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Abstract 

A picture is worth a thousand words. 
Biomedical researchers tend to incorpo-
rate a significant number of images (i.e., 
figures or tables) in their publications to 
report experimental results, to present re-
search models, and to display examples of 
biomedical objects. Unfortunately, this 
wealth of information remains virtually 
inaccessible without automatic systems to 
organize these images. We explored su-
pervised machine-learning systems using 
Support Vector Machines to automatically 
classify images into six representative 
categories based on text, image, and the 
fusion of both. Our experiments show a 
significant improvement in the average F-
score of the fusion classifier (73.66%) as 
compared with classifiers just based on 
image (50.74%) or text features (68.54%). 

1 Introduction 

A picture is worth a thousand words. Biomedical 
researchers tend to incorporate a significant num-
ber of figures and tables in their publications to 
report experimental results, to present research 
models, and to display examples of biomedical 
objects (e.g., cell, tissue, organ and other images). 
For example, we have found an average of 5.2 im-
ages per biological article in the journal Proceed-
ings of the National Academy of Sciences (PNAS). 
We discovered that 43% of the articles in the 

medical journal The Lancet contain biomedical 
images. Physicians may want to access biomedical 
images reported in literature for the purpose of 
clinical education or to assist clinical diagnoses. 
For example, a physician may want to obtain im-
ages that illustrate the disease stage of infants with 
Retinopathy of Prematurity for the purpose of 
clinical diagnosis, or to request a picture of ery-
thema chronicum migrans, a spreading annular 
rash that appears at the site of tick-bite in Lyme 
disease. Biologists may want to identify the ex-
perimental results or images that support specific 
biological phenomenon. For example, Figure 1 
shows that a transplanted progeny of a single mul-
tipotent stem cell can generate sebaceous glands. 

Organizing bioscience images is not a new task. 
Related work includes the building of domain-
specific image databases. For example, the Protein 
Data Bank (PDB) 1  (Sussman et al., 1998) stores 
3-D images of macromolecular structure data. 
WebPath 2  is a medical web-based resource that 
has been created by physicians to include over 
4,700 gross and microscopic medical images. Text-
based image search systems like Google ignore 
image content. The SLIF (Subcellular Location 
Image Finder) system (Murphy et al., 2001; Kou et 
al., 2003) searches protein images reported in lit-
erature. Other work has explored joint text-image 
features in classifying protein subcellular location 
images (Murphy et al., 2004). The existing sys-
tems, however, have not explored approaches that 
automatically classify general bioscience images 
into generic categories. 

                                                           
1 http://www.rcsb.org/pdb/ 
2 http://www-medlib.med.utah.edu/WebPath/webpath.html 
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Classifying images into generic categories is an 
important task that can benefit many other natural 
language processing and image processing tasks. 
For example, image retrieval and question answer-
ing systems may return “Image-of-Thing” images 
(e.g., Figure 1), not the other types (e.g., Figure 
2~5), to illustrate erythema chronicum migrans. 
Biologists may examine “Gel” images (e.g., Figure 
2), rather than “Model” (e.g., Figure 4) to access 
specific biological evidence for molecular interac-
tions. Furthermore, a generic category may ease 
the task of identifying specific images that may be 
sub-categories of the generic category. For exam-
ple, a biologist may want to obtain an image of a 
protein structure prediction, which might be a sub-
category of “Model” (Figure 4), rather than an im-
age of x-ray crystallography that can be readily 
obtained from the PDB database.  

This paper represents the first study that defines 
a generic bioscience image taxonomy, and ex-
plores automatic image classification based on the 
fusion of text and image classifiers. 
 
Gel-Image consists of gel images such as Northern 
(for DNA), Southern (for RNA), and Western (for 
protein).  Figure 2 shows an example. 
 
Graph consists of bar charts, column charts, line 
charts, plots and other graphs that are drawn either 
by authors or by a computer (e.g., results of patch 
clamping). Figure 3 shows an example. 
 
Image-of-Thing refers to images of cells, cell 
components, tissues, organs, or species. Figure 1 
shows an example. 
 
