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A picture is worth a thousand words. Biomedic
researchers tend to incorporate a significant nurg
ber of figures and tables in their publications tg
report experimental results, to present resear

models, and to display examples of biomedicq
objects (e.g., cell, tissue, organ and other image
For example, we have found an average of 5.2 i
ages per biological article in the journal Procee
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Abstract

A picture is worth a thousand words.
Biomedical researchers tend to incorpo-
rate a significant number of images (i.e.,
figures or tables) in their publications to
report experimental results, to present re-
search models, and to display examples of
biomedical objects. Unfortunately, this
wealth of information remains virtually
inaccessible without automatic systems to
organize these images. We explored su-
pervised machine-learning systems using
Support Vector Machines to automatically
classify images into six representative
categories based on text, image, and the
fusion of both. Our experiments show a
significant improvement in the average F-
score of the fusion classifier (73.66%) as
compared with classifiers just based on
image (50.74%) or text features (68.54%).

I ntroduction

ings of theNational Academy of Sciences (PNAS).
We discovered that 43% of the articles in théhttp://www.rcsb.org/pdb/
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medical journalThe Lancet contain biomedical
images. Physicians may want to access biomedical
images reported in literature for the purpose of
clinical education or to assist clinical diagnoses.
For example, a physician may want to obtain im-
ages that illustrate the disease stage of infaitts w
Retinopathy of Prematurity for the purpose of
clinical diagnosis, or to request a picture of ery-
thema chronicum migrans, a spreading annular
rash that appears at the site of tick-bite in Lyme
disease. Biologists may want to identify the ex-
perimental results or images that support specific
biological phenomenon. For example, Figure 1
shows that a transplanted progeny of a single mul-
tipotent stem cell can generate sebaceous glands.
Organizing bioscience images is not a new task.
Related work includes the building of domain-
specific image databases. For example, the Protein
Data Bank (PDB) (Sussman et al., 1998) stores
3-D images of macromolecular structure data.
WebPath? is a medical web-based resource that
has been created by physicians to include over
4,700 gross and microscopic medical images. Text-
based image search systems like Google ignore
image content. The SLIF (Subcellular Location
mage Finder) system (Murphy et al., 2001; Kou et
I., 2003) searches protein images reported in lit-
rature. Other work has explored joint text-image
atures in classifying protein subcellular locatio
ages (Murphy et al., 2004). The existing sys-
ms, however, have not explored approaches that
ﬁutomatically classify general bioscience images

gﬁto generic categories.

2 http://www-medlib.med.utah.edu/WebPath/webpathl.htm
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Classifying images into generic categories is @@ | mage Taxonomy
important task that can benefit many other natural
language processing and image processing taské¢ downloaded from PubMed Central a total of
For example, image retrieval and question answek7,000 PNAS full-text articles (years 1995-2004),
ing systems may return “Image-of-Thing” imagegvhich contain a total of 88,225 images. We manu-
(e.g., Figure 1), not the other types (e.g., Figu@|y examined the images and defined an image
2~5), to illustrate erythema chronicum migrangaxonomy (as shown in Table 1) based on feedback
Biologists may examine “Gel” images (e.g., Figurérom physicians. The categories were chosen to
2), rather than “Model” (e.g., Figure 4) to accesBaintain balance between coherence of content in
specific biological evidence for molecular interaceach category and the complexity of the taxonomy.
tions. Furthermore, a generic category may eak@r example, we keep images of biological objects
the task of identifying specific images that may bée.g., cells, tissues, organs etc) in one single-ca
sub-categories of the generic category. For exam@ory in this experiment to avoid over decomposi-
ple, a biologist may want to obtain an image of #on of categories and insufficient data in
protein structure prediction, which might be a sujndividual categories. Therefore we stress princi-
category of “Model” (Figure 4), rather than an im{led approaches for feature extraction and classi-
age of x-ray crystallography that can be readilfier design. The same fusion classification
obtained from the PDB database. framework can be applied to cases where each

This paper represents the first study that defing&tegory is further refined to include subclasses.
a generic bioscience image taxonomy, and e
plores automatic image classification based on tigs
fusion of text and image classifiers.

NS5A- = ] - —

Gel-Image consists of gel images such as Northe
(for DNA), Southern (for RNA), and Western (for
protein). Figure 2 shows an example.

