handle cross-sentence
inference using staged re-ranking and to incorpo-
rate additional evidence through document clus-
tering.

An N-best / re-ranking strategy has proven ef-
fective for this task because with relatively small
values of N we are already able to include highly-
rated hypotheses for most sentences. Using the
values of N we have used throughout (dependent
on the margin of the baseline HMM, but never
above 30), the upper bound of N-best performance
(if we always picked the top-scoring hypothesis)
is 97.4% recall, 96.2% precision, F=96.8%.

Collins (2002) also applied re-ranking to im-
prove name tagging. Our work has addressed both
name identification and classification, while his
only evaluated name identification. Our re-ranker
used features from other pipeline stages, while his
were limited to local features involving lexical
information and 'word-shape' in a 5-token window.
Since these feature sets are essentially disjoint, it
is quite possible that a combination of the two
could yield even further improvements. His boost-
ing algorithm is a modification of the method in
(Freund et al., 1998), an adaptation of AdaBoost,
whereas our p-Norm Push Ranking algorithm can
emphasize the hypotheses near the top, matching
our objective.

Roth and Yih (2004) combined information
from named entities and semantic relation tagging,
adopting a similar overall goal but using a quite
different approach based on linear programming.

7 The features were initially developed and tested using the MaxEnt re-ranker,
so it is encouraging that they worked equally well with the p-Norm Push
Ranker without further tuning.

They limited themselves to name classification,
assuming the identification given. This may be a
natural subtask for English, where capitalization is
a strong indicator of a name, but is much less use-
ful for Chinese, where there is no capitalization or
word segmentation, and boundary errors on name
identification are frequent. Expanding their ap-
proach to cover identification would have greatly
increased the number of hypotheses and made
their approach slower. In contrast, we adjust the
number of hypotheses based on the margin in or-
der to maintain efficiency while minimizing the
chance of losing a high-quality hypothesis.

In addition we were able to capture selectional
preferences (probabilities of semantic types as
arguments of particular semantic relations as
computed from the corpus), whereas Roth and Yih
limited themselves to hard (boolean) type con-
straints.

Acknowledgment

This material is based upon work supported by the
Defense Advanced Research Projects Agency un-
der Contract No. HR0011-06-C-0023, and the Na-
tional Science Foundation under Grant IIS-
00325657 and a postdoctoral research fellowship.
Any opinions, findings and conclusions expressed
in this material are those of the authors and do not
necessarily reflect the views of the U. S. Govern-
ment.

References

Daniel M. Bikel, Scott Miller, Richard Schwartz, and
Ralph Weischedel. 1997. Nymble: a high-
performance Learning Name-finder. Proc.

ANLP1997. pp. 194-201. Washington, D.C.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
Fine N-Best Parsing and MaxEnt Discriminative
Reranking. Proc. ACL2005. pp. 173-180. Ann Arbor,
USA

David Chiang. 2005. A Hierarchical Phrase-Based
Model for Statistical Machine Translation. Proc.
ACL2005. pp. 263-270. Ann Arbor, USA

Michael Collins. 2002. Ranking Algorithms for
Named-Entity Extraction: Boosting and the Voted
Perceptron. Proc. ACL 2002. pp. 489-496

Michael Collins and Nigel Duffy. 2002. New Ranking
Algorithms for Parsing and Tagging: Kernels over

Discrete Structures, and the Voted Perceptron. Proc.
ACL2002. pp. 263-270. Philadelphia, USA

56

Michael Collins and Terry Koo. 2003. Discriminative
Reranking for Natural Language Parsing. Journal of
Association for Computational Linguistics. pp. 175-
182.

Yoav Freund, Raj Iyer, Robert E. Schapire and Yoram
Singer. 1998. An efficient boosting algorithm for
combining preferences. Machine Learning: Pro-
ceedings of the Fifteenth International Conference.
pp. 170-178

Ralph Grishman and Beth Sundheim. 1996. Message
understanding conference - 6: A brief history. Proc.
COLING1996,. pp. 466-471. Copenhagen.

James Henderson and Ivan Titov. 2005. Data-Defined
Kernels for Parse Reranking Derived from Probabil-
istic Models. Proc. ACL2005. pp. 181-188. Ann Ar-
bor, USA.

Heng Ji and Ralph Grishman. 2005. Improving Name
Tagging by Reference Resolution and Relation De-
tection. Proc. ACL2005. pp. 411-418. Ann Arbor,
USA.

Heng Ji and Ralph Grishman. 2006. Analysis and Re-
pair of Name Tagger Errors. Proc. ACL2006
(POSTER). Sydney, Australia.

Thorsten Joachims. 1998. Making large-scale support
vector machine learning practical. Advances in Ker-
nel Methods: Support Vector Machine. MIT Press.

Taku Kudo, Jun Suzuki and Hideki Isozaki. 2005.
Boosting-based Parse Reranking Derived from
Probabilistic Models. Proc. ACL2005. pp. 189-196.
Ann Arbor, USA.

John Platt, Nello Cristianini, and John Shawe-Taylor.
2000. Large margin dags for multiclass classifica-
tion. Advances in Neural Information Processing
Systems 12. pp. 547-553

Dan Roth and Wen-tau Yih. 2004. A Linear Program-
ming Formulation for Global Inference in Natural
Language Tasks. Proc. CONLL2004. pp. 1-8

Dan Roth and Wen-tau Yih. 2002. Probabilistic Rea-
soning for Entity & Relation Recognition. Proc.
COLING2002. pp. 835-841

Cynthia Rudin. 2006. Ranking with a p-Norm Push.
Proc. Nineteenth Annual Conference on Computa-
tional Learning Theory (CoLT 2006), Pittsburgh,
Pennsylvania.

Libin Shen and Aravind K. Joshi. 2003. An SVM
Based Voting Algorithm with Application to Parse
ReRanking. Proc. HLT-NAACL 2003 workshop on
Analysis of Geographic References. pp. 9-16

Libin Shen and Aravind K. Joshi. 2004. Flexible Mar-
gin Selection for Reranking with Full Pairwise Sam-
ples. Proc.IJCNLP2004. pp. 446-455. Hainan Island,
China.

Author Index

Culotta, Aron 41

Ginter, Filip,33
Grishman, Ralph49

Huang, Liang,1

Ji, Heng,49
Joshi, Aravind 1

Knight, Kevin, 1

McCallum, Andrew41
Melamed, |. Danl7
Myll ari, Aleksandr33

Rudin, Cynthia49
Salakoski, Tapio33

Tillmann, Christoph9
Turian, Josephl7

van den Bosch, Antak5

57

	Program
	A Syntax-Directed Translator with Extended Domain of Locality
	Efficient Dynamic Programming Search Algorithms for Phrase-Based SMT
	Computational Challenges in Parsing by Classification
	All-word Prediction as the Ultimate Confusible Disambiguation
	A Probabilistic Search for the Best Solution Among Partially Completed Candidates
	Practical Markov Logic Containing First-Order Quantifiers with Application to Identity Uncertainty
	Re-Ranking Algorithms for Name Tagging