Mix refers to an image (e.g., Figure 5) that incor-
porates two or more other categories of images. 
 
Model: A model may demonstrate a biological 
process, molecular docking, or an experimental 
design. We include as Model any structure (e.g., 
chemical, molecular, or cellular) that is illustrated 
by a drawing. We also include gene or protein se-
quences and sequence alignments, as well as phy-
logenetic trees in this category. Figure 4 shows one 
example.  
 
Table refers to a set of data arranged in rows and 
columns. 

 
Table 1. Bioscience Image Taxonomy 

2 Image Taxonomy 

We downloaded from PubMed Central  a total of 
17,000 PNAS full-text articles (years 1995-2004), 
which contain a total of 88,225 images. We manu-
ally examined the images and defined an image 
taxonomy (as shown in Table 1) based on feedback 
from physicians. The categories were chosen to 
maintain balance between coherence of content in 
each category and the complexity of the taxonomy. 
For example, we keep images of biological objects 
(e.g., cells, tissues, organs etc) in one single cate-
gory in this experiment to avoid over decomposi-
tion of categories and insufficient data in 
individual categories. Therefore we stress princi-
pled approaches for feature extraction and classi-
fier design. The same fusion classification 
framework can be applied to cases where each 
category is further refined to include subclasses. 
 

               
Figure 1. Image of_Thing3  Figure 2. Gel image4 
 

              
Figure 3. Graph image5   Figure 4. Model image6  

           
                        Figure 5. Mix image7     
 

                                                           
3 This image appears in the cover page of PNAS 102 (41): 
14477 – 14936. 
4 The image appears in the article (pmid=10318918) 
5 The image appears in the article (pmid=15699337) 
6 The image appears in the article (pmid=11504922) 
7 The image appears in the article (pmid=15755809)  
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3 Image Classification  

We explored supervised machine-learning methods 
to automatically classify images according to our 
image taxonomy (Table 1). Since it is straightfor-
ward to distinguish table separately by applying 
surface cues (e.g., “Table” and “Figure”), we have 
decided to exclude it from our experiments. 

3.1 Support Vector Machines 

We explored supervised machine-learning systems 
using Support Vector Machines (SVMs) which 
have shown to out-perform many other supervised 
machine-learning systems for text categorization 
tasks (Joachims, 1998). We applied the freely 
available machine learning MATLAB package The 
Spider to train our SVM systems (Sable and Wes-
ton, 2005; MATLAB). The Spider implements 
many learning algorithms including a multi-class 
SVM classifier which was used to learn our dis-
criminative classifiers as described below in sec-
tion 3.4. 

A fundamental concept in SVM theory is the 
projection of the original data into a high-
dimensional space in which separating hyperplanes 
can be found. Rather than actually doing this pro-
jection, kernel functions are selected that effi-
ciently compute the inner products between data in 
the high-dimensional space. Slack variables are 
introduced to handle non-separable cases and this 
requires an upper bound variable, C. 

Our experiments considered three popular ker-
nel function families over five different variants 
and five different values of C. The kernel function 
implementations are explained in the software 
documentation. We considered kernel functions in 
the forms of polynomial, radial basis function, and 
Gaussian. The adjustable parameter for polynomial 
functions is the order of the polynomial. For radial 
basis function and Gaussian functions, sigma is the 
adjustable parameter. A grid search was performed 
over the adjustable parameter for values 1 to 5 and 
for values of C equal to [10^0, 10^1, 10^2, 10^3, 
10^4]. 

3.2 Text Features 

Previous work in the context of newswire image 
classification show that text features in image cap-
tions are efficient for image categorization (Sable, 
2000, 2002, 2003). We hypothesize that image 

captions provide certain lexical cues that effi-
ciently represent image content. For example, the 
words “diameter”, “gene-expression”, “histogram”, 
“lane”, “model“, “stained”, “western”, etc are 
strong indicators for image classes and therefore 
can be used to classify an image into categories. 
The features we explored are bag-of-words and n-
grams from the image captions after processing the 
caption text by the Word Vector Tool (Wurst). 

