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Abstract 

This paper proposes an unsupervised 
learning algorithm for Optimality Theo-
retic grammars, which learns a complete 
constraint ranking and a lexicon given 
only unstructured surface forms and mor-
phological relations. The learning algo-
rithm, which is based on the Expectation-
Maximization algorithm, gradually 
maximizes the likelihood of the observed 
forms by adjusting the parameters of a 
probabilistic constraint grammar and a 
probabilistic lexicon. The paper presents 
the algorithm’s results on three con-
structed language systems with different 
types of hidden structure: voicing neu-
tralization, stress, and abstract vowels. In 
all cases the algorithm learns the correct 
constraint ranking and lexicon.  The paper 
argues that the algorithm’s ability to iden-
tify correct, restrictive grammars is due in 
part to its explicit reliance on the Opti-
mality Theoretic notion of Richness of the 
Base. 

1 Introduction 

In Optimality Theory or OT (Prince and Smolen-
sky, 1993) grammars are defined by a set of ranked 
universal and violable constraints.  The function of 
the grammar is to map underlying or lexical forms 
to valid surface forms. The task of the learner is to 

find the correct grammar, or correct ranking of 
constraints, as well as the set of underlying forms 
that correspond to overt surface forms given only 
the surface forms and the set of universal con-
straints.   

The most well known algorithms for learning 
OT grammars (Tesar, 1995; Tesar and Smolensky, 
1995; Boersma, 1997, 1998; Prince and Tesar, 
1999; Boersma and Hayes, 2001) are supervised 
learners and focus on the task of learning the 
constraint ranking, given training pairs that map 
underlying forms to surface forms.  Recent work 
has focused on the task of unsupervised learning of 
OT grammars, where only unstructured surface 
forms are provided to the learner. Some of this 
work focuses on grammar learning without training 
data (Tesar, 1998; Tesar, 1999; Hayes, 2004; 
Apoussidou and Boersma, 2004). The remainder of 
this work tackles the problem of learning the 
ranking and lexicon simultaneously, the problem 
addressed in the present paper (Tesar et al., 2003; 
Tesar, 2004; Tesar and Prince, to appear; Merchant 
and Tesar, to appear). These proposals adopt an 
algebraic approach wherein learning the lexicon 
involves iteratively eliminating potential 
underlying forms by determining that they have 
become logically impossible, given certain 
assumptions about the learning problem.1 In 
particular, one simplifying assumption of previous 
work requires that mappings be one-to-one and 
onto.  This assumption prohibits input-output 
mappings with deletion and insertion as well as 

                                                        
1 An alternative algorithm is proposed in Escudero (2005), but 
it has not been tested computationally. 
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constraints that evaluate such mappings. This work 
represents a leap forward toward the accurate 
modeling of human language acquisition, but the 
identification of a general-purpose, unsupervised 
learner of OT remains an open problem. 

In contrast to previous work, this paper proposes 
a gradual, probabilistic algorithm for unsupervised 
OT learning based on the Expectation Maximiza-
tion algorithm (Dempster et al., 1977). Because the 
algorithm depends on gradually maximizing an 
objective function, rather than on wholly eliminat-
ing logically impossible hypotheses, it is not cru-
cial to prohibit insertion or deletion.   

A major challenge posed by unsupervised learn-
ing of OT is that of learning restrictive grammars 
that generate only grammatical forms.  In previous 
work, the preference for restrictive grammars is 
implemented by encoding a bias into the ranking 
algorithm that favors ranking constraints that pro-
hibit marked structures as high as possible. In con-
trast, the solution proposed here involves a 
combination of likelihood maximization and ex-
plicit reliance on Richness of the Base, an OT prin-
ciple requiring that the set of potential underlying 
forms be universal.  This combination favors re-
strictive grammars because grammars that map a 
“rich” lexicon onto observed forms with high 
probability are preferred. The proposed model is 
tested on three constructed language systems, each 
exemplifying a different type of hidden structure. 

