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Introduction

The HLT-NAACL 2006 Workshop on Statistical Machine Translation (WMT-06) took place on
Thursday, June 8 and Friday, June 9 in New York City, immediately following the Human Language
Technology Conference — North American Chapter of the Association for Computational Linguistics
Annual Meeting, which was hosted by New York University.

This is the second time that this workshop has been held. The first time was last year as part of the ACL
2005 Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond,
which was a merger of two workshops that were originally proposed as independent events.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source and target language.
In this workshop we encouraged researchers to investigate ways to improve the performance of SMT
systems for diverse languages, including morphologically more complex languages and languages with
partial free word order.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation,
we conducted a shared task that brought together machine translation systems for an evaluation on
previously unseen data. This year’s task resembled the one from last year’s in many ways, but also
included a manual evaluation of MT system output and focused on translation from English into other
languages, whereas most other evaluations focus on translation info English.

The results of the shared task were announced at the workshop, and these proceedings also include an
overview paper for the shared task that summarizes the results, as well as provides information about
the data used and any procedures that were followed in conducting or scoring the task. In addition,
there are short papers from each participating team that describe their underlying system in some detail.

The first day of the workshop, Thursday, June 8 was dedicated to full paper presentations, whereas the
second day, Friday June 9 was mainly dedicated to system descriptions and discussions from teams that
have participated in the shared task.

The workshop attracted a considerably larger number of submissions compared to last year’s workshop.
In total, WMT-06 featured 13 full paper oral presentations and 12 shared task presentations. The invited
talk was given by Kevin Knight of the Information Sciences Institute/University of Southern California.

We would like to thank the members of the Program Committee for their timely reviews. We are also
indebted to the many volunteers who served as judges in the manual evaluation of the shared task.

Philipp Koehn and Christof Monz
Co-Chairs

iii






Organizers:

Philipp Koehn, Univeristy of Edinburgh, UK
Christof Monz, Queens Mary, Univeristy of London, UK

Program Committee:

Yaser Al-Onaizan, IBM, USA

Bill Byrne, University of Cambridge, UK

Chris Callison-Burch, University of Edinburgh, UK
Francisco Casacuberta, University of Valencia, Spain

David Chiang, ISI/University of Southern California, UK
Stephen Clark, Oxford University, UK

Marcello Federico, ITC-IRST, Italy

George Foster, Canada National Research Council, Canada
Alexander Fraser, ISI/University of Southern California, USA
Ulrich Germann, University of Toronto, Canada

Jan Hajic, Charles University, Czech Republic

Kevin Knight, ISI/University of Southern California, USA
Greg Kondrak, University of Alberta, Canada

Shankar Kumar, Google, USA

Philippe Langlais, University of Montreal, Canada

Daniel Marcu, ISI/University of Southern California, USA
Dan Melamed, New York University, USA

Franz-Josef Och, Google, USA

Miles Osborne, University of Edinburgh, UK

Philip Resnik, University of Maryland, USA

Libin Shen, University of Pennsylvania, USA

Wade Shen, MIT-Lincoln Labs, USA

Michel Simard, Canada National Research Council, Canada
Eiichiro Sumita, ATR Spoken Language Translation Research Laboratories, Japan
Joerg Tiedemann, University of Groningen, Netherlands
Christoph Tillmann, IBM, USA

Taro Watanabe, NTT, Japan

Dekai Wu, HKUST, China

Richard Zens, RWTH Aachen, Germany

Additional Reviewers:

Colin Cherry, University of Alberta, Canada
Fatiha Sadat, Canada National Research Council, Canada
Tarek Sherif, University of Alberta, Canada

Invited Speaker:
Kevin Knight, ISI/University of Southern California, USA






Table of Contents

Morpho-syntactic Information for Automatic Error Analysis of Statistical Machine Translation Output
Maja Popovic, Adria de Gispert, Deepa Gupta, Patrik Lambert, Hermann Ney, José B. Marifio,
Marcello Federico and Rafael Banchs ........ ... 1

Initial Explorations in English to Turkish Statistical Machine Translation
ilknur Durgar El-Kahlout and Kemal Oflazer ......... ... ... i i 7

Morpho-syntactic Arabic Preprocessing for Arabic to English Statistical Machine Translation
Anas El Isbihani, Shahram Khadivi, Oliver Bender and Hermann Ney ...................... 15

Quasi-Synchronous Grammars: Alignment by Soft Projection of Syntactic Dependencies
David Smith and Jason Eisner .. ... e 23

Why Generative Phrase Models Underperform Surface Heuristics
John DeNero, Dan Gillick, James Zhang and Dan Klein ................................... 31

Phrase-Based SMT with Shallow Tree-Phrases
Philippe Langlais and Fabrizio Gotti........... ..o i 39

Searching for alignments in SMT. A novel approach based on an Estimation of Distribution Algorithm
Luis Rodriguez, Ismael Garcia-Varea and Jose A. GAmez . ............cooviiiiiiieninnn... 47

Discriminative Reordering Models for Statistical Machine Translation
Richard Zens and Hermann Ney . ...... ... e i 55

Generalized Stack Decoding Algorithms for Statistical Machine Translation
Daniel Ortiz-Martinez, Ismael Garcia-Varea and Francisco Casacuberta..................... 64

N-Gram Posterior Probabilities for Statistical Machine Translation
Richard Zens and Hermann Ney .. ...t e iiiieee e 72

Partitioning Parallel Documents Using Binary Segmentation
Jia Xu, Richard Zens and Hermann Ney . .........ooiiiiiii i 78

Contextual Bitext-Derived Paraphrases in Automatic MT Evaluation
Karolina Owczarzak, Declan Groves, Josef Van Genabith and Andy Way.................... 86

How Many Bits Are Needed To Store Probabilities for Phrase-Based Translation?
Marcello Federico and Nicola Bertoldi............ ... 94

Manual and Automatic Evaluation of Machine Translation between European Languages
Philipp Koehn and Christof MONZ . .. ...ttt e eeiiee e 102

NTT System Description for the WMT2006 Shared Task
Taro Watanabe, Hajime Tsukada and Hideki Isozaki ........................ ..., 122

vii



Mood at work: Ramses versus Pharaoh
Alexandre Patry, Fabrizio Gotti and Philippe Langlais................. ..., 126

Stochastic Inversion Transduction Grammars for Obtaining Word Phrases for Phrase-based Statistical
Machine Translation
Joan Andreu Sanchez and José Miguel Benedi................. ... i, 130

PORTAGE: with Smoothed Phrase Tables and Segment Choice Models
Howard Johnson, Fatiha Sadat, George Foster, Roland Kuhn, Michel Simard, Eric Joanis and
Samuel Larkin . .. ... 134

Syntax Augmented Machine Translation via Chart Parsing
Andreas Zollmann and Ashish Venugopal . ......... ... .. i 138

TALP Phrase-based statistical translation system for European language pairs
Marta R. Costa-jussa, Josep M. Crego, Adria de Gispert, Patrik Lambert, Maxim Khalilov, José
B. Marifo, José A. R. Fonollosa and Rafael Banchs ............ ... ... ... . ... 142

Phramer - An Open Source Statistical Phrase-Based Translator
Marian Olteanu, Chris Davis, Ionut Volosen and Dan Moldovan........................... 146

Language Models and Reranking for Machine Translation
Marian Olteanu, Pasin Suriyentrakorn and Dan Moldovan ................................ 150

Constraining the Phrase-Based, Joint Probability Statistical Translation Model
Alexandra Birch, Chris Callison-Burch, Miles Osborne and Philipp Koehn................. 154

Microsoft Research Treelet Translation System: NAACL 2006 Europarl Evaluation
Arul Menezes, Kristina Toutanova and Chris Quirk . ..................................... 158

N-gram-based SMT System Enhanced with Reordering Patterns
Josep M. Crego, Adria de Gispert, Patrik Lambert, Marta R. Costa-jussa, Maxim Khalilov, Rafael
Banchs, José B. Marifio and José A. R. Fonollosa . .........ooviiii i 162

The LDV-COMBO system for SMT
Jestis Giménez and LIuis MArqQUeZz .. ......ooiin e 166

viii



Conference Program

Thursday, June 8, 2006

8:45-9:00

9:00-9:30

9:30-10:00

10:00-10:30

10:30-11:00

11:00-11:30

11:30-12:00

12:00-12:30

12:30-14:00

Opening Remarks

Session 1: Paper Presentations

Morpho-syntactic Information for Automatic Error Analysis of Statistical Machine
Translation Output

Maja Popovic, Adria de Gispert, Deepa Gupta, Patrik Lambert, Hermann Ney, José

B. Marifio, Marcello Federico and Rafael Banchs

Initial Explorations in English to Turkish Statistical Machine Translation
ilknur Durgar El-Kahlout and Kemal Oflazer

Morpho-syntactic Arabic Preprocessing for Arabic to English Statistical Machine
Translation

Anas El Isbihani, Shahram Khadivi, Oliver Bender and Hermann Ney

Coffee Break

Session 2: Paper Presentations

Quasi-Synchronous Grammars: Alignment by Soft Projection of Syntactic Depen-
dencies

David Smith and Jason Eisner

Why Generative Phrase Models Underperform Surface Heuristics
John DeNero, Dan Gillick, James Zhang and Dan Klein

Phrase-Based SMT with Shallow Tree-Phrases
Philippe Langlais and Fabrizio Gotti

Lunch

ix



Thursday, June 8, 2006 (continued)
Session 3: Paper Presentations

14:00-14:30  Searching for alignments in SMT. A novel approach based on an Estimation of Distribution
Algorithm
Luis Rodriguez, Ismael Garcia-Varea and Jose A. Gdmez

14:30-15:30 Invited Talk by Kevin Knight

15:30-16:00  Coffee Break

Session 4: Paper Presentations

16:00-16:30  Discriminative Reordering Models for Statistical Machine Translation
Richard Zens and Hermann Ney

16:30-17:00  Generalized Stack Decoding Algorithms for Statistical Machine Translation
Daniel Ortiz-Martinez, Ismael Garcia-Varea and Francisco Casacuberta

17:00-17:30  N-Gram Posterior Probabilities for Statistical Machine Translation
Richard Zens and Hermann Ney

Friday, June 9, 2006
Session 5: Paper Presentations

9:00-9:30 Fartitioning Parallel Documents Using Binary Segmentation
Jia Xu, Richard Zens and Hermann Ney

9:30-10:00 Contextual Bitext-Derived Paraphrases in Automatic MT Evaluation
Karolina Owczarzak, Declan Groves, Josef Van Genabith and Andy Way

10:00-10:30 How Many Bits Are Needed To Store Probabilities for Phrase-Based Translation?
Marcello Federico and Nicola Bertoldi

10:30-11:00 Coffee Break



Friday, June 9, 2006 (continued)

11:00-11:30

11:30-11:45

11:45-12:00

12:00-14:00

14:00-14:15

14:15-14:30

14:30-14:45

14:45-15:00

15:00-15:15

15:15-15:30

15:30-16:00

Session 6: Shared Task

Manual and Automatic Evaluation of Machine Translation between European Languages
Philipp Koehn and Christof Monz

NTT System Description for the WMT2006 Shared Task
Taro Watanabe, Hajime Tsukada and Hideki Isozaki

Mood at work: Ramses versus Pharaoh
Alexandre Patry, Fabrizio Gotti and Philippe Langlais

Lunch
Session 7: Shared Task

Stochastic Inversion Transduction Grammars for Obtaining Word Phrases for Phrase-
based Statistical Machine Translation
Joan Andreu Sanchez and José Miguel Benedi

PORTAGE: with Smoothed Phrase Tables and Segment Choice Models
Howard Johnson, Fatiha Sadat, George Foster, Roland Kuhn, Michel Simard, Eric Joanis
and Samuel Larkin

Syntax Augmented Machine Translation via Chart Parsing
Andreas Zollmann and Ashish Venugopal

TALP Phrase-based statistical translation system for European language pairs
Marta R. Costa-jussa, Josep M. Crego, Adria de Gispert, Patrik Lambert, Maxim Khalilov,

José B. Marino, José A. R. Fonollosa and Rafael Banchs

Phramer - An Open Source Statistical Phrase-Based Translator
Marian Olteanu, Chris Davis, Ionut Volosen and Dan Moldovan

Language Models and Reranking for Machine Translation
Marian Olteanu, Pasin Suriyentrakorn and Dan Moldovan

Coffee Break

xi



Friday, June 9, 2006 (continued)

16:00-16:15

16:15-16:30

16:30-16:45

16:45-17:00

17:00-18:00

Session 8: Shared Task

Constraining the Phrase-Based, Joint Probability Statistical Translation Model
Alexandra Birch, Chris Callison-Burch, Miles Osborne and Philipp Koehn

Microsoft Research Treelet Translation System: NAACL 2006 Europarl Evaluation
Arul Menezes, Kristina Toutanova and Chris Quirk

N-gram-based SMT System Enhanced with Reordering Patterns
Josep M. Crego, Adria de Gispert, Patrik Lambert, Marta R. Costa-jussa, Maxim Khalilov,
Rafael Banchs, José B. Marifio and José A. R. Fonollosa

The LDV-COMBO system for SMT
Jestus Giménez and Lluis Marquez

Panel Discussion

Xii



Morpho-syntactic Information for Automatic Error Analysis of Statistical
Machine Translation Output

Patrik Lambert f
Rafael Banchg

Adri a de Gispert
Jose B. Marifiof

Deepa Gupta
Marcello Federico*

Maja Popovic*
Hermann Ney*

1

* Lehrstuhl fir Informatik VI - Computer Science Department, RWTH Aachen University, Aachen, Germany

T TALP Research Center, Universitat Pétinica de Catalunya (UPC), Barcelona, Spain

L+ ITC-irst, Centro per la Ricerca Scientifica e Tecnologica, Trento, Italy

{popovic,ney }@informatik.rwth-aachen.de
{gupta,federico l@ite.it

Abstract

Evaluation of machine translation output
is an important but difficult task. Over the
last years, a variety of automatic evalua-
tion measures have been studied, some of
them like Word Error Rate (WER), Posi-
tion Independent Word Error Rate (PER)
and BLEU and NIST scores have become
widely used tools for comparing different
systems as well as for evaluating improve-
ments within one system. However, these
measures do not give any details about
the nature of translation errors. Therefore
some analysis of the generated output is
needed in order to identify the main prob-
lems and to focus the research efforts. On
the other hand, human evaluation is a time
consuming and expensive task. In this
paper, we investigate methods for using
of morpho-syntactic information for auto-
matic evaluation: standard error measures
WER and PER are calculated on distinct
word classes and forms in order to get a
better idea about the nature of translation
errors and possibilities for improvements.

Introduction

{lambert,banchs

{agispert,canton t@gps.tsc.upc.es
@gps.tsc.upc.es

A variety of automatic evaluation measures have
been proposed and studied over the last years, some
of them are shown to be a very useful tool for com-
paring different systems as well as for evaluating
improvements within one system. The most widely
used are Word Error Rate (WER), Position Indepen-
dent Word Error Rate (PER), the BLEU score (Pap-
ineni et al., 2002) and the NIST score (Doddington,
2002). However, none of these measures give any
details about the nature of translation errors. A rela-
tionship between these error measures and the actual
errors in the translation outputs is not easy to find.
Therefore some analysis of the translation errors is
necessary in order to define the main problems and
to focus the research efforts. A framework for hu-
man error analysis and error classification has been
proposed in (Vilar et al., 2006), but like human eval-
uation, this is also a time consuming task.

The goal of this work is to present a framework
for automatic error analysis of machine translation
output based on morpho-syntactic information.

2 Related Work

There is a number of publications dealing with
various automatic evaluation measures for machine
translation output, some of them proposing new
measures, some proposing improvements and exten-
sions of the existing ones (Doddington, 2002; Pap-
ineni et al., 2002; Babych and Hartley, 2004; Ma-

The evaluation of the generated output is an impotusov et al., 2005). Semi-automatic evaluation mea-
tant issue for all natural language processing (NLPjures have been also investigated, for example in
tasks, especially for machine translation (MT). Au{NieRen et al., 2000). An automatic metric which
tomatic evaluation is preferred because human evalses base forms and synonyms of the words in or-
uation is a time consuming and expensive taskler to correlate better to human judgements has been

1
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proposed in (Banerjee and Lavie, 2005). HoweveB.1 Syntactic differences

error analysis is still a rather unexplored area. '%djectives in the Spanish language are usually
framework for human error analysis and error Clas'laced after the corresponding noun, whereas in En-

sification has been proposed in (Vilar et al., 2006 lish is the other way round. Although in most cases
and a det_ailed analysis Of the obtained results h e phrase based translation system is able to han-
be'en carried out. Automatic methods for erroranaie these local permutations correctly, some errors
ysis to our knpwlgdge have not been studied yet. are still present, especially for unseen or rarely seen
'V'a”y_ pL_JbIlcatlo_ns propose the_ use of morIOhOhoun-adjective groups. In order to investigate this
syntactic information for improving the perfor- e of errors, we extract the nouns and adjectives
mance of a statistical machine translation systemd.; .\ both the reference translations and the sys-
Various methods for treating morphological andgy, oytput and then calculate WER and PER. If the
syntactical differences between German and Engligfiarence between the obtained WER and PER is
are investigated in (NiefSen and Ney, 2000; NieBeg o this indicates reordering errors: a number of

and Ney, 2001a; NieBen and Ney, 2001b). Moy, g and adjectives is translated correctly but in the
phological analysis has been used for improving,.ong order.

Arabic-English translation (Lee, 2004), for Serbian-
English translation (Popo¥iet al., 2005) as well as 3 - Spanish inflections

for Czech-English translation (Goldwater and Mc-

Closky, 2005). Inflectional morphology of SpanishSPanish has a rich inflectional morphology, espe-
verbs is dealt with in (Popogiand Ney, 2004: de Cially for verbs. Person and tense are expressed

Gispert et al., 2005). To the best of our knowledge?y the suffix so that many different full forms of
the use of morpho-syntactic information for erroiPN€ Verb exist. Spanish adjectives, in contrast to
analysis of translation output has not been investEnglish, have four possible inflectional forms de-

gated so far. pending on gender and number. Therefore the er-
ror rates for those word classes are expected to be
3 Morpho-syntactic Information and higher for Spanish than for English. Also, the er-

ror rates for the Spanish base forms are expected to
be lower than for the full forms. In order to investi-
We propose the use of morpho-syntactic informagate potential inflection errors, we compare the PER
tion in combination with the automatic evaluationfor verbs, adjectives and nouns for both languages.
measures WER and PER in order to get more detaff®r the Spanish language, we also investigate differ-
about the translation errors. ences between full form PER and base form PER:
We investigate two types of potential problems fofhe larger these differences, more inflection errors
the translation with the Spanish-English languag@re present.
pair:

Automatic Evaluation

4 Experimental Settings

e syntactic differences between the two lan-
guages considering nouns and adjectives 4.1 Taskand Corpus
The corpus analysed in this work is built in the
¢ inflections in the Spanish language considerinffamework of the TC-Star project. It contains more
mainly verbs, adjectives and nouns than one million sentences and about 35 million run-
ning words of the Spanish and English European
As any other automatic evaluation measurefarliament Plenary Sessions (EPPS). A description
these novel measures will be far from perfect. Posfthe EPPS data can be found in (Vilar et al., 2005).
sible POS-tagging errors may introduce additiondh order to analyse effects of data sparseness, we
noise. However, we expect this noise to be suffihave randomly extracted a small subset referred to
ciently small and the new measures to be able to givas 13k containing about thirteen thousand sentences
sufficiently clear ideas about particular errors. and 370k running words (about 1% of the original



Training corpus: Spanish \ English Spanish-~English || WER | PER | BLEU

full  Sentences 1281427 full | baseline 345 | 25,5| 54.7
Running Words || 36578514| 34918192 reorder 335 | 25.2| 56.4
Vocabulary 153124 | 106496 13k | baseline 41.8 | 30.7| 43.2
Singletons [%0] 35.2 36.2 reorder 38.9 | 29.5| 485

13k  Sentences 13360
Running Words || 385198 | 366055 English—Spanish|| WER | PER | BLEU
Vocabulary 22425 16326 full | baseline 39.7 | 30.6| 47.8
Singletons [%0] 47.6 43.7 reorder 39.6 | 30.5| 48.3

Dev: Sentences 1008 13k | baseline 49.6 | 37.4| 36.2
Running Words 25778 26070 reorder 48.1 | 36.5| 37.7
Distinct Words 3895 3173
OQVs (full) [%0] 0.15 0.09 Table 2: Translation Results [%0]
OOVs (13K) [%] | 2.7 17

Test: Sentences 840 1094 jective groups in the source language have been ap-
Running Words || 22774 26917 | plied. Ifthe source language is Spanish, each noun is
Distinct Words 4081 3958 moved behind the corresponding adjective group. If
OQVs (full) [%] 0.14 0.25 the source language is English, each adjective group
OO0Vs (13Kk) [%] 2.8 2.6 is moved behind the corresponding noun. An adverb

followed by an adjective (e.g. "more important”) or
Table 1: Corpus statistics for the Spanish-Englistwo adjectives with a coordinate conjunction in be-
EPPS task (running words include punctuatiomween (e.g. "economic and political”) are treated as
marks) an adjective group. Standard translation results are
presented in Table 2.

corpus). The statistics of the corpora can be seen i) gor Analysis

Table 1.
5.1 Syntactic errors

4.2 Translation System As explained in Section 3.1, reordering errors due

The statistical machine translation system used o syntactic differences between two languages have
this work is based on a log-linear combination obeen measured by the relative difference between
seven different models. The mostimportant ones alWER and PER calculated on nouns and adjectives.
phrase based models in both directions, additionallgorresponding relative differences are calculated
IBM1 models at the phrase level in both directionsilso for verbs as well as adjectives and nouns sep-
as well as phrase and length penalty are used. #ately.

more detailed description of the system can be found Table 3 presents the relative differences for the
in (Vilar et al., 2005; Zens et al., 2005). English and Spanish output. It can be seen that
the PER/WER difference for nouns and adjectives
is relatively high for both language pairs (more than
The translation experiments have been done in bo#0%), and for the English output is higher than for
translation directions on both sizes of the corpus. Ithe Spanish one. This corresponds to the fact that
order to examine improvements of the baseline syfhe Spanish language has a rather free word order:
tem, a new system with POS-based word reorderingdthough the adjective usually is placed behind the
of nouns and adjectives as proposed in (Popawid noun, this is not always the case. On the other hand,
Ney, 2006) is also analysed. Adjectives in the Sparadjectives in English are always placed before the
ish language are usually placed after the correspondarresponding noun. It can also be seen that the
ing noun, whereas for English it is the other waydifference is higher for the reduced corpus for both
round. Therefore, local reorderings of nouns and adutputs indicating that the local reordering problem

4.3 Experiments



English output 1— LR English output | PER
full | nouns+adjectiveg 24.7 full | verbs 44.8
+reordering 20.8 adjectives|| 27.3
verbs 4.1 nouns 23.0
adjectives 10.2 13k | verbs 56.1
nouns 20.1 adjectives|| 38.1
13k | nouns+adjectiveg§ 25.7 nouns 31.7
+reordering 20.1
verbs 4.6 Spanish output|| PER
adjectives 8.4 full | verbs 61.4
nouns 19.1 adjectives|| 41.8
nouns 28.5
Spanish output 1 - i 13k | verbs 73.0
full | nouns+adjectiveg 21.5 adjectives|| 50.9
+reordering 20.3 nouns 37.0
verbs 3.3
adjectives 5.6 Table 4: PER [%)] for different word classes
nouns 16.9
13k 2?§:rz;er1idnjgctlves= i;g portant issue_for the Spanish_—En_insh language pe_Iir.
verbs 39 P'ER/WER difference for adjectives anq nouns is
adjectives 54 higher than for verbs, f_or the nouns being S|gn|f|_—
NOUNS 193 cantly higher than for adjectives. The reason for this

is probably the fact that word order differences in-
olving only the nouns are also present, for example
export control = control de exportam”.

Table 3: Relative difference between PER an
WER [%)] for different word classes

5.2 Inflectional errors

is more important when only small amount of train-Table 4 presents the PER for different word classes
ing data is available. As mentioned in Section 3.1fpr the English and Spanish output respectively. It
the phrase based translation system is able to gatan be seen that all PERs are higher for the Spanish
erate frequent noun-adjective groups in the correcutput than for the English one due to the rich in-
word order, but unseen or rarely seen groups intrdlectional morphology of the Spanish language. It
duce difficulties. can be also seen that the Spanish verbs are espe-
Furthermore, the results show that the POS-basedlly problematic (as stated in (Vilar et al., 2006))
reordering of adjectives and nouns leads to a deeaching 60% of PER for the full corpus and more
crease of the PER/WER difference for both outthan 70% for the reduced corpus. Spanish adjectives
puts and for both corpora. Relative decrease of theso have a significantly higher PER than the English
PER/WER difference is larger for the small corpu®nes, whereas for the nouns this difference is not so
than for the full corpus. It can also be noted that thiigh.
relative decrease for both corpora is larger for the Results of the further analysis of inflectional er-
English output than for the Spanish one due to fremrs are presented in Table 5. Relative difference
word order - since the Spanish adjective group is ndtetween full form PER and base form PER is sig-
always placed behind the noun, some reorderings mificantly lower for adjectives and nouns than for
English are not really needed. verbs, thus showing that the verb inflections are the
For the verbs, PER/WER difference is less thamain source of translation errors into the Spanish
5% for both outputs and both training corpora, infanguage.
dicating that the word order of verbs is not an im- Furthermore, it can be seen that for the small cor-



Spanish output| 1 - £2% sures are very important to understand what are the

full | verbs 26.9 weaknesses of a statistical machine translation sys-
adjectives 9.3 tem, and what are the best ways and methods for
nouns 8.4 improvements.

13k | verbs 23.7 For our future work, we plan to extend the pro-
adjectives| 15.1 posed measures in order to carry out a more de-
nouns 6.5 tailed error analysis, for example examinating dif-

ferent types of inflection errors for Spanish verbs.

Table 5: Relative difference between PER of bas@e aso plan to investigate other types of translation
forms and PER of full forms [%] for the Spanisherrors and other language pairs.

output
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Abstract

This paper presents some very prelimi-
nary results for and problems in develop-
ing a statistical machine translation sys-
tem from English to Turkish. Starting with
a baseline word model trained from about
20K aligned sentences, we explore various
ways of exploiting morphological struc-
ture to improve upon the baseline sys-
tem. As Turkish is a language with com-
plex agglutinative word structures, we ex-
periment with morphologically segmented
and disambiguated versions of the parallel
texts in order to also uncover relations be-
tween morphemes and function words in
one language with morphemes and func-
tions words in the other, in addition to re-
lations between open class content words.
Morphological segmentation on the Turk-
ish side also conflates the statistics from
allomorphs so that sparseness can be al-
leviated to a certain extent. We find
that this approach coupled with a simple
grouping of most frequent morphemes and
function words on both sides improve the
BLEU score from the baseline of 0.0752
to 0.0913 with the small training data. We
close with a discussion on why one should
not expect distortion parameters to model
word-local morpheme ordering and that a
new approach to handling complex mor-
photactics is needed.
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1 Introduction

The availability of large amounts of so-called par-
allel texts has motivated the application of statisti-
cal techniques to the problem of machine translation
starting with the seminal work at IBM in the early
90’s (Brown et al., 1992; Brown et al., 1993). Statis-
tical machine translation views the translation pro-
cess as a noisy-channel signal recovery process in
which one tries to recover the input “signa’from

the observed output signiat

Early statistical machine translation systems used
a purely word-based approach without taking into
account any of the morphological or syntactic prop-
erties of the languages (Brown et al., 1993). Lim-
itations of basic word-based models prompted re-
searchers to exploit morphological and/or syntac-
tic/phrasal structure (Niessen and Ney, (2004),
Lee,(2004), Yamada and Knight (2001), Marcu and
Wong (2002), Och and Ney (2004),Koehn et al.
(2003), among others.)

In the context of the agglutinative languages sim-
ilar to Turkish (in at least morphological aspects) ,
there has been some recent work on translating from
and to Finnish with the significant amount of data
in the Europarl corpus. Although the BLEU (Pap-
ineni et al., 2002) score from Finnish to English is
21.8, the score in the reverse direction is reported
as 13.0 which is one of the lowest scores in 11 Eu-
ropean languages scores (Koehn, 2005). Also, re-
portedfrom andto translation scores for Finnish are
the lowest on average, even with the large number of

'DenotingEnglishandFrenchas used in the original IBM

Project which translated from French to English using thralpa
lel text of the Hansards, the Canadian Parliament Procgedin

Proceedings of the Workshop on Statistical Machine Translation, pages 7-14,
New York City, June 2006. (©)2006 Association for Computational Linguistics



sentences available. These may hint at the fact thatailable from certain news sources. Although we
standard alignment models may be poorly equippethve collected about 300K sentence parallel texts,
to deal with translation from a poor morphology lan-most of these require significant clean-up (from
guage like English to an complex morphology lanHTML/PDF sources) and we have limited our train-
guage like Finnish or Turkish. ing data in this paper to about 22,500 sentence sub-

This paper presents results from some very préet of these parallel texts which comprises the sub-
liminary explorations into developing an English-to-set of sentences of 40 words or less from the 30K
Turkish statistical machine translation system angientences that have been cleaned-up and sentence
discusses the various problems encountered. Staatigned?:3
ing with a baseline word model trained from about The main aspect that would have to be seri-
20K aligned sentences, we explore various ways @fusly considered first for Turkish in SMT is the
exploiting morphological structure to improve uponproductive inflectional and derivational morphol-
the baseline system. As Turkish is a language witbgy. Turkish word forms consist of morphemes
agglutinative word structures, we experiment wittconcatenated to a root morpheme or to other mor-
morphologically segmented and disambiguated vephemes, much like “beads on a string” (Oflazer,
sions of the parallel text, in order to also uncoveil994). Except for a very few exceptional cases,
relations between morphemes and function words e surface realizations of the morphemes are con-
one language with morphemes and functions word$tioned by various local regular morphophonemic
in the other, in addition to relations between opefprocesses such as vowel harmony, consonant assim-
class content words; as a cursory analysis of seitation and elisions. Further, most morphemes have
tence aligned Turkish and English texts indicatephrasal scopes: although they attach to a partic-
that translations of certain English words are actudlar stem, their syntactic roles extend beyond the
ally morphemes embedded into Turkish words. Wetems. The morphotactics of word forms can be
choose a morphological segmentation representguite complex especially when multiple derivations
tion on the Turkish side which abstracts from wordare involved. For instance, the derived modifier
internal morphological variations and conflates theaglamlagirdi gimizdaki  “ would be bro-
statistics from allomorphs so that data sparseneken into surface morphemes as follows:
can be alleviated to a certain extent.

This paper is organized as follows: we start with
the some of the issues of building an SMT system Starting from an adjectival rosiajlam, this word
into Turkish followed by a short overview Turk- form first derives a verbal stesajlamlag meaning
ish morphology to motivate its effect on the word‘to become strong”. A second suffix, the causative
alignment problem with English. We then presensurface morphemetir which we treat as a verbal
results from our explorations with a baseline syseerivation, forms yet another verbal stem meaning
tem and with morphologically segmented paralletto cause to become strong” or “to make strong (for-
aligned texts, and conclude after a short discussionify)”. The immediately following participle suffix

saglam+lag-tir+di g+imiz+da+ki

. - 2\We are rapidly increasing our cleaned-up text and expect to
2 Issues in building a SMT system for clean up and sentence align all within a few months.
Turkish 3As the average Turkish word in running text has between
2 and 3 morphemes we limited ourselves to 40 words in the
. . . parallel texts in order not to exceed the maximum number of
The first step of building an SMT system is the comg, J <" recommended for GIZA++ training.

pilation of a large amount of parallel texts which  “Ljterally, “(the thing existing) at the time we caused (seme

turns out to be a significant problem for the TurkisHhin@llé to becomedstrotr;g:- ?bvgouily tthist is rt]r?t % _Vf\flprdktha* on
. . uld use everyday, but already illustrates the difficukyoae
and English pair. There ar_e not many_ sources Qf Suéﬁrkish “word” would have to be aligned to a possible discon-
texts and most of what is electronically availabl@inues sequence of English words if we were to attempt a word
are parallel texts diplomatic or legal domains frorrevel alignment. Turkish words (excluding noninflecting-fr
. .. guent words such as conjunctions, clitics, etc.) found picisl
NATO, EU, and foreign ministry sources. Thererunning text average about 10 letters in length. The average

is also a limited amount data parallel news corpusumber of bound morphemes in such words is about 2.



+d1g, produces a participial nominal, which inflectsthe task of generating the correct sequence of mor-
in the normal pattern for nouns (here, fot per- phemes in a word (which is really a local word-
son plural possessor which marks agreement withternal problem to be solved) in addition to gen-
the subject of the verb, and locative case). The finarating the correct sequence of words.
suffix, +ki, is a relativizer, producing a word which
functions as a modifier in a sentence, modifying 8 Aligning English—Turkish Sentences
noun somewhere to the right.

However, if one further abstracts from the mor/f an alignment between the components of paral-
phophonological processes involved one could get'ﬁ' Turkish and English sentences is computed, one

lexical form obtains an alignment like the one shown in Figure
5 _ 1, where it is clear that Turkish words may actually
saglam+|IAs-DHr+DHk+HmHz+DA+ki correspond to whole phrases in the English sentence.

In this representation, the lexical morphemes ex-
cept the lexical root utilize meta-symbols that stand
for a set of graphemes which are selected on the
surface by a series of morphographemic processes
which are rooted in morphophonological processes
some of which are discussed below, but have nothyhen, you called, I was going home from school.
ing whatsoever with any of the syntactic and se-
mantic relationship that word is involved in. For
instance,A stands for back and unrounded vowels _ _

a and e, in orthography,H stands for high vow- Figure 1: Word level alignment between a Turkish
els1, i, u and i, and D stands ford andt, repre- and an English sentence

senting alveolar consonants. Thus, a lexical mor-

pheme represented afHr actually represents 8 One major problem with this situation is that even
possible allomorphs, which appear as onerdfr, if a word occurs many times in the English side,
+dir, +dur, +dUr, +tir, +tir, +tur, +t Ur depending the actual Turkish equivalent could be either miss-
on the local morphophonemic context. Thus at thisig from the Turkish part, or occur with a very low
level of representation words that look very differfrequency, but many inflected variants of the form
ent on the surface, look very similar. For instancegould be present. For example, Table 1 shows the
although the wordmasasindéon his table’ anddef- occurrences of different forms for the root word
terinde’in his notebook’ in Turkish look quite dif- faaliyet 'activity’ in the parallel texts we experi-
ferent, the lexical morphemes except for the roamented with. Although, many forms of the root
are the samemasasindahas the lexical structure word appear, none of the forms appear very fre-
masa+sH+ndA, while defterinde has the lexical quently and one may even have to drop occurrences
structuredefter+sH+ndA . of frequency 1 depending on the word-level align-

The use of this representation is particularly imment model used, further worsening the sparseness
portant for Turkish for the following reason. Allo- problem?
morphs which differ because of local word-internal To overcome this problem and to get the max-
morphographemic and morphotactical constraintenum benefit from the limited amount of parallel
almost always correspond to the same words or unitexts, we decided to perform morphological analy-
in English when translated. When such units argis of both the Turkish and the English texts to be
considered by themselves as the units in alignmerdble to uncover relationships between root words,
statistics get fragmented and the model quality sutuffixes and function words while aligning them.
fers. On the other hand, this representation if di-
rectly used in a standard SMT model such as IBM SA noun root in _Turkish may have a_bout hl_Jnd_red inflected

. . . forms and substantially more if productive derivations @a-
Model 4, will most likely cause problems, since

' ) ) sidered, meanwhile verbs can have thousands of inflected and
now, the distortion parameters will have to take omerived forms if not more.

Aradiginda, okuldan eve gidiyordum.




ity +NNS The alignments we expected to obtain are
depicted in Figure 2 for the example sentence given
earlier in Figure 1.

Table 1: Forms of the worthaliyet'activity’

Wordform Count Gloss

faaliyet 3 ’,act|V|ty’ o Table 2: The set of tags used to mark explicit mor-
faal!yetg 1 t.o f[he ac_tlylty phemes in English

faaliyetinde 1 'in its activity’ )

faaliyetler 3 "activities’ Tag Meaning

faaliyetlere 6 'to the activities’ JJR Adjective, comparative

faaliyetleri 7 'their activities’ JJS Adjective, superlative

faaliyetlerin 7 'of the activities’ NNS Noun, plural

faaliyetlerinde 1 'in their activities’ POS Possessive ending

faaliyetlerine 5 'to their activities’ RBR Adverb, comparative

faaliyetlerini 1 'their activities (acc.)’ RBS Adverb, superlative

faaliyetlerinin 2 'of their activities’ VB \Verb, base form

faaliyetleriyle 1 'with their activities’ VBD Verb, past tense

faaliyette 2 in (the) activity’ VBG Verb, gerund or present participle
faaliyetteki 1 ‘that which is in activity’ VBN Verb, past participle

Total 41 VBP Verb, non3rd person singular present

VBZ Verb, 3rd person singular present

On the Turkish side, we extracted the lexical mor-
phemes of each word using a version of the mor- Aradiginda, okuldan eve gidiyordum.
phological analyzer (Oflazer, 1994) that segmented v
the Tur_kish words along mo_rpheme boundaries an(‘;sl]ra+D|_|k+|_|In+DA okul+DAn ev+yA git+Hyor+DH-+m
normalized the root words in cases they were de- _ - N
formed due to a morphographemic process. So e
the wordfaaliyetleriylewhen segmented into lexical
morphemes becomdaaliyet +IAr +sH +ylA. Am-
biguous instances were disambiguated statistically
(Kulekei and Oflazer, 2005).