3.3 Image Features  

We also investigated image features for the tasks 
of image classification. We started with four types 
of image features that include intensity histogram 
features, edge-direction histogram features, edge-
based axis features, and the number of 8-connected 
regions in the binary-valued image obtained from 
thresholding the intensity.  

The intensity histogram was created by quantiz-
ing the gray-scale intensity values into the range 0-
255 and then making a 256-bin histogram for these 
values. The histogram was then normalized by di-
viding all values by the total sum. For the purpose 
of entropy calculations, all zero values in the his-
togram are set to one. From this adjusted, normal-
ized histogram, we calculated the total entropy as 
the sum of the products of the entries with their 
logarithms. Additionally, the mean, 2nd moment, 
and 3rd moment are derived. The combination of 
the total entropy, mean, 2nd, and 3rd moments 
constitute a robust and concise representation of 
the image intensity. 

Edge-Direction Histogram (Jain and Vailaya, 
1996) features may help distinguish images with 
predominantly straight lines such as those found in 
graphs, diagrams, or charts from other images with 
more variation in edge orientation. The EDH be-
gins by convolving the gray-scale image with both 
3x3 Sobel edge operators (Jain, 1989). One opera-
tor finds vertical gradients while the other finds 
horizontal gradients. The inverse tangent of the 
ratio of the vertical to horizontal gradient yields 
continuous orientation values in the range of –pi to 
+pi. These values are subsequently converted into 
degrees in the range of 0 to 179 degrees (we con-
sider 180 and 0 degrees to be equal). A histogram 
is counted over these 180 degrees. Zero values in 
the histogram are set to one in order to anticipate 
entropy calculations and then the modified histo-
gram is normalized to sum to one. Finally, the total 
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entropy, mean, 2nd and 3rd moments are extracted 
to summarize the EDH. 

The edge-based axis features are meant to help 
identify images containing graphs or charts. First, 
Sobel edges are extracted above a sensitivity 
threshold of 0.10 from the gray-scale image. This 
yields a binary-valued intensity image with 1’s 
occurring in locations of all edges that exceed the 
threshold and 0’s occurring otherwise. Next, the 
vertical and horizontal sums of this intensity image 
are taken yielding two vectors, one for each axis. 
Zero values are set to one to anticipate the entropy 
calculations. Each vector is then normalized by 
dividing each element by its total sum. Finally, we 
find the total entropy, mean, 2nd , and 3rd mo-
ments to represent each axis for a total of eight axis 
features. 

The last image feature under consideration was 
the number of 8-connected regions in the binary-
valued, thresholded Sobel edge image as described 
above for the axis features. An 8-connected region 
is a group of edge pixels for which each member 
touches another member vertically, horizontally, or 
diagonally in the eight adjacent pixel positions sur-
rounding it. The justification for this feature is that 
the number of solid regions in an image may help 
separate classes. 

A preliminary comparison of various combina-
tions of these image features showed that the inten-
sity histogram features used alone yielded the best 
classification accuracy of approximately 54% with 
a quadratic kernel SVM using an upper slack limit 
of C = 10^4. 

3.4 Fusion  

We integrated both image and text features for the 
purpose of image classification. Multi-class SVM’s 
were trained separately on the image features and 
the text features. A multi-class SVM attempts to 
learn the boundaries of maximal margin in feature 
space that distinguishes each class from the rest. 
Once the optimal image and text classifiers were 
found, they were used to process a separate set of 
images in the fusion set. We extracted the margins 
from each data point to the boundary in feature 
space.  

Thus, for a five-class classifier, each data point 
would have five associated margins. To make a 
fair comparison between the image-based classifier 
and the text-based classifier, the margins for each 

data point were normalized to have unit magnitude. 
So, the set of five margins for the image classifier 
constitutes a vector that then gets normalized by 
dividing each element by its L2 norm. The same is 
done for the vector of margins taken from the text 
classifier. Finally, both normalized vectors are 
concatenated to form a 10-dimensional fusion vec-
tor. To fuse the margin results from both classifi-
ers, these normalized margins were used to train 
another multi-class SVM.  