2 Learning Probabilistic OT 

While the primary task of the grammar is to map 
underlying forms to overt forms, the grammar’s 
secondary role is that of a filter – ruling out un-
grammatical forms no matter what underlying form 
is fed to the grammar. The role of the grammar as 
filter follows from the OT principle of Richness of 
the Base, according to which the set of possible 
underlying forms is universal (Prince and Smolen-
sky 1993). In other words, the grammar must be 
restrictive and not over-generate.  The requirement 
that grammars be restrictive complicates the learn-
ing problem - it is not sufficient to find a combina-
tion of underlying forms and constraint ranking 
that yields the set of observed surface forms: the 
constraint ranking must yield only grammatical 
forms irrespective of the particular lexical items 
selected for the language.  

In classic OT, constraint ranking is categorical 
and non-probabilistic.  In recent years various sto-
chastic versions of OT have been proposed to ac-
count for free variation (Boersma and Hayes, 
2001), lexically conditioned variation (Anttila, 
1997), child language acquisition (Legendre et al., 
2002) and the modeling of frequencies associated 
with these phenomena. In addition to these advan-
tages, probabilistic versions of OT are advanta-
geous from the point of view of learnability. In 
particular, the Gradual Learning Algorithm for 
Stochastic OT (Boersma, 1997, 1998; Boersma and 
Hayes, 2001) is capable of learning in spite of 
noisy training data and is capable of learning vari-
able grammars in a supervised fashion.  In addi-
tion, probabilistic versions of OT and variants of 
OT (Goldwater and Johnson, 2003; Rosenbach and 
Jaeger, 2003) enable learning of OT via likelihood 
maximization, for which there exist many estab-
lished algorithms.  Furthermore, as this paper pro-
poses, unsupervised learning of OT using 
likelihood maximization combined with Richness 
of the Base provides a natural solution to the 
grammar-as-filter problem due to the power of 
probabilistic modeling to use negative evidence 
implicitly. 

The algorithm proposed here relies on a prob-
abilistic extension of OT in which each possible 
constraint ranking is assigned a probability P(r). 
Thus, the OT grammar is a probability distribution 
over constraint rankings rather than a single con-
straint ranking. This notion of probabilistic OT is 
similar to - but less restricted than - Stochastic OT, 
in which the distribution over possible rankings is 
given by the joint probability over independently 
normally distributed constraints with fixed, equal 
variance.  The advantage of the present model is 
computational simplicity, but the proposed learn-
ing algorithm does not depend on any particular 
instantiation of probabilistic OT. 

Tables 1 and 2 illustrate the proposed probabilis-
tic version of OT with an abstract example.   Table 
1 shows the violation marks assigned by three con-
straints, A, B and C, to five candidate outputs O1-
O5 for the underlying form, or input /I/.  To com-
pute the winner of an optimization, constraints are 
applied to the candidate set in order according to 
their rank. Candidates continue to the next con-
straint if they have the fewest (or tie for fewest) 
constraint violation marks (indicated by asterisks). 
In this way the winning or optimal candidate, the 
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candidate that violates the higher-ranked con-
straints the least, is selected.  
 
  constraints 
input: /I/ A B C 

O1 * *  
O2 **  * 
O3  **  
O4  * ** 

ca
nd

id
at

es
 

O5 *  ** 
Table 1. OT Candidates and Constraint Violations 

 
The third column of Table 2 identifies the win-

ner under each possible ranking of the three con-
straints. For example, if the ranking is A >> B >> 
C, constraint A eliminates all but O3 and O4, then 
constraint B eliminates O3, designating O4 as the 
winner. The remainder of Table 2 illustrates the 
proposed probabilistic instantiation of OT.  The 
first column shows the probability P(r) that the 
grammar assigns to each ranking in this example. 
The probability of each ranking determines the 
probability with which the winner under that rank-
ing will be selected for the given input. In other 
words, it defines the conditional probability Pr(Ok | 
I), shown in the fourth column, of the kth output 
candidate given the input /I/ under the ranking r. 
The last column shows the total conditional prob-
ability for each candidate after summing across 
rankings.  For instance, O3 is the winner under two 
of the rankings, and thus its total conditional prob-
ability P(O3 | I) is found by summing over the con-
ditional probabilities under each ranking. The total 
conditional probability P(O3 | I) refers to the prob-
ability that underlying form /I/ will surface as O3, 
and this probability depends on the grammar. 
 