Similarly, the English text was tagged using Tree-

Tagger (Schmid, 1994), which provides a Ie_mm‘?—'igure 2: “Morpheme” alignment between a Turkish
and a POS for each word. We augmented this prq-

cess with some additional processing for handlin%lnCI an English sentence

derivational morphology. We then dropped any tags

which did not imply an explicit morpheme (or an4  Experiments

exceptional form). The complete set of tags that are

used from the Penn-Treebank tagset is shown in T¥/e proceeded with the following sequence of exper-
ble 26 To make the representation of the Turkisiments:

texts and English texts similar, tags are marked with (1) Baseline: As a baseline system, we used a
a'+ at the beginning of all tags to indicate that suchPure word-based approach and used Pharaoh Train-
tokens are treated as “morphemes.” For instanc#g tool (2004), to train on the 22,500 sentences, and

the English wordactivitieswas segmented axtiv- decoded using Pharaoh (Koehn et al., 2003) to ob-
tain translations for a test set of 50 sentences. This
®The tagset used by the TreeTagger is a refinement of Penave us a baseline BLEU score of 0.0752.
Treebank tagset where the second letter of the verb part-of- L .
speech tags distinguishes between "be” verbs (B), "havdisre (2) Morpheme Concatenation: We then trained
(H) and other verbs (V),(Schmid, 1994). the same system with the morphemic representation

When you call+ed, | was go+ing home from school

A

When you called, | was going home from school.
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of the parallel texts as discussed above. The de-The aim of this process was two-fold: it let fre-
coder now produced the translations as a sequengeent morphemes to behave as a single token and
of root words and morphemes. The surface wordselp Pharaoh with identification of some of the
were then obtained by just concatenating all thphrases. Also since the number of tokens on both
morphemes following a root word (until the nextsides were reduced, this enabled GIZA++ to produce
root word) taking into just morphographemic rulessomewhat better alignments.
but not any morphotactic constraints. As expected The morpheme level translations that were ob-
this “morpheme-salad” produces a “word-salad”, atained from training with this parallel texts were then
most of the time wrong morphemes are associatembnverted into surface forms by concatenating the
with incompatible root words violating many mor- morphemes in the sequence produced. This resulted
photactic constraints. The BLEU score here waim a BLEU score of 0.0644.
0.0281, substantially worse than the baseline in (1) (5) Morpheme Grouping with Selective Mor-
above. pheme Concatenation: This was the same as (4)
(3) Selective Morpheme Concatenation:With  with the morphemes selectively combined as in (3).
a small script we injected a bit of morphotacticalThe BLEU score of 0.0913 with this approach was
knowledge into the surface form generation processow above the baseline.
and only combined those morphemes following a Table 3 summarizes the results in these five exper-
root word (in the given sequence), that gave rise tignents:
a valid Turkish word form as checked by a morpho-

logical analyzer. Any unused morphemes were ig- Taple 3: BLEU scores for experiments (1) to (4)
nored. This improved the BLEU score to 0.0424

which was still below the baseline. Exp. System BLEU
(4) Morpheme Grouping: Observing that certain (1) Baseline 0.0752

sequence of morphemes in Turkish texts are trans- (2) Morph. Concatenation. 0.0281

lations of some continuous sequence of functional (3)  Selective Morph. Concat. 0.0424

words and tags in English tegts, and that somg mor- (4) Morph. Grouping and Concat. 0.0644
phemes should be allgned qllfferently depending on (5) Morph. Grouping + (3) 0.0913
the other morphemes in their context, we attempted
a morpheme grouping. For example the morpheme
sequence+DHr +mA marks infinitive form of a In an attempt to factor out and see if the transla-
causative verb which in Turkish inflects like a nountions were at all successful in getting the root words
or the lexical morpheme sequeneégAcAk +DHr in the translations we performed the following: We
usually maps to “it/he/she will”. To find such groupsmorphologically analyzed and disambiguated the
of morphemes and functional words, we applied geference texts, and reduced all to sequences of root
sequence of morpheme groupings by extracting fravords by eliminating all the morphemes. We per-
guently occuring n-grams of morphemes as follow#ormed the same for the outputs of (1) (after mor-
(much like the grouping used by Chiang (2005): in ghological analysis and disambiguation), (2) and (4)
series of iterations, we obtained high-frequency biabove, that is, threw away the morphemes ((3) is
grams from the morphemic representation of parathe same as (2) and (5) same as (4) here). The
lel texts, of either morphemes, or of previously suclranslation root word sequences and the reference
identified morpheme groups and neighboring moroot word sequences were then evaluated using the
phemes until up to four morphemes or one root BLEU (which would like to label here as BLEU-r
morpheme could be combined. During this proces®r BLEU root to avoid any comparison to previous
we ignored those combinations that contain punctuesults, which will be misleading. These scores are
ation or a morpheme preceding a root word. A simishown in Figure 4.

lar grouping was done on the English side grouping The results in Tables 3 and 4 indicate that with the
function words and morphemes before and after rostandard models for SMT, we are still quite far from
words. even identifying the correct root words in the trans-
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Table 4: BLEU-r scores for experiments (1), (2) and Table 5: Some good SMT results

(4) Input: international terrorism also remains to be an important
issue .
Baseline ulus+lararasi terorizm de dnem+li kal+mis+tir . bir
Exp. System BLEU
konu ol+acak+tir
: Selective Morpheme Concatenation ulus+lararasi terdrizm
(1) Baseline 0.0955 ol He
. de ol+ma+ya devam et+mek+te+dir onem-+li bir sorun+dur .
(2) Morph. Concatenation. 0.0787 Morpheme Grouping: ulus+lararasi terorizm de dnem-+li bir
(4) Morph. Grouping 0.1224 sorun ol+ma+ya devam et+mek-+te-+dir .

Reference Translation ulus+lararasi terdrizm de dnem+li bir
sorun ol+ma+ya devam et+mek+te+dir .

lations into Turkish, let alone getting the morphemel§Put: the initiation of negotiations will represent the
’ eginning of a next phase in the process of accession

and their sequences right. Although some of thigaseline miizakere+ler+in gor+is+me+ler yap+il+acak bir
may be due to the (relatively) small amount of paralder+ken asama+nin hasar+i stirec+i baglangic+i+ni 15+’

; +4 Selective Morpheme Concatenationinitiation miizakere+ler
lel texts we useq, it may also be the case that spllttlr?%ems" ec+il+me-si+nin baslangic+ bir asamar+si-+ndaiika
the sentences into morphemes can play havoc Witiirec+i+nin ertesi
the alignment process by significantly increasing thtélorlpheme Gfouplngfl gUzakEreﬂekH": ba$|a+ma_l+rst;nln

: slangic+i+ni temsil ed+ecek+tir katilim surec+i+
number qf tokens per sentence espe_mally Wh_en sgggqui agama
tokens align to tokens on the other side that iS quitReference Translation muzakere+ler+in basla+tma+si
far away. katilim stirec+i+nin bir sonra+ki agsama+si+nin basiefgni

temsil ed+ecek+tir
Nevertheless the models we used produce some

quite reasonable translations for a small number of

test sentences. Table 5 shows the two examples of

translations that were obtained using the standagknerate possible legitimate surface words by tak-
models (containing no Turkish specific manipulaing into account morphotactic constraints and mor-
tion except for selective morpheme concatenationphographemic constraints, possibly (and ambigu-
We have marked theurfacemorpheme boundaries ously) filling in any morphemes missing in the trans-
in the translated and reference Turkish texts to idation but actually required by the morphotactic
dicate where morphemes are joined for expositioparadigm. Any ambiguities from the morphologi-
purposes here — they neither appear in the referencal generation could then be filtered by a language
translations nor in the produced translations! model.

Such a bag-of-morphemes approach suggests that
we do not actually try to determine exactly where the
Although our work is only an initial exploration morphemes actually go in the translation but rather
into developing a statistical machine translation sygletermine the root words (including any function
tem from English to Turkish, our experiments atvords) and thenassociatetranslated morphemes
least point out that using standard models to detefith the (bag of the) right root word. The resulting
mine the correct sequence of morphemes within tiEeduence of root words and their bags-of-morpheme
words, using more powerful mechanisms meant t6an be run through a morphological generator which
determine the (longer) sequence of words in seff@n handle all the word-internal phenomena such as
tences, is probably not a good idea. Morpheme oRfOPer morpheme ordering, filling in morphemes or
dering is a very local process and the correct s&ven ignoring spurious morphemes, handling local
quence should be determined locally though the extorphographemic phenomena such as vowel har-
istence of morphemes could be postulated from sef20ny. etc. However, this approach of not placing
tence level features during the translation procesglorphemes into specific position in the translated
Furthermore, insisting on generating the exact s@Utput but just associating them with certain root
quence of morphemes could be an overkill. onvords requires that a significantly different align-
the other hand, a morphological generator coulfle€ntand decoding models be developed.
take aroot word and abag of morphemesnd Another representation option that could be em-

’

5 Discussion
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Abstract sented by a single word in the target language. Some
prefixes can be combined. For example the word
The Arabic language has far richer sys-  wbAlqim( L)L, y which means “and with the pen”)
tems of inflection and derivation than En- 55 4 prefix which is a combination of three pre-
glish which has very little morphology. fixes, namelyw, b andAl. The suffixes we handle
This morphology difference causes alarge p, this paper can not be combined with each other.

gap between the vocabulary sizes in any  Thys, the compound word pattern handled here is
given parallel training corpus. Segmen- “prefixes-stem-suffix”.

tation of inflected Arabic words is a way
to smooth its highly morphological na-
ture. In this paper, we describe some
statistically and linguistically motivated

All possible prefix combinations that do not con-
tain Al allow the stem to have a suffix. Note that
there are other suffixes that are not handled here,

methods for Arabic word segmentation. ~ SUCh @sAt (=), An (u)) andwn (& 5) which make
Then, we show the efficiency of proposed the pI_uraI form of a word. The reason why we omit
methods on the Arabic-English BTEC and them is that they do not have their own meaning. The
NIST tasks. impact of Arabic morphology is that the vocabulary
size and the number of singletons can be dramati-
. cally high, i.e. the Arabic words are not seen often
1 Introduction enough to be learned by statistical machine transla-

Arabic is a highly inflected language compared tdion models. This can lead to an inefficient align-
English which has very little morphology. This mor-Ment.

phological richness makes statistical machine trans- In order to deal with this problem and to improve
lation from Arabic to English a challenging task. Athe performance of statistical machine translation,
usual phenomenon in Arabic is the attachment of @ach word must be decomposed into its parts. In
group of words which are semantically dependent ofLarkey et al., 2002) it was already shown that word
each other. For instance, prepositions like “and” andegmentation for Arabic improves information re-
“then” are usually attached to the next word. Thigrieval. In (Lee et al., 2003) a statistical approach
applies also to the definite article “the”. In addi-for Arabic word segmentation was presented. It de-
tion, personal pronouns are attached to the end obmposes each word into a sequence of morphemes
verbs, whereas possessive pronouns are attachedppefixes-stem-suffixes), where all possible prefixes
the end of the previous word, which constitutes thand suffixes (not only those we described in Table 1
possessed object. Hence, an Arabic word can be dand 2) are split from the original word. A compa-
composed into “prefixes, stem and suffixes”. We rerable work was done by (Diab et al., 2004), where
strict the set of prefixes and suffixes to those showesl POS tagging method for Arabic is also discussed.
in Table 1 and 2, where each of the prefixes and sufks we have access to this tool, we test its impact
fixes has at least one meaning which can be repren the performance of our translation system. In
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Table 1: Prefixes handled in this work and their meanings.

Prefix ) = B J o J!
Transliteration| w f k [ b Al
Meaning and | and then| as, like | in order to| with, in | the

(Habash and Rambow, 2005) a morphology analyz@his approach is a generalization of the source-
was used for the segementation and POS tagging. ¢hannel approach (Brown et al., 1990). It has the
contrast to the methods mentioned above, our segevantage that additional modei$-) can be eas-
mentation method is unsupervised and rule based.ly integrated into the overall system. The model
In this paper we first explain our statistical ma-scaling factors\} are trained with respect to the fi-
chine translation (SMT) system used for testing thaal translation quality measured by an error criterion
impact of the different segmentation methods, thefOch, 2003).
we introduce some preprocessing and normalization We use a state-of-the-art phrase-based translation
tools for Arabic and explain the linguistic motiva- system including the following models: angram
tion beyond them. Afterwards, we present threéanguage model, a phrase translation model and a
word segmentation methods, a supervised learningord-based lexicon model. The latter two mod-
approach, a finite state automaton-based segmengds are used for both directiong( f|e) andp(e|f).
tion, and a frequency-based method. In Section B\dditionally, we use a word penalty and a phrase
the experimental results are presented. Finally, thgenalty. More details about the baseline system can
paper is summarized in Section 6 . be found in (Zens and Ney, 2004; Zens et al., 2005).

2 Baseline SMT System 3 Preprocessing and Normalization Tools

In statistical machine translation, we are given 8.1 Tokenizer

source language sentengg = fi...f;...fs, As for other languages, the corpora must be first to-

Renized. Here words and punctuations (except ab-
breviation) must be separated. Another criterion is

&3t Arabic has some characters that appear only at
the end of a word. We use this criterion to separate

words that are wrongly attached to each other.

tencee! = e;...¢;...er. Among all possible tar-
get language sentences, we will choose the sente
with the highest probability:

¢ = argmax {Pr(eilf{)} (@)
Ley 3.2 Normalization and Simplification

The posterior probability>r(e!| f/) is modeled di- The Arabic written language does not contain vow-
rectly using a log-linear combination of severaf!s. instead diacritics are used to define the pronun-

models (Och and Ney, 2002): ciation of a word, where a diacritic is written under
or above each character in the word. Usually these
exp (ZM_l A (e], flj)> diacritics are omitted, which increases the ambigu-

Pr(eﬂf{) — m= ity of a word. In this case, resolving the ambiguity

S exp (Zﬁ‘le Amham ('], fi])) of a word is only dependent on the context. Some-

times, the authors write a diacritic on a word to help

(2) the reader and give him a hint which word is really

The denominator represents a normalization facteneant. As a result, a single word with the same

that depends only on the source sentefiteThere- meaning can be written in different ways. For exam-
fore, we can omit it during the search process. As ple $Eb (_.~3) can be reatlassha’ab(Eng. nation)

ng
€1

decision rule, we obtain: or sho'ab(Eng. options). If the author wants to give
o the reader a hint that the second word is meant, he
é{ = argmax Z /\mhm(e{, fl‘]) 3) There are other possible pronunciations for the W&t
Lel 1 than the two mentioned.
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Table 2: Suffixes handled in this work and their meanings.

Suffix S 3 B J{‘ ({4\4{
Transliteration y ny k kmA, km, kn
Meaning my me you, your (sing.)| you, your (pl.)
Suffix 4 0 s Nk lon
Transliteration| nA h hA hmA, hm, hn
Meaning us, our | his, him her them, their

can write$uEb(;,...j) or $uEab(;__,~.:.d§). To avoid test the impact of the step 3 (segmentation + lemma-

this problem we normalize the text by removing alization) on the translation quality using our phrase
diacritics. based system described in Section 2.

After .segmentlng the text, the size of the seny , Frequency-Based Approach (FB)
tences increases rapidly, where the number of the _ _ _
stripped articleAl is very high. Not every article in We provide a set of all prefixes and suffixes and

an Arabic sentence matches to an article in the targéeir possible combinations. Based on this set, we
language. One of the reasons is that the adjective 2y have different splitting points for a given com-
Arabic gets an article if the word it describes is defPound word. We decide whether and where to split
inite. So, if a word has the prefi&l, then its adjec- the composite word based on the frequency of dif-
tive will also haveAl as a prefix. In order to reduce ferent resulting stems and on the frequency of the
the sentence size we decide to remove all these affempound word, e.g. if the compound word has a
cles that are supposed to be attached to an adjectif¥#gher frequency than all possible stems, it will not
Another way for determiner deletion is described i€ SPlit. This simple heuristic harmonizes the cor-

(Lee, 2004). pus by reducing the size of vocabulary, singletons
and also unseen words from the test corpus. This
4 Word Segmentation method is very similar to the method used for split-

ting German compound words (Koehn and Knight,

One way to simplify inflected Arabic text for a SMT 3003)

system is to split the words in prefixes, stem an
suffixes. In (Lee et al., 2003), (Diab et al., 2004}4.3 Finite State Automaton-Based Approach
and (Habash and Rambow, 2005) three supervised (FSA)

segmentation methods are introduced. However, o segment Arabic words into prefixes, stem and one

these works the impact of the segmentation on ths?uffix, we implemented two finite state automata.

t_ranslatlon_quallty IS not sf[ud|ed. In the nextsgbsecone for stripping the prefixes and the other for the
tions we will shortly describe the method of (Diab et_ .
uffixes. Then, we append the suffix automaton to

al,, 2004). Then we present our unsupervised met 1e other one for stripping prefixes. Figure 1 shows

ods. the finite state automaton for stripping all possible

4.1 Supervised Learning Approach (SL) prefix combinations. We add the pre§iX ), which

(Diab et al., 2004) propose solutions to word Segghanges the verb tense to the future, to the set of

mentation and POS Tagging of Arabic text. For thgreﬁxes which must be _strippe_d (see table 1). This
purpose of training the Arabic TreeBank is usedpreﬂ.X can only be combined W'.m andf. O.ur mo-
which is an Arabic corpus containing news articleglvat.Ion s that the future te“ns.eﬂln English is built by
of the newswire agency AFP. In the first step the te ﬂg'r;%gren:teopnarsaggv\cgcgnvg:l Qre 1 consists of the
must be transliterated to the Buckwalter transliteraf— lowi ] 9

tion, which is a one-to-one mapping to ASCII char-°"oWing states:

acters. In the second step it will be segmented and 4 s: the starting point of the automaton.
tokenized. In the third step a partial lemmatization is

done. Finally a POS tagging is performed. We will e E: tne end state, which can only be achieved if
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in the segmented text. Another problem is that the
finite state segmenter does not care about ambigui-
ties and splits everything it recognizes. For example
let us examine the wortftd (> ). In one case, the
characteff is an original one and therefore can not
be segmented. In this case the word means “per-
son”. In the other case, the word can be segmented
to “f rd” (which means “and then he answers” or
“and then an answer”). If the wordslfrd, frd and
rd(s 5 «> alands,) occur in the corpus, then the fi-
nite state segmenter will transform tAdrd (which
means “the person”) tal f rd (which can be trans-
lated to “the and then he answers”). Thus the mean-
ing of the original word is distorted. To solve all
these problems, we improved the last approach in a
way that prefixes and suffixes are recognized simul-
taneously. The segmentation of the ambiguous word
will be avoided. In doing that, we intend to postpone
resolving such ambiguities to our SMT system.

_ The question now is how can we avoid the seg-
mentation of ambiguous words. To do this, it is suf-
ficient to find a word that contains the prefix as an
_ _ _ original character. In the last example the wéxel
the resulting stem exists already in the text. g contains the prefik as an original character and
therefore onlyAl can be stripped off the word. The
next question we can ask is, how can we decide if a
e And the states, K, L, B and AL are achieved ifcharacter belongs to the word or is a prefix. We can
the word begins witls, k, |, bandAl, respec- extractthis information using the invalid prefix com-
tively. binations. For examplal is always the last prefix
o _that can occur. Therefore all characters that occur in
To minimize the number of wrong segmentations, \yorq afterAl are original characters. This method
we restricted the transition from one state t0 thean pe applied for all invalid combinations to extract

other to the condition that the produced stem occutsyy ryles to decide whether a character in a word is
at least one time in the corpus. To ensure that mog, original one or not.

compound words are recognized and segmented, we _ _ N
run the segmenter itteratively, where after each it- On the other side, all suffixes we handle in this

eration the newly generated words are added to tH4°TK are pronouns. Therefore it is not possible to

vocabulary. This will enable recognizing new com-comMbine them as a suffix. We use this fact to make

pound words in the next iteration. Experimenté‘ decision whether the end characters in a word are

showed that running the segmenter twice is suff@iginal or can be stripped. For example the word

cient and in higher iterations most of the added seér—khm () means "he lets them”. If we suppose
mentations are wrong. hat hm is a suffix and therefore must be stripped,

then we can conclude thktis an original character
4.4 Improved Finite State Automaton-Based and not a suffix. In this way we are able to extract
Approach (IFSA) from the corpus itself decisions whether and how a

Although we restricted the finite state segmenter i¥0rd can be segmented.

such a way that words will be segmented only if the In order to implement these changes the original

yielded stem already exists in the corpus, we still getutomaton was modified. Instead of splitting a word

some wrongly segmented words. Thus, some newe mark it with some properties which corespond

stems, which do not make sense in Arabic, occup the states traversed untill the end state. On the

Figure 1: Finite state automaton for stripping pre
fixes off Arabic words.

e WF: is achieved if the word begins withor f.
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other side, we use the technique described abovepbrase-based machine translation system to translate
generate negative properties which avoid the corréhe development and test sets for each task.

sponding kind of splitting. If a property and its nega-  Fijrst, we discuss the experimental results on the
tion belong to the same word then the property is re3TEC task. In Table 6, the translation results on the
moved and only the negation is considered. At thBTEC corpus are shown. The first row of the table is
end each word is split corresponding to the propefne paseline system where none of the segmentation

ties it is marked with. methods is used. All segmentation methods improve
. the baseline system, except the SL segmentation
5 Experimental Results method on the development corpus. The best per-

forming segmentation method is IFSA which gener-
ates the best translation results based on all evalua-
The experiments were carried out on two tasks: thigon criteria, and it is consistent over both develop-
corpora of the Arabic-English NIST task, whichment and evaluation sets. As we see, the segmen-
contain news articles and UN reports, and théation of Arabic words has a noticeable impact in
Arabic-English corpus of the Basic Travel Expresimproving the translation quality on a small corpus.
sion Corpus (BTEC) task, which consists of typi- g study the impact of word segmentation meth-
cal travel domain phrases (Takezawa et al., 2002)4s on a large task, we conduct two sets of experi-
The corpus statistics of the NIST and BTEC corporgents on the NIST task using two different amounts
are shown in Table 3 and 5. The statistics of thgf the training corpus: only news corpora, and full
news part of NIST corpus, consisting of the Ummahgorpys. In Table 7, the translation results on the
ATB, ANEWS1 and eTIRR corpora, is shown in Ta-N|ST task are shown when just the news corpora
ble 4. In the NIST task, we make use of the NISTyere ysed to train the machine translation models.
2002 evaluati_on set as a development set and NIS\g the results show, except for the FB method, all
2004 evaluation set as a test set. Because the tgghmentation methods improve the baseline system.
set contains four references for each senence we g&sr the NIST task, the SL method outperforms the
cided to use only the first four references of the desiher segmentation methods, while it did not achieve

velopment set for the optimization and evaluationgood results when comparing to the other methods
In the BTEC task, C-Star'03 and IWSLT'04 coporaj,, the BTEC task.

are considered as development and test sets, respec\-Ne see that the SL, FSA and IFSA segmentation

tively. methods consistently improve the translation results
in the BTEC and NIST tasks, but the FB method
failed on the NIST task, which has a larger training
The commonly used criteria to evaluate the trangorpus . The next step is to study the impact of the
lation results in the machine translation commusegmentation methods on a very large task, the NIST
nity are: WER (word error rate), PER (position-full corpus. Unfortunately, the SL method failed on
independent word error rate), BLEU (Papineni esegmenting the large UN corpus, due to the large
al., 2002), and NIST (Doddington, 2002). The fouprocessing time that it needs. Due to the negative
criteria are computed with respect to multiple refresults of the FB method on the NIST news corpora,
erences. The number of reference translations pgnd very similar results for FSA and IFSA, we were
source sentence varies from 4 to 16 references. Thfierested to test the impact of IFSA on the NIST
evaluation is case-insensitive for BTEC and caséull corpus. In Table 8, the translation results of the
sensitive for NIST task. As the BLEU and NIST paseline system and IFSA segmentation method for
scores measure accuracy, higher scores are bettethe NIST full corpus are depicted. As it is shown in

table, the IFSA method slightly improves the trans-
5.3 Translation Results lation results in the development and test sets.

To study the impact of different segmentation meth- The IFSA segmentation method generates the
ods on the translation quality, we apply differenbest results among our proposed methods. It
word segmentation methods to the Arabic part of thacheives consistent improvements in all three tasks
BTEC and NIST corpora. Then, we make use of thever the baseline system. It also outperforms the SL

5.1 Corpus Statistics

5.2 Evaluation Metrics
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Table 3: BTEC corpus statistics, where the Arabic part is tokenized and segmented with the SL, FB, FSA
and the IFSA methods.

ARABIC
ENGLISH
TOKENIZED| SL | FB | FSA [ IFSA
Train: Sentences 20K
Running Words 159K 176.2K | 185.5K | 190.3K | 189.1K 189K
Vocabulary 18,149 14,321 | 11,235 11,736 | 12,874 7,162
Dev: Sentences 506
Running Words 3,161 3,421 | 3,549 | 3,759 | 3,715 5,005
OO0OVs (Running Words 163 129 149 98 118 NA
Test: Sentences 500
Running Words 3,240 3,578 | 3,675 | 3,813 | 3,778 4,986
OO0Vs (Running Words 186 120 156 92 115 NA

Table 4: Corpus statistics for the news part of the NIST task, where the Arabic part is tokenized and seg-
mented with SL, FB, FSA and IFSA methods.

ARABIC

ENGLISH
TOKENIZED | SL | FB | FSA | IFSA
Train: Sentences$ 284.9K
Running Words 8.9M 9.7M | 12.2M | 10.9M | 10.9M 10.2M
Vocabulary 118.7K 90.5K | 43.1K | 68.4K | 62.2K 56.1K
Dev: Sentences 1,043
Running Words 27.7K 29.1K | 37.3K | 34.4K | 33.5K 33K
OOVs (Running Words 714 558 396 515 486 NA
Test: Sentences 1,353
Running Words 37.9K 41.7K | 52.6K | 48.6K | 48.3K 48.3K
OO0Vs (Running Words 1,298 1,027 | 612 806 660 NA
segmentation on the BTEC task. texts. Therefore, larger training corpus makes a bet-

Although the SL method outperforms the IFSAter translation system, i.e. a better baseline, then it
method on the NIST tasks, the IFSA segmentatioyould be harder to outperform this better system.
method has a few notable advantages over the $4sing the same reasoning, we can realize why the
system. First, it is consistent in improving the baseEB method achieves good results on the BTEC task,
line system over the three tasks. But, the SL methdeHt not on the NIST task. By increasing the size
failed in improving the BTEC development corpus©f the training corpus, the FB method tends to seg-
Second’ it is fast and robust’ and Capab|e of beiﬁ@ent words more than the IFSA method. This over-
applied to the large corpora. Finally, it employs arfeégmentation can be compensated by using longer

unsupervised |earning method, therefore can easiW]raseS during the tranSIation, in order to consider
cope with a new task or corpus. the same context compared to the non-segmented

We observe that the relative improvement ovef@"PUs- Then, it would be harder for a phrase-based
chine translation system to learn the translation

the baseline system is decreased by increasing t o

size of the training corpus. This is a natural effec? aword (stem) in different contexts.

of increasing the size of the training corpus. A56 Conclusion

the larger corpus provides higher probability to have

more samples per word, this means higher chand#e presented three methods to segment Arabic
to learn the translation of a word in different con-words: a supervised learning approach, a frequency-
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Table 5: NIST task corpus statistics, where the Arabic part is tokenized and segmented with the IFSA
method.

ARABIC

ENGLISH
TOKENIZED | IFSA
Train: Sentences 8.5M
Running Words| 260.5M 316.8M || 279.2M
Vocabulary| 510.3K 411.2K || 301.2K
Dev: Sentences 1043
Running Words 30.2K 33.3K 33K
OOVs (Running Words 809 399 NA
Test: Sentences 1353
Running Words 40K 47.9K 48.3K
OO0Vs (Running Words 871 505 NA

Table 6: Case insensitive evaluation results for translating the development and test data of BTEC task after
performing divers preprocessing.

Dev Test
mPER | mMWER | BLEU | NIST | mPER| mWER | BLEU | NIST
[%] [%] [%] [%] [%] [%]

Non-Segmented Data 21.4 24.6 63.9 | 10.0 23.5 27.2 58.1 9.6
SL Segmenter 21.2 24.4 62.5 9.7 234 27.4 59.2 9.7
FB Segmenter 20.9 24.4 65.3 | 10.1 221 25.8 59.8 9.7
FSA Segmenter 20.1 234 64.8 | 10.2 211 25.2 61.3 | 10.2
IFSA Segmenter 20.0 23.3 65.0 | 104 21.2 25.3 61.3 | 10.2

based approach and a finite state automaton-badeeferences

approach. We explained that the best of our pro- :

posed methods, the improved finite state automatoﬁ', PFi'etBrgoan’ J‘é”r?eolfkg' [S) ' ﬁéﬁz?t”a RP 'eﬁraM;/}C‘]e'r D;I]'da
has three advantages over the state-of-the-art Arabicp s Roossin. 1990. A étatisticgf approach to machine
word segmentation method (Diab, 2000), supervised translation. Computational Linguistics16(2):79—85,
learning. They are: consistency in improving the June.

baselines system over different tasks, its capability

to be efficiently applied on the large corpora, and it¥/. Diab, K. l?aciotglu, and D. Jurafsky. 2004bAuton;1atic
ili with differen Ks. tagging of arabic text: From raw text to base phrase
ability to cope with different tasks chunks. In D. M. Susan Dumais and S. Roukos, edi-

tors, HLT-NAACL 2004: Short Paper8oston, Mas-
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Table 7: Case sensitive evaluation results for translating the development and test data of the news part of

the NIST task after performing divers preprocessing.

Dev Test
mPER | mMWER | BLEU | NIST || mPER| mWER | BLEU | NIST
[%] [%] [%] [%] [%] [%]
Non-Segmented Data 43.7 56.4 43.6 9.9 46.1 58.0 374 9.1
SL Segmenter 42.0 54.7 451 | 10.2 44.3 56.3 39.9 9.6
FB Segmenter 43.4 56.1 43.2 9.8 45.6 57.8 37.2 9.2
FSA Segmenter 42.9 55.7 43.7 9.9 44.8 56.9 38.7 9.4
IFSA Segmenter 42.6 55.0 44.6 9.9 44.5 56.6 38.8 9.4

Table 8: Case-sensitive evaluation results for translating development and test data of NIST task.

Dev Test
MmPER | mMWER | BLEU | NIST | mPER| mWER | BLEU | NIST
[%] [%] [%] [%] [%] [%]
Non-Segmented Data 41.5 53.5 46.4 | 10.3 42.5 53.9 42.6 | 10.0
IFSA Segmenter 41.1 53.2 46.7 | 10.2 42.1 53.6 434 | 10.1
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Abstract

Many syntactic models in machine trans-
lation are channels that transform one
tree into another, or synchronous gram-
mars that generate trees in parallel. We
present a new model of the translation pro-
cess: quasi-synchronous grammar (QG).
Given a source-language parse tree 77, a
QG defines a monolingual grammar that
generates translations of 77. The trees
Ty allowed by this monolingual gram-
mar are inspired by pieces of substruc-
ture in 77 and aligned to 77 at those
points. We describe experiments learning
quasi-synchronous context-free grammars
from bitext. As with other monolingual
language models, we evaluate the cross-
entropy of QGs on unseen text and show
that a better fit to bilingual data is achieved
by allowing greater syntactic divergence.
When evaluated on a word alignment task,
QG matches standard baselines.

1 Motivation and Related Work
1.1 Sloppy Syntactic Alignment

This paper proposes a new type of syntax-based
model for machine translation and alignment. The
goal is to make use of syntactic formalisms, such as
context-free grammar or tree-substitution grammar,
without being overly constrained by them.

Let S; and S5 denote the source and target sen-
tences. We seek to model the conditional probability

p(Ta, A | Ty) (D
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where T} is a parse tree for S7, 15 is a parse tree
for S, and A is a node-to-node alignment between
them. This model allows one to carry out a variety
of alignment and decoding tasks. Given 77, one can
translate it by finding the 75 and A that maximize
(1). Given T} and T5, one can align them by finding
the A that maximizes (1) (equivalent to maximizing
p(A | To,T1)). Similarly, one can align S; and Sy
by finding the parses 77 and 75, and alignment A,
that maximize p(7», A | 1T1) - p(Th | S1), where
p(T1 | S1) is given by a monolingual parser. We
usually accomplish such maximizations by dynamic
programming.

Equation (1) does not assume that 77 and 75 are
isomorphic. For example, a model might judge 7%
and A to be likely, given 71, provided that many—
but not necessarily all—of the syntactic dependen-
cies in 77 are aligned with corresponding depen-
dencies in T5. Hwa et al. (2002) found that hu-
man translations from Chinese to English preserved
only 39-42% of the unlabeled Chinese dependen-
cies. They increased this figure to 67% by using
more involved heuristics for aligning dependencies
across these two languages. That suggests that (1)
should be defined to consider more than one depen-
dency at a time.

This inspires the key novel feature of our models:
A does not have to be a “well-behaved” syntactic
alignment. Any portion of T can align to any por-
tion of 77, or to NULL. Nodes that are syntactically
related in 7 do not have to translate into nodes that
are syntactically related in 7o—although (1) is usu-
ally higher if they do.

This property makes our approach especially
promising for aligning freely, or erroneously, trans-
lated sentences, and for coping with syntactic diver-

Proceedings of the Workshop on Statistical Machine Translation, pages 23-30,
New York City, June 2006. (©)2006 Association for Computational Linguistics



gences observed between even closely related lan-
guages (Dorr, 1994; Fox, 2002). We can patch to-
gether an alignment without accounting for all the
details of the translation process. For instance, per-
haps a source NP (figure 1) or PP (figure 2) appears
“out of place” in the target sentence. A linguist
might account for the position of the PP auf diese
Frage either syntactically (by invoking scrambling)
or semantically (by describing a deep analysis-
transfer-synthesis process in the translator’s head).
But an MT researcher may not have the wherewithal
to design, adequately train, and efficiently compute
with “deep” accounts of this sort. Under our ap-
proach, it is possible to use a simple, tractable syn-
tactic model, but with some contextual probability
of “sloppy” transfer.

1.2 From Synchronous to Quasi-Synchronous
Grammars

Because our approach will let anything align to
anything, it is reminiscent of IBM Models 1-5
(Brown et al., 1993). It differs from the many ap-
proaches where (1) is defined by a stochastic syn-
chronous grammar (Wu, 1997; Alshawi et al., 2000;
Yamada and Knight, 2001; Eisner, 2003; Gildea,
2003; Melamed, 2004) and from transfer-based sys-
tems defined by context-free grammars (Lavie et al.,
2003).

The synchronous grammar approach, originally
due to Shieber and Schabes (1990), supposes that 75
is generated in lockstep to 7.! When choosing how
to expand a certain VP node in 75, a synchronous
CFG process would observe that this node is aligned
to a node VP’ in T7, which had been expanded in T
by VP’ — NP’ V. This might bias it toward choos-
ing to expand the VP in T3 as VP — V NP, with the
new children V aligned to V' and NP aligned to NP’.
The process then continues recursively by choosing
moves to expand these children.

One can regard this stochastic process as an in-
stance of analysis-transfer-synthesis MT. Analysis
chooses a parse 717 given Sj. Transfer maps the
context-free rules in 77 to rules of 75. Synthesis

"The usual presentation describes a process that generates
T and T jointly, leading to a joint model p(7%, A, T1). Divid-
ing by the marginal p(71) gives a conditional model p(7%, A |
T1) as in (1). In the text, we directly describe an equivalent
conditional process for generating T, A given 7.
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deterministically assembles the latter rules into an
actual tree T and reads off its yield So.

What is worrisome about the synchronous pro-
cess is that it can only produce trees 75 that are
perfectly isomorphic to 77. It is possible to relax
this requirement by using synchronous grammar for-
malisms more sophisticated than CFG:? one can per-
mit unaligned nodes (Yamada and Knight, 2001),
duplicated children (Gildea, 2003)3, or alignment
between elementary trees of differing sizes rather
than between single rules (Eisner, 2003; Ding and
Palmer, 2005; Quirk et al., 2005). However, one
would need rather powerful and slow grammar for-
malisms (Shieber and Schabes, 1990; Melamed et
al., 2004), often with discontiguous constituents, to
account for all the linguistic divergences that could
arise from different movement patterns (scrambling,
wh-in situ) or free translation. In particular, a syn-
chronous grammar cannot practically allow S5 to be
any permutation of S, as IBM Models 1-5 do.

Our alternative is to define a “quasi-synchronous”
stochastic process. It generates 71> in a way that is
not in thrall to 77 but is “inspired by it.” (A human
translator might be imagined to behave similarly.)
When choosing how to expand nodes of 75, we are
influenced both by the structure of 7} and by mono-
lingual preferences about the structure of 75. Just as
conditional Markov models can more easily incor-
porate global features than HMMs, we can look at
the entire tree 77 at every stage in generating 75.

2 Quasi-Synchronous Grammar

Given an input S; or its parse 7j, a quasi-
synchronous grammar (QG) constructs a monolin-
gual grammar for parsing, or generating, the possi-
ble translations So—that is, a grammar for finding
appropriate trees 75. What ties this target-language
grammar to the source-language input? The gram-
mar provides for target-language words to take on

When one moves beyond CFG, the derived trees 77 and
T are still produced from a single derivation tree, but may be
shaped differently from the derivation tree and from each other.

3For tree-to-tree alignment, Gildea proposed a clone opera-
tion that allowed subtrees of the source tree to be reused in gen-
erating a target tree. In order to preserve dynamic programming
constraints, the identity of the cloned subtree is chosen indepen-
dently of its insertion point. This breakage of monotonic tree
alignment moves Gildea’s alignment model from synchronous
to quasi-synchronous.
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Figure 1: German and English dependency parses and their alignments from our system where German
is the target language. Tschernobyl depends on konnte even though their English analogues are not in a
dependency relationship. Note the parser’s error in not attaching etwas to spditer.

German: Tschernobyl konnte dann etwas spditer an die Reihe kommen .

Literally: Chernobyl could then somewhat later on the queue come.

English: Then we could deal with Chernobyl some time later .

bekommen/VVpast:5 ... ..

Auf/PREP:8 habe/VHFIN:2 ich/PPRO:1 leider/ADV:4 Antwort/NN:7 /S-SYMBOL.:11

: & a1
Frage/NN:10° ... keine/INDEE:3
diese/DEM:9 - ..........

question:10

|

this:9

Figure 2: Here the German sentence exhibits scrambling of the phrase auf diese Frage and negates the object
of bekommen instead of the verb itself.

German: Auf diese Frage habe ich leider keine Antwort bekommen .

Literally: To this question have I unfortunately no answer received.

English: I did not unfortunately receive an answer to this question .

25



multiple hidden “senses,” which correspond to (pos-
sibly empty sets of) word tokens in .S7 or nodes in
T7. To take a familiar example, when parsing the
English side of a French-English bitext, the word
bank might have the sense banque (financial) in one
sentence and rive (littoral) in another.

The QG* considers the “sense” of the former bank
token to be a pointer to the particular banque token
to which it aligns. Thus, a particular assignment of
S1 “senses” to word tokens in S5 encodes a word
alignment.

Now, selectional preferences in the monolingual
grammar can be influenced by these T}-specific
senses. So they can encode preferences for how 75
ought to copy the syntactic structure of 77. For ex-
ample, if 77 contains the phrase banque nationale,
then the QG for generating a corresponding 75 may
encourage any 75 English noun whose sense is
banque (more precisely, T7’s token of banque) to
generate an adjectival English modifier with sense
nationale. The exact probability of this, as well as
the likely identity and position of that English mod-
ifier (e.g., national bank), may also be influenced by
monolingual facts about English.

2.1 Definition

A quasi-synchronous grammar is a monolingual
grammar that generates translations of a source-
language sentence. Each state of this monolingual
grammar is annotated with a “sense”—a set of zero
or more nodes from the source tree or forest.

For example, consider a quasi-synchronous
context-free grammar (QCFG) for generating trans-
lations of a source tree 77. The QCFG generates the
target sentence using nonterminals from the cross
product U x 21 where U is the set of monolingual
target-language nonterminals such as NP, and V; is
the set of nodes in 77.

Thus, a binarized QCFG has rules of the form

(A;a) — (B,B){C,7) 2

(A,a) — w 3)

where A, B,C € U are ordinary target-language
nonterminals, o, 3,7 € 21 are sets of source tree
*By abuse of terminology, we often use “QG” to refer to the

T -specific monolingual grammar, although the QG is properly
a recipe for constructing such a grammar from any input 77.
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nodes to which A, B, C respectively align, and w is
a target-language terminal.

Similarly, a quasi-synchronous tree-substitution
grammar (QTSG) annotates the root and frontier
nodes of its elementary trees with sets of source
nodes from 2"1.

2.2 Taming Source Nodes

This simple proposal, however, presents two main
difficulties. First, the number of possible senses for
each target node is exponential in the number of
source nodes. Second, note that the senses are sets
of source tree nodes, not word types or absolute sen-
tence positions as in some other translation models.
Except in the case of identical source trees, source
tree nodes will not recur between training and test.

To overcome the first problem, we want further re-
strictions on the set v in a QG state such as (A, o). It
should not be an arbitrary set of source nodes. In the
experiments of this paper, we adopt the simplest op-
tion of requiring || < 1. Thus each node in the tar-
get tree is aligned to a single node in the source tree,
or to () (the traditional NULL alignment). This allows
one-to-many but not many-to-one alignments.