Flgurel Image of_Thing Flgure2 Gel |magé
Graph consists of bar charts, column charts, line

charts, plots and other graphs that are drawnreithe ", "/
by authors or by a computer (e.g., results of patch
clamping). Figure 3 shows an example. &’WT

g
Image-of-Thing refers to images of cells, cell
components, tissues, organs, or species. Figure 1 *

shows an example. NI & VP )
Flgure3 Graph |mag?-: Flgure4 Model imagé

Mix refers to an image (e.g., Figure 5) that incor- i fl e
porates two or more other categories of images. oo o

Percentage of Grossing Seaments

Model: A model may demonstrate a biological -

process, molecular docking, or an experimental - D H H H I D D D
design. We include as Model any structure (e.g., I
chemical, molecular, or cellular) that is illustrdt _ AR
by a drawing. We also include gene or protein se- Figure5. Mix imagé

guences and sequence alignments, as well as phy-
logenetic trees in this category. Figure 4 shows on
example.

3 This image appears in the cover page of PNAS 40P (

Table refers to a set of data arranged in rows anj477 — 14936. _ _ ,
The image appears in the article (pmid=10318918)

columns. ® The image appears in the article (pmid=15699337)
. . ® The image appears in the article (pmid=11504922)
Table 1. Bioscience Image Taxonomy " The image appears in the article (pmid=15755809)
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3 Image Classification captions provide certain lexical cues that effi-
ciently represent image content. For example, the
We explored supervised machine-learning methoggrds “diameter”, “gene-expression”, “histogram”,
to automatically classify images according to ouflane”, “model, “stained”, “western”, etc are
image taxonomy (Table 1). Since it is straightforstrong indicators for image classes and therefore
ward to distinguish table separately by applyingan be used to classify an image into categories.
surface cues (e.g., “Table” and “Figure”), we hav@he features we explored are bag-of-words and n-
decided to exclude it from our experiments. grams from the image captions after processing the

_ caption text by the Word Vector Tool (Wurst).
3.1 Support Vector Machines

) ) . 3.3 Image Features
We explored supervised machine-learning systems

using Support Vector Machines (SVMs) whichwe also investigated image features for the tasks
have shown to out-perform many other supervisest image classification. We started with four types
machine-learning systems for text categorizatiopf image features that include intensity histogram
tasks (Joachims, 1998). We applied the freelgatures, edge-direction histogram features, edge-
available machine learning MATLAB packa@be based axis features, and the number of 8-connected
Spider to train our SVM systems (Sable and Wesregions in the binary-valued image obtained from
ton, 2005; MATLAB). The Spider implements thresholding the intensity.
many learning algorithms including a multi-class The intensity histogram was created by quantiz-
SVM classifier which was used to learn our dising the gray-scale intensity values into the radge
criminative classifiers as described below in se@55 and then making a 256-bin histogram for these
tion 3.4. values. The histogram was then normalized by di-
A fundamental concept in SVM theory is theviding all values by the total sum. For the purpose
projection of the original data into a high-of entropy calculations, all zero values in the- his
dimensional space in which separating hyperplanasgram are set to one. From this adjusted, normal-
can be found. Rather than actually doing this prgzed histogram, we calculated the total entropy as
jection, kernel functions are selected that effihe sum of the products of the entries with their
ciently compute the inner products between data jogarithms. Additionally, the mean, 2nd moment,
the high-dimensional space. Slack variables agghd 3rd moment are derived. The combination of
introduced to handle non-separable cases and ttli® total entropy, mean, 2nd, and 3rd moments
requires an upper bound variable, C. constitute a robust and concise representation of
Our experiments considered three popular kethe image intensity.
nel function families over five different variants Edge-Direction Histogram (Jain and Vailaya,
and five different values of C. The kernel functioni996) features may help distinguish images with
implementations are explained in the softwargredominantly straight lines such as those found in
documentation. We considered kernel functions igraphs, diagrams, or charts from other images with
the forms of polynomial, radial basis function, angnore variation in edge orientation. The EDH be-
Gaussian. The adjustable parameter for polynomigins by convolving the gray-scale image with both
functions is the order of the polynomial. For rddiagx3 Sobel edge operators (Jain, 1989). One opera-
basis function and Gaussian functions, sigma is ther finds vertical gradients while the other finds
adjustable parameter. A grid search was performedrizontal gradients. The inverse tangent of the
over the adjustable parameter for values 1 to 5 apgtio of the vertical to horizontal gradient yields
for values of C equal to [10"0, 10"1, 102, 10"3¢ontinuous orientation values in the range of opi t
1074]. +pi. These values are subsequently converted into
degrees in the range of 0 to 179 degrees (we con-
sider 180 and 0 degrees to be equal). A histogram