P(r) ranking winner Pr(Ok | I) P(Ok | I) 
0.20 A>>B>>C O4 0.2 0.2 
0.15 A>>C>>B O3 0.15 
0.05 C>>A>>B O3 0.05 

0.2 

0.10 B>>A>>C O5 0.1 0.1 
0.00 B>>C>>A O2 0.0 0.0 
0.50 C>>B>>A O1 0.5 0.5 
Table 2: Probabilistic OT  
 

In addition to the conditional probability as-
signed by the grammar, this model relies on a 
probability distribution P(I | M) over possible un-
derlying forms for a given morpheme M.  This 
property of the model implements the standard lin-

guistic proposition that each morpheme has a con-
sistent underlying form across contexts, while the 
grammar drives allomorphic variation that may 
result in the morpheme having different surface 
realizations in different contexts.  Rather than iden-
tifying a single underlying form for each mor-
pheme, this model represents the underlying form 
as a distribution over possible underlying forms, 
and this distribution is constant across contexts. To 
determine the probability of an underlying form for 
a morphologically complex word, the product of 
the morpheme’s individual distributions is taken – 
the probability of an underlying form is taken to be 
independent of morphological context. For exam-
ple, suppose that some morpheme Mk has two pos-
sible underlying forms, I1 and I2, and the two 
underlying forms are equally likely.  This means 
that the conditional probabilities of both underly-
ing forms are 50%: P(I1 | Mk) = P(I2 | Mk) = 50%. 

In sum, the probabilistic model described here 
consists of a grammar and lexicon, both of which 
are probabilistic.  The task of learning involves 
selecting the appropriate parameter settings of both 
the grammar and lexicon simultaneously. 

3 Expectation Maximization and Richness 
of the Base in OT  

This section presents the details of the learning 
algorithm for probabilistic OT.  First, in Section 
3.1 the objective function and its properties are 
discussed.  Next, Section 3.2 proposes the solution 
to the grammar-as-filter problem, which involves 
restricting the search space available to the learn-
ing algorithm. Finally, Section 3.3 describes the 
likelihood maximization algorithm – the input to 
the algorithm, the initial state, and the form of the 
solution.  

3.1 The Objective Function 

The learning algorithm relies on the following ob-
jective function: 

 

PH (O | M) = [PH (Ok | Mk )]
Fk

k

∏
= [ PH (Ok & Ik, j | Mk )

j

�
]Fk

k

∏

= [ PH (Ok | Ik, j )PH (Ik, j | Mk )
j

�
]Fk

k

∏
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The likelihood of the data, or set of overt surface 
forms, PH(O | M) depends on the parameter set-
tings, the probability distributions over rankings 
and underlying forms, under the hypothesis H.  It 
is also conditional on M, the set of observed mor-
phemes, which are annotated in the data provided 
to the algorithm. M is constant, however, and does 
not differ between hypotheses for the same data 
set. Under this model each unique surface form Ok 
is treated independently, and the likelihood of the 
data is simply the product of the probability of 
each surface form, raised to the power correspond-
ing to its observed frequency Fk.  Each surface 
form Ok is composed of a set of morphemes Mk, 
and each of these morphemes has a set of underly-
ing forms Ik,j. The probability of each surface form 
PH(Ok | Mk) is found by summing the joint distribu-
tion PH(Ok & I k,j | Mk) over all possible underlying 
forms Ik,J for morphemes Mk that compose Ok.  
Finally, the joint probability is simply the product 
of the conditional probability PH(Ok | Ik,j) and lexi-
cal probability PH(IK,j | Mk), both of which were 
defined in the previous section. 