To allow many-to-many alignments, one could
limit || to at most 2 or 3 source nodes, perhaps fur-
ther requiring the 2 or 3 source nodes to fall in a par-
ticular configuration within the source tree, such as
child-parent or child-parent-grandparent. With that
configurational requirement, the number of possi-
ble senses o remains small—at most three times the
number of source nodes.

We must also deal with the menagerie of differ-
ent source tree nodes in different sentences. In other
words, how can we tie the parameters of the different
QGs that are used to generate translations of differ-
ent source sentences? The answer is that the proba-
bility or weight of a rule such as (2) should depend
on the specific nodes in «, 3, and v only through
their properties—e.g., their nonterminal labels, their
head words, and their grammatical relationship in
the source tree. Such properties do recur between
training and test.

For example, suppose for simplicity that || =
|B] = || = 1. Then the rewrite probabilities of (2)
and (3) could be log-linearly modeled using features
that ask whether the single node in o has two chil-
dren in the source tree; whether its children in the



source are the nodes in  and -y; whether its non-
terminal label in the source is A; whether its fringe
in the source translates as w; and so on. The model
should also consider monolingual features of (2) and
(3), evaluating in particular whether A — BC' is
likely in the target language.

Whether rule weights are given by factored gener-
ative models or by naive Bayes or log-linear models,
we want to score QG productions with a small set of
monolingual and bilingual features.

2.3 Synchronous Grammars Again

Finally, note that synchronous grammar is a special
case of quasi-synchronous grammar. In the context-
free case, a synchronous grammar restricts senses to
single nodes in the source tree and the NULL node.
Further, for any k-ary production
<X0,a0> — <X1,oz1>...<Xk7ak>

a synchronous context-free grammar requires that

1. (Vi # j) oy # «; unless a; = NULL,

2. (Vi > 0) «; is a child of «y in the source tree,

unless o; = NULL.

Since NULL has no children in the source tree, these
rules imply that the children of any node aligned to
NULL are themselves aligned to NULL. The con-
struction for synchronous tree-substitution and tree-
adjoining grammars goes through similarly but op-
erates on the derivation trees.

3 Parameterizing a QCFG

Recall that our goal is a conditional model of
p(Te, A | T1). For the remainder of this paper, we
adopt a dependency-tree representation of 7 and
T5. Each tree node represents a word of the sentence
together with a part-of-speech tag. Syntactic depen-
dencies in each tree are represented directly by the
parent-child relationships.

Why this representation? First, it helps us con-
cisely formulate a QG translation model where the
source dependencies influence the generation of tar-
get dependencies (see figure 3). Second, for evalu-
ation, it is trivial to obtain the word-to-word align-
ments from the node-to-node alignments. Third, the
part-of-speech tags are useful backoff features, and
in fact play a special role in our model below.
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When stochastically generating a translation 75,
our quasi-synchronous generative process will be in-
fluenced by both fluency and adequacy. That is, it
considers both the local well-formedness of T5 (a
monolingual criterion) and 75’s local faithfulness
to 71 (a bilingual criterion). We combine these in
a simple generative model rather than a log-linear
model. When generating the children of a node in
T, the process first generates their tags using mono-
lingual parameters (fluency), and then fills in in the
words using bilingual parameters (adequacy) that se-
lect and translate words from 77 .

Concretely, each node in 75 is labeled by a triple
(tag, word, aligned word). Given a parent node
(p,h,h') in Ty, we wish to generate sequences of
left and right child nodes, of the form (c, a, a’).

Our monolingual parameters come from a simple
generative model of syntax used for grammar induc-
tion: the Dependency Model with Valence (DMV) of
Klein and Manning (2004). In scoring dependency
attachments, DMV uses tags rather than words. The
parameters of the model are:

1. Pehoose(c | p,dir): the probability of generat-
ing c as the next child tag in the sequence of
dir children, where dir € {left,right}.

2. pstop(s | h,dir,ady): the probability of gener-
ating no more child tags in the sequence of dir
children. This is conditioned in part on the “ad-
jacency” adj € {true, false}, which indicates
whether the sequence of dir children is empty
so far.

Our bilingual parameters score word-to-word
translation and aligned dependency configurations.
We thus use the conditional probability pirens(a |
a’) that source word a’, which may be NULL, trans-
lates as target word a. Finally, when a parent word
h aligned to h’ generates a child, we stochastically
decide to align the child to a node @’ in T} with
one several possible relations to 4/. A “monotonic”
dependency alignment, for example, would have
h' and o’ in a parent-child relationship like their
target-tree analogues. In different versions of the
model, we allowed various dependency alignment
configurations (figure 3). These configurations rep-

3This division of labor is somewhat artificial, and could be
remedied in a log-linear model, Naive Bayes model, or defi-
cient generative model that generates both tags and words con-
ditioned on both monolingual and bilingual context.



resent cases where the parent-child dependency be-
ing generated by the QG in the target language maps
onto source-language child-parent, for head swap-
ping; the same source node, for two-to-one align-
ment; nodes that are siblings or in a c-command re-
lationship, for scrambling and extraposition; or in
a grandparent-grandchild relationship, e.g. when a
preposition is inserted in the source language. We
also allowed a “none-of-the-above” configuration, to
account for extremely mismatched sentences.

The probability of the target-language depen-
dency treelet rooted at h is thus:

P(D(h) | h,h',p) =

I 1l

dire{l,r} ce€depsp(p,dir)

P(D(c) | a,d’,c) X pstop(nostop | p, dir, ady)
X Pehoose(C | p, dir)

XPeon fig(CONfig) X Pirans(a | a')

Dstop(stop | p, dir, adj)

4 Experiments

We claim that for modeling human-translated bitext,
it is better to project syntax only loosely. To evaluate
this claim, we train quasi-synchronous dependency
grammars that allow progressively more divergence
from monotonic tree alignment. We evaluate these
models on cross-entropy over held-out data and on
error rate in a word-alignment task.

One might doubt the use of dependency trees
for alignment, since Gildea (2004) found that con-
stituency trees aligned better. That experiment, how-
ever, aligned only the 1-best parse trees. We too will
consider only the 1-best source tree 71, but in con-
strast to Gildea, we will search for the target tree 75
that aligns best with 7. Finding 7% and the align-
ment is simply a matter of parsing Sy with the QG
derived from Tj.

4.1 Data and Training

We performed our modeling experiments with the
German-English portion of the Europarl European
Parliament transcripts (Koehn, 2002). We obtained
monolingual parse trees from the Stanford German
and English parsers (Klein and Manning, 2003).
Initial estimates of lexical translation probabilities
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came from the IBM Model 4 translation tables pro-
duced by Giza++ (Brown et al., 1993; Och and
Ney, 2003).

All text was lowercased and numbers of two or
more digits were converted to an equal number of
hash signs. The bitext was divided into training
sets of 1K, 10K, and 100K sentence pairs. We held
out one thousand sentences for evaluating the cross-
entropy of the various models and hand-aligned
100 sentence pairs to evaluate alignment error rate
(AER).

We trained the model parameters on bitext using
the Expectation-Maximization (EM) algorithm. The
T7 tree is fully observed, but we parse the target lan-
guage. As noted, the initial lexical translation proba-
bilities came from IBM Model 4. We initialized the
monolingual DMV parameters in one of two ways:
using either simple tag co-occurrences as in (Klein
and Manning, 2004) or “supervised” counts from the
monolingual target-language parser. This latter ini-
tialization simulates the condition when one has a
small amount of bitext but a larger amount of tar-
get data for language modeling. As with any mono-
lingual grammar, we perform EM training with the
Inside-Outside algorithm, computing inside prob-
abilities with dynamic programming and outside
probabilities through backpropagation.

Searching the full space of target-language depen-
dency trees and alignments to the source tree con-
sumed several seconds per sentence. During train-
ing, therefore, we constrained alignments to come
from the union of GIZA++ Model 4 alignments.
These constraints were applied only during training
and not during evaluation of cross-entropy or AER.

4.2 Conditional Cross-Entropy of the Model

To test the explanatory power of our QCFG, we eval-
uated its conditional cross-entropy on held-out data
(table 1). In other words, we measured how well a
trained QCFG could predict the true translation of
novel source sentences by summing over all parses
of the target given the source. We trained QCFG
models under different conditions of bitext size and
parameter initialization. However, the principal in-
dependent variable was the set of dependency align-
ment configurations allowed.

From these cross-entropy results, it is clear that
strictly synchronous grammar is unwise. We ob-



(a) parent-child

(b) child-parent

(c) same node

sehe -~ oo see schwimmt likes Voelkerrecht ---- - law
ich I gern swimming international
(d) siblings (e) grandparent-grandchild (f) c-command
bekommen answer Wahlkampf campaign sagte bought
auf  Antwort to von 2003 Was dass what
2003 kaufte

Figure 3: When a head h aligned to h’ generates a new child a aligned to a’ under the QCFG, h’ and a’ may be related in the
source tree as, among other things, (a) parent—child, (b) child—parent, (c) identical nodes, (d) siblings, (e) grandparent—grandchild,
(f) c-commander—c-commandee, (g) none of the above. Here German is the source and English is the target. Case (g), not pictured
above, can be seen in figure 1, in English-German order, where the child-parent pair Tschernobyl konnte correspond to the words
Chernobyl and could, respectively. Since could dominates Chernobyl, they are not in a c-command relationship.

Permitted configurations CE CE CE

at 1k 10k | 100k
{? or parent-child (a) 43.82 | 22.40 | 13.44
+ child-parent (b) 41.27 | 21.73 | 12.62
+ same node (c) 41.01 | 21.50 | 12.38
+ all breakages (g) 35.63 | 18.72 | 11.27
+ siblings (d) 3459 | 18.59 | 11.21
+ grandparent-grandchild (e) | 34.52 | 18.55 | 11.17
+ c-command (f) 3446 | 18.59 | 11.27
No alignments allowed 60.86 | 53.28 | 46.94

Table 1: Cross-entropy on held-out data with different depen-
dency configurations (figure 3) allowed, for 1k, 10k, and 100k
training sentences. The big error reductions arrive when we
allow arbitrary non-local alignments in condition (g). Distin-
guishing some common cases of non-local alignments improves
performance further. For comparison, we show cross-entropy
when every target language node is unaligned.

tain comparatively poor performance if we require
parent-child pairs in the target tree to align to parent-
child pairs in the source (or to parent-NULL or
NULL-NULL). Performance improves as we allow
and distinguish more alignment configurations.

4.3 Word Alignment

We computed standard measures of alignment preci-
sion, recall, and error rate on a test set of 100 hand-
aligned German sentence pairs with 1300 alignment
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links. As with many word-alignment evaluations,
we do not score links to NULL. Just as for cross-
entropy, we see that more permissive alignments
lead to better performance (table 2).

Having selected the best system using the cross-
entropy measurement, we compare its alignment er-
ror rate against the standard G1zA++ Model 4 base-
lines. As Figure 4 shows, our QCFG for German —
English consistently produces better alignments than
the Model 4 channel model for the same direction,
German — English. This comparison is the appro-
priate one because both of these models are forced
to align each English word to at most one German
word. ©

5 Conclusions

With quasi-synchronous grammars, we have pre-
sented a new approach to syntactic MT: construct-
ing a monolingual target-language grammar that de-
scribes the aligned translations of a source-language
sentence. We described a simple parameterization

SFor German — English MT, one would use a German —
English QCFG as above, but an English — German channel
model. In this arguably inappropriate comparison, Figure 4
shows, the Model 4 channel model produces slightly better
word alignments than the QG.



Permitted configurations AER | AER | AER

at 1k 10k | 100k
() or parent-child (a) 40.69 | 39.03 | 33.62
+ child-parent (b) 43.17 | 39.78 | 33.79
+ same node (c) 43.22 | 40.86 | 34.38
+ all breakages (g) 37.63 | 30.51 | 25.99
+ siblings (d) 37.87 | 33.36 | 29.27
+ grandparent-grandchild (e) | 36.78 | 32.73 | 28.84
+ c-command (f) 37.04 | 33.51 | 27.45

Table 2: Alignment error rate (%) with different dependency
configurations allowed.

x. Gizad bk

alignment error rate

L
100000

0.2 .
1000 10000
training sentence pairs

1e+06

Figure 4: Alignment error rate with best model (all break-
ages). The QCFG consistently beat one GIZA++ model and
was close to the other.

with gradually increasing syntactic domains of lo-
cality, and estimated those parameters on German-
English bitext.

The QG formalism admits many more nuanced
options for features than we have exploited. In par-
ticular, we now are exploring log-linear QGs that
score overlapping elementary trees of 75 while con-
sidering the syntactic configuration and lexical con-
tent of the 7 nodes to which each elementary tree
aligns.

Even simple QGs, however, turned out to do quite
well. Our evaluation on a German-English word-
alignment task showed them to be competitive with
IBM model 4—consistently beating the German-
English direction by several percentage points of
alignment error rate and within 1% AER of the
English-German direction. In particular, alignment
accuracy benefited from allowing syntactic break-
ages between the two dependency structures.

We are also working on a translation decoding us-
ing QG. Our first system uses the QG to find optimal
Ty aligned to 77 and then extracts a synchronous
tree-substitution grammar from the aligned trees.
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Our second system searches a target-language vo-
cabulary for the optimal 75 given the input 77.
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Abstract

We investigate why weights from generative mod-
els underperform heuristic estimates in phrase-
based machine translation. We first propose a sim-
ple generative, phrase-based model and verify that
its estimates are inferior to those given by surface
statistics. The performance gap stems primarily
from the addition of a hidden segmentation vari-
able, which increases the capacity for overfitting
during maximum likelihood training with EM. In
particular, while word level models benefit greatly
from re-estimation, phrase-level models do not: the
crucial difference is that distinct word alignments
cannot all be correct, while distinct segmentations
can. Alternate segmentations rather than alternate
alignments compete, resulting in increased deter-
minization of the phrase table, decreased general-
ization, and decreased final BLEU score. We also
show that interpolation of the two methods can re-
sult in a modest increase in BLEU score.

1 Introduction

At the core of a phrase-based statistical machine
translation system is a phrase table containing
pairs of source and target language phrases, each
weighted by a conditional translation probability.
Koehn et al. (2003a) showed that translation qual-
ity is very sensitive to how this table is extracted
from the training data. One particularly surprising
result is that a simple heuristic extraction algorithm
based on surface statistics of a word-aligned training
set outperformed the phrase-based generative model
proposed by Marcu and Wong (2002).

This result is surprising in light of the reverse sit-
uation for word-based statistical translation. Specif-
ically, in the task of word alignment, heuristic ap-
proaches such as the Dice coefficient consistently
underperform their re-estimated counterparts, such
as the IBM word alignment models (Brown et al.,
1993). This well-known result is unsurprising: re-
estimation introduces an element of competition into
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the learning process. The key virtue of competition
in word alignment is that, to a first approximation,
only one source word should generate each target
word. If a good alignment for a word token is found,
other plausible alignments are explained away and
should be discounted as incorrect for that token.

As we show in this paper, this effect does not pre-
vail for phrase-level alignments. The central differ-
ence is that phrase-based models, such as the ones
presented in section 2 or Marcu and Wong (2002),
contain an element of segmentation. That is, they do
not merely learn correspondences between phrases,
but also segmentations of the source and target sen-
tences. However, while it is reasonable to sup-
pose that if one alignment is right, others must be
wrong, the situation is more complex for segmenta-
tions. For example, if one segmentation subsumes
another, they are not necessarily incompatible: both
may be equally valid. While in some cases, such
as idiomatic vs. literal translations, two segmenta-
tions may be in true competition, we show that the
most common result is for different segmentations
to be recruited for different examples, overfitting the
training data and overly determinizing the phrase
translation estimates.

In this work, we first define a novel (but not rad-
ical) generative phrase-based model analogous to
IBM Model 3. While its exact training is intractable,
we describe a training regime which uses word-
level alignments to constrain the space of feasible
segmentations down to a manageable number. We
demonstrate that the phrase analogue of the Dice co-
efficient is superior to our generative model (a re-
sult also echoing previous work). In the primary
contribution of the paper, we present a series of ex-
periments designed to elucidate what re-estimation
learns in this context. We show that estimates are
overly determinized because segmentations are used
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in unintuitive ways for the sake of data likelihood.
We comment on both the beneficial instances of seg-
ment competition (idioms) as well as the harmful
ones (most everything else). Finally, we demon-
strate that interpolation of the two estimates can
provide a modest increase in BLEU score over the
heuristic baseline.

2 Approach and Evaluation Methodology

The generative model defined below is evaluated
based on the BLEU score it produces in an end-
to-end machine translation system from English to
French. The top-performing diag-and extraction
heuristic (Zens et al., 2002) serves as the baseline for
evaluation.! Each approach — the generative model
and heuristic baseline — produces an estimated con-
ditional distribution of English phrases given French
phrases. We will refer to the distribution derived
from the baseline heuristic as ¢z. The distribution
learned via the generative model, denoted ¢gys, is
described in detail below.

2.1 A Generative Phrase Model

While our model for computing ¢gps is novel, it
is meant to exemplify a class of models that are
not only clear extensions to generative word align-
ment models, but also compatible with the statistical
framework assumed during phrase-based decoding.

The generative process we modeled produces a
phrase-aligned English sentence from a French sen-
tence where the former is a translation of the lat-
ter. Note that this generative process is opposite to
the translation direction of the larger system because
of the standard noisy-channel decomposition. The
learned parameters from this model will be used to
translate sentences from English to French. The gen-
erative process modeled has four steps:2

1. Begin with a French sentence f.

"This well-known heuristic extracts phrases from a sentence
pair by computing a word-level alignment for the sentence and
then enumerating all phrases compatible with that alignment.
The word alignment is computed by first intersecting the direc-
tional alignments produced by a generative IBM model (e.g.,
model 4 with minor enhancements) in each translation direc-
tion, then adding certain alignments from the union of the di-
rectional alignments based on local growth rules.

2Our notation matches the literature for phrase-based trans-
lation: e is an English word,  is an English phrase, and &/ is a
sequence of I English phrases, and e is an English sentence.
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2. Segment f into a sequence of I multi-word
phrases that span the sentence, f7.

3. For each phrase f; € f{, choose a correspond-
ing position j in the English sentence and es-
tablish the alignment a; = 4, then generate ex-
actly one English phrase ¢; from f;.

4. The sequence e; ordered by a describes an En-
glish sentence e.

The corresponding probabilistic model for this gen-
erative process is:

> Ple fi,ealf)
fela

= Y a(fliD ] oelfi)d(a; = ilf)

el Fest

Plelf) =

where P(e, f{,&!, a|f) factors into a segmentation
model o, a translation model ¢ and a distortion
model d. The parameters for each component of this
model are estimated differently:

e The segmentation model o ( f{|f) is assumed to
be uniform over all possible segmentations for
a sentence.’

e The phrase translation model ¢(¢;|f;) is pa-
rameterized by a large table of phrase transla-
tion probabilities.

e The distortion model d(a; = i|f) is a discount-
ing function based on absolute sentence posi-
tion akin to the one used in IBM model 3.

While similar to the joint model in Marcu and Wong
(2002), our model takes a conditional form com-
patible with the statistical assumptions used by the
Pharaoh decoder. Thus, after training, the param-
eters of the phrase translation model ¢g)s can be
used directly for decoding.

2.2 Training

Significant approximation and pruning is required
to train a generative phrase model and table — such
as ¢gps — with hidden segmentation and alignment
variables using the expectation maximization algo-
rithm (EM). Computing the likelihood of the data

3This segmentation model is deficient given a maximum
phrase length: many segmentations are disallowed in practice.



for a set of parameters (the e-step) involves summing
over exponentially many possible segmentations for
each training sentence. Unlike previous attempts to
train a similar model (Marcu and Wong, 2002), we
allow information from a word-alignment model to
inform our approximation. This approach allowed
us to directly estimate translation probabilities even
for rare phrase pairs, which were estimated heuristi-
cally in previous work.

In each iteration of EM, we re-estimate each
phrase translation probability by summing fractional
phrase counts (soft counts) from the data given the
current model parameters.

C( ;léj)
c(fi)
Zf{ﬂef{ Zé{:éjEE{ Za:aj:i P(ev f'{,é{,a|f)
Yprfert Lot 2o Ple fi €1, alf)

This training loop necessitates approximation be-
cause summing over all possible segmentations and
alignments for each sentence is intractable, requiring
time exponential in the length of the sentences. Ad-
ditionally, the set of possible phrase pairs grows too
large to fit in memory. Using word alignments, we
can address both problems.* In particular, we can
determine for any aligned segmentation (f{,é!,a)
whether it is compatible with the word-level align-
ment for the sentence pair. We define a phrase pair
to be compatible with a word-alignment if no word
in either phrase is aligned with a word outside the
other phrase (Zens et al., 2002). Then, (f{,é!,a)
is compatible with the word-alignment if each of its
aligned phrases is a compatible phrase pair.

The training process is then constrained such that,
when evaluating the above sum, only compatible
aligned segmentations are considered. That is, we
allow P(e, f{,el alf) > 0 only for aligned seg-
mentations (f{,&!, a) such that a provides a one-
to-one mapping from f{ to & where all phrase pairs
( faj , €;) are compatible with the word alignment.

This constraint has two important effects. First,
we force P(é;|fi) = 0 for all phrase pairs not com-
patible with the word-level alignment for some sen-
tence pair. This restriction successfully reduced the

¢new(éj’.]?i) =

fe

*The word alignments used in approximating the e-step
were the same as those used to create the heuristic diag-and
baseline.
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total legal phrase pair types from approximately 250
million to 17 million for 100,000 training sentences.
However, some desirable phrases were eliminated
because of errors in the word alignments.

Second, the time to compute the e-step is reduced.
While in principle it is still intractable, in practice
we can compute most sentence pairs’ contributions
in under a second each. However, some spurious
word alignments can disallow all segmentations for
a sentence pair, rendering it unusable for training.
Several factors including errors in the word-level
alignments, sparse word alignments and non-literal
translations cause our constraint to rule out approx-
imately 54% of the training set. Thus, the reduced
size of the usable training set accounts for some of
the degraded performance of ¢, relative to ¢
However, the results in figure 1 of the following sec-
tion show that ¢y trained on twice as much data
as ¢ g still underperforms the heuristic, indicating a
larger issue than decreased training set size.

2.3 Experimental Design

To test the relative performance of ¢y and ¢p,
we evaluated each using an end-to-end translation
system from English to French. We chose this non-
standard translation direction so that the examples
in this paper would be more accessible to a primar-
ily English-speaking audience. All training and test
data were drawn from the French/English section of
the Europarl sentence-aligned corpus. We tested on
the first 1,000 unique sentences of length 5 to 15 in
the corpus and trained on sentences of length 1 to 60
starting after the first 10,000.

The system follows the structure proposed in
the documentation for the Pharaoh decoder and
uses many publicly available components (Koehn,
2003b). The language model was generated from
the Europarl corpus using the SRI Language Model-
ing Toolkit (Stolcke, 2002). Pharaoh performed de-
coding using a set of default parameters for weight-
ing the relative influence of the language, translation
and distortion models (Koehn, 2003b). A maximum
phrase length of three was used for all experiments.

To properly compare ¢pas to ¢, all aspects of
the translation pipeline were held constant except for
the parameters of the phrase translation table. In par-
ticular, we did not tune the decoding hyperparame-
ters for the different phrase tables.
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Figure 1: Statistical re-estimation using a generative
phrase model degrades BLEU score relative to its
heuristic initialization.

3 Results

Having generated ¢y heuristically and ¢ with
EM, we now compare their performance. While the
model and training regimen for ¢ s differ from the
model from Marcu and Wong (2002), we achieved
results similar to Koehn et al. (2003a): ¢ s slightly
underperformed ¢p. Figure 1 compares the BLEU
scores using each estimate. Note that the expecta-
tion maximization algorithm for training ¢gps was
initialized with the heuristic parameters ¢z, so the
heuristic curve can be equivalently labeled as itera-
tion 0.

Thus, the first iteration of EM increases the ob-
served likelihood of the training sentences while si-
multaneously degrading translation performance on
the test set. As training proceeds, performance on
the test set levels off after three iterations of EM. The
system never achieves the performance of its initial-
ization parameters. The pruning of our training regi-
men accounts for part of this degradation, but not all;
augmenting ¢ s by adding back in all phrase pairs
that were dropped during training does not close the
performance gap between ¢gys and ¢y.

3.1 Analysis

Learning ¢ s degrades translation quality in large
part because EM learns overly determinized seg-
mentations and translation parameters, overfitting
the training data and failing to generalize. The pri-
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mary increase in richness from generative word-
level models to generative phrase-level models is
due to the additional latent segmentation variable.
Although we impose a uniform distribution over
segmentations, it nonetheless plays a crucial role
during training. We will characterize this phe-
nomenon through aggregate statistics and transla-
tion examples shortly, but begin by demonstrating
the model’s capacity to overfit the training data.

Let us first return to the motivation behind in-
troducing and learning phrases in machine transla-
tion. For any language pair, there are contiguous
strings of words whose collocational translation is
non-compositional; that is, they translate together
differently than they would in isolation. For in-
stance, chat in French generally translates to cat in
English, but appeler un chat un chat is an idiom
which translates to call a spade a spade. Introduc-
ing phrases allows us to translate chat un chat atom-
ically to spade a spade and vice versa.

While introducing phrases and parameterizing
their translation probabilities with a surface heuris-
tic allows for this possibility, statistical re-estimation
would be required to learn that chat should never be
translated to spade in isolation. Hence, translating /
have a spade with ¢y could yield an error.

But enforcing competition among segmentations
introduces a new problem: true translation ambigu-
ity can also be spuriously explained by the segmen-
tation. Consider the french fragment carte sur la
table, which could translate to map on the table or
notice on the chart. Using these two sentence pairs
as training, one would hope to capture the ambiguity
in the parameter table as:

French | English | ¢(e|f)
carte map 0.5
carte notice 0.5
carte sur | map on 0.5
carte sur | notice on 0.5
sur on 1.0
table table 0.5
table chart 0.5

Assuming we only allow non-degenerate seg-
mentations and disallow non-monotonic alignments,
this parameter table yields a marginal likelihood
P(fle) = 0.25 for both sentence pairs — the intu-
itive result given two independent lexical ambigu-



ities. However, the following table yields a likeli-
hood of 0.28 for both sentences:>

French English olelf)
carte map 1.0
carte sur notice on 1.0
carte sur la | notice on the 1.0
sur on 1.0
sur la table | on the table 1.0
la the 1.0
la table the table 1.0
table chart 1.0

Hence, a higher likelihood can be achieved by al-
locating some phrases to certain translations while
reserving overlapping phrases for others, thereby
failing to model the real ambiguity that exists across
the language pair. Also, notice that the phrase sur
la can take on an arbitrary distribution over any en-
glish phrases without affecting the likelihood of ei-
ther sentence pair. Not only does this counterintu-
itive parameterization give a high data likelihood,
but it is also a fixed point of the EM algorithm.

The phenomenon demonstrated above poses a
problem for generative phrase models in general.
The ambiguous process of translation can be mod-
eled either by the latent segmentation variable or the
phrase translation probabilities. In some cases, opti-
mizing the likelihood of the training corpus adjusts
for the former when we would prefer the latter. We
next investigate how this problem manifests in ¢ gz
and its effect on translation quality.

3.2 Learned parameters

The parameters of ¢ g s differ from the heuristically
extracted parameters ¢y in that the conditional dis-
tributions over English translations for some French
words are sharply peaked for ¢ s compared to flat-
ter distributions generated by ¢ . This determinism
— predicted by the previous section’s example — is
not atypical of EM training for other tasks.

To quantify the notion of peaked distributions
over phrase translations, we compute the entropy of
the distribution for each French phrase according to

For example, summing over the first translation ex-
pands to 1(¢(map | carte)p(on the table | sur la table)

+¢(map | carte)p(on | sur)p(the table | la table)).
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Figure 2: Many more French phrases have very low
entropy under the learned parameterization.

the standard definition.
H(o(elf)) = Z (el f)logy (el f)

The average entropy, weighted by frequency, for the
most common 10,000 phrases in the learned table
was 1.55, comparable to 3.76 for the heuristic table.
The difference between the tables becomes much
more striking when we consider the histogram of
entropies for phrases in figure 2. In particular, the
learned table has many more phrases with entropy
near zero. The most pronounced entropy differences
often appear for common phrases. Ten of the most
common phrases in the French corpus are shown in
figure 3.

As more probability mass is reserved for fewer
translations, many of the alternative translations un-
der ¢y are assigned prohibitively small probabili-
ties. In translating 1,000 test sentences, for example,
no phrase translation with ¢(&| f) less than 10~° was
used by the decoder. Given this empirical threshold,
nearly 60% of entries in ¢gp; are unusable, com-
pared with 1% in ¢ .

3.3 Effects on Translation

While this determinism of ¢pjs may be desirable
in some circumstances, we found that the ambi-
guity in ¢y is often preferable at decoding time.
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Figure 3: Entropy of 10 common French phrases.
Several learned distributions have very low entropy.

In particular, the pattern of translation-ambiguous
phrases receiving spuriously peaked distributions (as
described in section 3.1) introduces new translation
errors relative to the baseline. We now investigate
both positive and negative effects of the learning
process.

The issue that motivated training a generative
model is sometimes resolved correctly: for a word
that translates differently alone than in the context
of an idiom, the translation probabilities can more
accurately reflect this. Returning to the previous ex-
ample, the phrase table for chat has been corrected
through the learning process. The heuristic process
gives the incorrect translation spade with 61% prob-
ability, while the statistical learning approach gives
cat with 95% probability.

While such examples of improvement are en-
couraging, the trend of spurious determinism over-
whelms this benefit by introducing errors in four re-
lated ways, each of which will be explored in turn.

1. Useful phrase pairs can be assigned very low
probabilities and therefore become unusable.

2. A proper translation for a phrase can be over-
ridden by another translation with spuriously
high probability.

3. Error-prone, common, ambiguous phrases be-
come active during decoding.
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4. The language model cannot distinguish be-
tween different translation options as effec-
tively due to deterministic translation model
distributions.

The first effect follows from our observation in
section 3.2 that many phrase pairs are unusable due
to vanishingly small probabilities. Some of the en-
tries that are made unusable by re-estimation are
helpful at decoding time, evidenced by the fact
that pruning the set of ¢pas’s low-scoring learned
phrases from the original heuristic table reduces
BLEU score by 0.02 for 25k training sentences (be-
low the score for ¢pgar).

The second effect is more subtle. Consider the
sentence in figure 4, which to a first approxima-
tion can be translated as a series of cognates, as
demonstrated by the decoding that follows from the
heuristic parameterization ¢ 17.9 Notice also that the
translation probabilities from heuristic extraction are
non-deterministic. On the other hand, the translation
system makes a significant lexical error on this sim-
ple sentence when parameterized by ¢gjs: the use
of caractérise in this context is incorrect. This error
arises from a sharply peaked distribution over En-
glish phrases for caractérise.

This example illustrates a recurring problem: er-
rors do not necessarily arise because a correct trans-
lation is not available. Notice that a preferable trans-
lation of degree as degré is available under both pa-
rameterizations. Degré is not used, however, be-
cause of the peaked distribution of a competing
translation candidate. In this way, very high prob-
ability translations can effectively block the use of
more appropriate translations at decoding time.

What is furthermore surprising and noteworthy in
this example is that the learned, near-deterministic
translation for caractérise is not a common trans-
lation for the word. Not only does the statistical
learning process yield low-entropy translation dis-
tributions, but occasionally the translation with un-
desirably high conditional probability does not have
a strong surface correlation with the source phrase.
This example is not unique; during different initial-
izations of the EM algorithm, we noticed such pat-

®While there is some agreement error and awkwardness, the
heuristic translation is comprehensible to native speakers. The

learned translation incorrectly translates degree, degrading the
translation quality.



5 degré
Heuristically Extracted Phrase Table “E‘ffgtﬁ’s}f € oCelf) ﬁnghsh o(elf)
[the situation || varies |[to an |[enormous |[degree | characterises | 0.49 degree | 0.49
characterised | 0.21 level 0.38
permeate 0.05 extent 0.02
lla situation Hvarie Hd 'une Himmense Hdegré l features 0.05 amount | 0.02
typifies 0.05 how 0.01
Learned Phrase Table . dearé
aractérise egre
[situation || varies |[to |[an enormous |[degree | English o(elf) | || English | ¢(elf)
/ / / l degree 0.998 degree | 0.64
characterises | 0.001 level 0.26
lsituation | lvarie | | une immense H caractérise | characterised | 0.001 extent | 0.10

Figure 4: Spurious determinism in the learned phrase parameters degrades translation quality.

terns even for common French phrases such as de
and ne.

The third source of errors is closely related: com-
mon phrases that translate in many ways depending
on the context can introduce errors if they have a
spuriously peaked distribution. For instance, con-
sider the lone apostrophe, which is treated as a sin-
gle token in our data set (figure 5). The shape of
the heuristic translation distribution for the phrase is
intuitively appealing, showing a relatively flat dis-
tribution among many possible translations. Such
a distribution has very high entropy. On the other
hand, the learned table translates the apostrophe to
the with probability very near 1.

Heuristic Learned

English | ¢p(e|f) || English | ¢gar(elf)
our 0.10 the 0.99

that 0.09 , 41-1073
is 0.06 is 6.5-107*
we 0.05 to 6.3-107%
next 0.05 in 5.3-107%

Figure 5: Translation probabilities for an apostro-
phe, the most common french phrase. The learned
table contains a highly peaked distribution.

Such common phrases whose translation depends
highly on the context are ripe for producing transla-
tion errors. The flatness of the distribution of ¢ en-
sures that the single apostrophe will rarely be used
during decoding because no one phrase table entry
has high enough probability to promote its use. On
the other hand, using the peaked entry ¢gps(the|’)
incurs virtually no cost to the score of a translation.
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The final kind of errors stems from interactions
between the language and translation models. The
selection among translation choices via a language
model — a key virtue of the noisy channel frame-
work — is hindered by the determinism of the transla-
tion model. This effect appears to be less significant
than the previous three. We should note, however,
that adjusting the language and translation model
weights during decoding does not close the perfor-
mance gap between ¢ and ¢g ).

3.4 Improvements

In light of the low entropy of ¢ s, we could hope to
improve translations by retaining entropy. There are
several strategies we have considered to achieve this.
Broadly, we have tried two approaches: combin-
ing ¢ gy and ¢ via heuristic interpolation methods
and modifying the training loop to limit determin-
ism.

The simplest strategy to increase entropy is to
interpolate the heuristic and learned phrase tables.
Varying the weight of interpolation showed an im-
provement over the heuristic of up to 0.01 for 100k
sentences. A more modest improvement of 0.003 for
25k training sentences appears in table 1.

In another experiment, we interpolated the out-
put of each iteration of EM with its input, thereby
maintaining some entropy from the initialization pa-
rameters. BLEU score increased to a maximum of
0.394 using this technique with 100k training sen-
tences, outperforming the heuristic by a slim margin
of 0.005.

We might address the determinization in ¢gps
without resorting to interpolation by modifying the



training procedure to retain entropy. By imposing a
non-uniform segmentation model that favors shorter
phrases over longer ones, we hope to prevent the
error-causing effects of EM training outlined above.
In principle, this change will encourage EM to ex-
plain training sentences with shorter sentences. In
practice, however, this approach has not led to an
improvement in BLEU.

Another approach to maintaining entropy during
the training process is to smooth the probabilities
generated by EM. In particular, we can use the fol-
lowing smoothed update equation during the train-
ing loop, which reserves a portion of probability
mass for unseen translations.

(bnew(éj‘f_.i) = M

In the equation above, [ is the length of the French
phrase and k is a tuning parameter. This formula-
tion not only serves to reduce very spiked probabili-
ties in ¢y, but also boosts the probability of short
phrases to encourage their use. With k = 2.5, this
smoothing approach improves BLEU by .007 using
25k training sentences, nearly equaling the heuristic
(table 1).

4 Conclusion

Re-estimating phrase translation probabilities using
a generative model holds the promise of improving
upon heuristic techniques. However, the combina-
torial properties of a phrase-based generative model
have unfortunate side effects. In cases of true ambi-
guity in the language pair to be translated, parameter
estimates that explain the ambiguity using segmen-
tation variables can in some cases yield higher data
likelihoods by determinizing phrase translation esti-
mates. However, this behavior in turn leads to errors
at decoding time.

We have also shown that some modest benefit can
be obtained from re-estimation through the blunt in-
strument of interpolation. A remaining challenge is
to design more appropriate statistical models which
tie segmentations together unless sufficient evidence
of true non-compositionality is present; perhaps
such models could properly combine the benefits of
both current approaches.
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Estimate BLEU
oH 0.385
¢y phrase pairs that also appear in ¢g s 0.365
dEM 0.374
¢rm with a non-uniform segmentation model | 0.374
¢rm with smoothing 0.381
¢rm with gaps filled in by ¢ 0.374
¢r M interpolated with ¢ gy 0.388

Table 1: BLEU results for 25k training sentences.
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Abstract

In this article, we present a translation
system which builds translations by glu-
ing together Tree-Phrases, i.e. associ-
ations between simple syntactic depen-
dency treelets in a source language and
their corresponding phrases in a target
language. The Tree-Phrases we use in
this study are syntactically informed and
present the advantage of gathering source
and target material whose words do not
have to be adjacent. We show that the
phrase-based translation engine we imple-
mented benefits from Tree-Phrases.

1 Introduction

Phrase-based machine translation is now a popular
paradigm. It has the advantage of naturally cap-
turing local reorderings and is shown to outper-
form word-based machine translation (Koehn et al.,
2003). The underlying unit (a pair of phrases), how-
ever, does not handle well languages with very dif-
ferent word orders and fails to derive generalizations
from the training corpus.

Several alternatives have been recently proposed
to tackle some of these weaknesses. (Matusov et
al., 2005) propose to reorder the source text in or-
der to mimic the target word order, and then let a
phrase-based model do what it is good at. (Simard
et al., 2005) detail an approach where the standard
phrases are extended to account for “gaps” either on
the target or source side. They show that this repre-
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sentation has the potential to better exploit the train-
ing corpus and to nicely handle differences such as
negations in French and English that are poorly han-
dled by standard phrase-based models.

Others are considering translation as a syn-
chronous parsing process e.g. (Melamed, 2004;
Ding and Palmer, 2005)) and several algorithms
have been proposed to learn the underlying produc-
tion rule probabilities (Graehl and Knight, 2004;
Ding and Palmer, 2004). (Chiang, 2005) proposes
an heuristic way of acquiring context free transfer
rules that significantly improves upon a standard
phrase-based model.

As mentioned in (Ding and Palmer, 2005), most
of these approaches require some assumptions on
the level of isomorphism (lexical and/or structural)
between two languages. In this work, we consider
a simple kind of unit: a Tree-Phrase (TP), a com-
bination of a fully lexicalized treelet (TL) and an
elastic phrase (EP), the tokens of which may be in
non-contiguous positions. TPs capture some syntac-
tic information between two languages and can eas-
ily be merged with standard phrase-based engines.

A TP can be seen as a simplification of the treelet
pairs manipulated in (Quirk et al., 2005). In particu-
lar, we do not address the issue of projecting a source
treelet into a target one, but take the bet that collect-
ing (without structure) the target words associated
with the words encoded in the nodes of a treelet will
suffice to allow translation. This set of target words
is what we call an elastic phrase.

We show that these units lead to (modest) im-
provements in translation quality as measured by au-
tomatic metrics. We conducted all our experiments
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on an in-house version of the French-English Cana-
dian Hansards.