Previous work in the context of newswire imagf counted over these 180 degrees. Zero values in

classification show that text features in image-ca ehnetrglsmc?;ﬁ:rglaiggnss’e;rt% ?anlrlh%rdrﬁgé%izgtlﬁift%t?
tions are efficient for image categorization (Sable Py . )
am is normalized to sum to one. Finally, theltota

2000, 2002, 2003). We hypothesize that image

3.2 Text Features
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entropy, mean, 2nd and 3rd moments are extractddta point were normalized to have unit magnitude.
to summarize the EDH. So, the set of five margins for the image classifie
The edge-based axis features are meant to helpnstitutes a vector that then gets normalized by
identify images containing graphs or charts. Firstlividing each element by its L2 norm. The same is
Sobel edges are extracted above a sensitivilpne for the vector of margins taken from the text
threshold of 0.10 from the gray-scale image. Thislassifier. Finally, both normalized vectors are
yields a binary-valued intensity image with 1'sconcatenated to form a 10-dimensional fusion vec-
occurring in locations of all edges that exceed ther. To fuse the margin results from both classifi-
threshold and 0’s occurring otherwise. Next, thers, these normalized margins were used to train
vertical and horizontal sums of this intensity irmaganother multi-class SVM.
are taken yielding two vectors, one for each axis. A grid search through parameter space with
Zero values are set to one to anticipate the eptropross validation identified near-optimal parameter
calculations. Each vector is then normalized bgettings for the SVM classifiers. See Figure 6 for
dividing each element by its total sum. Finally, weur system flowchart.
find the total entropy, mean, 2nd , and 3rd mo-

ments to represent each axis for a total of eigist a .
features. =

The last image feature under consideration was "2 i
the number of 8-connected regions in the binary- ey
valued, thresholded Sobel edge image as described .l
above for the axis features. An 8-connected region Flg X Caption Text
is a group of edge pixels for which each member /\\
touches another member vertically, horizontally, or
diagonally in the eight adjacent pixel positions-su |Text Features \ ‘ImagelFeatures|
rounding it. The justification for this featuretlsat ¥ *
the number of solid regions in an image may help
Separate Classes' —(l;.laaxst.sifier ICrT:Sgs?fier

A preliminary comparison of various combina-
tions of these image features showed that the-inten + %
sity histogram features used alone yielded the best o S Image SvM
classification accuracy of approximately 54% with Margins Margins
a quadratic kernel SVM using an upper slack limit - %
34 Fug'on Claisn‘ler
We integrated both image and text features for the E——
purpose of image classification. Multi-class SVM's Classification
were trained separately on the image features and Figure 6. System Flow-chart

the text features. A multi-class SVM attempts to o _ _
learn the boundaries of maximal margin in featurd>  Training, Fusion, and Testing Data

space that distinguishes each class from the re@. doml lected bset of 554 fi .
Once the optimal image and text classifiers wer € randomly selected a Subset o \gure Im-

found, they were used to process a separate sef'd hs fro;nﬂt]he total QOwnIl(J).a(Ijeq itmaﬁe pool.t?ng
images in the fusion set. We extracted the margir?gurgg Oun dlesr pfi/peercIIZSaseslf) Org;e\lNgae? Iar?langea €
fsrser:;eeach data point to the boundary in featur 102). Graph (179), Image of Thing (61), Mix
Thus, for a five-class classifier, each data poir(fu_)r?])’ ano_l\/lodel (103). lit h that f h
would have five associated margins. To make a ese Images were Split up suc at for eac

fair comparison between the image-based classifigpte9ory.; roughly a half was used for training, a

and the text-based classifier, the margins for ea@ﬁjarter for fu3|on_, _and a quarter for testing (see
igure 7). The training set was used to train ¢lass
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fiers for the image-based and text-based features. | Dataset |