A grid search through parameter space with 
cross validation identified near-optimal parameter 
settings for the SVM classifiers.  See Figure 6 for 
our system flowchart. 
 

 
Figure 6. System Flow-chart 

3.5 Training, Fusion, and Testing Data  

We randomly selected a subset of 554 figure im-
ages from the total downloaded image pool. One 
author of this paper is a biologist who annotated 
figures under five classes; namely, Gel_Image 
(102), Graph (179), Image_of_Thing (64), Mix 
(106), and Model (103). 

These images were split up such that for each 
category, roughly a half was used for training, a 
quarter for fusion, and a quarter for testing (see 
Figure 7). The training set was used to train classi-
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fiers for the image-based and text-based features. 
The fusion set was used to train a classifier on top 
of the results of the image-based and text-based 
classifiers. The testing set was used to evaluate the 
final classification system. 

For each division of data, 10 folds were gener-
ated. Thus within the training and fusion data sets, 
there are 10 folds which each have a randomized 
partitioning into 90% for training and 10% for test-
ing. The testing data set did not need to be parti-
tioned into folds since all of it was used to test the 
final classification system. (See Figure 8). 

In the 10-fold cross-validation process, a classi-
fier is trained on the training partition and then 
measured for accuracy (or error rate) on the testing 
partition. Of the 10 resulting algorithms, the one 
which performs the best is chosen (or just one 
which ties for the best accuracy). 
 

 
Figure 7. Image-set Divisions 

3.6 Evaluation Metrics  

We report the widely used recall, precision, and F-
score (also known as F-measure) as the evaluation 
metrics for image classification. Recall is the total 
number of true positive predictions divided by the 
total number of true positives in the set (true pos + 
false neg). Precision is the fraction of the number 
of true positive predictions divided by the total 
number of positive predictions (true pos + false 
pos). F-score is the harmonic mean of recall and 
precision equal to (C. J. van Rijsbergen, 1979): 

( )recallprecisionrecallprecision +/**2  
 

 
Figure 8. Partitioning Method for Training and 

Fusion Datasets 

4 Experimental Results 

Table 2 shows the Confusion Matrix for the image 
feature classifier obtained from the testing part of 
the training data. The actual categories are listed 
vertically and predicted categories are listed hori-
zontally. For instance, of 26 actual GEL images, 
18 were correctly classified as GEL, 4 were mis-
classified as GRAPH, 2 as IMAGE_OF_THING, 0 
as MIX, and 2 as MODEL. 
 

Actual  Predicted Categories 

 Gel Graph Thing Mix Model 

Gel 18 4 2 0 2 

Graph 3 39 0 1 1 

Img_Thing 1 1 12 2 0 

Mix 4 17 0 3 3 

Model 8 13 0 1 3 

Table 2. Confusion Matrix for Image Feature Clas-
sifier 
 

A near-optimal parameter setting for the classi-
fier based on image features alone used a polyno-
mial kernel of order 2 and an upper slack limit of C 
= 10^4. Table 3 shows the performance of image 
classification with image features. True Positives, 
False Positives, False Negatives, Precision = 
TP/(TP+FP), Recall = TP/(TP+FN), and F-score = 
2 * Precision * Recall / (Precision + Recall). Ac-
cording to the F-score scores, this classifier does 
best on distinguishing IMAGE_OF_THING im-
ages. The overall accuracy = sum of true positives / 
total number of images = (18+39+12+3+3)/138 = 
75/138 =  54%. This can be compared with the 
baseline of (3+39+1+1)/138 = 32% if all images 
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were classified as the most popular category, 
GRAPH. Clearly, the image-based classifier does 
best at recognizing IMAGE_OF_THING figures. 