This paper is organized as follows. We first define
a Tree-Phrase in Section 2, the unit with which we
built our system. Then, we describe in Section 3
the phrase-based MT decoder that we designed to
handle TPs. We report in Section 4 the experiments
we conducted combining standard phrase pairs and
TPs. We discuss this work in Section 5 and then
conclude in Section 6.

2 Tree-Phrases

We call tree-phrase (TP) a bilingual unit consisting
of a source, fully-lexicalized treelet (TL) and a tar-
get phrase (EP), that is, the target words associated
with the nodes of the treelet, in order. A treelet can
be an arbitrary, fully-lexicalized subtree of the parse
tree associated with a source sentence. A phrase can
be an arbitrary sequence of words. This includes
the standard notion of phrase, popular with phrased-
based SMT (Koehn et al., 2003; Vogel et al., 2003)
as well as sequences of words that contain gaps (pos-
sibly of arbitrary size).

In this study, we collected a repository of tree-
phrases using a robust syntactic parser called SYN-
TEX (Bourigault and Fabre, 2000). SYNTEX identi-
fies syntactic dependency relations between words.
It takes as input a text processed by the TREETAG-
GER part-of-speech tagger.! An example of the out-
put SYNTEX produces for the source (French) sen-
tence “on a demandé des crédits fédéraux” (request
for federal funding) is presented in Figure 1.

We parsed with SYNTEX the source (French) part
of our training bitext (see Section 4.1). From this
material, we extracted all dependency subtrees of
depth 1 from the complete dependency trees found
by SYNTEX. An elastic phrase is simply the list of
tokens aligned with the words of the corresponding
treelet as well as the respective offsets at which they
were found in the target sentence (the first token of
an elastic phrase always has an offset of 0).

For instance, the two treelets in Figure 2 will be
collected out of the parse tree in Figure 1, yielding
2 tree-phrases. Note that the TLs as well as the EPs
might not be contiguous as is for instance the case

lwww.ims.uni-stuttgart.de/projekte/
corplex/.
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a_demandé

SUB OBJ

crédits

DET ADJ

des fédéraux

on

Figure 1: Parse of the sentence “on a demandé des
crédits fédéraux” (request for federal funding). Note
that the 2 words “a” and “demandé” (literally “have”
and “asked”) from the original sentence have been
merged together by SYNTEX to form a single token.

These tokens are the ones we use in this study.

with the first pair of structures listed in the example.

3 The Translation Engine

We built a translation engine very similar to the sta-
tistical phrase-based engine PHARAOH described in
(Koehn, 2004) that we extended to use tree-phrases.
Not only does our decoder differ from PHARAOH by
using TPs, it also uses direct translation models. We
know from (Och and Ney, 2002) that not using the
noisy-channel approach does not impact the quality
of the translation produced.

3.1 The maximization setting

For a source sentence f, our engine incrementally
generates a set of translation hypotheses H by com-
bining tree-phrase (TP) units and phrase-phrase (PP)
units.> We define a hypothesis in this set as h =
{Ui = (Fi, Ei) }bie[1,u)> @ set of u pairs of source
(F;) and target sequences (F;) of n; and m; words
respectively:

F, =
E;, =

{f5i +dn € L1 D neing
{en, : b € [1, [el]mefimi)

under the constraints that for all i € [1,u], j¢ <
Ji.1,V¥n € [1,ny] for a source treelet (similar con-
straints apply on the target side), and j;, .1 = J;, +
1,¥n € [1,n;] for a source phrase. The way the
hypotheses are built imposes additional constraints
between units that will be described in Section 3.3.
Note that, at decoding time, |e|, the number of words

>What we call here a phrase-phrase unit is simply a pair of
source/target sequences of words.



alignment:

a_demandé = request for, fédéraux = federal,
crédits = funding

treelets:

a_demandé crédits

/\/\

crédits des fédéraux

tree-phrases:

TL* {{on@-1} a_demandé {crédits@2}}
EP* |request@O||for@l||fundingR3]
TL

EP | federal@O| | funding@1 |

Figure 2: The Tree-Phrases collected out of the
SYNTEX parse for the sentence pair of Figure 1.
Non-contiguous structures are marked with a star.
Each dependent node of a given governor token is
displayed as a list surrounding the governor node,
e.g. {governor {right-dependent}}. Along with the
tokens of each node, we present their respective off-
set (the governor/root node has the offset 0 by defi-
nition). The format we use to represent the treelets
is similar to the one proposed in (Quirk et al., 2005).

of the translation is unknown, but is bounded accord-
ing to | f| (in our case, |€|maz = 2 X |f| + 5).

We define the source and target projection of a
hypothesis h by the proj operator which collects in
order the words of a hypothesis along one language:

p?”OjF(h) = {fp tp €U 1{]721}716 1 m]}
projp(h) = {ep p € Uisi{lin}me lmz]}

If we denote by H; the set of hypotheses that
have f as a source projection (that is, Hy = {h :
projr(h) = f}), then our translation engine seeks
¢ = projg(h) where:

h = argmax s(h)
hGHf

The function we seek to maximize s(h) is a log-
linear combination of 9 components, and might be
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better understood as the numerator of a maximum
entropy model popular in several statistical MT sys-
tems (Och and Ney, 2002; Bertoldi et al., 2004; Zens
and Ney, 2004; Simard et al., 2005; Quirk et al.,
2005). The components are the so-called feature
functions (described below) and the weighting co-
efficients (\) are the parameters of the model:

s(h) = App,; 108 ppp, ; (1) + Ap|h|+
)\tpr Ingtprf (h’) + )‘t|h‘+
Appim 108 Pppiy (R)+
/\tpibm log Dtpipm (h)+
A 10g i (proje(h))+
Agd(h) + Ay |proje(h)|

3.2 The components of the scoring function

{{des@-1} crédits {fédéraux@l}} We briefly enumerate the features used in this study.

Translation models Even if a tree-phrase is a gen-
eralization of a standard phrase-phrase unit, for in-
vestigation purposes, we differentiate in our MT
system between two kinds of models: a TP-based
model py;, and a phrase-phrase model p,,,. Both rely
on conditional distributions whose parameters are
learned over a corpus. Thus, each model is assigned
its own weighting coefficient, allowing the tuning
process to bias the engine toward a special kind of
unit (TP or PP).
We have, for k € {rf,ibm}:

Pop(h) = TLizy ppp(Ei| Fi)
P (h) = Tlic1 pp(Eil Fy)
with p, . standing for a model trained by rel-

ative frequency, whereas p,, ~ designates a non-
normalized score computed by an IBM model-1
translation model p, where fy designates the so-
called NULL word:

mip

IT >_ plen, I1f55) +plex, 1 fo)

m=1n=1

p'zbm E |F

Note that by setting Ay, , and Ayp,,, to zero, we
revert back to a standard phrase-based translation
engine. This will serve as a reference system in the
experiments reported (see Section 4).

The language model Following a standard prac-
tice, we use a trigram target language model
pim(proje(h)) to control the fluency of the trans-
lation produced. See Section 3.3 for technical sub-
tleties related to their use in our engine.



Distortion model d This feature is very similar to
the one described in (Koehn, 2004) and only de-
pends on the offsets of the source units. The only
difference here arises when TPs are used to build a
translation hypothesis:

n

d(h) = — Zabs(l +Fio1— F))

i=1
where:
Foo— Soneling] Jn/ni  if Fiis a treelet
o ]ﬁz otherwise
;o =g

This score encourages the decoder to produce a
monotonous translation, unless the language model
strongly privileges the opposite.

Global bias features Finally, three simple fea-
tures help control the translation produced. Each
TP (resp. PP) unit used to produce a hypothesis
receives a fixed weight \; (resp. A,). This allows
the introduction of an artificial bias favoring either
PPs or TPs during decoding. Each target word pro-
duced is furthermore given a so-called word penalty
Aw Which provides a weak way of controlling the
preference of the decoder for long or short transla-
tions.

3.3 The search procedure

The search procedure is described by the algorithm
in Figure 3. The first stage of the search consists in
collecting all the units (TPs or PPs) whose source
part matches the source sentence f. We call U the
set of those matching units.

In this study, we apply a simple match policy that
we call exact match policy. A TL ¢ matches a source
sentence f if its root matches f at a source position
denoted r and if all the other words w of ¢ satisfy:

f0w+r =w

where o,, designates the offset of w in ¢.

Hypotheses are built synchronously along with
the target side (by appending the target material to
the right of the translation being produced) by pro-
gressively covering the positions of the source sen-
tence f being translated.
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Require: a source sentence f
U « {u : s-match(u, f)}
FUTURECOST(U)
for s — 1to|f| do

S[s] <0

S[0] = {(0,€,0)}
fors — O0to|f| —1do
PRUNE(S]s], )
for all hypotheses alive h € S[s| do
for all w € U do
if EXTENDS(u, h) then
h' « UPDATE(u, h)
k — [projr(h)|
S[k] — S[k]U{n'}

return argmax,cgy 10 b — (ps,t, p)

Figure 3: The search algorithm. The symbol « is
used in place of assignments, while — denotes uni-
fication (as in languages such as Prolog).

The search space is organized into a set .S of |f|
stacks, where a stack S[s] (s € [1,|f|]) contains all
the hypotheses covering exactly s source words. A
hypothesis h = (ps,t, p) is composed of its target
material ¢, the source positions covered ps as well as
its score p. The search space is initialized with an
empty hypothesis: S[0] = {(0,¢,0)}.

The search procedure consists in extending each
partial hypothesis h with every unit that can con-
tinue it. This process ends when all partial hypothe-
ses have been expanded. The translation returned is
the best one contained in S| f|]:

¢ = projg(argmax p : h — (ps,t,p))
heS ]

PRUNE — In order to make the search tractable,
each stack S[s| is pruned before being expanded.
Only the hypotheses whose scores are within a frac-
tion (controlled by a meta-parameter 5 which typi-
cally is 0.0001 in our experiments) of the score of
the best hypothesis in that stack are considered for
expansion. We also limit the number of hypotheses
maintained in a given stack to the top maxStack
ones (maxStack is typically set to 500).

Because beam-pruning tends to promote in a stack
partial hypotheses that translate easy parts (i.e. parts



that are highly scored by the translation and lan-
guage models), the score considered while pruning
not only involves the cost of a partial hypothesis so
far, but also an estimation of the future cost that will
be incurred by fully expanding it.

FUTURECOST — We followed the heuristic de-
scribed in (Koehn, 2004), which consists in comput-
ing for each source range [i,j] the minimum cost
c(i,j) with which we can translate the source se-
quence f7. This is pre-computed efficiently at an
early stage of the decoding (second line of the algo-
rithm in Figure 3) by a bottom-up dynamic program-
ming scheme relying on the following recursion:

mingef; jic(i, k) + c(k, 7)
min _score(us)

c(i,j) = min {

uEU/usﬁfZ.j:u

where u; stands for the projection of w on the tar-
get side (us = projp(u)), and score(u) is com-
puted by considering the language model and the
translation components p,,, of the s(h) score. The
future cost of h is then computed by summing the
cost (4, j) of all its empty source ranges [z, j].

EXTENDS — When we simply deal with standard
(contiguous) phrases, extending a hypothesis h by a
unit u basically requires that the source positions of
u be empty in h. Then, the target material of w is
appended to the current hypothesis .

Because we work with treelets here, things are
a little more intricate. Conceptually, we are con-
fronted with the construction of a (partial) source
dependency tree while collecting the target mate-
rial in order. Therefore, the decoder needs to check
whether a given TL (the source part of u) is compati-
ble with the TLs belonging to h. Since we decided in
this study to use depth-one treelets, we consider that
two TLs are compatible if either they do not share
any source word, or, if they do, this shared word
must be the governor of one TL and a dependent in
the other TL.

So, for instance, in the case of Figure 2, the
two treelets are deemed compatible (they obviously
should be since they both belong to the same orig-
inal parse tree) because crédit is the governor
in the right-hand treelet while being the depen-
dent in the left-hand one. On the other hand, the
two treelets in Figure 4 are not, since président
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is the governor of both treelets, even though mr.
le président suppléant would be a valid
source phrase. Note that it might be the case that
the treelet { {mr.@-2} {le@-1} président
{suppléant@l}} has been observed during
training, in which case it will compete with the
treelets in Figure 2.

président président
mr. le suppléant

Figure 4: Example of two incompatible treelets.
mr. speaker and the acting speaker
are their respective English translations.

Therefore, extending a hypothesis containing a
treelet with a new treelet consists in merging the two
treelets (if they are compatible) and combining the
target material accordingly. This operation is more
complicated than in a standard phrase-based decoder
since we allow gaps on the target side as well. More-
over, the target material of two compatible treelets
may intersect. This is for instance the case for the
two TPs in Figure 2 where the word funding is
common to both phrases.

UPDATE — Whenever u extends h, we add a
new hypothesis 7’ in the corresponding stack
Sllprojr(h')|]. Its score is computed by adding to
that of h the score of each component involved in
s(h). For all but the one language model compo-
nent, this is straightforward. However, care must be
taken to update the language model score since the
target material of v does not come necessarily right
after that of i as would be the case if we only ma-
nipulated PP units.

Figure 5 illustrates the kind of bookkeeping
required. In practice, the target material of
a hypothesis is encoded as a vector of triplets
{{wi, log prm(wile:i), i) Yie[1,le|mas) Where w is the
word at position ¢ in the translation, log py, (wi|c;)
is its score as given by the language model, c¢; de-
notes the largest conditioning context possible, and
l; indicates the length (in words) of ¢; (0 means a
unigram probability, 1 a bigram probability and 2 a
trigram probability). This vector is updated at each
extension.



h request for 1 funding S[3]

U B F U
on  a_demandé des crédits fédéraux

u TL: fon@-1} a_demandé {crédits@2)}
EP: request@0 for@1 funding@3

n request for federal funding S[4]

U B T T

7 w

on a_demandé des crédits fédéraux

TL: {des@—-1} crédits {fédéraux@1}
EP: federal@0 funding@1

Figure 5: Illustration of the language model up-
dates that must be made when a new target unit
(circles with arrows represent dependency links) ex-
tends an existing hypothesis (rectangles). The tag
inside each occupied target position shows whether
this word has been scored by a Unigram, a Bigram
or a Trigram probability.

4 Experimental Setting

4.1 Corpora

We conducted our experiments on an in-house ver-
sion of the Canadian Hansards focussing on the
translation of French into English. The split of this
material into train, development and test corpora is
detailed in Table 1. The TEST corpus is subdivided
in 16 (disjoints) slices of 500 sentences each that
we translated separately. The vocabulary is atypi-
cally large since some tokens are being merged by
SYNTEX, such as étaient#financées (were
financed in English).

The training corpus has been aligned at the
word level by two Viterbi word-alignments
(French2English and English2French) that we
combined in a heuristic way similar to the refined
method described in (Och and Ney, 2003). The
parameters of the word models (IBM model 2) were
trained with the GizA++ package (Och and Ney,
2000).
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TRAIN DEV TEST
sentences 1699 592 500 8000
e-toks 27717389 8160 130192
f-toks 30425 066 8946 143089
e-toks/sent | 16.3 (+90 163 91 16.3 9.0
f-toks/sent | 17.9 95 17.9 95 17.9 tos)
e-types 164 255 2224 12591
f-types 210085 2481 15008
e-hapax 68 506 1469 6887
f-hapax 90747 1704 8612

Table 1: Main characteristics of the corpora used in
this study. For each language /, [-toks is the number
of tokens, /-toks/sent is the average number of to-
kens per sentence (+ the standard deviation), [-types
is the number of different token forms and /-hapax
is the number of tokens that appear only once in the
corpus.

4.2 Models

Tree-phrases Out of 1.7 million pairs of sen-
tences, we collected more than 3 million different
kinds of TLs from which we projected 6.5 million
different kinds of EPs. Slightly less than half of
the treelets are contiguous ones (i.e. involving a se-
quence of adjacent words); 40% of the EPs are con-
tiguous. When the respective frequency of each TL
or EP is factored in, we have approximately 11 mil-
lion TLs and 10 million EPs. Roughly half of the
treelets collected have exactly two dependents (three
word long treelets).

Since the word alignment of non-contiguous
phrases is likely to be less accurate than the align-
ment of adjacent word sequences, we further filter
the repository of TPs by keeping the most likely EPs
for each TL according to an estimate of p(EP|TL)
that do not take into account the offsets of the EP or
the TL.

PP-model We collected the PP parameters by sim-
ply reading the alignment matrices resulting from
the word alignment, in a way similar to the one
described in (Koehn et al., 2003). We use an in-
house tool to collect pairs of phrases of up to 8
words. Freely available packages such as THOT
(Ortiz-Martinez et al., 2005) could be used as well
for that purpose.



Language model We trained a Kneser-Ney tri-
gram language model using the SRILM toolkit (Stol-
cke, 2002).

4.3 Protocol

We compared the performances of two versions of
our engine: one which employs TPs ans PPs (TP-
ENGINE hereafter), and one which only uses PPs
(PP-ENGINE). We translated the 16 disjoint sub-
corpora of the TEST corpus with and without TPs.

We measure the quality of the translation pro-
duced with three automatic metrics. Two error
rates: the sentence error rate (SER) and the word
error rate (WER) that we seek to minimize, and
BLEU (Papineni et al., 2002), that we seek to
maximize. This last metric was computed with
the multi-bleu.perl script available at www.
statmt.org/wmt06/shared-task/.

We separately tuned both systems on the DEV cor-
pus by applying a brute force strategy, i.e. by sam-
pling uniformly the range of each parameter (\) and
picking the configuration which led to the best BLEU
score. This strategy is inelegant, but in early experi-
ments we conducted, we found better configurations
this way than by applying the Simplex method with
multiple starting points. The tuning roughly takes
24 hours of computation on a cluster of 16 comput-
ers clocked at 3 GHz, but, in practice, we found that
one hour of computation is sufficient to get a con-
figuration whose performances, while subobptimal,
are close enough to the best one reachable by an ex-
haustive search.

Both configurations were set up to avoid distor-
tions exceeding 3 (maxDist = 3). Stacks were
allowed to contain no more than 500 hypotheses
(maxStack = 500) and we further restrained the
number of hypotheses considered by keeping for
each matching unit (treelet or phrase) the 5 best
ranked target associations. This setting has been
fixed experimentally on the DEV corpus.

4.4 Results

The scores for the 16 slices of the test corpus are re-
ported in Table 2. TP-ENGINE shows slightly better
figures for all metrics.

For each system and for each metric, we had
16 scores (from each of the 16 slices of the test cor-
pus) and were therefore able to test the statistical sig-
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nicance of the difference between the TP-ENGINE
and PP-ENGINE using a Wilcoxon signed-rank test
for paired samples. This test showed that the dif-
ference observed between the two systems is signif-
icant at the 95% probability level for BLEU and sig-
nificant at the 99% level for WER and SER.

Engine WER% SER% BLEU%
PP 52.80+12 9432+09 2995+12
TP 5198 £12 92.83+13 3047 +£14

Table 2: Median WER, SER and BLEU scores
(£ value range) of the translations produced by the
two engines on a test set of 16 disjoint corpora of
500 sentences each. The figures reported are per-
centages.

On the DEV corpus, we measured that, on aver-
age, each source sentence is covered by 39 TPs (their
source part, naturally), yielding a source coverage of
approximately 70%. In contrast, the average number
of covering PPs per sentence is 233.

5 Discussion

On a comparable test set (Canadian Hansard texts),
(Simard et al., 2005) report improvements by adding
non-contiguous bi-phrases to their engine without
requiring a parser at all. At the same time, they also
report negative results when adding non-contiguous
phrases computed from the refined alignment tech-
nique that we used here.

Although the results are not directly comparable,
(Quirk et al., 2005) report much larger improve-
ments over a phrase-based statistical engine with
their translation engine that employs a source parser.
The fact that we consider only depth-one treelets in
this work, coupled with the absence of any particular
treelet projection algorithm (which prevents us from
training a syntactically motivated reordering model
as they do) are other possible explanations for the
modest yet significant improvements we observe in
this study.

6 Conclusion

We presented a pilot study aimed at appreciating the
potential of Tree-Phrases as base units for example-
based machine translation.



We developed a translation engine which makes
use of tree-phrases on top of pairs of source/target
sequences of words. The experiments we conducted
suggest that TPs have the potential to improve trans-
lation quality, although the improvements we mea-
sured are modest, yet statistically significant.

We considered only one simple form of tree in this
study: depth-one subtrees. We plan to test our en-
gine on a repository of treelets of arbitrary depth. In
theory, there is not much to change in our engine
to account for such units and it would offer an al-
ternative to the system proposed recently by (Liu et
al., 2005), which performs translations by recycling
a collection of tree-string-correspondence (TSC) ex-
amples.
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Abstract

In statistical machine translation, an align-
ment defines a mapping between the
words in the source and in the target sen-
tence. Alignments are used, on the one
hand, to train the statistical models and, on
the other, during the decoding process to
link the words in the source sentence to the
words in the partial hypotheses generated.
In both cases, the quality of the alignments
is crucial for the success of the translation
process. In this paper, we propose an al-
gorithm based on an Estimation of Dis-
tribution Algorithm for computing align-
ments between two sentences in a paral-
lel corpus. This algorithm has been tested
on different tasks involving different pair
of languages. In the different experiments
presented here for the two word-alignment
shared tasks proposed in the HLT-NAACL
2003 and in the ACL 2005, the EDA-
based algorithm outperforms the best par-
ticipant systems.

Introduction

of sentence pairs, each pair containing a sentence in
a source language and a translation of this sentence
in a target language. Word alignments are neces-
sary to link the words in the source and in the tar-
get sentence. Statistical models for machine trans-
lation heavily depend on the concept of alignment,
specifically, the well known IBM word based mod-
els (Brown et al., 1993). As a result of this, differ-
ent task on aligments in statistical machine transla-
tion have been proposed in the last few years (HLT-
NAACL 2003 (Mihalcea and Pedersen, 2003) and
ACL 2005 (Joel Martin, 2005)).

In this paper, we propose a novel approach to deal
with alignments. Specifically, we address the prob-
lem of searching for the best word alignment be-
tween a source and a target sentence. As there is
no efficient exact method to compute the optimal
alignment (known a¥iterbi alignmen} in most of
the cases (specifically in the IBM models 3,4 and 5),
in this work we propose the use of a recently ap-
peared meta-heuristic family of algorithnigstima-
tion of Distribution AlgorithmgEDAS). Clearly, by
using a heuristic-based method we cannot guarantee
the achievement of the optimal alignment. Nonethe-
less, we expect that the global search carried out
by our algorithm will produce high quality results
in most cases, since previous experiments with this

Nowadays, statistical approach to machine trangechnique (Larrdaga and Lozano, 2001) in different
lation constitutes one of the most promising apeptimization task have demonstrated. In addition to
proaches in this field. The rationale behind this agthis, the results presented in section 5 support the
proximation is to learn a statistical model from a parapproximation presented here.

allel corpus. A parallel corpus can be defined as a setThis paper is structured as follows. Firstly, Sta-
" *This work has been supported by the Spanish ProjectiStical word alignments are described in section 2.

JCCM (PBI-05-022) and HERMES 05/06 (Vic. Inv. UCLM)
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Estimation of Distribution Algorithms (EDAS) are

Proceedings of the Workshop on Statistical Machine Translation, pages 47-54,
New York City, June 2006. (©)2006 Association for Computational Linguistics



introduced in section 3. An implementation of therewritten as follows:
search for alignments using an EDA is described in J

. . . . i—1 i—1
section 4. In section 5, we discuss the exp_erlmentz_il Pr(f,ale) = H Pr(f a;lfi~ ' el el)
issues and show the different results obtained. Fi- j=1
nally, some conclussions and future work are dis- J 4 '
cussed in section 6. = [IPralff ™" ol el

j=1

2 Word Alignments In Statistical Machine Pr(fi| i al,el) 2

translation The probability Pr(f, ale) can be estimated by

o ) ) ) using the word-based IBM statistical alignment
In statistical machine translation, a word alignmenf, - 4a|s (Brown et al., 1993). These models, how-
between two sentences (a source sentdnaed 8 o\ or constrain the set of possible alignments so that
target sentence) defines a mapping between theeach word in the source sentence can be aligned at

words f;...f; in the source sentence and the WOrdg, o« 15 one word in the target sentence. Of course,
e1..e1 m the target sentence. The search for the ORfag)” alignments, in most of the cases, do not fol-
timal alignment between the source senteh@dd |,y this limitation. Hence, the alignments obtained
the target senteneecan be stated as: from the IBM models have to be extended in some
way to achieve more realistic alignments. This is
a = argmaxPr(alf,e) = argmaxPr(f,ale) (1) usually performed by computing the alignments in
acA ac4 both directions (i.e, first fronf to e and then from
e to f) and then combining them in a suitable way
beingA the set of all the pOSSible alignments be'(th|s process is known as Symmetrization).
tweenf ande.

The transformation made in Eq. (1) allows us to> EStimation of Distribution Algorithms

address the alignment problem by using the statitistiEstimation of Distribution Algorithms(EDAS)
cal approach to machine translation described as fQt-arrafiaga and Lozano, 2001) are metaheuristics
lows. This approach can be stated as: a source Iafhich has gained interest during the last five years
guage strind = f{ = f1... f; is to be translated due to their high performance when solving com-
into a target language string = e{ = e1...e;.  pinatorial optimization problems. EDAs, as well
Every target string is regarded as a possible translgs genetics algorithms (Michalewicz, 1996), are
tion for the source language string with maximum apopulation-based evolutionary algorithms but, in-
posteriori probability”r(e|f). According to Bayes’ stead of using genetic operators are based on the es-
decision rule, we have to choose the target Strinm‘nation”earning and posterior sampling of a prob-
that maximizes the product of both the target langpility distribution, which relates the variables or
guage modePr(e) and the string translation model genes forming and individual or chromosome. In
Pr(fle). Alignment models to structure the trans+his way the dependence/independence relations be-
lation model are introduced in (Brown et al., 1993)tween these variables can be explicitly modelled in
These alignment models are similar to the concephe EDAs framework. The operation mode of a
of Hidden Markov models (HMM) in speech recog-canonical EDA is shown in Figure 1.
nition. The alignment mapping is— i = a; from  As we can see, the algorithm maintains a popu-
source positiory to target position = a;. In sta- |ation of m individuals during the search. An in-
tistical alignment models?r(f, ale), the alignment  djvidual is a candidate or potential solution to the
ais Usua”y introduced as a hidden variable. NeVEl’brob|em being optimized, e.g., in the prob|em con-
theless, in the problem described in this article, thgidered here an individual would be a possible align-
source and the target sentences are given, and we g{gnt. Usually, in combinatorial optimization prob-
focusing on the optimization of the aligmet lems an individual is represented as a vector of inte-
The translation probabilityPr(f,ale) can be gersa = (a1,...,a ), where each position; can
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1. Dy < Generate the initial population (m individuals) new pOpulation is formed by selectimg'ndividuals
2. Evaluate the population Dy from the2n contained in the current one. A common
3. k=1 practice is to use some kind of fithess-based elitism
4. Repeat during this selection, in order to guarantee that the
(2) Dira « Select s < m individuals from Dy, best(s) individual(s) is/are retained.
(b) Estimate/learn a new model M from Dyrq The main problem in the previous description is
(¢) Dauz < Sample m individuals from M . . . ..
(d) Evaluate Dy related to the estimation/learning of the probability
(e) Dy, — Select m individuals from Dj,_1 U Dayg distribution, since estimating the joint distribution is
) k=k+1 intractable in most cases. In the practice, what is
Until stop condition learnt is a probabilistic model that consists in a fac-
torization of the joint distribution. Different levels
Figure 1: A canonical EDA of complexity can be considered in that factoriza-

tion, from univariate distributions to n-variate ones
or Bayesian networks (see (Laiiega and Lozano,

take a set of finite value8,, = {0,...,I}. Thefirst 2001, Chapter 3) for a review). In this paper, as
step in an evolutionary algorithm is to generate thehis is the first approximation to the alignment prob-
initial populationDy. Although Dy is usually gener- |em with EDAs and, because of some questions that
ated randomly (to ensure diversity), prior knowledgeyill be discussed later, we use the simplest EDA
can be of utility in this step. model: theUnivariate Marginal Distribution Algo-

Once we have a population our next step is tethm or UMDA (Muhlenbein, 1997). In UMDA
evaluate it, that is, we have to measure the goodneisds assumed that all the variables are marginally
or fitness of each individual with respect to the probindependent, thus, the n-dimensional probability
lem we are solving. Thus, we use a fitness functiodistribution, Pr(as,...,ay), is factorized as the
f(a) = Pr(f,ale) (see Eq. (3)) to score individu- product of.J marginal/unidimensional distributions:
als. Evolutionary algorithms in general and EDAs irﬂ;.’:1 Pr(aj). Among the advantages of UMDA
particular seek to improve the quality of the individ-we can cite the following: no structural learning is
uals in the population during the search. In genetigeeded; parameter learning is fast; small dataset can
algorithms the main idea is to build a new populabe used because only marginal probabilities have to
tion from the current one by copying some individube estimated; and, the sampling process is easy be-
als and constructing new ones from those containeuse each variable is independently sampled.
in the current population. Of course, as we aim to
improve the quality of the population with respecttod  Design of an EDA to search for
fitness, the best/fittest individuals have more chance alignments
to be copied or selected for recombination.

In EDASs, the transition between populations idn this section, an EDA_aIgorithrn to align a source
quite different. The basic idea is to summariz&nd & target sentences is described.
the properties of the individuals in the population i
by learning a probability distribution that des,cribes,A"1 Representation
them as much as possible. Since the quality of th®ne of the most important issues in the definition
population should be improved in each step, onlgf a search algorithm is to properly represent the
thes fittest individuals are selected to be included irspace of solutions to the problem. In the problem
the dataset used to learn the probability distributiononsidered here, we are searching for an “optimal”
Pr(ay,...,ay), in this way we try to discover the alignment between a source sentefi@nd a target
common regularities among good individuals. Thesentence. Therefore, the space of solutions can be
next step is to obtain a set of new individuals bystated as the set of possible alignments between both
sampling the learnt distribution. These individualsentences. Owing to the constraints imposed by the
are scored by using the fitness function and added BBM models (a word inf can be aligned at most to
the ones forming the current population. Finally, th@ne word ine), the most natural way to represent a
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solution to this problem consists in storing each pogpilitiest.

sible alignment in a vectat = a;...a,, beingJ the  This model was trained using the GIZA++ toolkit
length off. Each position of this vector can take theoch and Ney, 2003) on the material available for the

value of “0” to represent a NULL alignment (that isdifferent alignment tasks described in section 5.1
a word in the source sentence that is aligned to no

words in the target sentence) or an index represefit3  Search
ing any position in the target sentence. An example this section, some specific details about the search
of alignment is shown in Figure 4.1. are given. As was mentioned in section 3, the algo-
rithm starts by generating an initial set of hypothe-
ses (initial population). In this case, a set of ran-
foo Por faor ,  deseia  reevar  uma  hebitadion domly generated alignments between the source and
\ \ \\ \ the target sentences are generated. Afterwards, all
e 1wt e o g N ot the individuals in this population (a fragment of a
real population is shown in figure 3) are scored using

(012 46 7 8 9) the function defined in Eq.(4.2). At this point, the
actual search starts by applying the scheme shown
4n section 3, thereby leading to a gradual improve-
ment in the hypotheses handled by the algorithm in
each step of the search.

This process finishes when some finalization cri-
4.2 Evaluation function terium (or criteria) is reached. In our implementa-

During the search process, each individual (searél?n’ the algorithm finishes when it passes a certain

hypothesis) is scored using the fitness function dg_umber of generations without improving the qual-

scribed as follows. Leh = a; - - -a, be the align- ity of the hypotheses (individuals). Afterwards, the
ment represented 'by an indi\}iduaIJThis alignment best individual in the current population is returned

. ) o the final solution.
is evaluated by computing the probabiljiyf, ale). as .
This probability is computed by using the IBM Regarding the EDA model, as commented before,

our approach rely on the UMDA model due mainly

e: null

Figure 2: Example of alignment and its represent
tion as a vector

model 4 as:
to the size of the search space defined by the task.
The algorithm has to deal with individuals of length
J, where each position can také + 1) possible
pfale)= Y plrle) P g

values. Thus, in the case of UMDA, the number of
. (T’”)af’aj . free parameters to be learnt for each positiod is
4 (e.g., in the English-French taskg(J) = 15 and
[In(@ile < [T 1T t(mieles) x avg(I) = 17.3). If more complex m(()d)els were con-
; sidered, the size of the probability tables would have
o ' grown exponentially. As an example, in a bivariate
z‘:gw d=1(min = cpulEclep:), Felria)) < model, each variable (position) is conditioned on an-
roé other variable and thus the probability tableg|.)
H H Ao (mig — Ty | Ful7in)) X to be learnt havd (I + 1) free parameters. In or-
’ ‘ o der to properly estimate the probabilty distributions,
the size of the populations has to be increased con-

%o

J—¢o0\ - i :

< N >pg 2¢>0p<{50 % H t(Touleo) 3) siderably. As a result, the computational resources
k=1

i=1 i=1k=1

i=1 k=2

1The symbols in this formula aref (the length ofe), I (the
length off), e; (thei-th word inef), eo (the NULL word), ¢;

where the factors separated by symbols denote (the fertility of e;), i, (thek-th word produced by; in a), 7
fertility. lati head tati h (ﬁ(t)he position ofr;;, in f), p; (the position of the first fertile word
ertlity, translation, head permutation, non-heéag, ihe jeft ofe; in a), c,, (the ceiling of the average of atl,, »

permutation, null-fertility, and null-translation prob-for p;, or 0 if p; is undefined).
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5.1 Corpora and evaluation

11532060 (-60.7500 Three different corpora and four different test sets

16523005 (-89.7449 have been used. All of them are taken from the
12264050 (-90.2221 two shared tasks in word alignments developed in
12350362 (-99.2313 HLT/NAACL 2003 (Mihalcea and Pedersen, 2003)
06024635 (-99.7786 and ACL 2005 (Joel Martin, 2005). These two tasks
20022034 (-100.587 involved four different pair of languages, English-
10163605 (-101.335 French, Romanian-English, English-Inuktitut and
English-Hindi.  English-French and Romanian-

English pairs have been considered in these exper-

Figure 3: Part of one population generated d“ri_ngnents (owing to the lack of timeto properly pre-
the search for the alignments between the Engligfocess the Hindi and the Inuktitut). Next, a brief
sentenceand then he tells us the correct result !description of the corpora used is given.

and the Romanian sentensiene spune noua rezul- Regarding the Romanian-English task, the test
tatul corect ! These sentences are part of the HLTg415 ysed to evaluate the alignments consisted in

NAACL 2005 shared task. Some individuals andy,g sentences for the 2003 evaluation task and 200

their scores (fitness) are shown. for the 2005 evaluation task. In addition to this, a
training corpus, consisting of about 1 million Ro-
required by the algorithm rise dramatically. manian words and about the same number of En-

Fina"y, as was described in section 3, some p&llSh word has been used. The IBM word-based

rameters have to be fixed in the design of an EDARlignment models were training on the whole cor-
On the one hand, the size of each population muBHS (training + test). On the other hand, a subset
be defined. In this case, this size is proportional t8f the Canadian Hansards corpus has been used in
the length of the sentences to be aligned. Speciﬁhe English-French task. The test corpus consists of
cally, the size of the population adopted is equal t§47 English-French sentences. The training corpus
the |ength of source Sentenﬁmump"ed by afactor contains about 20 million EngIISh WordS, and about
of ten. the same number of French words. In Table 1, the
On the other hand, as we mentioned in section fgatures of the different corpora used are shown.
the probability distribution over the individuals is 1o evaluate the quality of the final alignments ob-
not estimated from the whole population. In thdained, different measures have been taken into ac-

present task about 20% of the best individuals ifoUnt: Precision Recall F-measurgandAlignment
each population are used for this purpose. Error Rate Given an alignmentl and a reference

As mentioned above, the fitness function used i@lignmentG (both A and G can be split into two
the algorithm just allows for unidirectional align- SUbsetsis,Ap andGs, Gp, respectively represent-
ments. Therefore, the search was conducted {R9 SureandProbablealignments)Precision(Pr),
both directions (i.e, fronf to e and frome to Recall(Rr), F-measureg(f) and Alignment Error
f) combining the final results to achieve bidirecRate(AER) are computed as (whefis the align-
tional alignments. To this end, diffferent approacheg'€nt type, and can be set to eittieor P):
(symmetrization methods) were tested. The results

shown in section 5.2 were obtained by applying the P - |[Ar G
refined methogroposed in (Och and Ney, 2000). r = |Ar|
. ArNG
5 Experimental Results Ry |TQT‘T|
Different experiments have been carried out in or- P 12Pr Ry |
der to assess the correctness of the search algorithm. - |Pr + Rr|
Next, the experimental metodology employed and 1—-]4sNGs|+|ApNGp|
the results obtained are described. AER = |Ap| + |Gs|

51



Table 1: Features of the corpora used in the different alignment task
En-Fr Ro-En 03 | Ro-En 05
Training size M 97K 97K
Vocabulary 68K /86K | 48K /27K | 48K /27K
Running words | 20M/23M | 1.9M/2M | 1.9M/2M
Test size 447 248 200

It is important to emphasize that EDAs are nonments were perfomed, scoring each of them with
deterministics algorithms. Because of this, the rethe evaluation functiod’(a) = p(f, ale) defined in
sults presented in section 5.2 are actually the meaection (3), and being selected the best angy.
of the results obtained in ten different executions offterwards, this alignment was compared with the

the search algorithm. solution provided by the EDAa.4, . This com-
parison was made for each sentence in the test set,
5.2 Results being measuried the AER for both alignments as

In Tables 2. 3 and 4 the results obtained from th)é/ell as the value of the fithess function. At this

different tasks are presented. The results achievBg'nt we can say that a model-error is produced if

by the technique proposed in this paper are cont- (8eda) > F(arey). In addition, we can say that a

pared with the best results presented in the shar§§arch-erroris produced K (acaa) < F(ayes). In

tasks described in (Mihalcea and Pedersen, 2001§5ble 5, & summary for both kinds of errors for the

(Joel Martin, 2005). The results obtained by thd=nglish-Romanian 2005 task is shown. In this table
GIZA++ hill-climbing algorithm are also presented.V€ ¢an also see that these results correlate with the

In these tables, the mean and the variance of the t’Ae‘-ER figures. ]
sults obtained in ten executions of the search algo- | "'€S€ €xperiments show that most of the errors

rithm are shown. According to the small variance/€"€ not due to the search process itself but to an-

observed in the results we can conclude that the nofther different factors. From this, we can conclude

deterministic nature of this approach it is not statist1at: ©n the one hand, the model used to lead the
tically significant. search should be improved and, on the other, dif-

According to these results, the proposed EDAferent techniques for symmetrization should be ex-

based search is very competitive with respect to tH%Iored.
best resu.lt.presented in the two shargq task. 6 Conclusions and Future Work

In addition to these results, additional experi-
ments were carried out in to evaluate the actual bda this paper, a new approach, based on the use of an
havior of the search algorithm. These experimentsstimation of Distribution Algorithm has been pre-
were focused on measuring the quality of the algcsented. The results obtained with this technique are
rithm, distinguishing between the errors produceslery promising even with the simple scheme here
by the search process itself and the errors producednsidered.
by the model that leads the search (i.e, the errors in- According to the results presented in the previ-
troduced by the fitness function). To this end, theus section, the non-deterministic nature of the algo-
next approach was adopted. Firstly, the (bidirecithm has not a real influence in the performance of
tional) reference alignments used in the computatiathis approach. Therefore, the main theoretical draw-
of the Alignment Error Rate were split into two setsback of evolutionary algorithms have been proven
of unidirectional alignments. Owing to the fact thatot to be an important issue for the task we have ad-
there is no exact method to perform this decomposiiressed here.
tion, we employed the method described in the fol- Finally, we are now focusing on the influence of
lowing way. For each reference alignment, all thehese improved alignments in the statistical models
possible decompositions into unidirectional alignfor machine translation and on the degree of accu-
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Table 2: Alignment quality (%) for the English-French task with NULL alignments

System P, |R, |F. |P, |R, |F, |AER
EDA 73.82| 82.76| 78.04| 83.91| 29.50| 43.36| 13.61+0.03
GIZA++ 73.61| 82.56| 77.92| 79.94| 32.96 | 46.67| 15.89
Ralign.EF1 72.54| 80.61| 76.36 | 77.56 | 36.79 | 49.91| 18.50
XRCE.Nolem.EF.3 55.43| 93.81| 69.68| 72.01 | 36.00 | 48.00| 21.27

Table 3: Alignment quality (%) for the Romanian-English 2003 task with NULL aligments

System P R, F; P, R, F, AER
EDA 94.22| 49.67| 65.05| 76.66 | 60.97| 67.92| 32.08+0.05
GIZA++ 95.20| 48.54| 64.30| 79.89| 57.82| 67.09| 32.91
XRCE.Trilex.RE.3 80.97| 53.64 | 64.53| 63.64| 61.58| 62.59| 37.41
XRCE.Nolem-56k.RE.2 82.65| 54.12| 65.41| 61.59| 61.50| 61.54| 38.46

Table 4: Alignment quality (%) for the Romanian-English 2005 task

System P, R, F P, R, F, AER
EDA 95.37| 54.90| 69.68| 80.61| 67.83| 73.67 | 26.33+0.044
GIZA++ 95.68| 53.29| 68.45| 81.46| 65.83| 72.81| 27.19

ISI.Run5.vocab.grow 87.90| 63.08| 73.45| 87.90| 63.08| 73.45| 26.55
ISI.Run4.simple.intersegt 94.29 | 57.42| 71.38| 94.29| 57.42| 71,38 | 28.62
ISI.Run2.simple.union | 70.46| 71.31| 70.88| 70.46| 71.31| 70.88| 29.12

Table 5: Comparison between reference aligments (decomposed into two unidirectional alignments) and
the alignments provided by the EDA. Search errors and model errors for EDA and GIZA++ algorithms are
presented. In addition, the AER for the unidirectional EDA and reference alignments is also shown. These
result are obtained on the Romanian-English 05 task

Romanian-English | English-Romanian
EDA search errors (%) 35 (17.5 %) 18 (9 %)
EDA model errors (%) 165 (82.5 %) 182 (91 %)
GIZA++ search errors (%) 87 (43 %) 81 (40 %)
GIZA++ model errors (%) 113 (57 %) 119 (60 %)
AER-EDA 29.67 % 30.66 %
AER-reference 12.77 % 11.03 %
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racy that could be achieved by means of these alig-
ments. In addition to this, the integration of the
aligment algorithm into the training process of the
statistical translation models is currently being per-
formed.
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Abstract We adopt the idea of predicting the orientation,
o ] but we propose to use a maximum-entropy based
We present discriminative reordering  madel. The relative-frequency based approach may
models for phrase-based statistical ma-  gyffer from the data sparseness problem, because
chine translation. The models are trained gt of the phrases occur only once in the training
using the maximum entropy principle. corpus. Our approach circumvents this problem by
We use several types of features: based on  ;5ing a combination of phrase-level and word-level
words, based on word classes, based on  faatyres and by using word-classes or part-of-speech
the local context. We evaluate the overall  jhtormation. Maximum entropy is a suitable frame-

performance of the reordering models as  \yqork for combining these different features with a
well as the contribution of the individual well-defined training criterion.

feature types on a word-aligned corpus.
Additionally, we show improved transla-

tion performance using these reordering
models compared to a state-of-the-art
baseline system.