The fusion set was used to train a classifier gn to
of the results of the image-based and text-based +
classifiers. The testing set was used to evallnete t | Randomize 10x |
final classification system.
For each division of data, 10 folds were gener- +
ated. Thus within the training and fusion data,sets | 10 Folds |
there are 10 folds which each have a randomized +
partitioning into 90% for training and 10% for test
ing. The testing data set did not need to be parti- Each Fold
tioned into folds since all of it was used to tist QN Train
final classification system. (See Figure 8). 10% Test

In the 10-fold cross-validation process, a classi-
fier is trained on the training partition and then
measured for accuracy (or error rate) on the tgstin
partition. Of the 10 resulting algorithms, the on
which performs the best is chosen (or just one

Figure 8. Partitioning Method for Training and
Fusion Datasets

Experimental Results

which ties for the best accuracy). Table 2 shows the Confusion Matrix for the image
feature classifier obtained from the testing pdrt o
All Tmages ‘ the training data. The actual categories are listed
vertically and predicted categories are listed -hori
zontally. For instance, of 26 actual GEL images,
- 18 were correctly classified as GEL, 4 were mis-
Ul =0 classified as GRAPH, 2 as IMAGE_OF THING, 0
Fusion = 25% as MIX, and 2 as MODEL.
Testing = 25% Actual Predicted Categories
Gel | Graph| Thing Mix | Model
Figure 7. Image-set Divisions Gel 18 | 2 2 0 2
3.6 Evaluation Metrics Graph . 3 39 0 ! !
Img_Thing | 1 1 12 2 0
We report the widely used recall, precision, and F-Mix 4 17 0 3 3
score (also known as F-measure) as the evaluatjoviodel 8 13 0 1 3

metrics for image classification. Recall is theatot Table 2. Confusion Matrix for Image Feature Clas-
number of true positive predictions divided by theifier

total number of true positives in the set (true pos
false neg). Precision is the fraction of the number A near-optimal parameter setting for the classi-
of true positive predictions divided by the totafier based on image features alone used a polyno-
number of positive predictions (true pos + falsenial kernel of order 2 and an upper slack limitof
pos). F-score is the harmonic mean of recall arrd 1074. Table 3 shows the performance of image
precision equal to (C. J. van Rijsbergen, 1979): classification with image features. True Positives,
2* precision* recall /(precision+ recall) False Positives, False Negatives, Precision =
TP/(TP+FP), Recall = TP/(TP+FN), and F-score =
2 * Precision * Recall / (Precision + Recall). Ac-
cording to the F-score scores, this classifier does
best on distinguishing IMAGE_OF_THING im-
ages. The overall accuracy = sum of true positives
total number of images = (18+39+12+3+3)/138 =
75/138 = 54%. This can be compared with the
baseline of (3+39+1+1)/138 = 32% if all images
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were classified as the most popular categoryCategory | TP| FP| FN Precj, Recall Fscare

GRAPH. Clearly, the image-based classifier doe<! 23| 7 | 3 | 0767 0.885 0.824

best at recognizing IMAGE_OF_THING figures, [ [Graph | 37| 13| 7 | 0749 0841 0.787
- = Img_Thing| 15| 2 | 1 | 0.883 0.938] 0.904

Mix 14 |9 | 13 | 0.609] 0519| 0.560

Cat TPl FP| FN Pred Recdll Fscol

Gilegow I B 05";: o:g"; Oggge Model 13| 5 | 12| 0727 0520 0.608

Graph 2o 35 0527 0888 0661 Table_7_. Precision, Recall, F-score for Fusion

: | Classifier

Img_Thing| 12| 2 | 4 | 0.857 0.750 0.800

Mix 3 |4 |10] 0429 0231 0.300 From Table 7, it is apparent that the fusion clas-

Model 3 | 6 ] 22] 0333 0120] 0176 sjfier does best on IMAGE_OF_THING and also

Table 3. Precision, Recall, F-score for Image Clasperforms well on GEL and GRAPH. These are