The primary property of this objective function 
is that it is maximal only when the hypothesis gen-
erates the observed data with high probability.  In 
other words, the grammar must map the selected 
lexicon onto observed surface forms without wast-
ing probability mass on unobserved forms.  Be-
cause there are two parameters in the model, this 
can be accomplished by adjusting the ranking dis-
tributions or by adjusting lexicon distributions.  
The probability model itself does not specify 
whether the grammar or the lexicon should be ad-
justed in order to maximize the objective function.  
In other words, the objective function is indifferent 
to whether the restrictions observed in the lan-
guage are accounted for by having a restrictive 
grammar or by selecting a restrictive lexicon.  As 
discussed in Section 2, according to Richness of 
the Base, only the first option is available in OT: 
the grammar must be restrictive and must neutral-
ize noncontrastive distinctions in the language.  
The next subsection addresses the proposed solu-
tion – a restriction of the search procedure that fa-
vors maximizing probability by restricting the 
grammar rather than the lexicon. 

3.2 Richness of the Base 

Although the notion of a restrictive grammar is 
intuitively clear, it is difficult to implement for-
mally.  Previous work on OT learnability (Tesar, 
1995; Tesar and Smolensky, 1995; Smolensky 
1996; Tesar, 1998, Tesar, 1999; Tesar et al., 2003; 
Tesar and Prince, to appear; Hayes, 2004) has pro-
posed the heuristic of Markedness over Faithful-
ness during learning to favor restrictive grammars. 
In OT there are two basic types of constraints, 
markedness constraints, which penalize dis-
preferred surface structures, and faithfulness con-
straints, which penalize nonidentical mappings 
from underlying to surface forms. In general, a 
restrictive grammar will have markedness con-
straints ranked high, because these constraints will 
restrict the type of surface forms that are allowed 
in a language. On the other hand, if faithfulness 
constraints are ranked high, all the distinctions in-
troduced into the lexicon will surface.  Thus, a 
heuristic preferring markedness constraints to rank 
high whenever possible does in general prefer re-
strictive grammars.  However, the markedness over 
faithfulness heuristic does not exhaust the notion 
of restrictiveness. In particular, markedness over 
faithfulness does not favor grammar restrictiveness 
that follows from particular rankings between 
markedness constraints or between faithfulness 
constraints. 

This work aims to provide a general solution 
that does not require distinguishing various types 
of constraints – the proposed solution implements 
Richness of the Base explicitly in the initial state 
of the lexicon. Specifically, the solution involves 
requiring that initial distributions over the lexicon 
be uniform, or rich. Although the objective func-
tion alone does not prefer restrictive grammars 
over restrictive lexicons, a lexicon constrained to 
be uniform, or nonrestrictive, will in turn force the 
grammar to be restrictive.  Another way to think 
about it is that a restrictive grammar is one that 
compresses the input distributions maximally by 
mapping as much of the lexicon onto observed sur-
face forms as possible.  By requiring the lexicon to 
be rich the proposed solution relies on the objec-
tive function’s natural preference for grammars 
that maximally compress the lexicon. The objec-
tive function prefers restrictive grammars in this 
situation because restrictive grammars will allow 
the highest probability to be assigned to observed 
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forms.  In contrast, if the lexicon is not rich, there 
is nothing for the grammar to compress, and the 
objective function’s natural preference for com-
pression will not be employed. The next subsection 
discusses the algorithm and the initialization of the 
parameters in more detail. 

3.3 Likelihood Maximization Algorithm 

As discussed above, the goal of the learning algo-
rithm is to find the probability distributions over 
rankings and lexicons that maximize the probabil-
ity assigned to the observed set of data according 
to the objective function. In addition, any regulari-
ties present in the data should be accommodated by 
the grammar rather than by restricting the lexicon.  
As in previous work on unsupervised learning of 
OT, the algorithm assumes knowledge of OT con-
straints, the possible underlying forms of overt 
forms, and sets of candidate outputs and their con-
straint violation profiles for all possible underlying 
forms.  While the present version of the algorithm 
receives this information as input, recent work in 
computational OT (Riggle, 2004; Eisner, 2000) 
suggests that this information is formally derivable 
from the constraints and overt surface forms and 
can be generated automatically. 