In (Koehn et al., 2005) several variants of the ori-
entation model have been tried. It turned out that for
different tasks, different models show the best per-
formance. Here, we let the maximum entropy train-
ing decide which features are important and which
features can be neglected. We will see that addi-
1 Introduction tional features do not hurt performance and can be

In recent evaluations, phrase-based statistical mg@fely addeq t_o the quel. .
The remaining part is structured as follows: first

chine translation systems have achieved good per- i d ibe the related K in Section 2 and
formance. Still the fluency of the machine transla!Ve W 0€scribe he related work in Section 2 an
ve a brief description of the baseline system in

tion output leaves much to desire. One reason tion 3. Th i t the discriminati
that most phrase-based systems use a very simple g.etion 5. Then, we will present the discriminative

ordering model. Usually, the costs for phrase moverpordermg model in Section 4. Afterwards, we will

ments are linear in the distance, e.g. see (Och et a?\’/aluate t.he performance O.f this new model _in Sec-
1999; Koehn, 2004; Zens et al., 2005). thn 5. This evaluatlorj c_on5|sts of_t_vyo parts: first we
Recently, in (Tillmann and Zhang, 2005) and inW'” evaluate _the prediction capabilities of the.model

’ ' ona word-aligned corpus and second we will show

(Koehn et al., 2005), a reordering model has bee dt lat lit dto the b
described that tries to predict the orientation of {nproved transiation quaiity compared o the base-
pe system. Finally, we will conclude in Section 6.

phrase, i.e. it answers the question 'should the ne
phrase be to the left or to the right of the currenb,  paiated Work

phrase?’ This phrase orientation probability is con-

ditioned on the current source and target phrase avid already mentioned in Section 1, many current
relative frequencies are used to estimate the probphrase-based statistical machine translation systems
bilities. use a very simple reordering model: the costs
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for phrase movements are linear in the distancelecision rule, we obtain:

This approach is also used in the publicly available v

Pharaoh decoder (Koehn, 2004). The idea of pre- .; I o

dicting the orientation is adopted from (Tillmann a = ar%f}ax {Z_ AmPm (€1, fi )} 3)

and Zhang, 2005) and (Koehn et al., 2005). Here, o m

we use the maximum entropy principle to combind his approach is a generalization of the source-

a variety of different features. channel approach (Brown et al., 1990). It has the
A reordering model in the framework of weightedadvantage that additional modelig-) can be eas-

finite state transducers is described in (Kumar an#y integrated into the overall system. The model

Byrne, 2005). There, the movements are defined &€aling factors\}’ are trained with respect to the fi-

the phrase level, but the window for reordering i@l translation quality measured by an error criterion

very limited. The parameters are estimated using d®ch, 2003).

EM-style method. We use a state-of-the-art phrase-based translation
None of these methods try to generalize from théystem (Zens and Ney, 2004; Zens et al., 2005) in-

words or phrases by using word classes or part-ofluding the following models: an-gram language

speech information. model, a phrase translation model and a word-based
The approach presented here has some reselgxicon model. The latter two models are used for

blance to the bracketing transduction grammar@oth directions: p(fle) and p(e[f). Additionally,

(BTG) of (Wu, 1997), which have been applied toV€ USe a word penalty and a phrase pe_nal_ty. The

a phrase-based machine translation system in (Zep%ordermg model of the baseline system is distance-

et al., 2004). The difference is that, here, we dbased, i.e. it assigns costs based on the distance from

not constrain the phrase reordering. Nevertheledd€ end position of a phrase to the start position of

the inverted/monotone concatenation of phrases {Re next phrase. This very simple reordering model

the BTG framework is similar to the left/right phraselS Widely used, for instance in (Och et al., 1999;

3 Baseline System 4 The Reordering Model

. . . ) 4.1 Idea
In statistical machine translation, we are given a

source language sentengd = fi...f;...f;, N this section, we will describe the proposed dis-

which is to be translated into a target language seffiminative reordering model. .
tencee! = e1...e;...e;. Among all possible tar-  TO make use of word level information, we need

get language sentences, we will choose the senteri€ word alignment within the phrase pairs. This can

with the highest probability: be_easily storeq pluring thg _extraction of the phrase
pairs from the bilingual training corpus. If there are
N I pJ multiple possible alignments for a phrase pair, we
= P 1
“l ar%gax {Prielfi)} D ise the most frequent one.

The notation is introduced using the illustration in

rectly using a log-linear combination of severalPhrase orientation. We assume that we have already

models (Och and Ney, 2002): produced the three-word ph_ras_e in the Iower.part.
Now, the model has to predict if the start position
M I ¢J of the next phrasg’ is to the left or to the right of
Prel|f]) = &P <Z =1 Amhim(el, fi )) the current phrase. The reordering model is applied

T exp (Z%:1 Amhm(e’{/,f{)> only at the phrase boundaries. We assume that the
el reordering within the phrases is correct.
2 In the remaining part of this section, we will de-
The denominator represents a normalization fact@cribe the details of this reordering model. The
that depends only on the source sentefjteThere- classes our model predicts will be defined in Sec-
fore, we can omit it during the search process. As ton 4.2. Then, the feature functions will be defined
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Figure 1: lllustration of the phrase orientation.

in Section 4.3. The training criterion and the train-Then, the reordering model has the form
ing events of the maximum entropy model will be I
described in Section 4.4. plej il fise1si, )

4.2 Class Definition A well-founded framework for directly modeling the
éarobabilityp(cmf\fi],e{,z}j) iS maximum entropy
gBerger et al., 1996). In this framework, we have a
et of V feature functions, (f{, ef,4,j,¢; ), n =
..., N. Each feature function,, is weighted with
factor),,. The resulting model is:

Ideally, this model predicts the start position of th
next phrase. But as predicting the exact position i
rather difficult, we group the possible start position
into classes. In the simplest case, we use only two
classes. One class for the positions to the left arfd
one class for the positions to the right. As a refine-

ment, we can use four classes instead of two: 1) one
position to the left, 2) more than one positions to the

N
left, 3) one position to the right, 4) more than one exp (Z Anhin (f1 €l i, . cj,j/)>
n=1

pan (el f s €14, )

positions to the right.

(5)

In general, we use a paramefero specify2 - D - N
classes of the types: > exp (Z M (f1, €14, 7, c’)>
c/ n=1

e exactlyd positions to the leftd = 1,...,D — 1
The functional form is identical to Equation 2,
but here we will use a large number of binary
e exactlyd positions to the righty = 1,..., D—1 features, whereas in Equation 2 usually only a
very small number of real-valued features is used.
e atleastD positions to the right More precisely, the resulting reordering model

A N "
Let ¢, denote the orientation class for a movePxY (¢.7Ifi’> €1,7,7) is used as an additional com-
ment from source positiojito source position’ as ponent in the log-linear combination of Equation 2.

illustrated in Figure 1. In the case of two orientationy 3 Feature Definition
classesg; ;: is defined as:

e at leastD positions to the left

The feature functions of the reordering model de-
left, ifj’ < pend on the last alignment linkj, ) of a phrase.
G = right, if j/ > j (4) Note that the source positigns not necessarily the
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end position of the source phrase. We use the sourBénce the optimization criterion is convex, there is
position 5 which is aligned to the last word of the only a single optimum and no convergence problems
target phrase in target positian The illustration in  occur. To train the model parametex¥, we use the
Figure 1 contains such an example. Generalized lterative Scaling (GIS) algorithm (Dar-
To introduce generalization capabilities, some ofoch and Ratcliff, 1972).
the features will depend on word classes or part- In practice, the training procedure tends to result
of-speech information. Lefy denote the word in an overfitted model. To avoid overfitting, (Chen
class sequence that corresponds to the source lamd Rosenfeld, 1999) have suggested a smoothing
guage sentenc’ and letE! denote the target word method where a Gaussian prior distribution of the
class sequence that corresponds to the target lggarameters is assumed.
guage sentence]. Then, the feature functions are This method tried to avoid very large lambda val-
of the formh,, (f{,e{, F{, E{,1,4,'). We consider ues and prevents features that occur only once for a
the following binary features: specific class from getting a value of infinity.
1. source words within a window around the cur- We train I.BM Model 4 W'th G.IZAJ.# (Och and
e Ney, 2003) in both translation directions. Then the
rent source position ) : ) , )
alignments are symmetrized using a refined heuris-

hfdc(fi] L BB G, (6) tic as described in (Och and Ney, 2003). This word-
e 5’ . 5o o aligned bilingual corpus is used to train the reorder-
= 0(fj+a: ) - 0(c cj57) ing model parameters, i.e. the feature weigh}s

o _ Each alignment link defines an event for the max-
2. target words within a window around the Curymum entropy training. An exception are the one-
rent target positior to-many alignments, i.e. one source word is aligned
I o oI + - to multiple target words. In this case, only the top-
heaclfiset, F B, f') (7) most alignment link is considered because the other
= 0(€ita,€) - (¢, cj50) ones cannot occur at a phrase boundary. Many-to-
one and many-to-many alignments are handled in a
3. word classes or part-of-speech within a windovgimilar way.
around the current source positigpn

hF,d,C(fi]v6{7F1J7E{7i7j7j/) (8) o
= §(Fjra, F) - 0(c,cijr) 5.1 Statistics
The experiments were carried out on tBasic
4. word classes or part-of-speech within a windowravel Expression Corpus (BTEC) task (Takezawa

5 Experimental Results

around the current target position et al.,, 2002). This is a multilingual speech cor-
DL og el pus which contains tourism-related sentences sim-
heacfi, e, FY, Ei,i,5,5") (9) ilar to those that are found in phrase books. We

= 0(Eita, E) - 0(c,cj ) use the Arabic-English, the Chinese-English and the
Japanese-English data. The corpus statistics are
Here,d(-, ) denotes the Kronecker-function. In theshown in Table 1.
experiments, we will usel € {-1,0,1}. Many As the BTEC is a rather clean corpus, the prepro-
other feature functions are imaginable, e.g. combgessing consisted mainly of tokenization, i.e., sep-
nations of the described feature functiomsgram arating punctuation marks from words. Addition-
or multi-word features, joint source and target lanally, we replaced contractions suchiéis or I'min

guage feature functions. the English corpus and we removed the case infor-
o mation. For Arabic, we removed the diacritics and
4.4 Training we split common prefixes: Al, w, f, b, I. There

As training criterion, we use the maximum classvas no special preprocessing for the Chinese and the
posterior probability. This corresponds to maximizJapanese training corpora.
ing the likelihood of the maximum entropy model. To train and evaluate the reordering model, we
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Table 1: Corpus statistics after preprocessing for the BTdsK.
Arabic | Chinese| Japanesg¢ English
Train Sentences 20000
Running Words| 180075| 176199| 198453| 189927
Vocabulary| 15371 8687 9277 6870

C-Star'03 Sentencep 506
Running Words|  3552| 3630] 4130] 3823

Table 2: Statistics of the training and test word alignTable 3: Chinese-English NIST task: corpus statis-
ment links. tics for the bilingual training data and the NIST eval-
Ara-Eng Chi-Eng Jap-Eng uation sets of the years 2002 to 2005.

Training 144K 140K 119K

Test 16.2K 15.7K  13.2K Chinese| English
Train | Sentence Pairs ™
Running Words 199M | 213M
Vocabulary Size 223K | 351K
] - o I Dictionary Entry Pairs 82K
use the_ word allgne_d_ b|||_ngual training corpus. F GEval | 2002 Sentences 378 3510
evaluating the classification power of the reordering Running Words 25K 105K
model, we partition the corpus into a training part 5003 Sentences 9191 3676
and a test part. In our experiments, we use about Running Words 26K 129K
10% of the corpus for testing and the remaining 5004 Sentences 1788 7157
part for training the feature weights of the reordgr- Running Words 50K 245K
ing model with the GIS algorithm using YASME[T 5005 Sentences 1082 4328

(Och, 2001). The statistics of the training and test
alignment links is shown in Table 2. The number
of training events ranges from 119K for Japanese-
English to 144K for Arabic-English.

Running Words 33K 148K

5.2 Classification Results

The word classes for the class-based features aIF1ethis section, we present the classification results
trained using therkcl s tool (Och, 1999). In the ' P

experiments, we use 50 word classes. Alternativelfﬁr the th.ree Ignguage pairs. In Tgble 4.’ we present
one could use part-of-speech information for thii e classn‘lc?atlon results for two orientation classes.
purpose. As ba_tsellne we always choose t_he most freqqent
orientation class. For Arabic-English, the baseline
Additional experiments were carried out on thds with 6.3% already very low. This means that the
large data track of the Chinese-English NIST taskvord order in Arabic is very similar to the word or-
The corpus statistics of the bilingual training corder in English. For Chinese-English, the baseline
pus are shown in Table 3. The language model was With 12.7% about twice as large. The most dif-
trained on the English part of the bilingual train-ferences in word order occur for Japanese-English.
ing corpus and additional monolingual English datd his seems to be reasonable as Japanese has usu-
from the GigaWord corpus. The total amount of lanally a different sentence structure, subject-object-
guage model training data was about 600M runningerb compared to subject-verb-object in English.
words. We use a fourgram language model with For each language pair, we present results for sev-
modified Kneser-Ney smoothing as implemented ieral combination of features. The three columns per
the SRILM toolkit (Stolcke, 2002). For the four En-language pair indicate if the features are based on the
glish reference translations of the evaluation sets, thveords (column label 'Words’), on the word classes
accumulated statistics are presented. (column label 'Classes’) or on both (column label
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Table 4: Classification error rates [%)] using two orientatitasses.

Arabic-English Chinese-English Japanese-English
Baseline 6.3 12.7 26.2

| Lang. Window | Words | Classes] W+C | Words | Classes| W+C | Words | Classes] W~+C |
Tgt d=0 47 53] 4.4 9.3 10.4] 89 136 15.1] 13.4
d e {0,1} 4.5 5.0 4.3 8.9 9.9 8.6| 13.7 149| 134
de{-1,0,1} 4.5 4.9 4.3 8.6 9.5 83| 135 14.6| 133

Src d=0 5.6 5.0 3.9 7.9 8.3 721 122 11.8| 11.0
d e {0,1} 3.2 3.0 2.6 4.7 4.7 42| 101 9.7 9.4
de{-1,0,1} 2.9 2.5 2.3 3.9 35 3.3 9.0 8.0 7.8

Src d=0 4.3 3.9 3.7 7.1 7.8 6.5/ 10.8 10.9 9.8
+ d e {0,1} 2.9 2.6 2.5 4.6 4.5 4.1 9.3 9.1 8.6
Tgt de{-1,0,1} 2.8 2.1 2.1 3.9 3.4 3.3 8.7 7.7 7.7

'W+C"). We also distinguish if the features depend These are desirable properties of an appropriate
on the target sentence ('Tgt’), on the source sentenceordering model. The main point is that these are
(’Src’) or on both ('Src+Tgt)). fulfilled not only on the training data, but on unseen
For Arabic-English, using features based only otest data. There seems to be no overfitting problem.
words of the target sentence the classification er- In Table 5, we present the results for four orien-
ror rate can be reduced to 4.5%. If the features akation classes. The final error rates are a fagtdr
based only on the source sentence words, a classifirger than for two orientation classes. Despite that
cation error rate of 2.9% is reached. Combining theye observe the same tendencies as for two orien-
features based on source and target sentence wongdgion classes. Again, using more features always

a classification error rate of 2.8% can be achievedhelps to improve the performance.

Adding the features based on word classes, the clas-

sification error rate can be further improved to 2.1%5.3 Translation Results

For the other language pairs, the results are simil . ,

except that the a%so?utepvalues of the classificatioia_.nror the translation experiments on the BTEC task,

error rates are higher. we r_eport the two accuracy measures BLEU (Pap-
We observe the following: ineni et al., 2002) and NIST (Doddington, 2002) as
well as the two error rates: word error rate (WER)

e The features based on the source sentence pand position-independent word error rate (PER).
form better than features based on the targfthese criteria are computed with respect to 16 refer-
sentence. ences.

In Table 6, we show the translation results for

e BTEC task. In these experiments, the reorder-

ing model uses two orientation classes, i.e. it pre-

e Increasing the window always helps, i.e. addidicts either a left or a right orientation. The fea-
tional context information is useful. tures for the maximum-entropy based reordering

model are based on the source and target language

o Often the word-class based features outperforigyords within a window of one. The word-class
the word-based features. based features are not used for the translation ex-

Beriments. The maximum-entropy based reordering

model achieves small but consistent improvement

for all the evaluation criteria. Note that the baseline

e In general, adding features does not hurt theystem, i.e. using the distance-based reordering, was
performance. among the best systems in the IWSLT 2005 evalua-

e Combining source and target sentence featur?ﬁ
performs best.

e Combining word-based and word-class base
features performs best.
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Table 5: Classification error rates [%)] using four oriemtatclasses.

Arabic-English Chinese-English Japanese-English
Baseline 314 44.9 59.0

| Lang. Window | Words | Classes] W+C | Words | Classes| W+C | Words | Classes] W~+C |
Tgt d=0 245] 27.7] 242] 30.0| 34.4] 29.7| 289] 31.4| 287
d e {0,1} 23.9 27.2| 23.7| 29.2 329| 28.9| 287 30.6| 28.3
de{-1,0,1} 22.1 25.3| 21.9| 276 31.4| 274| 283 30.1| 28.2
Src d=0 22.1 23.2| 20.4| 259 27.7| 204| 241 249| 223
de{0,1} 11.9 12.0| 10.8 14.0 149| 13.2 18.6 19.5| 17.7
de{-1,0,1} 10.1 8.7 8.0 114 11.1| 105 15.6 156| 145
Src d=0 20.9 21.8| 19.6| 24.1 26.8| 19.6| 223 234 211
+ de{0,1} 11.8 11.5| 10.6 13.5 145| 12.8 18.6 18.8| 17.1
Tgt de{-1,0,1} 9.6 7.7 7.6 11.3 10.1| 10.1 15.6 15.2| 14.2

Table 6: Translation Results for the BTEC task.

Language Pair Reordering | WER [%] | PER [%] | NIST | BLEU [%)]
Arabic-English Distance-based 24.1 20.9 10.0 63.8
Max-Ent based 23.6 20.7 10.1 64.8
Chinese-English  Distance-based 50.4 43.0 7.67 44.4
Max-Ent based 49.3 42.4 7.36 45.8
Japanese-English Distance-based 32.1 25.2 8.96 56.2
Max-Ent based  31.2 25.2 9.00 56.8
tion campaign (Eck and Hori, 2005). tion (NIST, 2005).

Some translation examples are presented in Ta- The translation results for the NIST task are pre-
ble 7. We observe that the system using theented in Table 8. We observe consistent improve-
maximum-entropy based reordering model producesents of the BLEU score on all evaluation sets. The
more fluent translations. overall improvement due to reordering ranges from

Additional translation experiments were carriedl.2% to 2.0% absolute. The contribution of the
out on the large data track of the Chinese-Englismaximum-entropy based reordering model to this
NIST task. For this task, we use only the BLEUImprovement is in the range of 25% to 58%, e.qg. for
and NIST scores. Both scores are computed casiée NIST 2003 evaluation set about 58% of the im-
insensitive with respect to four reference translationgrovement using reordering can be attributed to the
using the mteval-v11b todl maximum-entropy based reordering model.

For the NIST task, we use the BLEU score as pri- We also measured the classification performance
mary criterion which is optimized on the NIST 2002for the NIST task. The general tendencies are iden-
evaluation set using the Downhill Simplex algorithmtical to the BTEC task.

(Press et al., 2002). Note that only the eight or nin
model scaling factors of Equation 2 are optimize
using the Downhill Simplex algorithm. The featurewe have presented a novel discriminative reorder-
weights of the reordering model are trained usinghg model for statistical machine translation. This
the GIS algorithm as described in Section 4.4. Wenodel is trained on the word aligned bilingual cor-

use a state-of-the-art baseline system which woulsls using the maximum entropy principle. Several
have obtained a good rank in the last NIST evaluaypes of features have been used:

Conclusions

Yhttp://wvww.nist.gov/speech/tests/mt/resources/sgohnitm ¢ based on the source and target sentence
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Table 7: Translation examples for the BTEC task.

System Translation

Distance-based | would like to check out time one day before.
Max-Ent based | would like to check out one day before the time.
Reference | would like to check out one day earlier.
Distance-based | hate pepper green.

Max-Ent based | hate the green pepper.

Reference | hate green peppers.

Distance-based Is there a subway map where?
Max-Ent based Where is the subway route map?
Reference Where do they have a subway map?

Table 8: Translation results for several evaluation sete@fChinese-English NIST task.

| Evaluation set | 2002 (dev) | 2003 | 2004 | 2005 |
Reordering | NIST BLEU[%] | NIST BLEU[%] | NIST BLEU[%] | NIST BLEU[%]
None 8.96 33.5 8.67 32.7 8.76 32.0 8.62 30.8

Distance-based 9.19 34.6 8.85 33.2 9.05 33.2 8.79 31.6
Max-Ent based 9.24 355 8.87 33.9 9.04 33.6 8.78 32.1

e based on words and word classes toward translation quality might also result in im-
] ] ] provements. As already mentioned in Section 4.3, a
* using local context information richer feature set could be helpful.

We_ have evaluated the performar!ce of the reAcknowIedgments
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Abstract

In this paper we propose a generalization
of the Stack-based decoding paradigm for
Statistical Machine Translation. The well
known single and multi-stack decoding
algorithms defined in the literature have
been integrated within a new formalism
which also defines a new family of stack-
based decoders. These decoders allows
a tradeoff to be made between the ad-
vantages of using only one or multiple
stacks. The key point of the new formal-
ism consists in parameterizeing the num-
ber of stacks to be used during the de-
coding process, and providing an efficient
method to decide in which stack each par-
tial hypothesis generated is to be inserted-
during the search process. Experimental
results are also reported for a search algo-
rithm for phrase-based statistical transla-

of both the target language modBl(e!) and the
string translation modePr(f{|e!) must be chosen.
The equation that models this process is:

é1 = argmax{Pr(ef) - Pr(filel)} (1)
€1

The search/decoding problem in SMT consists in
solving the maximization problem stated in Eq. (1).
In the literature, we can find different techniques to
deal with this problem, ranging from heuristic and
fast (as greedy decoders) to optimal and very slow
decoding algorithms (Germann et al., 2001). Also,
under certain circumstances, stack-based decoders
can obtain optimal solutions.

Many works (Berger et al., 1996; Wang and
Waibel, 1998; Germann et al.,, 2001; Och et al.,
2001; Ortiz et al., 2003) have adopted different types
of stack-based algorithms to solve the global search
optimization problem for statistical machine trans-
lation. All these works follow two main different
approaches according to the number of stacks used

tion models. in the design and implementation of the search algo-

rithm (the stacks are used to store partial hypotheses,
sorted according to their partial score/probability,
guring the search process) :

1 Introduction

The translation process can be formulated from
statistical point of view as follows: A source lan-
guage stringf{ = f1 ... f; is to be translated into
a target language string = e;...e;. Every tar-
get string is regarded as a possible translation for the
source language string with maximum a-posteriori
probability Pr(ef|f{). According to Bayes’ theo-
rem, the target string! that maximizesthe product

e On the one hand, in (Wang and Waibel, 1998;
Och et al., 2001) a single stack is used. In
that case, in order to make the search feasible,
the pruning of the number of partial hypothe-
ses stored in the stack is needed. This causes
many search errors due to the fact that hy-
potheses covering a different number of source
(translated) words compete in the same condi-
tions. Therefore, the greater number of covered
words the higher possibility to be pruned.

This work has been partially supported by the Spanish
project TIC2003-08681-C02-02, th&gencia Valenciana de
Ciencia y Tecnologiander contract GRUPOS03/031, tGen-
eralitat Valenciana and the project HERMES (Vicerrectorado
de Investigacion - UCLM-05/06)

!Note that the expression should also be maximized by
however, for the sake of simplicity we suppose that it is know

e On the other hand (Berger et al., 1996; Ger-
mann et al., 2001) make use of multiple stacks
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(one for each set of source covered/translateid (Marcu and Wong, 2002; Zens et al., 2002; Koehn
words in the partial hypothesis) in order toet al., 2003; Tomas and Casacuberta, 2003).

solve the disadvantages of the single-stack ap- For the translation modeRr(f{|e!)) in Eq. (1),
proach. By contrast, the problem of findingPBT can be explained from a generative point of
the best hypothesis to be expanded introducegew as follows (Zens et al., 2002):

an exponential term in the computational com-

plexity of the algorithm 1. The target sentence] is segmented intdy

phrasesdf).

In (Ortiz et al., 2003) the authors present an em-2. Each target phrasg is translated into a source
pirical comparison (about efficiency and translation ~ phrasef.

quality) of the two approaches paying special atten-
tion to the advantages and disadvantages of the two™
approaches.

In this paper we present a new formalism consist- In PBT, it is assumed that the relations between
ing of a generalization of the classical stack-basetihe words of the source and target sentences can
decoding paradigm for SMT. This new formalismbe explained by means of the hidden variabfg,
defines a new family of stack-based decoders, whiakhich contains all the decisions made during the
also integrates the well known stack-based decodirggnerative story.
algorithms proposed so far within the framework of

Finally, the source phrases are reordered in or-
der to compose the source senteffife= f;.

SMT, that is single and multi-stack decoders. Pr(f{lel) = Z Pr(, [, er")
The rest of the paper is organized as follows: in K.aft
section 2 the phrase-based approach to SMT is de- = > Pr(af(ef)Pr(fi|al, &)
picted; in section 3 the main features of classical K.ak
stack-based decoders are presented; in section 4 the 2)

new formalism is presented and in section 5 exper-

imental results are shown; finally some conclusions_Different assumptions can be made from the pre-
are drawn in section 6. vious equation. For example, in (Zens et al., 2002)

the following model is proposed:

2 Phrase Based Statistical Machine K
Translation po(flel) = alel) D> [[p(felea,) (3

. . K,sz k=1
Different translation model§TMs) have been pro-

posed depending on how the relation between thhere a; notes the index of the source phrase
source and the target languages is structured:; that éich is aligned with the:-th target phras¢, and

the way a target sentence is generated from a sour&@t all possible segmentations have the same proba-
sentence. This relation is summarized using the coRllity. In (Tomas and Casacuberta, 2001; Zens et al.,
cept ofalignment that is, how the constituents (typ- 2002), it also is assumed that the alignments must be
ically words or group-of-words) of a pair of sen-monotonic. This led us to the following equation:
tences are aligned to each other. The most widely K

used single-word-basestatistical alignment mod- po(flel) = a(el) Z Hp(fk|ék) (4)

els (SAMs) have been proposed in (Brown et al., Kak k=1

1993; Ney et al., 2000). On the other hand, models

that deal with structures or phrases instead of singl8 P0th cases the model parameters that have to be
words have also been proposed: the syntax trangstlmated_are the trgnslatlon.probapllltles between
lation models are described in (Yamada and KnighPhrase pairs= {p(f[e)}), which typically are es-
2001) , alignment templates are used in (Och, 200Zjmated as follows:

and the alignment template approach is re-framed S N(f, é)

into the so-calledphrase based translatio(PBT) p(fle) = N (&) )
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where N(f|é) is the number of times thaf have .’_\
been seen as a translation @fvithin the training

corpus.

newhyp:apply_operation(hypothesis)

3 StaCk-DeCOdlng A|gOf|tth Still there\are operations

to be applRd
The stack decoding algorithm, also calldd algo-
rithm, was first introduced by F. Jelinek in (Jelinek,
1969). The stack decoding algorithm attempts to
generate partial solutions, callbgipothesesuntil a
complete translation is fouRpthese hypotheses are
stored in a stack and ordered by the@ore Typi-
cally, this measure or score is the probability of th¢igure 1: Flow chart associated to the expansion of
product of the translation and the language modelshypothesis when using ait algorithm.
introduced above. Thel* decoder follows a se-

f steps f hievi let d i-
g:;/eggtei)r:a; Esso?gea;cis'levmg a complete (an pOSSc;ry overflow problems, the maximum number of hy-

potheses that a stack may store has to be limited. It
1. Initialize the stack with an empty hypothesis. is important to note that for a hypothesis, the higher
the aligned source words, the worse the score. These
2. lterate hypotheses will be discarded sooner when4in
(a) Poph (the best hypothesis) off the stack. search algorithm is used due to the stack length lim-
itation. Because of this, theulti-stack algorithms
were introduced.

stack.insert(newhyp)

All operations were applied

(b) If h is a complete sentence, outputnd

terminate. . .

e & Multi-stack algorithms store those hypotheses
() Expandh. with different subsets of source aligned words in dif-
(d) Goto step 2a. ferent stacks. That is to say, given an input sentence

J .- -

The search is started from a null string and obtainé1 clompso;]edt Ofi vtvo;ds, rlnl:Itl_ts,taS(:k s Igorlthms.
new hypotheses after an expansion process (step Sgyployess™ Stacks 1o transiate it. such an organi-
which is executed at each iteration. The expansio‘7hatlon Improves the pru_nlng_ of the hypothe.ses when
process consists of the application of a set of Od_—’he stack Iength limitation is exceeded, since onIy_
erators over the best hypothesis in the stack, as/JYPOtheses with the same number of covered posi-

is depicted in Figure 1. Thus, the design of stacfOns can compete with egch Othir' .
decoding algorithms involves defining a set of oper- All the segrch steps given fod algorlthm can
ators to be applied over every hypothesis as well Also be applied here, except step 2a. This is due

the way in which they are combined in the expansioFP the fact that multiple stacks are used instead of

process. Both the operators and the expansion alg%rJIy one. Figure 2 depicts the expansion process

rithm depend on the translation model that we uséh_ath tlhed_rfrf\ultl—sta;]ck a}:gorlthms execuée_, W_h'Ch 'S
For the case of the phrase-based translation modéﬂ@ _ty : erent'F an the one presentg In Figure 1.
described in the previous section, the operathiis Multl-s_tack_algqnthms have the n_egat_lve prop_erty of
defined, which adds a sequence of words to the tafPending significant amounts of time in selecting the
get sentence, and aligns it with a sequence of wordypotheses to be _expanded, since at each iteration,
of the Source sentence. the best hypothesis in a set Bf stacks must be
The number of hypotheses to be stored during th%earched for (Ortiz et al., 2003). By contrast, for the

search can be huge. In order then to avoid merré* algorithm, it is not possible to reduce the length
of the stack in the same way as in the multi-stack

“Each hypothesis has associated a coverage vector of lengthse without loss of translation quality.
J, which indicates the set of source words already cov- -, . .
ered/translated so far. In the following we will refer toghi Additionally, certain translation systems, e.g. the
simply as coverage. Pharaoh decoder (Koehn, 2003) use an alternative
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.’_\ 4.2 Mapping hypotheses to stacks
Generalized stack-decoding algorithms require a
"eWhyp=app'y“”’era“"”(hypmhess) mechanism to decide in which stack each hypothesis
ek are operaions \ is to be inserted. As stated in section 4.1, given an
10 be apylied input sentence and a generalized stack-decoding
algorithm withG = g, the decoder will work with
29 stacks, and each one will contaid—9 different
Al operations were applied coverages. Therefore, the above mentioned mecha-
nism can be expressed as a function which will be
referred to as the: function. Given a hypothesis
coverage composed of bits, they function return
Figure 2: Flow chart associated to the expansion @f stack identifier composed of onfbits:
a hypothesis when using a multi-stack algorithm.

stack[newhyp.coverage].insen(newhyp)

e ({0,117 — ({0,1}) (6)

Generalized stack algorithms are strongly in-
gg)ired by multi-stack algorithms; however, both
types of algorithms differ in the way the hypothesis
4 Generalized Stack-Decoding Algorithms e_xpansion. is performed. Figure 3 shows the expan-

sion algorithm of a generalized stack decoder with
As was mentioned in the previous section, given a granularity parameter equal goand a functiom

Sentencefl‘l to be translated, a Single stack deCOdwhich maps hypotheses coverages to stacks.
ing algorithm employs only one stack to perform the

translation process, while a multi-stack algorithm

employs2”/ stacks. We propose a possible way to ./_\
make a tradeoff between the advantages of both al-
gorithms that introduces a new parameter which will
be referred to as thgranularity of the algorithm. Still there are operations \\

The granularity parameter determines the numberof ~ ****X"
stacks used during the decoding process.

approach which consists in assigning to the same
stack, those hypotheses with the same number
source words covered.

newhyp:appIy_operation(hypothesis)

stack[mu(newhyp,coverage)],insen(newhyp)

4.1 Selecting thegranularity of the algorithm Al operations were applied

The granularity () of a generalized stack algorithm
is an integer which takes values betweeand J,

whereJ is the number of words which compose theF_ 3 Fl h ated to th . ;
sentence to translate. igure 3: Flow chart associated to the expansion o

Given a sentencg; to be translated, a general—a hypothesis when using a generalized-stack algo-

ized stack algorithm with a granularity parametelmhm'

equal tog, will have the following features: The function 1 can be defined in many ways,

e The algorithm will use at mo¥ stacks to per- Put there are two essential principles which must be
form the translation taken into account:

e Each stack will contain hypotheses which have e The function must be efficiently calculated
279 different coverages of;
e Hypotheses whose coverage have a similar

o If the algorithm can store at most = s hy- number of bits set to one must be assigned to
potheses, then, the maximum size of each stack  the same stack. This requirement allows the
will be equal toy; pruning of the stacks to be improved, since the
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hypotheses with a similar number of covered | () | afz) | p(z)
0000 | 00 | 0000| 00

words can compete fairly 000100 00011 00

_ _ _ 0010 | 00 | 0010| 00

A possible way to implement the function, 0100 01 [ 0oil| 00
namelypy, consists in simply shifting the coverage 1000 10 [ 0100| 01
vector.J — ¢ positions to the right, and then keeping 8(1’31 8(1’ 8123 81
only the firstg bits. SL_Jch a proposal is very easy 0110 01 | o01i1| o1
to calculate, however, it has a poor performance ac- 1001 10 [ 1000| 10
cording to the second principle explained above. 1010] 10 | 1001] 10
A better alternative to implement thefunction 11001 11 | 2000 10
P hefunction, 0111| 01 | 10i1] 10

namely o, can be formulated as a composition of 1011 10 | 1100| 11
two functions. A constructive definition of such a 1101 11 | 1101 ) 11

1110 11 1110 11

implementation is detailed next: T 11 11 1l

1. Letus suppose that the source sentence is com- . _
posed by.J words, we order the set of bit Table 1: Values returned by thg and u, function

numbers as follows: first the numbers which dd!€fined as a composition of theand functions
not have any bit equal to one, next, the numbers

which have only one bit equal to one, and so 0.3  Single and Multi Stack Algorithms

2. Given the list of numbers described above, wéhe classical single and multi-stack decoding al-
define a function which associates to each nun@orithms can be expressed/instantiated as particular
ber of the list, the order of the number withinc@ses of the general formalism that have been pro-
this list posed.

Given the input sentenct’ , a generalized stack

3. Given the coverage of a partial hypothesis, decoding algorithm withG = 0 will have the fol-
the stack on which this partial hypothesis is tqowing features:
be inserted is obtained by a two step process:

First, we obtain the image of returned by the ~ ® The algorithm works witl2” = 1 stacks.

function described above. Next, the result is
shifted.J — g positions to the right, keeping the
first ¢ bits

e Such a stack may store hypotheses \itHdif-
ferent coverages. That is to say, all possible
coverages.