 
Category TP FP FN Prec. Recall Fscore 

Gel 18 16 8 0.529 0.692 0.600 

Graph 39 35 5 0.527 0.886 0.661 

Img_Thing 12 2 4 0.857 0.750 0.800 

Mix 3 4 10 0.429 0.231 0.300 

Model 3 6 22 0.333 0.120 0.176 

Table 3. Precision, Recall, F-score for Image Clas-
sifier 
 

Actual  Predicted Categories 

 Gel Graph Thing Mix Model 
Gel 22 2 0 2 0 
Graph 4 36 0 4 0 
Img_Thing 0 3 11 1 1 
Mix 3 9 1 12 2 
Model 3 5 0 3 14 

Table 4. Confusion Matrix for Caption Text Clas-
sifier 
 

Category TP FP FN Prec Recall Fscore 

Gel 22 10 4 0.688 0.845 0.758 
Graph 36 19 8 0.655 0.818 0.727 
Img_Thing 11 1 5 0.917 0.688 0.786 
Mix 12 10 15 0.545 0.444 0.489 
Model 14 3 11 0.824 0.560 0.667 

Table 5. Precision, Recall, F-score for Caption 
Text Classifier 
 

The text-based classifier excels in finding GEL, 
GRAPH, and IMAGE_OF_THING images. It 
achieves an accuracy of (22+36+11+12+14)/138 = 
95/138 = 69%. 
 

A near-optimal parameter setting for the fusion 
classifier based on both image features and text 
features used a linear kernel with C = 10. The cor-
responding Confusion matrix follows in Table 6. 

 
Actual  Predicted Categories 

 Gel Graph Thing Mix Model 
Gel 23 0 0 3 0 
Graph 2 37 1 2 2 
Img_Thing 0 1 15 0 0 
Mix 2 7 1 14 3 
Model 3 5 0 4 13 

Table 6. Confusion Matrix for Fusion Classifier 
 
 

Category TP FP FN Prec. Recall Fscore 
Gel 23 7 3 0.767 0.885 0.822 
Graph 37 13 7 0.740 0.841 0.787 
Img_Thing 15 2 1 0.882 0.938 0.909 
Mix 14 9 13 0.609 0.519 0.560 
Model 13 5 12 0.722 0.520 0.605 

Table 7. Precision, Recall, F-score for Fusion 
Classifier 
 

From Table 7, it is apparent that the fusion clas-
sifier does best on IMAGE_OF_THING and also 
performs well on GEL and GRAPH. These are 
substantial improvements over the classifiers that 
were based on image or text feature alone. Average 
F-scores and accuracies are summarized below in 
Table 8. 

The overall accuracy for the fusion classifier = 
sum of true positives / total number of image = 
(23+37+15+14+13)/138 = 102/138 = 74%. This 
can be compared with the baseline of 44/138 = 
32% if all images were classified as the most popu-
lar category, GRAPH. 

 
Classifier Average F-score  Accuracy 
Image 50.74% 54% 
Caption 
Text 

68.54% 69% 

Fusion 73.66% 74% 
Table 8. Comparison of Average F-scores and Ac-
curacy among all three Classifiers 

5 Discussion 

It is not surprising that the most difficult category 
to classify is Mix. This was due to the fact that Mix 
images incorporate multiple categories of other 
image types. Frequently, one other image type that 
appears in a Mix image dominates the image fea-
tures and leads to its misclassification as the other 
image type. For example, Figure 9 shows that a 
Mix image was misclassified as Gel_Image.  
 

This mistake is forgivable because the image 
does contain sub-images of gel-images, even 
though the entire figure is actually a mix of gel-
images and diagrams. This type of result highlights 
the overlap between classifications and the diffi-
culty in defining exclusive categories. 

For both misclassifications, it is not easy to 
state exactly why they were classified wrongly 
based on their image or text features. This lack of 
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intuitive understanding of discriminative behavior 
of SVM classifiers is a valid criticism of the tech-
nique. Although generative machine learning 
methods (such as Bayesian techniques or Graphical 
Models) offer more intuitive models for explaining 
success or failure, discriminative models like SVM 
are adopted here due to their higher performance 
and ease of use. 