In addition, the algorithm receives information 
about the morphological relations between ob-
served surface forms.  Specifically, output forms 
are segmented into morphemes, and the mor-
phemes are indexed by a unique identifier. This 
information, which has also been assumed in pre-
vious work, cannot be derived directly from the 
constraints and observed forms but is a necessary 
component of a model that refers to underlying 
forms of morphemes. The present work assumes 
this information is available to the learner although 
Section 5 will discuss the possibility of learning 
these morphological relations in conjunction with 
the learning of phonology. 

The set of potential underlying forms is derived 
from observed surface forms, morphological rela-
tions, and the constraint set.  On the one hand the 
set of potential underlying forms, which is initially 
uniformly distributed, should be rich enough to 
constitute a rich base for the reasons discussed ear-
lier.   On the other hand, the set should be re-
stricted enough so that the search space is not too 
large and so that the grammar is not pressured to 
favor mapping underlying forms to completely 

unrelated surface forms.  For this reason, potential 
underlying forms are derived from surface forms 
by considering all featural variants of surface 
forms for features that are evaluated by the gram-
mar.  Of these potential underlying forms, only 
those that can yield each of the observed surface 
allomorphs of the morpheme under some ranking 
of the constraints are included. This formulation 
differs substantially from previous work, which 
aimed to construct the lexicon via discrete steps, 
the first of which involved permanently setting the 
values for features that do not alternate. In contrast, 
the approach taken here aims to create a rich initial 
lexicon, to compel the selection of a restrictive 
grammar. 

In addition to featural variants, variants of sur-
face forms that differ in length are included if they 
are supported by allomorphic alternation.  In par-
ticular, featural variants of all the observed surface 
allomorphs of the morpheme are considered as po-
tential underlying forms for the morpheme if each 
of the observed surface forms can be generated 
under some ranking.  Including these types of un-
derlying forms extends previous work, which did 
not allow segmental insertion or deletion or con-
straints that evaluate these unfaithful mappings, 
such as MAX and DEP. 

The algorithm initializes both the lexicon and 
grammar to uniform probability distributions.  This 
means that all rankings are initially equally likely.  
Likewise, all potential underlying forms for a mor-
pheme are initially equally likely.  Thus, the prob-
ability distributions begin unbiased, but choosing 
an unbiased lexicon initially begins the search 
through parameter space at a position that favors 
restrictive grammars.  The experiments in the fol-
lowing section suggest that this choice of initializa-
tion correctly selects a restrictive final grammar. 

The learning algorithm itself is based on the Ex-
pectation Maximization algorithm (Dempster et al., 
1977) and alternates between an expectation stage 
and a maximization stage.  During the expectation 
stage the algorithm computes the likelihood of the 
observed surface forms under the current hypothe-
sis.  During the maximization stage the algorithm 
adjusts the grammar and lexicon distributions in 
order to increase the likelihood of the data.  The 
probability distribution over rankings is adjusted 
according to the following re-estimation formula: 
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PH +1(r) = Fk

Fk

k

� ⋅ PH (Ok |r,Mk )
PH (Ok | Mk )k

�
 

Intuitively, this formula re-estimates the prob-
ability of a ranking for state H+1 in proportion to 
the ranking’s contribution to the overall probability 
at state H. The algorithm re-estimates the probabil-
ity distribution for an underlying form according to 
an analogous formula: 
 

PH +1(Ik, j | M i) = Fk

Fk

k

� ⋅
PH (Ok & Ik, j | M i)

PH (Ok | M i)k

�
 

Intuitively, the re-estimate of the probability of 
an underlying form Ik,j for state H+1 is propor-
tional to the contribution that underlying form 
makes to the total probability due to morpheme Mi 
at state H. The algorithm continues to alternate 
between the two stages until the distributions con-
verge, or until the change between one stage and 
the next reaches some predetermined minimum. At 
this point the resulting distributions are taken to 
correspond to the learned grammar and lexicon.  