sifier substantial improvements over the classifiers that
were based on image or text feature alone. Average
Actual Predicted Categories F-scores and accuracies are summarized below in
Gel Graph | Thing] Mix| Model Table 8.
Gel 22 |2 0 2 0 The overall accuracy for the fusion classifier =
Graph 4 36 0 4 1 0 sum of true positives / total number of image =
Img_Thing | 0 | 3 o111 (23+37+15+14+13)/138 = 102/138 = 74%. This
m';del :’; 95 10 132 214 can be compared with the baseline of 44/138 =
. . - 32% if all images were classified as the most popu-
Table 4. Confusion Matrix for Caption Text Clas- lar category, GRAPH
sifier ’ '
Category | TP FP| EN Pred Recdil Fscdre Classifier | Average F-scoreg  Accuracy
Gel 22| 10| 4 | 0689 0845 0758 |Image 50.74% 54%
Graph 36| 19| 8 | 0655 o0s81d o072y | Caption |68.54% 69%
Img_Thing| 11| 1 | 5 | 0917 o0.688 o0.786 | Iext
Mix 12 [ 10 | 15 | 0.545] 0.444] 0.489 Fusion 73.66% 74%
Model 1413 | 11| 0824 0560 0.661 Table8. Comparison of Average F-scores and Ac-

Table 5. Precision, Recall, F-score for Caption
Text Classifier

curacy among all three Classifiers

5 Discussion
The text-based classifier excels in finding GEL, o -
GRAPH, and IMAGE_OF THING images. It!tis not surprising that the most difficult catego
achieves an accuracy of (22+36+11+12+14)/1381@ classify is Mix. This was due to the fact thaM
95/138 = 69%. images incorporate multiple categories of other
image types. Frequently, one other image type that
A near-optimal parameter setting for the fusio@Ppears in a Mix image dominates the image fea-
classifier based on both image features and tetk{res and leads to its misclassification as theroth
features used a linear kernel with C = 10. The co¥Mage type. For example, Figure 9 shows that a
responding Confusion matrix follows in Table 6. Mix image was misclassified as Gel_Image.

Actual Predicted Categories This mistake is forgivable because the image
Gel | Graph| Thing] Mix | Modell does contain sub-images of gel-images, even

Gel 23 0 0 3 0 though the entire figure is actually a mix of gel-

Graph 2 37 1 2 2 images and diagrams. This type of result highlights

Img_Thing | 0 1 15 0 0 the overlap between classifications and the diffi-

Mix 2 7 1 14 3 culty in defining exclusive categories.

Model 3 5 0 4 13 For both misclassifications, it is not easy to

Table 6. Confusion Matrix for Fusion Classifier ~ state exactly why they were classified wrongly

based on their image or text features. This lack of
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P

intuitive understanding of discriminative behavior

. . . e Wild type allele q_i‘_if’._-‘.i_‘lJ,L,
of SVM classifiers is a vall_d cr|t|C|sm_of the tec_h g 2 B BB e
nique. Although generative machine learning s —E—® § JAEE Zowe
methods (such as Bayesian techniques or Graphical T e
Models) offer more intuitive models for explaining e e et e e e e
success or failure, discriminative models like SVM 76— ’ L
. . 5.6 — - - - .- .
are adopted here due to their higher performance £
and ease Of use. < Liver Kidney Spleen
Figure 10 shows an example of a MIX figure e e Bl e e E
that was mislabeled by the image classifier as = - =
GRAPH and as GEL_IMAGE by the text classi- ®

fier. However, it was correctly labeled by the fu- _ i} )
sion classifier. This example illustrates the vasfie Caption: "The 2.6-kb Hincll Xhol fragment con-
the fusion classifier for being able to improve mpotaining approximately half of exon 4 and exon 5

its component classifiers. and 6 was subcloned between the Neo gene and
thymidine kinase (Fig. 1 A). The location of the
6 Conclusions genomic probe used to screen for homologous re-

combination is shown in Fig. 1 A. Gene Targeting
From the comparisons in Table 8, we see that fugr Embryonic Stem (ES) Cells and Generation of
ing the results of classifiers based on text and inMutant Mice. Genomic DNA of resistant clones
age features yields approximately 5%was digested with Sacl and hybridized with the 3
improvement over the text -based classifier alor@9-kb Kpnl Sacl external probe (Fig. 1 A). Chi-
with respect to both average F-score and Accuraayeric male offspring were bred to C57BL/6J fe-
In fact, the F-score improved for all categories exnales and the agouti F1 offspring were tested for
cept for MODEL which experienced a 6% droptransmission of the disrupted allele by Southern
The natural conclusion is that the fusion classifieblot analysis of Sacl-digested genomic DNA by
combines the classification performance from thgsing the 3 external probe (Fig. 1 A and B). A 360-
text and image classifiers in a complementary fashp region, including the first 134 bp of the 275-bp