Let 5 be the function that shifts a bit vectdr— ¢
positions to the right, keeping the firgbits; and let

« be the function that for each coverage returns its

e The mapping function returns the same stack
identifier for each coverage

order: The previously defined algorithm has the same
, p features as a single stack algorithm.
a: ({0,117 — ({0,1}) @) Let us now consider the features of a generalized
Then, s is expressed as follows: stack algorithm with a granularity value dt

o) = B o alz) ®) e The algorithm works witl2” stacks
Table 1 shows an example of the values which re-

turns theu; and theus functions when the input sen-

tence had words and the granularity of the decoder  The mapping function returns a different stack

is equal to2. As it can be observedys function identifier for each coverage

performs better tham; function according to the

second principle described at the beginning of this The above mentioned features characterizes the

section. multi-stack algorithms described in the literature.

e Each stack may store hypotheses with only
20 = 1 coverage.
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EUTRANS-I XEROX
Spanish | English [[ Spanish | English

Sentences 10,000 55,761
Training Words 97,131] 99,292 753,607 665,400
Vocabulary size 686 513 11,051 7,957
Average sentence leng. 9.7 9.9 13.5 11.9

Sentence 2,996 1,125
Test Words 35,023 | 35,590 10,106 8,370
Perplexity (Trigrams) - 3.62 - 48.3

Table 2: U TRANS-1 and XEROX corpus statistics

5 Experiments and Results values ofG slightly decreases the average score. In

_ _ . this case, a%- increases, the number of hypothe-
In this section, experimental results are presented fpg per stack decreases, taking into account that the
two well-known tasks: the ETRANS-I (Amengual q1ye of S is fixed, then the “optimal” hypothesis
et al., 1996), a small size and easy translation task,, easily be pruned.

and the XERox (Cubel et al., 2004), a medium sizé | (aples 3 and 4 detailed experiments are shown
and difficult translation task. The main statistics oty 5 value ofS = 212 and different values ofy. for

these corpora are shown. in Table 2. The translatiof ; Trans and XEROX corpora respectively.
results were obtained using a non-monotone gener-

alized stack algorithm. For both tasks, the training G | WER | Bleu | secsXsent| logprob
of the different phrase models was carried out us- 0| 66 10898 24 -18.88
. ) : . . 1] 6.6 |0.898 1.9 -18.80
ing the publicly availableThot toolkit (Ortiz et al., > 66 1 0897 17 18.81
2005). 4] 6.6 |0.898 1.3 -18.77
- : - 6 | 6.7 | 0.8% 11 -18.83
Different translation experiments have been car s 67 10806 ie 58

ried out, varying the value af (ranging from 0 to
8) and the maximum number of hypothesis that th‘?able 3: Translation experiments fouERANS cor-

algorl_thmf IS aIIg)W tolzsto:e f;)r all used_stackg)tg pus using a generalized stack algorithm with differ-
(rangl_ng rom2 _ to 2*4). In these experiments t € ent values of? and a fixed value of — 212
following statistics are computed: the average score

(or logProb) that the phrase-based translation model

assigns to each hypothesis, the translation quality g ngE'g (?'6‘335”8 Se%%xlse“t 'C_’gspg’zb
(by means of WER and Bleu measures), and the av- 11T 328 10657 204 3386
erage time (in secs.) per sentehce 2| 331 | 0.656 12.8 -33.79
In Figures 4 and 5 two plots are shown: the av- 4| 329 10657] 7.0 -33.70

; 6 | 33.7 | 0.652 6.3 -33.69

erage time per sentence (left) and the average score g1 363 [ 0632 137 3410

(right), for EUTRANS and XEROX corpora respec-
tively. As can be seen in both figures, the bigger thgable 4: Translation experiments foreEXox cor-
value of G the lower the average time per sentenceyys using a generalized stack algorithm with differ-
This is true up to the value af = 6. For higher ent values ofy and a fixed value of = 212

values ofG (keeping fixed the value of) the aver-

age time per sentence increase slightly. This is due According to the experiments presented here we
to the fact that at this point the algorithm start tacan conclude that:

spend more time to decide which hypothesis is to be
expanded. With respect to the average score similar
values are obtained up to the valugidf= 4. Higher

e The results correlates for the two considered
tasks: one small and easy, and other larger and
difficult.

3All the experiments have been executed on a PC with a Th d lized stack d di
2.60 Ghz Intel Pentium 4 processor with 2GB of memory. All € proposed generalized stac ecoding

the times are given in seconds. paradigm can be used to make a tradeoff be-
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Figure 5: Average time per sentence (in secs.) and average ger sentence. The results are shown for
different values of7 and.S for the XerRox corpus.

tween the advantages of classical single angrocess, and try to assign hypotheses to stacks such
multi-stack decoding algorithms. that there is "fair competition” within each stack,
i.e., brother hypotheses should cover roughly the

e As we expected, better results (regarding effisame number of input words (and the same words)
ciency and accuracy) are obtained when using possible.

a value of; betweerD and.J. The new family of stack-based algorithms allows

a tradeoff to be made between the classical single
and multi-stack decoding algorithms. For this pur-

In this paper, a generalization of the stack-decodinB0se. they employ a certain number of stacks be-
paradigm has been proposed. This new formalisieent (the number of stacks used by a single stack
includes the well known single and multi-stack de&!gorithm) and2” (the number of stacks used by a
coding algorithms and a new family of stack-basednultiple stack algorithm to translate a sentence with
algorithms which have not been described yet in thé Words.)

literature. According to the experimental results, it has been

Essentially, generalized stack algorithms use a paroved that an appropriate value 6f yields in a

rameterized number of stacks during the decodingtack decoding algorithm that outperforms (in effi-

6 Concluding Remarks
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Abstract the translation quality measured with the BLEU and
NIST scores. Here, we focus on how the ideas and
methods commonly used for confidence estimation
can be adapted and/or extended to improve transla-
tion quality.

So far, always word-level posterior probabilities
were used. Here, we will generalize this ideanto
grams.

In addition to then-gram posterior probabili-
ties, we introduce a sentence-length model based
on posterior probabilities. The common phrase-
based translation systems, such as (Och et al., 1999;
Koehn, 2004), do not use an explicit sentence length
model. Only the simple word penalty goes into that
direction. It can be adjusted to prefer longer or
shorter translations. Here, we will explicitly model
the sentence length.

The use of word posterior probabilities is a com- The novel contributions of this work are to in-
mon approach for confidence estimation in autotroducen-gram posterior probabilities and sentence
matic speech recognition, e.g. see (Wessel, 2002ngth posterior probabilities. Using these methods,
This idea has been adopted to estimate confidenc&€ achieve significant improvements of translation
for machine translation, e.g. see (Blatz et al., 2003juality.
Ueffing et al., 2003; Blatz et al., 2004). These confi- The remaining part of this paper is structured as
dence measures were used in the computer assisfetiows: first, we will briefly describe the baseline
translation (CAT) framework, e.g. (Gandrabur andystem, which is a state-of-the-art phrase-based sta-
Foster, 2003). The (simplified) idea is that the contistical machine translation system. Then, in Sec-
fidence measure is used to decide if the machingen 3, we will introduce the:-gram posterior prob-
generated prediction should be suggested to the habilities. In Section 4, we will define the sentence
man translator or not. length model. Afterwards, in Section 5, we will
There is only few work on how to improve describe how these novel models can be used for
machine translation performance using confidena@scoring/reranking. The experimental results will
measures. The only work, we are aware of, ibe presented in Section 6. Future applications will
(Blatz et al., 2003). The outcome was that the corbe described in Section 7. Finally, we will conclude
fidence measures did not result in improvements af Section 8.

Word posterior probabilities are a com-
mon approach for confidence estimation
in automatic speech recognition and ma-
chine translation. We will generalize this
idea and introduce-gram posterior prob-
abilities and show how these can be used
to improve translation quality. Addition-
ally, we will introduce a sentence length
model based on posterior probabilities.

We will show significant improvements on
the Chinese-English NIST task. The abso-

lute improvements of the BLEU score is
between 1.1% and 1.6%.

1 Introduction
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2 Basdline System Let §(-,-) denote the Kronecker function. Then,
we define the fractional courtt'(e?, ;) of an n-

In statistical machine translation, we are given
9 %rame’f for a source sentenq&i’ as:

source language sentengd = fio fi- I
which is to be translated into a target language sen- I—n+1 '
tencee! = e;...e;...e;. Among all possible tar-  C(ef, i) = 3 Y p(e/lff) - 6(e/ 7€)
get language sentences, we will choose the sentence Lel i=1
with the highest probability: 4)
R The sums over the target language sentences are lim-
el = argmax {Pr(ef|f{)} (1) ited to anN-best list, i.e. theN best translation
Le{ candidates according to the baseline model. In this
equation, the term(¢’"" ! ¢7) is one if and only
Iif the n-gram e} occurs in the target senteneé
starting at positiorni.
Then, the posterior probability of arrgram is ob-

The posterior probabilityPr (el | f;) is modeled di-
rectly using a log-linear combination of severa
models (Och and Ney, 2002):

tained as:
oy (S (el ) ;
reeilr) = IY; Iy, n|gJ Clet, f1)
=7 5
Ilg{/ eXp <Zm:1 )\mhm(ell 7f1 )) p(el ’fl ) ; 0(6/?7 flJ) ( )

(2)
The denominator is a normalization factor that de- Note that the widely used word posterior proba-
pends only on the source sentenGé Therefore, hility is obtained as a special case, namely i set
we can omit it during the search process. As a dedie one.

sion rule, we obtain:
4 Sentence Length Posterior Probability

M
é{ = argmax {Z Amhm(ef,ff)} (3) The common phrase-based translation systems, such
Lej m=1 as (Och et al., 1999; Koehn, 2004), do not use an ex-

plicit sentence length model. Only the simple word

This approach is a generalization of the SourC(iienalty goes into that direction. It can be adjusted to
channel approach (Brown et al., 1990). It has thﬁrefer longer or shorter translations.

advantage that additional model¢-) can be eas- 010 "\ye will use the posterior probability of a

ily integrated into the overall system. The modelsIoeciﬁc target sentence lengttas length model:
scaling factors\} are trained with respect to the fi-

nal translation quality measured by an error criterion Jy _ I ¢eJ

(Ooch 2008) p(I1f7) %jp(elm ) (6)
We use a state-of-the-art phrase-based translation '

system as described in (Zens and Ney, 2004; Zeote that the sum is carried out only over target sen-

et al., 2005). The baseline system includes the fotencese! with the a specific lengt. Again, the

lowing models: am-gram language model, a phrasecandidate target language sentences are limited to an

translation model and a word-based lexicon modelV-best list.

The latter two models are used for both directions: . )

p(fle) and p(e|f). Additionally, we use a word © Rescoring/Reranking

penalty and a phrase penalty. A straightforward application of the posterior prob-

abilities is to use them as additional features in
a rescoring/reranking approach (Och et al., 2004).
The idea is similar to the word posterior probabili-The use ofN-best lists in machine translation has

ties: we sum the sentence posterior probabilities fareveral advantages. It alleviates the effects of the
each occurrence of airgram. huge search space which is represented in word

3 N-Gram Posterior Probabilities
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graphs by using a compact excerpt of fiidoest hy- We use a linear interpolation with weiglt The
potheses generated by the systelNrbest lists are mean A of the Poisson distribution is chosen to
suitable for easily applying several rescoring techbe identical to the mean of the unsmoothed length
niques since the hypotheses are already fully gemodel:
erated. In comparison, word graph rescoring tech- A= Z I-p(I|f{) (12)
niques need specialized tools which can traverse the I
graph accordingly.

The n-gram posterior probabilities can be use
similar to ann-gram language model: 6.1 Corpus Statistics

b Experimental Results

1 I The experiments were carried out on the large data
ho(f7,el) = 7 log (Hp(ei|e§—7lz+1’ fi])> (7) track of the Chinese-English NIST task. The cor-
i=1 pus statistics of the bilingual training corpus are

shown in Table 1. The language model was trained

with: on the English part of the bilingual training cor-

- ; Clel_ s 1) pus and additional monolingual English data from

peile;ni1: 1) = =1 5 (8 the Gigaword corpus. The total amount of lan-
C(ei—n—i-l’ fl )

guage model training data was about 600M running

Note that the models do not require smoothing agords. We use a fourgram language model with
long as they are applied to the safvebest list they Modified Kneser-Ney smoothing as implemented in
are trained on. the SRILM toolkit (Stolcke, 2002).

If the models are used for unseen sentences, 10 Measure the translation quality, we use the
smoothing is important to avoid zero probabilities BLEU score (Papineni et al., 2002) and the NIST
We use a linear interpolation with weights, and Score (Doddington, 2002). The BLEU score is the

distribution. bination with a brevity penalty for too short sen-

tences. The NIST score is the arithmetic mean of
a weightedn-gram precision in combination with a
C(ezﬁjl Y i) brevity penalty for too short sentences. Both scores
i ted case-sensitive with respect to four ref-
1_ o (el J are compu _ !
= an) proaleleine /i) erence translations using the mteval-v11b todls

Note that absolute discounting techniques that at8€ BLEU and NIST scores measure accuracy higher

often used in language modeling cannot be applietfOres are better. _ o

in a straightforward way, because here we Hage: W€ use the BLEU score as primary criterion

tional counts. which is optimized on the development set using the

The usage of the sentence length posterior prog)_ownhill Simplex algorithm (Press et al., 2002). As

ability for rescoring is even simpler. The resultingd€velopment set, we use the NIST 2002 evaluation
set. Note that the baseline system is already well-
tuned and would have obtained a high rank in the

hr( {76{) - Ing(I’fi]) (10) last NIST evaluation (NIST, 2005).

C(ez?—n-i—l? fl]) (9)

pleilepir: fi) = an-

feature is:

Again, the model does not require smoothing as lon§2 Translation Results

as it is applied to the sam&-best list it is trained The translation results for the Chinese-English NIST
on. If it is applied to other sentences, smoothingask are presented in Table 2. We carried out experi-
becomes important. We propose to smooth the sements for evaluation sets of several years. For these
tence length model with a Poisson distribution. rescoring experiments, we use the 10 000 best trans-

lation candidates, i.@V-best lists of sizévV=10 000.
Mexp(—\) -
T (11) http://www.nist.gov/speech/tests/mt/resources/sgohitm

ps(I|f{) = Bp(I|f])+(1-B)-
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Table 1: Chinese-English NIST task: corpus statisz'l Iterative Search

tics for the bilingual training data and the NIST eval-The n-gram posterior probability can be used for
uation sets of the years 2002 to 2005. rescoring as described in Section 5. An alternative is
to use them directly during the search. In this second

Chinese| English| search pass, we use the models from the first pass,
Train | Sentence Pairs ™ i.e. the baseline system, and additionally thgram
Running Words 199M | 213M | and sentence length posterior probabilities. As the
Vocabulary Size 223K | 351K | n-gram posterior probabilities are basically a kind
Dictionary Entry Pairs 82K of sentence-specific language model, it is straight-
Eval | 2002 Sentences 878 3512 ]| forward to integrate them. This process can also be
Running Words 25K 105K | iterated. Thus, using th&-best list of the second
2003 Sentences 919 3676 | pass to recompute thegram and sentence length
Running Words 26K 122K | posterior probabilities and do a third search pass,
2004 Sentences 1788 | 7152| etc..
Running Words 52K 245K _ _
5005 Sentences 1082 437g| /-2 Computer Assisted Translation
Running Words 33K 148K | In the computer assisted translation (CAT) frame-

work, the goal is to improve the productivity of hu-
man translators. The machine translation system
Using thel-gram posterior probabilities, i.e. thetakes not only the current source language sentence
conventional word posterior probabilities, there idut also the already typed partial translation into ac-
only a very small improvement, or no improvementount. Based on this information, the system suggest
at all. This is consistent with the findings of thecompletions of the sentence. Word-level posterior
JHU workshop on confidence estimation for statisprobabilities have been used to select the most ap-
tical machine translation 2003 (Blatz et al., 2003)propriate completion of the system, for more details
where the word-level confidence measures also dgke e.g. (Gandrabur and Foster, 2003; Ueffing and
not help to improve the BLEU or NIST scores. Ney, 2005). The:-gram based posterior probabili-
Successively adding higher ordergram poste- ties as described in this work, might be better suited
rior probabilities, the translation quality improvesfor this task as they explicitly model the dependency
consistently across all evaluation sets. We alson the previous words, i.e. the given prefix.
performed experiments with-gram orders beyond
four, but these did not result in further improve-8 Conclusions

mi:;;: h ‘ lenath teri babilit We introducedn-gram and sentence length poste-
Ing the sentence length posterior probability; probabilities and demonstrated their usefulness

feature is also helpful for all evaluation sets. Fortht1=;Or rescoring purposes. We performed systematic

development set, the overall improvement is 1'50/8 : : .
’ ) ) xperiments on the Chinese-English NIST task and
for the BLEU score. On the blind evaluation sets P g

the overall improvement of the translation qualityShOWEd significant improvements of the translation
uality. The improvements were consistent amon
ranges between 1.1% and 1.6% BLEU. quatry P g

_ _ several evaluation sets.

Some translation examples are shown in Table 3. An interesting property of the introduced meth-
ods is that they do not require additional knowledge
sources. Thus the given knowledge sources are bet-
We have shown that the-gram posterior probabil- ter exploited. Our intuition is that the posterior mod-
ities are very useful in a rescoring/reranking frameels prefer hypotheses witlrgrams that are common
work. In addition, there are several other potentiah the N-best list.

applications. In this section, we will describe two of The achieved results are promising. Despite that,
them. there are several ways to improve the approach.

7 Future Applications
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Table 2: Case-sensitive translation results for severuation sets of the Chinese-English NIST task.

| Evaluation sef 2002 (dev) | 2003 \ 2004 \ 2005 \
System NIST BLEU[%] | NIST BLEU[%] | NIST BLEU[%] | NIST BLEU[%]
Baseline 8.49 30.5 8.04 29.5 8.14 29.0 8.01 28.2

+ 1-grams 8.51 30.5 8.08 29.5 8.17 29.0 8.03 28.2
+ 2-grams 8.47 30.8 8.03 29.7 8.12 29.2 7.98 28.1
+ 3-grams 8.73 31.6 8.25 30.1 8.45 30.0 8.20 28.6
+ 4-grams 8.74 31.7 8.26 30.1 8.47 30.1 8.20 28.6
+ length 8.87 32.0 8.42 30.9 8.60 30.6 8.34 29.3

Table 3: Translation examples for the Chinese-English NESK.
Baseline | At present, there is no organization claimed the attack.
Rescored | At present, there is no organization claimed respongjtidit the attack.
Reference| So far, no organization whatsoever has claimed respoitgifal the attack.

Baseline | FIFA to severely punish football fraud

Rescored | The International Football Federation (FIFA) will severplnish football's deception
Reference| FIFA will severely punish all cheating acts in the footbadiidi

Baseline | In more than three months of unrest, a total of more than 6@ dad 2000 injured.
Rescored | In more than three months of unrest, a total of more than 6plpawere killed and more
than 2000 injured.

Reference| During the unrest that lasted more than three months, adbtabre than 60 people die
and over 2,000 were wounded.

[®N

For the decision rule in Equation 3, the modeReferences
scaling factors\{” can be multiplied Withaconstant J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur,
factor without changing the result. This global fac- c. Goutte, A. Kulesza, A. Sanchis, and N. Ueffing.
tor would affect the proposed posterior probabilities. 2003. Confidence estimation for machine transla-
So far, we have not tuned this parameter, but a propertion. Final report, JHU/CLSP Summer Workshop.
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should result in mo.re reliable estlmgtes, as the num- fidence estimation for machine translation. Rroc.
ber of hypotheses in a word graph is some orders of ooth |nt. Conf. on Computational Linguistics (COL-
a magnitude larger than in a-best list. ING), pages 315-321, Geneva, Switzerland, August.

P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della
Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer, and
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This material is partly based upon work supported translation. Computational Linguistics, 16(2):79-85,

by the Defense Advanced Research Projects AgencyJune.

(DARPA) under Contract No. HR0011'06'070023’G. Doddington. 2002. Automatic evaluation of machine
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Abstract

In statistical machine translation, large
numbers of parallel sentences are required
to train the model parameters. However,
plenty of the bilingual language resources
available on web are aligned only at the
document level. To exploit this data,
we have to extract the bilingual sentences
from these documents.

The common method is to break the doc-

uments into segments using predefined
anchor words, then these segments are
aligned. This approach is not error free,

incorrect alignments may decrease the
translation quality.

We present an alternative approach to ex-
tract the parallel sentences by partitioning
a bilingual document into two pairs. This
process is performed recursively until all
the sub-pairs are short enough.

In experiments on the Chinese-English
FBIS data, our method was capable of
producing translation results comparable
to those of a state-of-the-art sentence
aligner. Using a combination of the two
approaches leads to better translation per-
formance.

Introduction
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translation models. The exploitation of more bilin-
gual sentences automatically and accurately as well
as the use of these data with the limited computa-
tional requirements become crucial problems.

The conventional method for producing parallel
sentences is to break the documents into sentences
and to align these sentences using dynamic program-
ming. Previous investigations can be found in works
such as (Gale and Church, 1993) and (Ma, 2006).
A disadvantage is that only the monotone sentence
alignments are allowed.

Another approach is the binary segmentation
method described in (Simard and Langlais, 2003),
(Xu et al., 2005) and (Deng et al., 2006), which
separates a long sentence pair into two sub-pairs re-
cursively. The binary reordering in alignment is al-
lowed but the segmentation decision is only opti-
mum in each recursion step.

Hence, a combination of both methods is ex-
pected to produce a more satisfying result. (Deng
et al., 2006) performs a two-stage procedure. The
documents are first aligned at level using dynamic
programming, the initial alignments are then refined
to produce shorter segments using binary segmen-
tation. But on the Chinese-English FBIS training
corpus, the alignment accuracy and recall are lower
than with Champollion (Ma, 2006).

We refine the model in (Xu et al., 2005) using
a log-linar combination of different feature func-
tions and combine it with the approach of (Ma,
2006). Here the corpora produced using both ap-
proaches are concatenated, and each corpus is as-

Current statistical machine translation systems usggned a weight. During the training of the word
bilingual sentences to train the parameters of thalignment models, the counts of the lexicon entries

Proceedings of the Workshop on Statistical Machine Translation, pages 78-85,
New York City, June 2006. (©)2006 Association for Computational Linguistics



are linear interpolated using the corpus weights. In Monotone Non-

the experiments on the Chinese-English FBIS cor- monotone
pus the translation performance is improved by 0.4% Target B A

of the BLEU score compared to the performance

only with Champollion. positions| C D

The remainder of this paper is structured as fol-
lows: First we will briefly review the baseline statis-
tical machine translation system in Section 2. Then,
in Section 3, we will describe the refined binary seg-
mentation method. In Section 4.1, we will introduce
the methods to extract bilingual sentences from doc- The IBM model 1 (IBM-1) (Brown et al., 1993)
ument aligned texts. The experimental results wiissumes that all alignments have the same probabil-
be presented in Section 4. ity by using a uniform distribution:

Source Positions

Figure 1: Two Types of Alignment

I

2 Review of the Baseline Statistical |

. . p(filer) = - p(files) (2
Machine Translation System HH ’ 1;[; ’

In this section, we briefly review our translation sys- We use the IBM-1 to train the lexicon parameters
tem and introduce the word alignment models.  p(fle), the training software is GIZA++ (Och and

In statistical machine translation, we are giveiNey, 2003).
a source language sententgé = fi...f;... fr, To incorporate the context into the translation
which is to be translated into a target language sefrodel, the phrase-based translation approach (Zens
tencee! = e;...e;...e;. Among all possible tar- et al., 2005) is applied. Pairs of source and tar-

get language sentences, we will choose the senterfi®t language phrases are extracted from the bilin-

with the highest probability: gual training corpus and a beam search algorithm is
implemented to generate the translation hypothesis
e{ = argmax {Pr(eﬂflj)} with maximum probability.
1 e{
Binar mentation Meth
— argmax {Pr(e])- Pr(fle)} ) 3 ary Segmentation Method
Lef 3.1 Approach

N2
The decomposition into two knowledge sources iere adocumentor sentence gy, ef)  is repre-
Equation 1 allows independent modeling of tarsented as a matrix. Every element in the matrix con-

get language modePr(e!) and translation model tains a lexicon probability( f;|e;), which is trained

Pr(f{|eh)}. The translation model can be furtheron the original parallel corpora. Each position di-

extended to a statistical alignment model with th¥1d€S & matrix into four parts as shown in Figure 1:
following equation: the bottom left (C), the upper left (A), the bottom

right (D) and the upper right (B). We use to de-
Pr(f{|eh) ZPT (f{, ailel) nqte the al?gnment direct'iomm = 1 means that the.

alignment is monotone, i.e. the bottom left part is
connected with the upper right part, and = 0
means the alignment is non-monotone, i.e. the upper
left part is connected with the bottom right part, as
shown in Figure 1.

The alignment modePr(f{, af|el) introduces a
‘hidden’ word alignment = a{, which describes a
mapping from a source positigrto a target position

aj- 3.2 Log-Linear Model

The notational convention will be as follows: we use theWWe use a log-linear interpolation to combine differ-

symbol Pr(-) to denote general probability distributions with ent models: the IBM-1, the inverse IBM-1, the an-
(nearly) no specific assumptions. In contrast, for model-based

probability distributions, we use the generic sympg). 2Sentences are equivalent to segments in this paper.
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chor words model as well as the IBM-4 denotes A is a user defined anchor word list, here we use

the total number of models. A={."?;}. If the corresponding model scaling factor
We go through all positions in the bilingual sen-\3 is assigned a high value, the segmentation posi-

tences and find the best position for segmenting th&ns are mostly after anchor words.

sentence:

K 3.5 IBM-4 Word Alignment

B TN .. J I
(3, 3,7) = arl%?rlnax {kzl)\khk(j’Z’Wﬁ ’61)} ’ If we already have the IBM-4 Viterbi word align-
ments for the parallel sentences and need to retrain
wherei € [1,1 — 1] andj € [1,J — 1] are posi- the system, for example to optimize the training pa-
tions in the source and target sentences respectivelgmeters, we can include the Viterbi word align-
The feature functions are described in the followments trained on the original corpora into the binary
ing sections. In most cases, the sentence pairs am®gmentation. In the monotone case, the model is
quite long and even after one segmentation we magpresented as
still have long sub-segments. Therefore, we separate
the sub-segment pairs recursively until the length of
each new segment is less than a defined value. ha(i 117 el) =

3.3 Normalized IBM-1 (N(ff,eﬁ) _|_N(fJ+1’€[+1)>
lo ‘ ,

J
The function in Equation 2 can be normalized by N(f{, e
the source sentence length with a weightihgs de-
scribed in (Xu et al., 2005):

The monotone alignment is calculated as whereN (f{, ¢! denotes the number of the align-
‘ ) ment links inside the matril, 1) and(j,7). In the
h(Gi 1], el) = log(p(flle)? 3T~ (3) non-monotone case the model is formulated in the

BT same way.
'p(fj]+1|€zl+1)ﬁ 75120y,

and the non-monotone alignment is formulated i3.6  Word Alignment Concatenation
the same way.

We also use the inverse IBM-1 as a feature, by s described in Section 2, our translation is based on
changing the place of andfj its monotone al’ign- phrases, that means for an input sentence we extract
ment is calculated as: ! all phrases matched in the training corpus and trans-

late with these phrase pairs. Although the aim of

ho(j,3,1|f,el) = 10g(p(ei1\f{)5%+(l—ﬁ) (4) segmentation is to split parallel text into translated
7 J \B(1-8) segment pairs, but the segmentation is still not per-

Pleiplfia)" 7 ) fect. During sentence segmentation we might sep-
34  Anchor Words arate a phrase into two segments, so that the whole

n th K of . el ¢ phrase pair can not be extracted.
n the task of extracting parallel sentences from To avoid this, we concatenate the word align-

th ragraph-align r lectin me anchaor . . .
e paragraph-aligned corpus, Selecting some anchgb, .o trained with the segmentations of one sen-
words as preferred segmentation positions can el- . : . o
. . . . ence pair. During the segmentation, the position of
fectively avoid the extraction of incomplete segmen . e .
. each segmentation point in the sentence is memo-
pairs. Therefore we use an anchor words model to . . :
. . rized. After training the word alignment model with
prefer the segmentation at the punctuation mark

. L fhe segmented sentence pairs, the word alignments
where the source and target words are identical: . . -
are concatenated again according to the positions of

their segments in the sentences. The original sen-
ha(j.i m|fJ 61) _ 1:f;= ez-_/\ ei € A tence pairs and the concate_nated alignments are then
T 1 0 : otherwise used for the phrase extraction.
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Table 1: Corpus Statistics: NIST

| Chinese| English |

Train

Sentences 8.64 M

Running Words| 210M | 226 M

Average Sentence Length 24.4 26.3

Vocabulary| 224 268| 359623

Singletons| 98842| 156493

Segmentation

Sentences 179 M

Running Words| 210M | 226 M

Average Sentence Length  11.7 12.6

Vocabulary| 221517 | 353148

Singletons| 97062| 152965

Segmentation with Additional Data

Sentences 195 M

Running Words| 230 M | 248 M

Added

Running Words  8.0% 8.2%

Evaluation

Sentences 878 3512

Running Words| 24111| 105516

Vocabulary| 4095 6802

OO0Vs (Running Words 8 658

4 Translation Experiments

4.1 Bilingual Sentences Extraction Methods

In this section, we describe the different methods to 2.

extract the bilingual sentence pairs from the docu-
ment aligned corpus.

Given each document pair, we assume that the
paragraphs are aligned one to one monotone if both
the source and target language documents contain
the same number of paragraphs; otherwise the para?"
graphs are aligned with the Champollion tool.

Starting from the parallel paragraphs we extract
the sentences using three methods:

1. Binary segmentation

The segmentation method described in Sec-
tion 3 is applied by treating the paragraph pairs
as long sentence pairs. We can use the anchor
words model described in Section 3.4 to prefey o

splitting at punctuation marks.
We

Then the binary segmentation algorithm is ap-
plied to extract the sentences again.

Champollion

After a paragraph is divided into sentences at
punctuation marks, the Champollion tool (Ma,
2006) is used, which applies dynamic program-
ming for the sentence alignment.

Combination

The bilingual corpora produced by the binary
segmentation and Champollion methods are
concatenated and are used in the training of the
translation model. Each corpus is assigned a
weight. During the training of the word align-
ment models, the counts of the lexicon en-
tries are linearly interpolated using the corpus
weights.

Translation Tasks
will present the translation results on two

The lexicon parameters(f|e) in Equation 2 Chinese-English tasks.

are estimated as follows: First the sentences are
aligned roughly using the dynamic program- 1.
ming algorithm. Training on these aligned sen-
tences, we get the initial lexicon parameters.
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On the large data track NIST task (NIST,
2005), we will show improvements using the
refined binary segmentation method.



Table 2: Corpus Statistics: FBIS

Segmentation Champollion

Chinese|  English| Chinese| English

Train Sentences 739899 177798
Running Words| 8588477| 10111 752| 7659 776| 9801257
Average Sentence Length 11.6 13.7 43.1 55.1
Vocabulary 34 896 56573 34377 55775
Singletons 4775 19283 4588 19004
Evaluation Sentences 878 3513 878 3513
Running Words| 24111 105516 24111| 105516
Vocabulary 4095 6802 4095 6802
OOVs (Running Words 109 2257 119 2309

2. On the FBIS corpus, we will compare the dif-tences extraction. However, we produce sentence
ferent sentence extraction methods described pairs with very different lengths. Using Champol-
Section 4.1 with respect to translation perforfion we loose 10.8% of the Chinese and 3.1% of the
mance. We do not apply the extraction methEnglish words.

ods on the whole NIST corpora, because somiz4
corpora provided by the LDC (LDC, 2005) are

Segmentation Parameters

sentence aligned but not document aligned. We did not optimize the log-linear model scaling
factors for the binary segmentation but used the fol-

4.3 Corpus Statistics

lowing fixed values:A\; = Ay = 0.5 for the IBM-1

- - - _ 8 -
The training corpora used in NIST task are a set gP'°dels in both directions); = 10%, if the anchor

individual corpora including the FBIS corpus. Thes

ézvords model isis usedy = 30, if the IBM-4 model

corpora are provided by the Linguistic Data Consor'S Us€d. The maximum sentence length is 25.

tium (LDC, 2005), the domains are news articlesy g
The translation experiments are carried out on the
NIST 2002 evaluation set.

As shown in Table 1, there are 8.6 million sen-
tence pairs in the original corpora of the NIST task. e
The average sentence length is about 25. After seg-
mentation, there are twice as many sentence pairs,
i.e. 17.9 million, and the average sentence length
is around 12. Due to a limitation of GIZA++, sen-
tences consisting of more than one hundred words
are filtered out. Segmentation of long sentences cir-
cumvents this restriction and allows us include more
data. Here we were able to add 8% more Chinese
and 8.2% more English running words to the train-
ing data. The training time is also reduced.

Table 2 presents statistics of the FBIS data. Af-
ter the paragraph alignment described in Section 4.1
we have nearly 81 thousand paragraphs, 8.6 million
Chinese and 10.1 million English running words.
One of the advantages of the binary segmentation is e
that we do not loose words during the bilingual sen-
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Evaluation Criteria

We use four different criteria to evaluate the transla-
tion results automatically:

WER (word error rate):

The WER is computed as the minimum num-
ber of substitution, insertion and deletion oper-
ations that have to be performed to convert the
generated sentence into the reference sentence,
divided by the reference sentence length.

¢ PER (position-independent word error rate):

A shortcoming of the WER is that it requires a
perfect word order. The word order of an ac-
ceptable sentence can be differ from that of the
target sentence, so that the WER measure alone
could be misleading. The PER compares the
words in the two sentences ignoring the word
order.

BLEU score:
This score measures the precision of unigrams,



the added data, the translation performance is en-
hanced by 0.3% in the BLEU score. Because of
the long translation period, the translation parame-
ters are only optimized on the baseline system with
respect to the BLEU score, we could expect a further
improvement if the parameters were also optimized
on the segmentation system.

Our major objective here is to introduce another
approach to parallel sentence extraction: binary seg-
mentation of the bilingual texts recursively. We use
_ _ _ _ the paragraph-aligned corpus as a starting point. Ta-

0.2 04 06 0.8 1 ble 4 presents the translation results on the train-
Weight for the Binary Segmentation ing corpora generated by the different methods de-
O?cribed in Section 4.1. The translation parameters

are optimized with the respect to the BLEU score.
We observe that the binary segmentation methods
are comparable to Champollion and the segmenta-
tion with anchors outperforms the one without an-
bigrams, trigrams and fourgrams with a penaltghors. By combining the methods of Champol-
for too short sentences. (Papineni et al., 2002}ion and the binary segmentation with anchors, the
BLEU score is improved by 0.4% absolutely.

e NIST score: We optimized the weightings for the binary seg-
This score is similar to BLEU, but it uses mentation method, the sum of the weightings for
an arithmetic average of N-gram counts rathesoth methods is one. As shown in Figure 2, using
than a geometric average, and it weights morgne of the methods alone does not produce the best
heavily those N-grams that are more informaresult. The maximum BLEU score is attained when
tive. (Doddington, 2002). both methods are combined with equal weightings.

Figure 2: Translation performance as a function
the weight for the binary segmentation( weight
for Champollion:1 — «)

The BLEU and NIST scores measure accurach Discussion and Future Work

i.e. larger scores are better. In our evaluation the

scores are measured as case insensitive and with Y¥€ successfully applied the binary sentence seg-
spect to multiple references mentation method to extract bilingual sentence pairs

from the document aligned texts. The experiments
4.6 Translation Results on the FBIS data show an enhancement of 0.4% of

heencoura ing results obtained, further improvements
NIST task. Both in the baseline and the segmenta. | begac%ieved in the foIIO\;ving wayS'p

tion systems we obtain 4.7 million bilingual phrases
during the translation. The method of alignment 1 By extracting bilingual paragraphs from the
concatenation increases the number of the extracted  gocuments, we lost running words using Cham-

lion, the BLEU score is improved by 0.1%. By  to paragraph alignment might avoid the loss of
including the IBM-4 Viterbi word alignment, the this data.

NIST score is improved. The training of the base-

line system requires 5.9 days, after the sentence seg2. We combined a number of different models in
mentation it requires only 1.5 days. Moreover, the the binary segmentation, such as IBM-1, and
segmentation allows the inclusion of long sentences anchor words. The model weightings could be
that are filtered out in the baseline system. Using optimized with respect to translation quality.
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Table 3: Translation Results using Refined Segmentation Methods on NIST task

Error Rate[%)] Accuracy

WER | PER | NIST | BLEU[%)]
Baseline 62.7 | 42.1 | 8.95 335
Segmentation 62.6 | 424 | 8.80 335
Segmentation + concatenation 62.4 | 423 | 8.84 33.6
Segmentation + concatenation + IBM{462.8 | 42.4 | 8.91 33.6
Segmentation + added data 62.9 | 425 | 9.00 33.9

Table 4: Translation Results on Sentence Alignment Task with FBIS Training Corpus

Error Rate[%)] Accuracy

WER \ PER | NIST \ BLEU[%]
Champollion 64.2 | 43.7 | 8.61 31.8
Segmentation without Anchors 64.3 | 44.4 | 8.57 31.8
Segmentation with Anchors 64.0 | 43.9 | 8.58 31.9
Champollion + Segmentation with Anchoys64.3 | 44.2 | 8.57 32.2

3. In the binary segmentation method, an incors. Doddington. 2002. Automatic evaluation of machine

rect segmentation results in further mistakes translation quality using n-gram co-occurrence statis-
in the segmentation decisions of all its sub- tics. InProceedings of Human Language Technology

. pages 128-132, San Diego, California, March.
segments. An alternative method (Wu, 1997)
makes decisions at the end but has a high corliV. A. Gale and K. W. Church. 1993. A program for
putational requirement. A restricted expansion "’_‘"gn'l”g Ser‘tencelz T_?,'S“”ggal corporaComputa-
of the search space might better balance seg—tlona inguistics 19(1):75-90.

mentation accuracy and the efficiency. LDC. 2005. Linguistic data consortium resource home
page. http://www.ldc.upenn.edu/Projects/TIDES.
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Abstract

In this paper we present a novel method
for deriving paraphrases during automatic
MT evaluation using only the source and
reference texts, which are necessary for
the evaluation, and word and phrase
alignment software. Using target language
paraphrases produced through word and
phrase alignment a number of alternative
reference sentences are constructed auto-
matically for each candidate translation.
The method produces lexical and low-
level syntactic paraphrases that are rele-
vant to the domain in hand, does not use
external knowledge resources, and can be
combined with a variety of automatic MT
evaluation system.

1 Introduction

Since their appearance, BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002) have been the
standard tools used for evaluating the quality of
machine translation. They both score candidate
translations on the basis of the number of n-grams
it shares with one or more reference translations
provided. Such automatic measures are indispen-
sable in the development of machine translation
systems, because they allow the developers to con-
duct frequent, cost-effective, and fast evaluations
of their evolving models.

These advantages come at a price, though: an
automatic comparison of n-grams measures only

86

the string similarity of the candidate translation to
one or more reference strings, and will penalize
any divergence from them. In effect, a candidate
translation expressing the source meaning accu-
rately and fluently will be given a low score if the
lexical choices and syntactic structure it contains,
even though perfectly legitimate, are not present in
at least one of the references. Necessarily, this
score would not reflect a much more favourable
human judgment that such a translation would re-
ceive.

The limitations of string comparison are the
reason why it is advisable to provide multiple ref-
erences for a candidate translation in the BLEU- or
NIST-based evaluation in the first place. While
(Zhang and Vogel, 2004) argue that increasing the
size of the test set gives even more reliable system
scores than multiple references, this still does not
solve the inadequacy of BLEU and NIST for sen-
tence-level or small set evaluation. On the other
hand, in practice even a number of references do
not capture the whole potential variability of the
translation. Moreover, often it is the case that mul-
tiple references are not available or are too difficult
and expensive to produce: when designing a statis-
tical machine translation system, the need for large
amounts of training data limits the researcher to
collections of parallel corpora like Europarl
(Koehn, 2005), which provides only one reference,
namely the target text; and the cost of creating ad-
ditional reference translations of the test set, usu-
ally a few thousand sentences long, often exceeds
the resources available. Therefore, it would be de-
sirable to find a way to automatically generate le-
gitimate translation alternatives not present in the
reference(s) already available.