4 Experiments  

This section describes the results of experiments 
with three artificial language systems with differ-
ent types of hidden structure. In all experiments 
presented here, each unique surface form is as-
sumed to occur with frequency 1. 

4.1 Voicing Neutralization 

The first test set is an artificial language system 
(Tesar and Prince, to appear) exhibiting voicing 
neutralization. The constraint set includes five con-
straints: 
 

• NOVOI - No voiced obstruents 

• NOSFV- No syllable-final voiced obstruents 

• IVV - No intervocalic voiceless consonants 

• IDVOI - Surface voicing must match underly-
ing voicing 

• MAX - Input segments must have output cor-
respondents 

 

These five constraints can describe a number of 
languages, but of particular interest are languages 
in which voicing contrasts are neutralized in one or 

more positions.  Such languages, three of which 
are shown below, test the algorithm’s ability to 
identify correct and restrictive grammars. The par-
tial rankings shown below correspond to the neces-
sary rankings that must hold for these languages; 
each partial ranking actually corresponds to several 
total rankings of the constraints. Also shown below 
are the morphologically analyzed surface forms for 
each language that are provided as input to the al-
gorithm. The subscripts in these forms indicate 
morpheme identities, while the hyphens segment 
the words into separate morphemes.  For example, 
tat1,2 means that the surface form “tat” could be 
derived from either morpheme 1 or 2 in this lan-
guage. 
   

• (A) Final devoicing, contrast intervocalically: 
• NOSFV, MAX >> IDVOI >> IVV,  NOVOI 
• tat1,2; dat3,4; tat1-e5; tad2-e5; dat3-e5; dad4-e5 

 

• (B) Final devoicing and intervocalic voicing: 
• NOSFV, MAX, IVV  >> IDVOI, NOVOI 
• tat1,2; dat3,4; tad1,2-e5; dad3,4-e5 

 

• (C) No voiced obstruents: 
• MAX, NOVOI >> IDVOI, IVV 
• tat1,2,3,4; tat1,2,3,4-e5  

 

In language C, it would be possible to maximize 
the objective function by selecting a restrictive 
lexicon rather than a restrictive grammar.  In par-
ticular, /tat/ could be selected as the underlying 
form for morphemes 1-4 in order to account for the 
lack of voiced obstruents in the observed surface 
forms.  In this case, the objective function could 
just as well be satisfied by an identity grammar 
mapping underlying /tat/ to surface “tat”. However, 
as discussed in Section 2, such a grammar would 
violate the principle of Richness of the Base by 
putting the restriction against voiced obstruents 
into the lexicon rather than the grammar. Thus, this 
language tests not only whether the algorithm finds 
a maximum, but also whether the maximum corre-
sponds to a restrictive grammar. 

In fact, for all three languages above, the algo-
rithm converges on the correct, restrictive gram-
mars and correct lexicons.  Specifically, the final 
grammars for each of the languages above con-
verge on probability distributions that distribute the 
probability mass equally among the total rankings 
consistent with the partial orders above.  For ex-
ample, for language C the algorithm converges on 
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a distribution that assigns equal probability to the 
20 total rankings consistent with the partial order 
given by MAX, NOVOI >> IDVOI, IVV.  

The initial uniform lexicon for language C is 
shown in Table 3.  Here the numbers 1-5 refer to 
morpheme indices, and the possible underlying 
forms for each morpheme are uniformly distrib-
uted. This initial lexicon favors a grammar that can 
map as much of the rich lexicon as possible onto 
surface forms with no voiced obstruents. With 
these constraints, this translates into ranking 
NOVOI above IDVOI and IVV.  As the algorithm 
begins learning the lexicon and continues to refine 
its hypothesis for this language, nothing drives the 
algorithm to abandon the initial rich lexicon. Thus, 
in the final state, the lexicon for this language is 
identical to the initial lexicon.  In general, the final 
lexicon will be uniformly distributed over underly-
ing forms that differ in noncontrastive features. 
 