ion that unites the strengths of both. exon 4, was deleted and replaced with the PGKneo
cassette in the reverse orientation (Fig. 1 A)eAft
7 FutureWork selection with G418 and gangciclovir, doubly re-

sistant clones were screened for homologous re-
To enhance the performance of the text feature g

. : IS mbination by  Southern blotting and
one maybrelstrlct tlhe vogabulary to funCtI'Ona");]'mhybridization with a 3 external probe (Fig. 1 A).
portant biological words. For example, “phos, - -
phorylation” and “3-D" are important words tha,[Offsprlng were genotyped by Southern blotting of

iaht sufficientl te “orotein function” f genomic tail DNA and hybridized with a 3 external
Emg sutticien y”separa € “protein function™irom probe (Fig. 1 B). To confirm that HFE / mice do
protein structure”.

, . . not express the HFE gene product, we performed
Further experimentation on a larger image s P 9 P P

. . . Rorthern blot analyses “

would give us even greater confidence in our rq;_. b . I A MIX
sults. It would also expand the diversity withi _|gure9:A ove, caption text and image of a
each category, which would hopefully lead to bet'34"® mis-classified as GEL_IMAGE by the Fu-
ter generalization performance of our classifiers. sion Classifier

Other possible extensions of this work include
investigating different machine learning ap-
proaches besides SVMs and other fusion methods.
Additionally, different sets of image and text fea-
tures can be explored as well as other taxonomies.
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“Conductance properties of store-operated channels In
A431 cells. (a) Store-operated channels in A431 cells,
activated by the mixture of 100 mM BAPTA-AM and 1
mM Tg in the bath solution, were recorded in c/a mode
with 105 mM Ba2+ (Left), 105 mM Ca2+ (Center), and : : : :
140 mM Na+ (Right) in the pipette solution at mem- gPaan?c?ma;sd lCJ:gII\z/iit;;)irr?tllglzrﬁjnsg|B§erllgg_(1liiCE2004),
brane potential as indicated. (b) Fit to the unitary cur- ’ T ’
rent-voltage relationship of store-operated channels wifbable, C. and V. Hatzivassiloglou. 200Dext-based
Ba2+ (n = 46), Ca2+ (n = 4), Na+ (n = 3) yielded slope approaches for non-tropical image categorization.
single-channel conductance of 1 pS for Ca2+ and Ba2+ International Journal on Digital Librarie%261-275.
+ -
aperated channeis (NPomaxa0) expressed a8 & fnctgie: C. K. Mckeown and K. Church. 2002p
"found helpful (at least for one text categorization

of membrane potential. Data from six independent ex- task). In Proceedings of Empirical Methods in Natu-

pef'me”ts in ¢/a mode with 105 mM Ba2+ as a cu_rrent ral Language Processing (EMNLP). Philadelphia, PA
carrier were averaged at each membrane potential. (b

and c) The average values are shown as mean = SEB4ble, C. 2003Robust Satistical Techniques for the
unless the size of the error bars is smaller than the sizeCategorization of Images Using Associated Text. In
of the symbols.” Computer Science. Columbia University, New York.

W. 2004.Extracting and structuring subcellular lo-
cation information from on-line journal articles: the
subcellular location image finder. In Proceedings of
the IASTED International Conference on Knowledge

Figure 10. Above, caption text and image ofa  gyssman J.L., Lin D., Jiang J., Manning N.O., Prijusk

MIX figure incorrectly labeled as GRAPH by Im- 3 Ritter 0., Abola E.E. (1998) Protein Data Bank
age Classifier and GEL_IMAGE by the Text Clas- (PDB): Database of Three-Dimensional Structural In-

sifier formation of Biological Macromolecules. Acta Crys-
tallogr D Biol Crystallogr 54:1078-1084

MATLAB ™, The Mathworks Inc.,
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