Proceedings of the Workshop on Statistical Machine Translation, pages 86-93,
New York City, June 2006. (©)2006 Association for Computational Linguistics



In this paper, we present a novel method that
automatically derives paraphrases using only the
source and reference texts involved in for the
evaluation of French-to-English Europarl transla-
tions produced by two MT systems: statistical
phrase-based Pharaoh (Koehn, 2004) and rule-
based Logomedia.' In using what is in fact a minia-
ture bilingual corpus our approach differs from the
mainstream paraphrase generation based on mono-
lingual resources. We show that paraphrases pro-
duced in this way are more relevant to the task of
evaluating machine translation than the use of ex-
ternal lexical knowledge resources like thesauri or
WordNet’, in that our paraphrases contain both
lexical equivalents and low-level syntactic vari-
ants, and in that, as a side-effect, evaluation bitext-
derived paraphrasing naturally yields domain-
specific paraphrases. The paraphrases generated
from the evaluation bitext are added to the existing
reference sentences, in effect creating multiple ref-
erences and resulting in a higher score for the can-
didate translation. Our hypothesis, confirmed by
the experiments in this paper, is that the scores
raised by additional references produced in this
way will correlate better with human judgment
than the original scores.

The remainder of this paper is organized as fol-
lows: Section 2 describes related work; Section 3
describes our method and presents examples of
derived paraphrases; Section 4 presents the results
of the comparison between the BLUE and NIST
scores for a single-reference translation and the
same translation using the paraphrases automati-
cally generated from the bitext, as well as the cor-
relations between the scores and human judgment;
Section 5 discusses ongoing work; Section 6 con-
cludes.

2 Related work

2.1

Word and phrase alignment

Several researchers noted that the word and
phrase alignment used in training translation mod-
els in Statistical MT can be used for other purposes
as well. (Diab and Resnik, 2002) use second lan-
guage alignments to tag word senses. Working on
an assumption that separate senses of a L1 word

! http://www.lec.com/
2 http://wordnet.princeton.edu/
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can be distinguished by its different translations in
L2, they also note that a set of possible L2 transla-
tions for a L1 word may contain many synonyms.
(Bannard and Callison-Burch, 2005), on the other
hand, conduct an experiment to show that para-
phrases derived from such alignments can be se-
mantically correct in more than 70% of the cases.

2.2 Automatic MT evaluation

The insensitivity of BLEU and NIST to per-
fectly legitimate variation has been raised, among
others, in (Callison-Burch et al., 2006), but the
criticism is widespread. Even the creators of BLEU
point out that it may not correlate particularly well
with human judgment at the sentence level (Pap-
ineni et al., 2002), a problem also noted by (Och et
al., 2003) and (Russo-Lassner et al., 2005). A side
effect of this phenomenon is that BLEU is less re-
liable for smaller data sets, so the advantage it pro-
vides in the speed of evaluation is to some extent
counterbalanced by the time spent by developers
on producing a sufficiently large test data set in
order to obtain a reliable score for their system.

Recently a number of attempts to remedy these
shortcomings have led to the development of other
automatic machine translation metrics. Some of
them concentrate mainly on the word reordering
aspect, like Maximum Matching String (Turian et
al., 2003) or Translation Error Rate (Snover et al.,
2005). Others try to accommodate both syntactic
and lexical differences between the candidate
translation and the reference, like CDER (Leusch
et al., 2006), which employs a version of edit dis-
tance for word substitution and reordering;
METEOR (Banerjee and Lavie, 2005), which uses
stemming and WordNet synonymy; and a linear
regression model developed by (Russo-Lassner et
al., 2005), which makes use of stemming, Word-
Net synonymy, verb class synonymy, matching
noun phrase heads, and proper name matching.

A closer examination of these metrics suggests
that the accommodation of lexical equivalence is
as difficult as the appropriate treatment of syntactic
variation, in that it requires considerable external
knowledge resources like WordNet, verb class da-
tabases, and extensive text preparation: stemming,
tagging, etc. The advantage of our method is that it
produces relevant paraphrases with nothing more
than the evaluation bitext and a widely available
word and phrase alignment software, and therefore
can be used with any existing evaluation metric.



3 Contextual bitext-derived paraphrases

The method presented in this paper rests on a
combination of two simple ideas. First, the compo-
nents necessary for automatic MT evaluation like
BLEU or NIST, a source text and a reference text,
constitute a miniature parallel corpus, from which
word and phrase alignments can be extracted
automatically, much like during the training for a
statistical machine translation system. Second, tar-
get language words ¢;y, ..., e, aligned as the likely
translations to a source language word f; are often
synonyms or near-synonyms of each other. This
also holds for phrases: target language phrases ep;,
..., epin aligned with a source language phrase fp;
are often paraphrases of each other. For example,
in our experiment, for the French word question
the most probable automatically aligned English
translations are question, matter, and issue, which
in English are practically synonyms. Section 3.2
presents more examples of such equivalent expres-
sions.

3.1 Experimental design

For our experiment, we used two test sets,
each consisting of 2000 sentences, drawn ran-
domly from the test section of the Europarl parallel
corpus. The source language was French and the
target language was English. One of the test sets
was translated by Pharaoh trained on 156,000
French-English sentence pairs. The other test set
was translated by Logomedia, a commercially
available rule-based MT system. Each test set con-
sisted therefore of three files: the French source
file, the English translation file, and the English
reference file.

Each translation was evaluated by the BLEU
and NIST metrics first with the single reference,
then with the multiple references for each sentence
using the paraphrases automatically generated
from the source-reference mini corpus. A subset of
a 100 sentences was randomly extracted from each
test set and evaluated by two independent human
judges with respect to accuracy and fluency; the
human scores were then compared to the BLEU
and NIST scores for the single-reference and the
automatically generated multiple-reference files.
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3.2 Word alignment and phrase extraction

We used the GIZA++ word alignment soft-
ware® to produce initial word alignments for our
miniature bilingual corpus consisting of the source
French file and the English reference file, and the
refined word alignment strategy of (Och and Ney,
2003; Koehn et al., 2003; Tiedemann, 2004) to
obtain improved word and phrase alignments.

For each source word or phrase f that is
aligned with more than one target words or
phrases, its possible translations e;, ..., e, were
placed in a list as equivalent expressions (i.e.
synonyms, near-synonyms, or paraphrases of each
other). A few examples are given in (1).

(1) agreement - accordance
adopted - implemented
matter - lot - case
funds - money
arms - weapons
area — aspect
question - issue - matter
we would expect - we cer-
tainly expect
bear on - are centred
around
Alignment divides target words and

phrases into equivalence sets; each set corresponds
to one source word/phrase that was originally
aligned with the target elements. For example, for
the French word citoyens three English words were
deemed to be the most appropriate translations:
people, public, and citizens; therefore these three
words constitute an equivalence set. Another
French word population was aligned with two
English translations: population and people; so the
word people appears in two equivalence set (this
gives rise to the question of equivalence transitiv-
ity, which will be discussed in Section 3.3). From
the 2000-sentence evaluation bitext we derived 769
equivalence sets, containing in total 1658 words or
phrases. Each set contained on average two or
three elements. In effect, we produced at least one
equivalent expression for 1658 English words or
phrases.

An advantage of our method is that the tar-
get paraphrases and words come ordered with re-

? http://www.fjoch.com/GIZA++



spect to their likelihood of being the translation of
the source word or phrase — each of them is as-
signed a probability expressing this likelihood, so
we are able to choose only the most likely transla-
tions, according to some experimentally estab-
lished threshold. The experiment reported here was
conducted without such a threshold, since the word
and phrase alignment was of a very high quality.

3.3 Domain-specific lexical and

paraphrases

syntactic

It is important to notice here how the para-
phrases produced are more appropriate to the task
at hand than synonyms extracted from a general-
purpose thesaurus or WordNet. First, our para-
phrases are contextual - they are restricted to only
those relevant to the domain of the text, since they
are derived from the text itself. Given the context
provided by our evaluation bitext, the word area in
(1) turns out to be only synonymous with aspect,
and not with land, territory, neighbourhood, divi-
sion, or other synonyms a general-purpose thesau-
rus or WordNet would give for this entry. This
allows us to limit our multiple references only to
those that are likely to be useful in the context pro-
vided by the source text. Second, the phrase align-
ment captures something neither a thesaurus nor
WordNet will be able to provide: a certain amount
of syntactic variation of paraphrases. Therefore, we
know that a string such as we would expect in (1),
with the sequence noun-aux-verb, might be para-
phrased by we certainly expect, a sequence of
noun-adv-verb.

3.4 Open and closed class items

One important conclusion we draw from
analysing the synonyms obtained through word
alignment is that equivalence is limited mainly to
words that belong to open word classes, i.e. nouns,
verbs, adjectives, adverbs, but is unlikely to extend
to closed word classes like prepositions or pro-
nouns. For instance, while the French preposition a
can be translated in English as fo, in, or at, depend-
ing on the context, it is not the case that these three
prepositions are synonymous in English. The divi-
sion is not that clear-cut, however: within the class
of pronouns, he, she, and you are definitely not
synonymous, but the demonstrative pronouns this
and that might be considered equivalent for some
purposes. Therefore, in our experiment we exclude
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prepositions and in future work we plan to examine
the word alignments more closely to decide
whether to exclude any other words.

3.5 Creating multiple references

After the list of synonyms and paraphrases is
extracted from the evaluation bitext,  for  each
reference sentence a string search replaces every
eligible word or phrase with its equivalent(s) from
the paraphrase list, one at a time, and the resulting
string is added to the array of references. The
original string is added to the array as well. This
process results in a different number of reference
sentences for every test sentence, depending on
whether there was anything to replace in the refer-
ence and how many paraphrases we have available
for the original substring. One example of this
process is shown in (2).

(2) Original reference:

i admire the answer mrs parly
gave this morning but we have
turned a blind eye to that
Paraphrase 1:

i admire the reply mrs parly
gave this morning but we have
turned a blind eye to that
Paraphrase 2:

i admire the answer mrs parly
gave this morning however we
have turned a blind eye to
that

Paraphrase 3:

i admire the answer mrs parly
gave this morning but we have
turned a blind eye to it

Transitivity

As mentioned before, an interesting question
that arises here is the potential transitivity of our
automatically derived synonyms/paraphrases. It
could be argued that if the word people is equiva-
lent to public according to one set from our list,
and to the word population according to another
set, then public can be thought of as equivalent to
population. In this case, the equivalence is not con-
troversial. However, consider the following rela-
tion: if sure in one of the equivalence sets is
synonymous to certain, and certain in a different



set is listed as equivalent to some, then treating
sure and some as synonyms is a mistake. In our
experiment we do not allow synonym transitivity;
we only use the paraphrases from equivalence sets
containing the word/phrase we want to replace.

Multiple simultaneous substitution

Note that at the moment the references we are
producing do not contain multiple simultaneous
substitutions of equivalent expressions; for exam-
ple, in (2) we currently do not produce the follow-
ing versions:

(3) Paraphrase 4:

i admire the reply mrs parly
gave this morning however we
have turned a blind eye to
that

Paraphrase 5:

i admire the answer mrs parly
gave this morning however we
have turned a blind eye to it
Paraphrase 6:

i admire the reply mrs parly
gave this morning but we have
turned a blind eye to it

This can potentially prevent higher n-grams being
successfully matched if two or more equivalent
expressions find themselves within the range of n-
grams being tested by BLEU and NIST. To avoid
combinatorial problems, implementing multiple
simultaneous substitutions could be done using a
lattice, much like in (Pang et al., 2003).

4 Results

As expected, the use of multiple references
produced by our method raises both the BLEU and
NIST scores for translations produced by Pharaoh
(test set PH) and Logomedia (test set LM). The
results are presented in Table 1.

The hypothesis that the multiple-reference
scores reflect better human judgment is also con-
firmed. For 100-sentence subsets (Subset PH and
Subset LM) randomly extracted from our test sets
PH and LM, we calculated Pearson’s correlation
between the average accuracy and fluency scores
that the translations in this subset received from
two human judges (for each subset) and the single-
reference and multiple-reference sentence-level
BLEU and NIST scores.

There are two issues that need to be noted at
this point. First, BLEU scored many of the sen-
tences as zero, artificially leveling many of the
weaker translations.” This explains the low, al-
though still statistically significant (p value <
0.01°) correlation with BLEU for both single and
multiple reference translations. Using a version of
BLEU with add-one smoothing we obtain consid-
erably higher correlations. Table 2 shows Pear-
son’s correlation coefficient for BLEU, BLEU
with add-one smoothing, NIST, and human judg-
ments for Subsets PH. Multiple paraphrase refer-
ences produced by our method consistently lead to
a higher correlation with human judgment for
every metric.’®

Subset PH | single | multi
Metric ref ref
H & BLEU 0.297 0.307
H & BLEU smoothed 0.396 | 0.404
H & NIST 0.323 0.355
Table 2. Pearson’s correlation between human

judgment and single-reference and multiple-
reference BLEU, smoothed BLEU, and NIST for
subset PH (of test set PH)

The second issue that requires explanation is
the lower general scores Logomedia’s translation
received on the full set of 2000 sentences, and the
extremely low correlation of its automatic evalua-
tion with human judgment, irrespective of the

Table 1. Comparison of single-reference and multi-
reference scores for test set PH and test set LM

90

BLEU NIST number of references. It has been noticed (Calli-
PH single ref 0.2131 6.1625
PH multi ref 0.2407 7.0068 * BLEU uses a geometric average while calculating the sen-
LM single ref 0.1782 5.5406 tence-level score and will score a sentence as 0 if it does not
LM multi ref | 0.2043 6.3834 have at least one 4-gram.

* A critical value for Pearson’s correlation coefficient for the
sample size between 90 and 100 is 0.267, with p < 0.01.

% The significance of the rise in scores was confirmed in a
resampling/bootstrapping test, with p < 0.0001.



son-Burch et al., 2006) that BLEU and NIST fa-
vour n-gram based MT models such as Pharaoh, so
the translation produced by Logomedia scored
lower on the automatic evaluation, even though the
human judges rated Logomedia output higher than
Pharaoh’s translation. Both human judges consis-
tently gave very high scores to most sentences in
subset LM (Logomedia), and as a consequence
there was not enough variation in the scores as-
signed by them to create a good correlation with
the BLEU and NIST scores. The average human
scores for the subsets PH and LM and the coeffi-
cients of variation are presented in Table 3. It is
easy to see that Logomedia’s translation received a
higher mean score (on a scale 0 to 5) from the hu-
man judges and with less variance than Pharaoh.

Mean score Variation
Subset PH 3.815 19.1%
Subset LM 4.005 16.25%

Table 3. Human judgment mean scores and coeffi-
cients of variation for Subset PH and Subset LM

As a result of the consistently high human scores
for Logomedia, none of the Pearson’s correlations
computed for Subset LM is high enough to be sig-
nificant. The values are lower than the critical
value 0.164 corresponding to p < 0.10.

Subset LM | single | multi
Metric ref ref
H & BLEU 0.046* | 0.067*
H & BLEU smoothed 0.163* | 0.151*
H & NIST 0.078* | 0.116*

Table 4. Pearson’s correlation between human
judgment and single-reference and multiple-
reference BLEU, smoothed BLEU, and NIST for
subset LM (of test set LM). * denotes values with p >
0.10.

5 Current and future work

We would like to experiment with the way in
which the list of equivalent expressions is pro-
duced. One possible development would be to de-
rive the expressions from a very large training
corpus used by a statistical machine translation
system, following (Bannard and Callison-Burch,
2005), for instance, and use it as an external wider-
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purpose knowledge resource (rather than a current
domain-tailored resource as in our experiment),
which would be nevertheless improve on a thesau-
rus in that it would also include phrase equivalents
with some syntactic variation. According to (Ban-
nard and Callison-Burch, 2005), who derived their
paraphrases automatically from a corpus of over a
million German-English Europarl sentences, the
baseline syntactic and semantic accuracy of the
best paraphrases (those with the highest probabil-
ity) reaches 48.9% and 64.5%, respectively. That
is, by replacing a phrase with its one most likely
paraphrase the sentence remained syntactically
well-formed in 48.9% of the cases and retained its
meaning in 65% of the cases.

In a similar experiment we generated para-
phrases from a French-English Europarl corpus of
700,000 sentences. The data contained a consid-
erably higher level of noise than our previous ex-
periment on the 2000-sentence test set, even
though we excluded any non-word entities from
the results. Like (Bannard and Callison-Burch,
2005), we used the product of probabilities p(fiei)
and p(ep|f;) to determine the best paraphrase for a
given English word e;;. We then compared the ac-
curacy across four samples of data. Each sample
contained 50 randomly drawn words/phrases and
their paraphrases. For the first two samples, the
paraphrases were derived from the initial 2000-
sentence corpus; for the second two, the para-
phrases were derived from the 700,000-sentence
corpus. For each corpus, one of the two samples
contained only one best paraphrase for each entry,
while the other listed all possible paraphrases. We
then evaluated the quality of each paraphrase with
respect to its syntactic and semantic accuracy. In
terms of syntax, we considered the paraphrase ac-
curate either if it had the same category as the
original word/phrase; in terms of semantics, we
relied on human judgment of similarity. Tables 5
and 6 summarize the syntactic and semantic accu-
racy levels in the samples.

Paraphrases | Best All
Derived from
2000-sent. corpus 59% 60%
700,000-sent. corpus 70% 48%

Table 5. Syntactic accuracy of paraphrases



Paraphrases | Best All
Derived from
2000-sent. corpus 83% 74%
700,000-sent. corpus 76% 68%

Table 6. Semantic accuracy of paraphrases

Although it has to be kept in mind that these
percentages were taken from relatively small sam-
ples, an interesting pattern emerges from compar-
ing the results. It seems that the average syntactic
accuracy of all paraphrases decreases with in-
creased corpus size, but the syntactic accuracy of
the one best paraphrase improves. This reflects the
idea behind word alignment: the bigger the corpus,
the more potential alignments there are for a given
word, but at the same time the better their order in
terms of probability and the likelihood to obtain
the correct translation. Interestingly, the same pat-
tern is not repeated for semantic accuracy, but
again, these samples are quite small. In order to
address this issue, we plan to repeat the experiment
with more data.

Additionally, it should be noted that certain
expressions, although not completely correct syn-
tactically, could be retained in the paraphrase lists
for the purposes of machine translation evaluation.
Consider the case where our equivalence set looks
like this:

(4) abandon - abandoning -
abandoned

The words in (4) are all inflected forms of the verb
abandon, and although they would produce rather
ungrammatical paraphrases, those ungrammatical
paraphrases still allow us to score our translation
higher in terms of BLEU or NIST if it contains one
of the forms of abandon than when it contains
some unrelated word like piano instead. This is
exactly what other scoring metrics mentioned in
Section 2 attempt to obtain with the use of stem-
ming or prefix matching.

6 Conclusions

In this paper we present a novel combination
of existing ideas from statistical machine transla-
tion and paraphrase generation that leads to the
creation of multiple references for automatic MT
evaluation, using only the source and reference
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files that are required for the evaluation. The
method uses simple word and phrase alignment
software to find possible synonyms and para-
phrases for words and phrases of the target text,
and uses them to produce multiple reference sen-
tences for each test sentence, raising the BLEU and
NIST evaluation scores and reflecting human
judgment better. The advantage of this method
over other ways to generate paraphrases is that (1)
unlike other methods, it does not require extensive
parallel monolingual paraphrase corpora, but it
extracts equivalent expressions from the miniature
bilingual corpus of the source and reference
evaluation files; (2) unlike other ways to accom-
modate synonymy in automatic evaluation, it does
not require external lexical knowledge sources like
thesauri or WordNet; (3) it extracts only synonyms
that are relevant to the domain in hand; and (4) the
equivalent expressions it produces include a certain
amount of syntactic paraphrases.

The method is general and it can be used with
any automatic evaluation metric that supports mul-
tiple references. In our future work, we plan to ap-
ply it to newly developed evaluation metrics like
CDER and TER that aim to allow for syntactic
variation between the candidate and the reference,
therefore bringing together solutions for the two
shortcomings of automatic evaluation systems:
insensitivity to allowable lexical differences and
syntactic variation.
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Abstract

State of the art in statistical machine trans-
lation is currently represented by phrase-
based models, which typically incorpo-
rate a large number of probabilities of
phrase-pairs and word n-grams. In this
work, we investigate data compression
methods for efficiently encoding n-gram
and phrase-pair probabilities, that are usu-
ally encoded in 32-bit floating point num-
bers. We measured the impact of com-
pression on translation quality through a
phrase-based decoder trained on two dis-
tinct tasks: the translation of European
Parliament speeches from Spanish to En-
glish, and the translation of news agencies
from Chinese to English. We show that
with a very simple quantization scheme all
probabilities can be encoded in just 4 bits
with a relative loss in BLEU score on the
two tasks by 1.0% and 1.6%, respectively.

1 Introduction

In several natural language processing tasks, such as
automatic speech recognition and machine transla-
tion, state-of-the-art systems rely on the statistical
approach.

Statistical machine translation (SMT) is based
on parametric models incorporating a large num-
ber of observations and probabilities estimated from
monolingual and parallel texts. The current state of
the art is represented by the so-called phrase-based
translation approach (Och and Ney, 2004; Koehn et
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al., 2003). Its core components are a translation
model that contains probabilities of phrase-pairs,
and a language model that incorporates probabilities
of word n-grams.

Due to the intrinsic data-sparseness of language
corpora, the set of observations increases almost lin-
early with the size of the training data. Hence, to
efficiently store observations and probabilities in a
computer memory the following approaches can be
tackled: designing compact data-structures, pruning
rare or unreliable observations, and applying data
compression.

In this paper we only focus on the last approach.
We investigate two different quantization methods
to encode probabilities and analyze their impact on
translation performance. In particular, we address
the following questions:

e How does probability quantization impact on
the components of the translation system,
namely the language model and the translation
model?

e Which is the optimal trade-off between data
compression and translation performance?

e How do quantized models perform under dif-
ferent data-sparseness conditions?

e Is the impact of quantization consistent across
different translation tasks?

Experiments were performed with our phrase-
based SMT system (Federico and Bertoldi, 2005) on
two large-vocabulary tasks: the translation of Euro-
pean Parliament Plenary Sessions from Spanish to

Proceedings of the Workshop on Statistical Machine Translation, pages 94-101,
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English, and the translation of news agencies from
Chinese to English, according to the set up defined
by the 2005 NIST MT Evaluation Workshop.

The paper is organized as follows. Section 2 re-
views previous work addressing efficiency in speech
recognition and information retrieval. Section 3 in-
troduces the two quantization methods considered
in this paper, namely the Lloyd’s algorithm and the
Binning method. Section 4 briefly describes our
phrase-based SMT system. Sections 5 reports and
discusses experimental results addressing the ques-
tions in the introduction. Finally, Section 6 draws
some conclusions.

2 Previous work

Most related work can be found in the area of speech
recognition, where n-gram language models have
been used for a while.

Efforts targeting efficiency have been mainly fo-
cused on pruning techniques (Seymore and Rosen-
feld, 1996; Gao and Zhang, 2002), which permit
to significantly reduce the amount of n-grams to be
stored at a negligible cost in performance. More-
over, very compact data-structures for storing back-
off n-gram models have been recently proposed by
Raj and Whittaker (2003).

Whittaker and Raj (2001) discuss probability en-
coding as a means to reduce memory requirements
of an n-gram language model. Quantization of a
3-gram back-off model was performed by applying
the k-means Lloyd-Max algorithm at each n-gram
level. Experiments were performed on several large-
vocabulary speech recognition tasks by considering
different levels of compression. By encoded proba-
bilities in 4 bits, the increase in word-error-rate was
only around 2% relative with respect to a baseline
using 32-bit floating point probabilities.

Similar work was carried out in the field of in-
formation retrieval, where memory efficiency is in-
stead related to the indexing data structure, which
contains information about frequencies of terms in
all the individual documents. Franz and McCarley
(2002) investigated quantization of term frequencies
by applying a binning method. The impact on re-
trieval performance was analyzed against different
quantization levels. Results showed that 2 bits are
sufficient to encode term frequencies at the cost of a
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negligible loss in performance.

In our work, we investigate both data compres-
sion methods, namely the Lloyd’s algorithm and the
binning method, in a SMT framework.

3 Quantization

Quantization provides an effective way of reducing
the number of bits needed to store floating point
variables. The quantization process consists in par-
titioning the real space into a finite set of k quantiza-
tion levels and identifying a center c; for each level,
i=1,...,k. A function ¢(x) maps any real-valued
point x onto its unique center c;. Cost of quantiza-
tion is the approximation error between x and c;.

If k = 2", h bits are enough to represent a floating
point variable; as a floating point is usually encoded
in 32 bits (4 byte), the compression ratio is equal
to 32/h! . Hence, the compression ratio also gives
an upper bound for the relative reduction of mem-
ory use, because it assumes an optimal implemen-
tation of data structures without any memory waste.
Notice that memory consumption for storing the k-
entry codebook is negligible (k * 32 bits).

As we will apply quantization on probabilistic
distribution, we can restrict the range of real val-
ues between 0 and 1. Most quantization algorithms
require a fixed (although huge) amount of points
in order to define the quantization levels and their
centers. Probabilistic models used in SMT satisfy
this requirement because the set of parameters larger
than O is always limited.

Quantization algorithms differ in the way parti-
tion of data points is computed and centers are iden-
tified. In this paper we investigate two different
quantization algorithms.

Lloyd’s Algorithm

Quantization of a finite set of real-valued data points
can be seen as a clustering problem. A large fam-
ily of clustering algorithms, called k-means algo-
rithms (Kanungo et al., 2002), look for optimal cen-
ters c¢; which minimize the mean squared distance
from each data point to its nearest center. The map
between points and centers is trivially derived.

'In the computation of the compression ratio we take into
account only the memory needed to store the probabilities of the
observations, and not the memory needed to store the observa-
tions themselves which depends on the adopted data structures.



As no efficient exact solution to this problem
is known, either polynomial-time approximation or
heuristic algorithms have been proposed to tackle
the problem. In particular, Lloyd’s algorithm starts
from a feasible set of centers and iteratively moves
them until some convergence criterion is satisfied.
Finally, the algorithm finds a local optimal solution.
In this work we applied the version of the algorithm
available in the K-MEANS package?.

Binning Method

The binning method partitions data points into uni-
formly populated intervals or bins. The center of
each bin corresponds to the mean value of all points
falling into it. If IV; is the number of points of the
i-th bin, and z; the smallest point in the ¢-th bin, a
partition [z;,x;1] results such that N; is constant
foreachi =0,...,k — 1, where x;, = 1 by default.
The following map is thus defined:

q(z) = ¢ ifz; <=z < xi41.

Our implementation uses the following greedy
strategy: bins are build by uniformly partition all
different points of the data set.

4 Phrase-based Translation System

Given a string f in the source language, our SMT
system (Federico and Bertoldi, 2005; Cettolo et al.,
2005), looks for the target string e maximizing the
posterior probability Pr(e,a | f) over all possible
word alignments a. The conditional distribution is
computed with the log-linear model:

R
palealf) o exp {Z Arhxe,f,a)} ,

r=1

where h,.(e,f,a),r = 1... R are real valued feature
functions.

The log-linear model is used to score translation
hypotheses (e, a) built in terms of strings of phrases,
which are simple sequences of words. The transla-
tion process works as follows. At each step, a target
phrase is added to the translation whose correspond-
ing source phrase within f is identified through three
random quantities: the fertility which establishes its
length; the permutation which sets its first position;

2www.cs.umd.edu/~mount/Projects/K Means.
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the tablet which tells its word string. Notice that tar-
get phrases might have fertility equal to zero, hence
they do not translate any source word. Moreover,
untranslated words in f are also modeled through
some random variables.

The choice of permutation and tablets can be
constrained in order to limit the search space un-
til performing a monotone phrase-based translation.
In any case, local word reordering is permitted by
phrases.

The above process is performed by a beam-search
decoder and is modeled with twelve feature func-
tions (Cettolo et al., 2005) which are either esti-
mated from data, e.g. the target n-gram language
models and the phrase-based translation model, or
empirically fixed, e.g. the permutation models.
While feature functions exploit statistics extracted
from monolingual or word-aligned texts from the
training data, the scaling factors A of the log-linear
model are empirically estimated on development
data.

The two most memory consuming feature func-
tions are the phrase-based Translation Model (TM)
and the n-gram Language Model (LM).

Translation Model

The TM contains phrase-pairs statistics computed
on a parallel corpus provided with word-alignments
in both directions. Phrase-pairs up to length 8 are
extracted and singleton observations are pruned off.
For each extracted phrase-pair ( f ,€), four transla-
tion probabilities are estimated:
— a smoothed frequency of f given €
— a smoothed frequency of € given f
—an IBM model 1 based probability of € given f
—an IBM model 1 based probability of f given é
Hence, the number of parameters of the transla-
tion models corresponds to 4 times the number of
extracted phrase-pairs. From the point of view of
quantization, the four types of probabilities are con-
sidered separately and a specific codebook is gener-
ated for each type.

Language Model

The LM is a 4-gram back-off model estimated with
the modified Kneser-Ney smoothing method (Chen
and Goodman, 1998). Singleton pruning is applied
on 3-gram and 4-gram statistics. In terms of num-



task parallel resources mono resources LM ™

src trg words 1-gram 2-gram 3-gram 4-gram phrase pairs
NIST 82,168 88,159 463,855 1,408 20,475 29,182 46,326 10,410
EPPS 34,460 32,951 3,2951 110 2,252 2,191 2,677 3,877
EPPS-800 23,611 22,520 22,520 90 1,778 1,586 1,834 2,499
EPPS-400 11,816 11,181 11,181 65 1,143 859 897 1,326
EPPS-200 5,954 5,639 5,639 47 738 464 439 712
EPPS-100 2,994 2,845 2,845 35 469 246 213 387

Table 1: Figures (in thousand) regarding the training data of each translation task.

ber of parameters, each n-gram, with n < 4, has
two probabilities associated with: the probability of
the n-gram itself, and the back-off probability of the
corresponding n + 1-gram extensions. Finally, 4-
grams have only one probability associated with.

For the sake of quantization, two separate code-
books are generated for each of the first three lev-
els, and one codebook is generated for the last level.
Hence, a total of 7 codebooks are generated. In all
discussed quantized LMs, unigram probabilities are
always encoded with 8 bits. The reason is that uni-
gram probabilities have indeed the largest variability
and do not contribute significantly to the total num-
ber of parameters.

5 Experiments

Data and Experimental Framework

We performed experiments on two large vocabulary
translation tasks: the translation of European Parlia-
mentary Plenary Sessions (EPPS) (Vilar et al., 2005)
from Spanish to English, and the translation of doc-
uments from Chinese to English as proposed by the
NIST MT Evaluation Workshops?.

Translation of EPPS is performed on the so-called
final text editions, which are prepared by the trans-
lation office of the European Parliament. Both the
training and testing data were collected by the TC-
STAR* project and were made freely available to
participants in the 2006 TC-STAR Evaluation Cam-
paign. In order to perform experiments under differ-
ent data sparseness conditions, four subsamples of
the training data with different sizes were generated,
too.

Training and test data used for the NIST task are

3www.nist.gov/speech/tests/mt/.
*Www.tc-star.org
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task sentences src words ref words
EPPS 840 22725 23066
NIST 919 25586 29155

Table 2: Statistics of test data for each task.

available through the Linguistic Data Consortium?.
Employed training data meet the requirements set
for the Chinese-English large-data track of the 2005
NIST MT Evaluation Workshop. For testing we
used instead the NIST 2003 test set.

Table 1 reports statistics about the training data of
each task and the models estimated on them. That
is, the number of running words of source and target
languages, the number of n-grams in the language
model and the number phrase-pairs in the transla-
tion model. Table 2 reports instead statistics about
the test sets, namely, the number of source sentences
and running words in the source part and in the gold
reference translations.

Translation performance was measured in terms
of BLEU score, NIST score, word-error rate (WER),
and position independent error rate (PER). Score
computation relied on two and four reference trans-
lations per sentence, respectively, for the EPPS
and NIST tasks. Scores were computed in case-
insensitive modality with punctuation. In general,
none of the above measures is alone sufficiently in-
formative about translation quality, however, in the
community there seems to be a preference toward
reporting results with BLEU. Here, to be on the safe
side and to better support our findings we will report
results with all measures, but will limit discussion
on performance to the BLEU score.

In order to just focus on the effect of quantiza-

Swww.ldc.upenn.edu



LM-h
32 8 6 5 4 3 2

32 | 5478 5475 5473 54.65 54.49 5424 53.82

8 15478 54.69 54.69 5479 5455 54.18 53.65

6 | 5457 5449 54776 5457 54.63 5426 53.60
TM-h5 | 54.68 54.68 54.56 54.61 54.60 54.10 53.39
4| 5437 5436 5447 5444 5423 5406 53.26
35428 54.03 5422 5396 5375 53.69 53.03

2| 53.58 53.51 53.47 5335 5339 5341 5241

Table 3: BLEU scores in the EPPS task with different quantization levels of the LM and TM.

tion, all reported experiments were performed with
a plain configuration of the ITC-irst SMT system.
That is, we used a single decoding step, no phrase
re-ordering, and task-dependent weights of the log-
linear model.

Henceforth, LMs and TM quantized with h bits
are denoted with LM-h and TM-h, respectively.
Non quantized models are indicated with LM-32
and TM-32.

Impact of Quantization on LM and TM

A first set of experiments was performed on the
EPPS task by applying probability quantization ei-
ther on the LM or on the TMs. Figures 1 and 2
compare the two proposed quantization algorithms
(LLOYD and BINNING) against different levels of
quantization, namely 2, 3, 4, 5, 6, and 8 bits.
The scores achieved by the non quantized models
(LM—-32 and TM-32) are reported as reference.

The following considerations can be drawn from
these results. The Binning method works slightly,
but not significantly, better than the Lloyd’s algo-
rithm, especially with the highest compression ra-
tios.

In general, the LM seems less affected by data
compression than the TM. By comparing quantiza-
tion with the binning method against no quantiza-
tion, the BLEU score with LM-4 is only 0.42% rel-
ative worse (54.78 vs 54.55). Degradation of BLEU
score by TM-4 is 0.77% (54.78 vs 54.36). For all the
models, encoding with 8 bits does not affect transla-
tion quality at all.

In following experiments, binning quantization
was applied to both LM and TM. Figure 3 plots
all scores against different levels of quantization.
As references, the curves corresponding to only
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LM-h TM-h BLEU NIST WER PER
32 32 2882 8769 6241 4230

8 8 2887 8772 6239 42.19

4 4 2836 8.742 6294 4245

2 2 2595 8491 6587 44.04

Table 4: Translation scores on the NIST task with
different quantization levels of the LM and TM.

LM quantization (LM-h) and only TM quantization
(TM-h) are shown. Independent levels of quantiza-
tion of the LM and TM were also considered. BLEU
scores related to several combinations are reported
in Table 3.

Results show that the joint impact of LM and TM
quantization is almost additive. Degradation with
4 bits quantization is only about 1% relative (from
54.78 to 54.23). Quantization with 2 bits is sur-
prisingly robust: the BLEU score just decreases by
4.33% relative (from 54.78 to 52.41).

Quantization vs. Data Sparseness

Quantization of LM and TM was evaluated with re-
spect to data-sparseness. Quantized and not quan-
tized models were trained on four subset of the EPPS
corpus with decreasing size. Statistics about these
sub-corpora are reported in Table 1. Quantization
was performed with the binning method using 2,
4, and 8 bit encodings. Results in terms of BLEU
score are plotted in Figure 4. It is evident that the
gap in BLEU score between the quantized and not
quantized models is almost constant under different
training conditions. This result suggests that perfor-
mance of quantized models is not affected by data
sparseness.



Consistency Across Different Tasks

A subset of quantization settings tested with the
EPPS tasks was also evaluated on the NIST task.
Results are reported in Table 4.

Quantization with 8 bits does not affect perfor-
mance, and gives even slightly better scores. Also
quantization with 4 bits produces scores very close
to those of non quantized models, with a loss in
BLEU score of only 1.60% relative. However, push-
ing quantization to 2 bits significantly deteriorates
performance, with a drop in BLEU score of 9.96%
relative.

In comparison to the EPPS task, performance
degradation due to quantization seems to be twice as
large. In conclusion, consistent behavior is observed
among different degrees of compression. Absolute
loss in performance, though quite different from the
EPPS task, remains nevertheless very reasonable.

Performance vs. Compression

From the results of single versus combined com-
pression, we can reasonably assume that perfor-
mance degradation due to quantization of LM and
TM probabilities is additive. Hence, as memory sav-
ings on the two models are also independent we can
look at the optimal trade-off between performance
and compression separately.  Experiments on the
NIST and EPPS tasks seem to show that encoding
of LM and TM probabilities with 4 bits provides the
best trade-off, that is a compression ratio of 8 with a
relative loss in BLEU score of 1% and 1.6%. It can
be seen that score degradation below 4 bits grows
generally faster than the corresponding memory sav-
ings.

6 Conclusion

In this paper we investigated the application of data
compression methods to the probabilities stored by
a phrase-based translation model. In particular,
probability quantization was applied on the n-gram
language model and on the phrase-pair translation
model. Experimental results confirm previous find-
ings in speech recognition: language model proba-
bilities can be encoded in just 4 bits at the cost of
a very little loss in performance. The same resolu-
tion level seems to be a good compromise even for
the translation model. Remarkably, the impact of
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quantization on the language model and translation
model seems to be additive with respect to perfor-
mance. Finally, quantization does not seems to be
affected by data sparseness and behaves similarly on
different translation tasks.
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Abstract was done by the participants. This revealed

interesting clues about the properties of auto-

We evaluated machine translation perfor- matic and manual scoring.

mance for six European language pairs

that participated in a shared task: translat- e We evaluated translatioftom English, in ad-
ing French, German, Spanish texts to En- dition to into English. English was again
glish and back. Evaluation was done auto- paired with German, French, and Spanish.
matically using the BEU score and man- We dropped, however, one of the languages,
ually onfluencyandadequacy Finnish, partly to keep the number of tracks

manageable, partly because we assumed that it
would be hard to find enough Finnish speakers
for the manual evaluation.

For the 2006 NAACL/HLT Workshop on Ma-
chine Translation, we organized a shared task to
evaluate machine translation performance. 14 teams
from 11 institutions participated, ranging from com-
mercial companies, industrial research labs to indi-
vidual graduate students.

The motivation for such a competition is to estab-
lish baseline performance numbers for defined traint  Evaluation Framework
ing scenarios and test sets. We assembled various
forms of data and resources: a baseline MT systeﬁﬁhe evaluation framework for the shared task is sim-
language models, prepared training and test setlar to the one used in last year’s shared task. Train-
resulting in actual machine translation output froming and testing is based on the Europarl corpus. Fig-
several state-of-the-art systems and manual evalu#€ 1 provides some statistics about this corpus.
tions. All this is available at the workshop website .

The shared task is a follow-up to the one we orgal-1 Baseline system

nized in the previous year, at a similar venue (Koehtio lower the barrier of entrance to the competition,
and Monz, 2005). As then, we concentrated on thge provided a complete baseline MT system, along

translation of European languages and the use of thgth data resources. To summarize, we provided:
Europarl corpus for training. Again, most systems

that participated could be categorized as statistical ¢ sentence-aligned, tokenized training corpus
phrase-based systems. While there is now a num-4 5 development and development test set

ber of competitions — DARPA/NIST (Li, 2005),
IWSLT (Eck and Hori, 2005), TC-Star — this one
focuses on text translation between various Euro- ® € phrase-based MT decoder Pharaoh

e We included an out-of-domain test set. This al-
lows us to compare machine translation perfor-
mance in-domain and out-of-domain.