1 /tat/ - 25% /tad/ - 25% /dat/ - 25% /dad/ - 25% 
2 /tat/ - 25% /tad/ - 25% /dat/ - 25% /dad/ - 25% 
3 /tat/ - 25% /tad/ - 25% /dat/ - 25% /dad/ - 25% 
4 /tat/ - 25% /tad/ - 25% /dat/ - 25% /dad/ - 25% 
5 /e/ - 100%    
Table 3. Initial Lexicon for Language C 

4.2 Grammatical and Lexical Stress 

The next set of languages from the PAKA system 
(Tesar et al., 2003) test the ability of the algorithm 
to identify grammatical stress (most restrictive), 
lexical stress (least restrictive), and combinations 
of the two. The constraint set includes: 
 

• MAINLEFT - Stress the leftmost syllable 

• MAINRIGHT - Stress the rightmost syllable 

• FAITHACCENT - Stress an accented syllable 

• FAITHACCENTROOT - Stress an accented root 
syllable 

 

Possible languages and their corresponding par-
tial orders ranging from least restrictive to most 
restrictive are shown below.  In the first two lan-
guages, the least restrictive languages, lexical dis-
tinctions in stress are realized faithfully, while 
grammatical stress surfaces only in forms with no 
underlying stress. In the final two languages stress 
is entirely grammatical; underlying distinctions are 
neutralized in favor of a regular surface stress pat-
tern.  Finally, the middle language is a combination 

of lexical and grammatical stress, requiring that the 
algorithm learn that a contrast in roots is preserved, 
while a contrast in suffixes is neutralized. 
 

• Full contrast: roots and suffixes contrast in 
stress, default left: 

• F >> ML >> MR, FAR 
• pá1-ka3; pa1-gá4; bá2-ka3; bá2-ga4 

• Full contrast: roots and suffixes contrast in 
stress, default right: 

• F >> MR >> ML, FAR 
• pa1-ká3; pa1-gá4; bá2-ka3; ba2-gá4 

• Root contrast only, default right: 

• FAR >> MR >> ML 

• pa1-ká3; pa1-gá4; bá2-ka3; bá2-ga4 

• Predictable left stress: 

• ML >> FAR, F, MR 
• pá1-ka3; pá1-ga4; bá2-ka3; bá2-ga4 

• Predictable right stress: 

• MR >> FAR, F, ML 
• pa1-ká3; pa1-gá4; ba2-ká3; ba2-gá4 

 

In all cases the algorithm learns the correct, re-
strictive grammars corresponding to the partial 
orders shown above.  As before, the final lexicon 
assigns uniform probability to all underlying forms 
that differ in noncontrastive features.  For example, 
in the case of the language with root contrast only, 
the final lexicon selects a unique lexical item for 
root morphemes and maintains a uniform probabil-
ity distribution over stressed and unstressed under-
lying forms for suffixes. 

4.3 Abstract Underlying Vowels 

The final experiment tests the algorithm on an 
artificial language, based on Polish, with abstract 
underlying vowels that never surface faithfully. 
Although the particular phenomenon exhibited by 
Slavic alternating vowels is rare, the general phe-
nomenon wherein underlying forms do not corre-
spond to any surface allomorph is not uncommon 
and should be accommodated by the learning algo-
rithm. This language presents a challenge for pre-
vious work on unsupervised learning of OT 
because alternations in the number of segments are 
observed in morpheme 3. The morphologically 
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annotated input to the algorithm for this language 
is shown in Table 4.  
 

kater1 vatr2 sater3 
kater1-a4 vatr2-a4 satr3-a4 
Table 4. Yer Language Surface Forms 

 
In this language morphemes 1, 2 and 4 exhibit no 

alternation while morpheme 3 alternates between 
sater and satr depending on the context. The con-
straints for this language, based on Jarosz (2005), 
are shown below:  
 