Figure 10 shows an example of a MIX figure 
that was mislabeled by the image classifier as 
GRAPH and as GEL_IMAGE by the text classi-
fier. However, it was correctly labeled by the fu-
sion classifier. This example illustrates the value of 
the fusion classifier for being able to improve upon 
its component classifiers. 

6 Conclusions 

From the comparisons in Table 8, we see that fus-
ing the results of classifiers based on text and im-
age features yields approximately 5% 
improvement over the text -based classifier alone 
with respect to both average F-score and Accuracy. 
In fact, the F-score improved for all categories ex-
cept for MODEL which experienced a 6% drop. 
The natural conclusion is that the fusion classifier 
combines the classification performance from the 
text and image classifiers in a complementary fash-
ion that unites the strengths of both. 

7 Future Work 

To enhance the performance of the text features, 
one may restrict the vocabulary to functionally im-
portant biological words. For example, “phos-
phorylation” and “3-D” are important words that 
might sufficiently separate “protein function” from 
“protein structure”. 

Further experimentation on a larger image set 
would give us even greater confidence in our re-
sults. It would also expand the diversity within 
each category, which would hopefully lead to bet-
ter generalization performance of our classifiers. 

Other possible extensions of this work include 
investigating different machine learning ap-
proaches besides SVMs and other fusion methods. 
Additionally, different sets of image and text fea-
tures can be explored as well as other taxonomies. 
 
 

 
 
Caption: ”The 2.6-kb HincII XhoI fragment con-
taining approximately half of exon 4 and exon 5 
and 6 was subcloned between the Neo gene and 
thymidine kinase (Fig. 1 A). The location of the 
genomic probe used to screen for homologous re-
combination is shown in Fig. 1 A. Gene Targeting 
in Embryonic Stem (ES) Cells and Generation of 
Mutant Mice. Genomic DNA of resistant clones 
was digested with SacI and hybridized with the 3 
0.9-kb KpnI SacI external probe (Fig. 1 A). Chi-
meric male offspring were bred to C57BL/6J fe-
males and the agouti F1 offspring were tested for 
transmission of the disrupted allele by Southern 
blot analysis of SacI-digested genomic DNA by 
using the 3 external probe (Fig. 1 A and B). A 360-
bp region, including the first 134 bp of the 275-bp 
exon 4, was deleted and replaced with the PGKneo 
cassette in the reverse orientation (Fig. 1 A). After 
selection with G418 and gangciclovir, doubly re-
sistant clones were screened for homologous re-
combination by Southern blotting and 
hybridization with a 3 external probe (Fig. 1 A). 
Offspring were genotyped by Southern blotting of 
genomic tail DNA and hybridized with a 3 external 
probe (Fig. 1 B). To confirm that HFE / mice do 
not express the HFE gene product, we performed 
Northern blot analyses “ 
Figure 9. Above, caption text and image of a MIX 
figure mis-classified as GEL_IMAGE by the Fu-
sion Classifier 
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“Conductance properties of store-operated channels in 
A431 cells. (a) Store-operated channels in A431 cells, 
activated by the mixture of 100 mM BAPTA-AM and 1 
mM Tg in the bath solution, were recorded in c/a mode 
with 105 mM Ba2+ (Left), 105 mM Ca2+ (Center), and 
140 mM Na+ (Right) in the pipette solution at mem-
brane potential as indicated. (b) Fit to the unitary cur-
rent-voltage relationship of store-operated channels with 
Ba2+ (n = 46), Ca2+ (n = 4), Na+ (n = 3) yielded slope 
single-channel conductance of 1 pS for Ca2+ and Ba2+ 
and 6 pS for Na+. (c) Open channel probability of store-
operated channels (NPomax30) expressed as a function 
of membrane potential. Data from six independent ex-
periments in c/a mode with 105 mM Ba2+ as a current 
carrier were averaged at each membrane potential. (b 
and c) The average values are shown as mean ± SEM, 
unless the size of the error bars is smaller than the size 
of the symbols.” 

Figure 10.  Above, caption text and image of a 
MIX figure incorrectly labeled as GRAPH by Im-
age Classifier and GEL_IMAGE by the Text Clas-
sifier 
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