• *E = *[+ HIGH][-ATR] 

• DEP-V 

• MAX-V 

• *COMPLEXCODA 

• IDENT[HIGH] 
 

1 2 3 4 
/kater/ /vatr/ /satEr/ /-a/ 
Table 5. Desired Final Lexicon 

 
In the proposed analysis of this language, the ab-
stract underlying [E], which is a [+high] version of 
[e], is neutralized on the surface and exhibits two 
repairs systematically depending on the context. It 
deletes in general, but if a complex coda is at stake, 
the vowel surfaces as [e] by violating 
IDENT[HIGH]. The required partial ranking for this 
language is shown below while the desired lexicon 
is shown in Table 5. 
 

{*E,  {D EP-V >> *COMPLEXCODA }}  >> 
IDENT[HIGH] >> MAX-V 

The algorithm successfully learns the correct rank-
ing above and the lexicon in Table 5.  Specifically, 
the final grammar assigns equal probability to all 
the rankings consistent with the above partial or-
der. The final lexicon selects a single underlying 
form for each morpheme as shown in Table 5 be-
cause all underlying distinctions in this language 
are contrastive. 

4.4 Discussion 

In summary, the algorithm is able to find a cor-
rect grammar and lexicon combination for all of 
the language systems discussed.  As discussed in 
Section 3, the objective function itself does not 

favor restrictive grammars, but the ability of the 
algorithm to learn restrictive grammars in these 
experiments suggests that initializing the lexicons 
to uniform distributions does compel the learning 
algorithm to select restrictive grammars rather than 
restrictive lexicons. 

While the experiments presented in this section 
focus on the task of learning a grammar and lexi-
con simultaneously, the proposed algorithm is also 
capable of learning grammars from structurally 
ambiguous forms. The same likelihood maximiza-
tion procedure proposed here could be used for 
unsupervised learning of grammars that assign full 
structural description to overt forms. Future direc-
tions include testing the algorithm on language 
data of this sort. 

5 Conclusion  

In sum, this paper has presented an unsupervised, 
probabilistic algorithm for OT learning. The paper 
argues that combining the OT principle of Rich-
ness of the Base and likelihood maximization pro-
vides a novel and general solution to the problem 
of finding a restrictive grammar.  The proposed 
solution involves explicitly implementing Richness 
of the Base in the initialization of the lexicon in 
order to fully utilize the properties of the objective 
function. By relying on Richness of the Base and 
likelihood maximization, the algorithm is able to 
use negative evidence implicitly to find restrictive 
grammars. The algorithm is shown to be successful 
on three constructed languages featuring different 
types of neutralization and hidden structure. 

One potential extension of the proposed algo-
rithm involves combining a system for unsuper-
vised learning of morphological relations with the 
proposed algorithm for learning phonology.  Sev-
eral algorithms have been proposed for automati-
cally inducing morphological relations, like those 
assumed by the present learner (Goldsmith, 2001; 
Snover and Brent, 2001). The task of uncovering 
morphological relations is complicated by allo-
morphic alternations that obscure the underlying 
identity of related morphemes. While these algo-
rithms are very promising, their performance may 
be significantly enhanced if they were combined 
with an algorithm that models such phonological 
alternations.   

In conclusion, this is the first proposed unsuper-
vised algorithm for OT learning that takes advan-
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tage of the power of probabilistic modeling to learn 
a grammar and lexicon simultaneously. This paper 
demonstrates that combining OT theoretic princi-
ples with results from computational language 
learning is a worthwhile pursuit that may inform 
both disciplines.  In this case the theoretical princi-
ple of Richness of the Base has provided a novel 
solution to a learning problem, but at the same 
time, this work also informs theoretical OT by 
providing a formal characterization of this theo-
retical principle. Future work includes testing on 
larger, more realistic languages, including lan-
guage data with noise and variation, in order to 
determine the algorithm’s resistance to noise and 
ability to model variable grammars like those ob-
served in natural languages and in human language 
acquisition.  
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