¢ trained language models for each language

pean languages. e a training script to build models for Pharaoh
This year’s shared task changed in some aspects _ o
from last year's: The performance of the baseline system is simi-

] o _lar to the best submissions in last year’s shared task.
e We carried out a manual evaluation in additioRyg gre currently working on a complete open source
to the automatic scoring. Manual evaluationmyiementation of a training and decoding system,
http://www.statmt.org/wmt06/ which should become available over the summer.
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Training corpus

Spanish+— English | French « English | German < English
Sentences 730,740 688,031 751,088
Foreign words 15,676,710 15,323,737 15,256,793
English words 15,222,105 13,808,104 16,052,269
Distinct foreign words 102,886 80,349 195,291
Distinct English words 64,123 61,627 65,889
Language model data
English Spanish French German
Sentence| 1,003,349| 1,070,305| 1,066,974 | 1,078,141
Words | 27,493,499 29,129,720 31,604,879 26,562,167
In-domain test set
English | Spanish | French | German
Sentences 2,000
Words 59,307 | 61,824 | 66,783 | 55,533
Unseen words 141 206 164 387
Ratio of unseen words| 0.23% | 0.40% | 0.24% | 0.70%
Distinct words 6,031 7,719 7,230 8,812
Distinct unseen words| 139 203 163 385

Out-of-domain test set

English | Spanish | French | German
Sentences 1,064
Words 25,919 | 29,826 | 31,937 | 26,818
Unseen words 464 368 839 913
Ratio of unseen words| 1.79% | 1.23% | 2.62% | 3.40%
Distinct words 5,166 5,689 5,728 6,594
Distinct unseen words| 340 267 375 637

Figure 1: Properties of the training and test sets used in the shared task. The training data is the Europarl cor-
pus, from which also the in-domain test set is taken. There is twice as much language modelling data, since
training data for the machine translation system is filtered against sentences of length larger than 40 words.
Out-of-domain test data is from the Project Syndicate web site, a compendium of political commentary.
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ID Participant
cmu Carnegie Mellon University, USA (Zollmann and Venugopal, 2006)

Icc Language Computer Corporation, USA (Olteanu et al., 2006b)
ms Microsoft, USA (Menezes et al., 2006)

nrc National Research Council, Canada (Johnson et al., 2006)

ntt Nippon Telegraph and Telephone, Japan (Watanabe et al., 2006)
rali RALI, University of Montreal, Canada (Patry et al., 2006)

systran | Systran, France
uedin-birch| University of Edinburgh, UK — Alexandra Birch (Birch et al., 2006)
uedin-phi | University of Edinburgh, UK — Philipp Koehn (Birch et al., 2006)
upc-jg University of Catalonia, Spain — Jas Ginenez (Gineénez and Mrquez, 2006)
upc-jimc | University of Catalonia, Spain — Josep Maria Crego (Crego et al., 2006)
upc-mr | University of Catalonia, Spain — Marta Ruiz Costa-pug¢€osta-juss et al., 2006)
upv University of Valencia, Spain @chez and Benéd2006)
utd University of Texas at Dallas, USA (Olteanu et al., 2006a)

Figure 2: Participants in the shared task. Not all groups participated in all translation directions.

1.2 TestData pendency trees, others use hierarchical phrase mod-

The test data was again drawn from a segment 8115. Systran submitted their commercial rule-based
the Europarl corpus from the fourth quarter of 2000§ystem that was not tur_le'd to the Europarl f:orpus.
which is excluded from the training data. Partici- A\Pout halfof the participants of last year's shared
pants were also provided with two sets of 2,000 Serligsk participated again. The other half was replaced

tences of parallel text to be used for system developy Other participants, so we ended up W|th,roughly
ment and tuning. the same number. Compared to last year's shared

In addition to the Europarl test set, we also coIEaSk' the participants represent more long-term re-

lected 29 editorials from the Project Syndicate Webs-‘earCh Effort;. This may be the sign of a maturing
site?, which are published in all the four Ianguage§esearc environment,

of the shared task. We aligned the texts at a sen-Wh_iIe building a_mac_hine ranslation system is
tence level across all four languages, resulting iff Serous undertaking, in future we hope to attract

1064 sentence per language. For statistics on t ore newcomers to th_e field by keeping the barrier
test set, refer to Figure 1. of entry as low as possible.

The out-of-domain test set differs from the Eu-f Ftortrrr:ore on tht(_e partlctlpatlr(;g sygti)_ms,. plﬁlase re-
roparl data in various ways. The text type are edi' ‘0 he respective system description in the pro-
cseedlngs of the workshop.

torials instead of speech transcripts. The domain |
general politics, economics and science. However,jt  Aytomatic Evaluation
is also mostly political content (even if not focused

on the internal workings of the European Union) ando" the automatic evaluation, we usedd), since it

opinion. is the most established metric in the field. The=B
metric, as all currently proposed automatic metrics,
1.3 Participants is occasionally suspected to be biased towards sta-

We received submissions from 14 groups from 1_rlistical systems, especially the phrase-based systems

institutions, as listed in Figure 2. Most of theseCurrently in use. It rewards matches of n-gram se-

groups follow a phrase-based statistical approach
machine translation. Microsoft's approach uses d

ences, but measures only at most indirectly over-
ea_I grammatical coherence.

The BLEU score has been shown to correlate

2http:/iwww.project-syndicate.com/ well with human judgement, when statistical ma-
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chine translation systems are compared (Doddingut of each system, measure theire® score, and
ton, 2002; Przybocki, 2004; Li, 2005). However, ause these 1000 B U scores as basis for estimating
recent study (Callison-Burch et al., 2006), pointeé confidence interval. When dropping the top and
out that this correlation may not always be strongbottom 2.5% the remaining B U scores define the
They demonstrated this with the comparison of staange of the confidence interval.

tistical systems against (a) manually post-edited Mpaijrwise comparison:We can use the same method
output, and (b) a rule-based commercial system. o assess the statistical significance of one system
The development of automatic scoring methods igutperforming another. If two systems’ scores are
an open field of research. It was our hope that thigiose, this may simply be a random effect in the test
competition, which included the manual and autogata. To check for this, we do pairwise bootstrap re-
matic evaluation of statistical systems and one rulesampling: Again, we repeatedly sample sets of sen-
based commercial system, will give further insightences, this time from both systems, and compare
into the relation between automatic and manual er:\Iheir BLEU scores on these sets. If one system is bet-
uation. At the very least, we are creating a data reer in 95% of the sample sets, we conclude that its

source (the manual annotations) that may the basiggher BLEu score is statistically significantly bet-
of future research in evaluation metrics. ter.

2.1 Computing BLEU Scores The bootstrap method has been critized by Riezler
. .._and Maxwell (2005) and Collins et al. (2005), as be-
We computed BEU scores for each submission with. Lo o iy -

ing too optimistic in deciding for statistical signifi-

a single reference translation. For each sentence .
9 cant difference between systems. We are therefore

we counted hO.W many n-grams in the _system OUt.plzJatppIying a different method, which has been used at
also occurred in the reference translation. By takin .

: . e 2005 DARPA/NIST evaluation.
the ratio of matching n-grams to the total number o

n-grams in the system output, we obtain the preci- We divide up each test set_ into bIo_cks of 20 sen-
sion p,, for each n-gram orden. These values for tences (100 blocks for the in-domain test set, 53

n-gram precision are combined into @@ score: E:gzts ;O;;Zeszit{ggdﬁaza;nﬁg ;fgcjc:ceocrl;f;::na(;h
4 the other, and then use the sign test.
BLEU = BP- exp(z_:l log pn) () The sign test checks, how likely a sample of better
" and worse BEU scores would have been generated
by two systems of equal performance.

The formula for the BEU metric also includes a  Let say, if we find one system doing better on 20
brevity penalty for too short output, which is based®f the blocks, and worse on 80 of the blocks, is it
on the total number of words in the system output Significantly worse? We check, how likely only up
and in the reference to k = 20 better scores out of = 100 would have

BLEU is sensitive to tokenization. Because of€en generated by two equal systems, using the bi-
this, we retokenized and lowercased submitted ouftomial distribution:
put with our own tokenizer, which was also used to
prepare the training and test data.

BP = min(1,e' ™"/ 2)

2.2 Statistical Significance i=0 3)
Confidence Interval: Since B.Eu scores are not . ko /i
computed on the sentence level, traditional methods =0.5 Z < >

i=0

to compute statistical significance and confidence
intervals do not apply. Hence, we use the bootstrap
resampling method described by Koehn (2004). If p(0..k;n,p) < 0.05, or p(0..k;n,p) > 0.95

Following this method, we repeatedly — saythen we have a statistically significant difference be-
1000 times — sample sets of sentences from the outveen the systems.
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[2]

Judge Sentence

You have already judged 14 of 3064 sentences, taking 86.4 seconds per sentence.
Source: les deux pays constituent plutot un laboratoire nécessaire au fonctionnement interne de 1" ue .

Reference: rather . the two countries form a laboratory needed for the internal working of the eu .

[Translation Adequacy Fluency
CCCCF CCCCE i
1 345 1 3 4
[ «

Iboth countries are rather a necessary laboratory the internal operation of the eu .

=

Iboth countries are a necessary laboratory at internal functioning of the eu .

the two countries are rather a laboratory necessary for the internal workings of the eu .

the two countries are rather a laboratory for the internal workings of the eu .
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the two countries are rather a necessary laboratory internal workings of the eu .

Annotator: Philipp Kochn Task: WMTO06 French-English Annotate I

5= All Meaning 5= Flawless English
4= Most Meaning [4= Good English i
Instructions 3= Much Meaning |3= Non-native English

2= Little Meaning [2= Disfluent English

1= None 1= Incomprehensible

[~}

Figure 3: Annotation tool for manual judgementaafequacyandfluencyof the system output. Translations
from 5 randomly selected systems for a randomly selected sentence is presented. No additional information
beyond the instructions on this page are given to the judges. The tool tracks and reports annotation speed.

3 Manual Evaluation 3.1 Collecting Human Judgements

We asked patrticipants to each judge 200-300 sen-

While automatic measures are an invaIL_JabIe toQbnces in terms of fluency and adequacy, the most
for the day-to-day development of machine transsommonly used manual evaluation metrics. We set-
lation systems, they are only a imperfect substitutgeq on contrastive evaluations of 5 system outputs

for human assessment of translation quality, or &gy 5 single test sentence. See Figure 3 for a screen-
the acronym BEU puts it, a_lilingual ezaluation ghot of the evaluation tool.

understudy Presenting the output of several system allows

Many human evaluation metrics have been prahe human judge to make more informed judge-
posed. Also, the argument has been made that maents, contrasting the quality of the different sys-
chine translation performance should be evaluatadms. The judgements tend to be done more in form
via task-based evaluation metrics, i.e. how much #f a ranking of the different systems. We assumed
assists performing a useful task, such as supportifigat such a contrastive assessment would be benefi-
human translators or aiding the analysis of texts. cial for an evaluation that essentially pits different

The main disadvantage of manual evaluation i§ystems against each other.
that it is time-consuming and thus too expensive to While we had up to 11 submissions for a trans-
do frequently. In this shared task, we were also coration direction, we did decide against presenting
fronted with this problem, and since we had no fundall 11 system outputs to the human judge. Our ini-
ing for paying human judgements, we asked partidial experimentation with the evaluation tool showed
ipants in the evaluation to share the burden. Pathat this is often too overwhelming.
ticipants and other volunteers contributed about 180 Making the ten judgements (2 types for 5 sys-
hours of labor in the manual evaluation. tems) takes on average 2 minutes. Typically, judges
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initially spent about 3 minutes per sentence, but theftaws and the third more flaws, a judge is inclined
accelerate with experience. Judges where excludealhand out judgements of 5, 4, and 3. On the other
from assessing the quality of MT systems that werband, when all systems produce muddled output, but
submitted by their institution. Sentences and sysene is better, and one is worse, but not completely
tems were randomly selected and randomly shufflegrong, a judge is inclined to hand out judgements of
for presentation. 4, 3, and 2. The judgement of 4 in the first case will
We collected around 300-400 judgements pego to a vastly better system output than in the second
judgement type (adequacy or fluency), per systergase.
per language pair. This is less than the 694 judge- We therefore also normalized judgements on a
ments 2004 DARPA/NIST evaluation, or the 532per-sentence basis. Thermalized judgement per
judgements in the 2005 DARPA/NIST evaluationsentencads the raw judgement plus (0 minus average
This decreases the statistical significance of our reaw judgement for this judge on this sentence).
sults compared to those studies. The number of Systems that generally do better than others will
judgements is additionally fragmented by our breakreceive a positive averag@rmalized judgement per
up of sentences into in-domain and out-of-domain.sentenceSystems that generally do worse than oth-
ers will receive a negative one.
3.2 Normalizing the judgements One may argue with these efforts on normaliza-
The human judges were presented with the followtion, and ultimately their value should be assessed
ing definition ofadequacyandfluency but no addi- by assessing their impact on inter-annotator agree-
tional instructions: ment. Given the limited number of judgements we

Adequacy Fluency received, we did not try to evaluate this.
5 | AllMeaning | Flawless English 3.3 Statistical Significance
4 | Most Meaning | Good English Confid | T _ i .
3 [ Much Meaning| Non-native English onfidence Interval: To estimate confidence inter-
s s , - vals for the average mean scores for the systems, we
2 | Little Meaning | Disfluent English LS :
. use standard significance testing.
1 | None Incomprehensible

—— Given a set ofn sentences, we can compute the
Judges varied in the average score they handegimple meam and sample variance of the indi-

out. The average fluency judgement per judgeidual sentence judgements:
ranged from 2.33 to 3.67, the average adequacy

judgement ranged from 2.56 to 4.13. Since different _ 1 —

judges judged different systems (recall that judges = sz 4)
were excluded to judge system output from their = "

own institution), we normalized the scores. 2 — 1 Z(mi —7)? (5)

Thenormalized judgement per judgeis the raw n—1 izl
judgement plus (3 minus average raw judgement for
this judge). In words, the judgements are normal- The extend of the confidence interyal-d, z+d|
ized, so that the averagmrmalized judgement per ¢an be computed by
judgeis 3. s
Another way to view the judgements is that they d=1.96- 7n (6)
are less quality judgements of machine translation
systems per se, but rankings of machine translatidPairwise Comparison: As for the automatic evalu-
systems. In fact, it is very difficult to maintain con-ation metric, we want to be able to rank different sys-
sistent standards, on what (say) an adequacy judgems against each other, for which we need assess-
ment of 3 means even for a specific language pair.ments of statistical significance on the differences
The way judgements are collected, human judgdsetween a pair of systems.
tend to use the scores to rank systems against eaciunfortunately, we have much less data to work
other. If one system is perfect, another has slighwith than with the automatic scores. The way we
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Basis Diff. | Ratio Domain BLEU | Fluency | Adequacy
Sign test on BLEU 331 | 75% in-domain 26.63| 3.17 3.58
Bootstrap on BLEU 348 | 78% out-of-domain| 20.37| 2.74 3.08

Sign teston Fluency | 224 | 50%

Sign test on Adequacy 225 | 51% Figure 5: Evaluation scores for in-domain and out-

of-domain test sets, averaged over all systems
Figure 4: Number and ratio of statistically signifi-
cant distinction between system performance. Au-
tomatic scores are computed on a larger tested thﬁ
manual scores (3064 sentences vs. 300-400 sextfirst glance, we quickly recognize that many sys-
tences). tems are scored very similar, both in terms of man-

ual judgement and BEu. There may be occasion-

collected manual judgements, we do not necessf"'—ly a system clearly at the top or at the bottom, but

ily have the same sentence judged for both systenQ%QSt systems are so close that it is hard to distin-

(judges evaluate 5 systems out of the 8-10 particﬁlu'sh t.hem. _
pating systems). In Figure 4, we displayed the number of system

Still, for about good number of sentences, we g&§omparisons, for which we concluded statistical sig-
have this direct comparison, which allows us to ap?ificance. For the automatic scoring methoces,

I,,'1 Close results

ply the sign test, as described in Section 2.2. we can distinguish three quarters of the systems.
While the Bootstrap method is slightly more sensi-

4 Results and Analysis tive, it is very much in line with the sign test on text
blocks.

The results of the manual and automatic evaluatlgn For the manual scoring, we can distinguish only

of the participating system translations is detailed IR 1f of the systems

confidence intervals are detailed first in the Figurel% make better distinctions. but it is not clear what
7-10 _in table f_orm_ (including ranks), and then inthe upper limit is. We can check, what the conse-
graphical form n Flgures 11-16. I.n the graphg, SY%juences of less manual annotation of results would
tem scores are indicated by a point, the confiden ve been: With half the number of manual judge-

intervals by shaded areas around the point. ments, we can distinguish about 40% of the systems,
In all figures, we present the per-sentence normai—o% less

ized judgements. The normalization on a per-judge
basis gave very similar ranking, only slightly less, ,
consistent with the ranking from the pairwise com-
parisons. The test set included 2000 sentences from the
The confidence intervals are computed by boo€uroparl corpus, but also 1064 sentences out-of-
strap resamp”ng for Beu, and by standard Signif- domain test data. Since the inclusion of out-of-
icance testing for the manual scores, as describé@main test data was a very late decision, the par-
earlier in the paper. ticipants were not informed of this. So, this was a
Pairwise comparison is done using the sign tesgurprise element due to practical reasons, not mal-
Often, two systems can not be distinguished witlee.
a confidence of over 95%, so there are ranked the All systems (except for Systran, which was not
same. This actually happens quite frequently (morined to Europarl) did considerably worse on out-
below), so that the rankings are broad estimates. Fef-domain training data. This is demonstrated by
instance: if 10 systems participate, and one syste@iverage scores over all systems, in terms b,
does better than 3 others, worse then 2, and is ntitencyandadequacyas displayed in Figure 5.
significant different from the remaining 4, its rank is The manual scores are averages over the raw un-
in the interval 3—7. normalized scores.

In-domain vs. out-of-domain
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Language Pair | BLEU | Fluency | Adequacy | jargon, to selecting exactly the right words, and
French-English | 26.09 | 3.25 3.61 not synonyms that human judges may appreciate
Spanish-English 28.18| 3.19 3.71 as equally good. This is can not be the only ex-
German-English 21.17 | 2.87 3.10 planation, since the discrepancy still holds, for in-
English-French | 28.33| 2.86 3.16 stance, for out-of-domain French-English, where
English-Spanish| 27.49 2.86 3.34 Systran receives among the best adequacy and flu-
English-Germar| 14.01 3.15 3.65 ency scores, but a worseLBu score than all but

one statistical system.

Figure 6: Average scores for different language This data set of manual judgements should pro-
pairs. Manual scoring is done by different judgesvide a fruitful resource for research on better auto-

resulting in a not very meaningful comparison. matic scoring methods.

4.5 Bestsystems

4.3 Language pairs So, who won the competition? The best answer

It is well know that language pairs such as Englishto this is: many research labs have very competi-
German pose more challenges to machine translkive systems whose performance is hard to tell apart.
tion systems than language pairs such as Frenchhis is not completely surprising, since all systems
English. Different sentence structure and rich targetse very similar technology.
language morphology are two reasons for this. For some language pairs (such as German-
Again, we can compute average scores for all sy&nglish) system performance is more divergent than
tems for the different language pairs (Figure 6). Théor others (such as English-French), at least as mea-
differences in difficulty are better reflected in thesured by BEU.
BLEU scores than in the raw un-normalized man- The statistical systems seem to still lag be-
ual judgements. The easiest language pair accordihgnd the commercial rule-based competition when
to BLEU (English-French: 28.33) received worsdranslating into morphological rich languages, as
manual scores than the hardest (English-Germademonstrated by the results for English-German and
14.01). This is because different judges focused denglish-French.
different language pairs. Hence, the different av- The predominate focus of building systems that
erages of manual scores for the different languageanslate into English has ignored so far the difficult
pairs reflect the behaviour of the judges, not thessues of generating rich morphology which may not
quality of the systems on different language pairs. be determined solely by local context.

4.4 Manual judgement vs.BLEU 4.6 Comments on Manual Evaluation

Given the closeness of most systems and the widehis is the first time that we organized a large-scale
over-lapping confidence intervals it is hard to makenanual evaluation. While we used the standard met-
strong statements about the correlation between hies of the community, the we way presented trans-
man judgements and automatic scoring methodations and prompted for assessment differed from
such as BEu. other evaluation campaigns. For instance, in the
We confirm the finding by Callison-Burch et al.recent IWSLT evaluation, first fluency annotations
(2006) that the rule-based system of Systran is netere solicited (while withholding the source sen-
adequately appreciated byLBu. In-domain Sys- tence), and then adequacy annotations.
tran scores on this metric are lower than all statistical Almost all annotators reported difficulties in
systems, even the ones that have much worse humaaintaining a consistent standard for fluency and ad-
scores. Surprisingly, this effect is much less obviousquacy judgements, but nevertheless most did not
for out-of-domain test data. For instance, for out-ofexplicitly move towards a ranking-based evaluation.
domain English-French, Systran has the bastB Almost all annotators expressed their preference to
and manual scores. move to a ranking-based evaluation in the future. A
Our suspicion is that Beu is very sensitive to few pointed out that adequacy should be broken up
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into two criteria: (a) are all source words coveredAcknowledgements

b) does the translation have the same meaning, in- . .
(b) g lilhe manual evaluation would not have been possible
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French-English (In Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

upc-jmc

+0.19+0.08 (1-7)

+0.09£0.08 (1-8)

30.42£0.86 (1-6)

Icc

+0.14+0.07 (1-6)

+0.13+0.06 (1-7)

30.81£0.85 (1-4)

utd

+0.13+0.08 (1-7)

+0.14+0.07 (1-6)

30.53£0.87 (2-7)

upc-mr

+0.13:0.08 (1-8)

+0.13+0.07 (1-6)

30.33:0.88 (1-7)

nrc

+0.12£0.10 (1-7)

+0.06£0.11 (2-6)

29.62:0.84 (8)

ntt

+0.11£0.08 (1-8)

+0.14£0.08 (2-8)

30.72:0.87 (1-7)

cmu

+0.10£0.08 (3-7)

+0.05:0.07 (4-8)

30.18£0.80 (2-7)

rali

-0.02+0.08 (5-8)

+0.00£0.08 (3-9)

30.39£0.91 (3-7)

systran

-0.08:0.09 (9)

-0.17+0.09 (8-9)

21.44+0.65 (10)

upv

-0.76+0.09 (10)

-0.52+0.09 (10)

24.10:0.89 (9)

Spanish-English (In Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

upc-jmc

+0.15£0.08 (1-7)

+0.18£0.08 (1-6)

31.01:0.97 (1-5)

ntt

+0.10£0.08 (1-7)

+0.10£0.08 (1-8)

31.29:0.88 (1-5)

Icc

+0.08:0.07 (1-8)

+0.04+0.06 (2-8)

31.46:0.87 (1-4)

utd

+0.08:0.06 (1-8)

+0.08:0.07 (2-7)

31.10:0.89 (1-5)

nrc

+0.06+0.10 (2-8)

+0.08:0.07 (1-9)

30.04+:0.79 (6)

upc-mr

+0.06:0.07 (1-8)

+0.08:0.07 (1-6)

29.43+0.83 (7)

uedin-birch

+0.03:0.11 (1-8)

-0.07+0.15 (2-10)

29.01+:0.81 (8)

rali

+0.00:0.07 (3-9)

-0.02£0.07 (3-9)

30.80£0.87 (2-5)

upc-jg

-0.10£0.07 (7-9)

-0.11+0.07 (6-9)

28.03:0.83 (9)

upv

-0.45+0.10 (10)

-0.41+0.10 (9-10)

23.91+0.83 (10)

German-English (In Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

uedin-phi

+0.30£0.09 (1-2)

+0.33:0.08 (1)

27.30:0.86 (1)

Icc

+0.15+0.07 (2-7)

+0.12+0.07 (2-7)

25.97:0.81 (2)

nrc

+0.12£0.07 (2-7)

+0.14+0.07 (2-6)

24.54:0.80 (5-7)

utd

+0.08:£0.07 (3-7)

+0.01+0.08 (2-8)

25.44+0.85 (3-4)

ntt

+0.07+£0.08 (2-9)

+0.06£0.09 (2-8)

25.64:0.83 (3-4)

upc-mr

+0.00£0.09 (3-9)

-0.21+0.09 (6-9)

23.68:0.79 (8)

rali

-0.01:0.06 (4-9)

+0.00£0.07 (3-9)

24.60£0.80 (5-7)

upc-jmc

-0.02+0.09 (2-9)

-0.04+0.09 (3-9)

24.43£0.86 (5-7)

systran

-0.05+0.10 (3-9)

-0.05+0.09 (3-9)

15.86+0.59 (10)

upv

-0.55+0.09 (10)

-0.38+0.08 (10)

18.08:0.77 (9)

Figure 7: Evaluation of translation to English on in-domain test data
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English-French (In Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

nrc

+0.08:0.09 (1-5)

+0.09£0.09 (1-5)

31.75:0.83 (1-6)

upc-mr

+0.08:0.08 (1-4)

+0.04+0.07 (1-5)

31.50:0.76 (1-6)

upc-jmc

+0.03£0.09 (1-6)

+0.02£0.08 (1-6)

31.75:0.78 (1-5)

systran

-0.01£0.12 (2-7)

+0.06£0.12 (1-6)

25.07:0.71 (7)

utd

-0.03:0.07 (3-7)

-0.05+0.07 (3-7)

31.42£0.85 (3-6)

rali

-0.08+0.09 (1-7)

-0.09+0.09 (2-7)

31.79£0.85 (1-6)

ntt

-0.09+0.09 (4-7)

-0.06+0.08 (4-7)

31.92£0.84 (1-5)

English-Spanish (In Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

ms

+0.23£0.09 (1-5)

+0.13£0.09 (1-7)

29.76:0.82 (7-8)

upc-mr

+0.20£0.09 (1-4)

+0.17+0.09 (1-5)

31.06:0.86 (1-4)

utd

+0.18:0.08 (1-5)

+0.15:0.08 (1-6)

30.73£0.90 (1-4)

nrc

+0.12:0.09 (2-7)

+0.17+0.08 (1-6)

29.97:0.86 (5-6)

ntt

+0.10£0.09 (3-7)

+0.14+0.08 (1-6)

30.93£0.85 (1-4)

upc-jmc

+0.04-0.10 (2-7)

+0.010.08 (2-7)

30.44£0.86 (1-4)

rali

-0.05+0.08 (5-8)

-0.03+0.08 (6-8)

29.38:0.85 (5-6)

uedin-birch

-0.18+0.14 (6-9)

-0.17+0.13 (6-10)

28.49+-0.87 (7-8)

upc-jg

-0.32£0.11 (9)

-0.37+0.09 (8-10)

27.46£0.78 (9)

upv

-0.83+0.15 (9-10)

-0.59+0.15 (8-10)

23.17:0.73 (10)

English-German (In Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

upc-mr

+0.28:0.08 (1-3)

+0.14+0.08 (1-5)

17.24£0.81 (3-5)

ntt

+0.19+0.08 (1-5)

+0.09+0.06 (2-6)

18.15:0.89 (1-3)

upc-jmc

+0.17+£0.08 (1-5)

+0.13+0.08 (1-4)

17.73£0.81 (1-3)

nrc

+0.17£0.08 (2-4)

+0.11£0.08 (1-5)

17.52+0.78 (4-5)

rali

+0.08£0.10 (3-6)

+0.03£0.09 (2-6)

17.93£0.85 (1-4)

systran

-0.08+£0.11 (5-6)

+0.00£0.10 (3-6)

9.84£0.52 (7)

upv

-0.84+0.12 (7)

-0.51+0.10 (7)

13.37:0.78 (6)

Figure 8: Evaluation of translation from English on in-domain test data
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French-English (Out of Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

upc-jmc

+0.23:0.09 (1-5)

+0.13:0.11 (1-8)

21.79:0.92 (1-4)

cmu

+0.22+0.11 (1-8)

+0.13+0.09 (1-9)

21.15£0.86 (4-7)

systran

+0.19+0.15 (1-8)

+0.15£0.14 (1-7)

19.42+0.82 (9)

Icc

+0.13£0.12 (1-9)

+0.11+0.11 (1-9)

21.77:0.88 (1-5)

upc-mr

+0.12£0.12 (2-8)

+0.11£0.10 (1-7)

21.95:0.94 (1-3)

utd

+0.04£0.10 (1-9)

+0.01£0.10 (1-8)

21.39£0.94 (3-7)

ntt

-0.02£0.12 (3-9)

+0.08:0.11 (1-9)

21.34:0.85 (3-7)

nrc

-0.03:0.14 (3-8)

+0.00£0.11 (3-9)

21.15:0.86 (3-7)

rali

-0.09+0.12 (4-9)

-0.10+0.11 (5-9)

20.17:0.85 (8)

upv

-0.76+0.16 (10)

-0.58+0.14 (10)

15.55:0.79 (10)

Spanish-English (Out of Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

upc-jmc

+0.28:0.10 (1-2)

+0.17+0.10 (1-6)

27.92:0.94 (1-3)

uedin-birch

+0.25:0.16 (1-7)

+0.18:0.19 (1-6)

25.20:0.91 (5-8)

nrc

+0.18:0.16 (2-8)

+0.09:0.09 (1-8)

25.40:0.94 (5-7)

ntt

+0.11+0.10 (2-7)

+0.17+0.10 (2-6)

26.85:0.89 (3-4)

upc-mr

+0.08:0.11 (2-8)

+0.10£0.10 (1-7)

25.62:0.87 (5-8)

Icc

+0.04+0.10 (4-9)

+0.07+0.11 (3-7)

27.18:0.92 (1-4)

utd

+0.03:0.11 (2-9)

+0.03:0.10 (2-8)

27.41+0.96 (1-3)

upc-jg

-0.09£0.11 (4-9)

-0.09£0.09 (7-9)

23.42£0.87 (9)

rali

-0.09£0.11 (4-9)

-0.15+£0.11 (6-9)

25.03:0.91 (6-8)

upv

-0.63+0.14 (10)

-0.47+0.11 (10)

19.17:0.78 (10)

German-English (Out of Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

systran

+0.30£0.12 (1-4)

+0.21+0.12 (1-4)

15.56£0.71 (7-9)

uedin-phi

+0.22+0.09 (1-6)

+0.21+0.10 (1-7)

18.87:0.84 (1)

Icc

+0.18£0.10 (1-6)

+0.20£0.10 (1-7)

17.96£0.79 (2-3)

utd

+0.08:£0.09 (2-7)

+0.07:0.08 (2-6)

16.97:0.76 (4-6)

ntt

+0.07+0.12 (1-9)

+0.21£0.13 (1-7)

17.37:0.76 (3-5)

nrc

+0.04£0.10 (3-8)

+0.04£0.09 (2-8)

15.93:0.76 (7-8)

upc-mr

+0.02£0.10 (4-8)

-0.11+0.09 (6-8)

16.89:0.79 (4-6)

upc-jmc

-0.01+0.10 (4-8)

-0.04:0.11 (3-9)

17.57:0.80 (2-5)

rali

-0.14+0.08 (8-9)

-0.14+0.08 (8-9)

15.22+0.69 (8-9)

upv

-0.64+0.11 (10)

-0.54+0.09 (10)

11.78£0.71 (10)

Figure 9: Evaluation of translation to English on out-of-domain test data
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English-French (Out of Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

systran

+0.50£0.20 (1)

+0.41£0.18 (1)

25.31:0.88 (1)

upc-jmc

+0.09£0.11 (2-5)

+0.09:0.11 (2-4)

23.30£0.75 (2-6)

upc-mr

+0.09:0.11 (2-4)

+0.04£0.09 (2-4)

23.21£0.75 (2-6)

utd

-0.02£0.11 (2-6)

-0.05+0.09 (2-6)

22.79:0.86 (7)

rali

-0.12£0.12 (4-7)

-0.17+0.12 (5-7)

23.34:0.89 (2-6)

nrc

-0.13+0.13 (4-7)

-0.16+0.10 (4-7)

23.66+0.91 (2-5)

ntt

-0.23+0.12 (4-7)

-0.06+0.10 (4-7)

22.99+:0.96 (3-6)

English-Spanish (Out of Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

upc-mr

+0.35:0.11 (1-3)

+0.19+0.10 (1-6)

26.62£0.92 (1-2)

ms

+0.33:0.16 (1-7)

+0.15:0.13 (1-8)

26.15:0.88 (6-7)

utd

+0.21:0.13 (2-6)

+0.13:0.11 (1-7)

25.26+0.78 (3-5)

nrc

+0.18:0.12 (1-6)

+0.07+0.11 (2-7)

25.58:0.85 (3-5)

upc-jmc

+0.17+0.15 (2-7)

+0.24+0.12 (1-6)

25.59:0.95 (3-5)

ntt

+0.12+0.13 (2-7)

+0.12+0.13 (1-7)

26.52+:0.90 (1-2)

rali

-0.17+0.16 (6-8)

-0.05+0.13 (4-8)

24.03:0.83 (6-8)

uedin-birch

-0.36+0.24 (6-10)

-0.16£0.16 (5-9)

23.18:0.88 (7-8)

upc-jg

-0.45:0.13 (8-9)

-0.42+0.10 (9-10)

22.04:0.84 (9)

upv

-1.09+0.21 (9)

-0.64+:0.19 (8-9)

16.83:0.72 (10)

English-German (Out of Domain)

Adequacy (rank)

Fluency (rank)

BLEU (rank)

systran

+0.47+0.15 (1)

+0.39£0.15 (1-2)

10.78:0.69 (1-6)

upc-mr

+0.31:0.13 (2-3)

+0.21+0.11 (1-3)

10.96:0.70 (1-5)

upc-jmc

+0.22£0.14 (2-3)

+0.01£0.10 (3-6)

10.64£0.66 (1-6)

rali

+0.13£0.12 (4-6)

-0.06+0.10 (4-6)

10.57:0.65 (1-6)

nrc

+0.00:0.11 (4-6)

+0.05£0.09 (2-6)

10.64:0.65 (2-6)

ntt

-0.03£0.12 (4-6)

+0.08£0.11 (3-5)

10.51-0.64 (1-6)

upv

-0.94+0.13 (7)

-0.57+0.10 (7)

6.55:0.53 (7)

Figure 10: Evaluation of translation from English on out-of-domain test data
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French-English

| Out of Domain
Adequacy Adequacy
0.3 . 0.3
upc-jmc systraeCMUe eupc-jmc
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o1 WAL o m
7] esystran o . B entt
0y *¥ rali 0.1 alie
-0.23 -0.23
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Figure 11: Correlation between manual and automatic scores for French-English
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Spanish-English

In Domain

Adequacy

0.2
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-0.0
-0.H
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Figure 12: Correlation between manual and automatic scores for Spanish-English
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German-English

| Out of Domain
Adequacy Adequacy
0.4 0.4
0.3 uedin-phe 0.3 esystran
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Figure 13: Correlation between manual and automatic scores for German-English
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English-French \

| Out of Domain |
Adequacy
0.5 systram
0.4
Adequacy 0.3
0.21 0.2
0.1 upc-mienrc . 0.1{ upc-misupc-jmc
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Figure 14: Correlation between manual and automatic scores for English-French
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English-Spanish

| Out of Domain
Adequacy
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Figure 15: Correlation between manual and automatic scores for English-Spanish
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English-German \

[Out of Domain]
Adequacy
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Figure 16: Correlation between manual and automatic scores for English-German
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Taro Watanabe HajimeTsukada Hideki I sozaki
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2-4 Hikaridai, Seika-cho, Soraku-gun,
Kyoto, Japan 619-0237
{taro, tsukada, isozaki}@kecl.ntt.co.jp

Abstract phrasgrule translation pairs extracted from three
distinctly word-aligned corpora are aggregated into
We present two translation systems ex-  one large phrageile translation table. The experi-
perimented for the shared-task of “Work- ments and the final translation results are presented
shop on Statistical Machine Translation,” in Section 4.
a phrase-based model and a hierarchical )
phrase-based model. The former uses a 2 1ranslation Models

phraS-aI unit for tra.nSIation, whereas the We used a |Og_|inear approach (Och and Ney’
latter is conceptualized as a synchronous-  2002) in which a foreign language senterige =
CFG in which phrases are hierarchically £, f, ..f; is translated into another language, i.e.

combined USing non-terminals. EXperi- English, e!l. = €,6,...,6 by Seeking a maximum
ments showed that the hierarchical phrase-  |ikelihood solution of
based model performed very comparable
to the phrase-based model. We also report & = argmaxPr(e)|f;) 1)
a phrasgrule extraction technique fer- &
entiating tokenization of corpora. eXP(Zm: L Amhi(€. flJ))

= argmax {(2)

o Zey exp(Znms Amhm(el, 1)

In this framework, the posterior probability
We contrasted two translation methods for th@r(e‘ﬂff) is directly maximized using a log-linear
Workshop on Statistical Machine Translationcombination of feature functionbm(e}, flJ), such
(WMT2006) shared-task. One is a phrase-baseis a ngram language model or a translation model.
translation in which a phrasal unit is employedWhen decoding, the denominator is dropped since it
for translation (Koehn et al., 2003). The other islepends only orfi,). Feature function scaling factors
a hierarchical phrase-based translation in whichy, are optimized based on a maximum likelihood
translation is realized as a set of paired productioapproach (Och and Ney, 2002) or on a direct error
rules (Chiang, 2005). Section 2 discusses those twninimization approach (Och, 2003). This modeling
models and details extraction algorithms, decodingllows the integration of various feature functions
algorithms and feature functions. depending on the scenario of how a translation is

We also explored three types of corpus preeonstituted.

processing in Section 3. As expectedffatient In a phrase-based statistical translation (Koehn
tokenization would lead to fferent word align- et al., 2003), a bilingual text is decomposedkas
ments which, in turn, resulted in the divergencephrase translation pairsy( fz,), (€, fz,), ...: The in-
of the extracted phragele size. In our method, put foreign sentence is segmented into phraf;iias

1 Introduction
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mapped into corresponding Englis#'if,_then, re- existing hypothesis, new hypothesis is generated by
ordered to form the output English sentence accord@onsuming a phrase translation pair that covers un-
ing to a phrase alignment index mappiag translated foreign word positions. The score for the

In a hierarchical phrase-based translation (Chinewly generated hypothesis is updated by combin-
ang, 2005), translation is modeled after a weighteithg the scores of feature functions described in Sec-
synchronous-CFG consisting of production rulesion 2.3. The English side of the phrase is simply
whose right-hand side is paired (Aho and Ullimangoncatenated to form a new prefix of English sen-
1969): tence.

X = {y,a,~) In the hierarchical phrase-based model, decoding
whereX is a non-terminaly anda are strings of ter- is realized as an Earley-style top-down parser on the
minals and non-terminals~ is a one-to-one corre- foreign language side with a beam search strategy
spondence for the non-terminals appearegt and synchronized with the cardinality of already trans-
a. Starting from an initial non-terminal, each rulelated foreign words (Watanabe et al., 2006). The ma-
rewrites non-terminals i anda that are associated jor difference to the phrase-based model’s decoder is
with ~. the handling of non-terminals, or holes, in each rule.

2.1 Phrase/Rule Extraction 2.3 Feature Functions

The phrase extraction algorithm is based on thosur phrase-based model uses a standard pharaoh
presented by Koehn et al. (2003). First, manyfeature functions listed as follows (Koehn et al.,
to-many word alignments are induced by runnin@003):

a one-to-many word alignment model, such as

GIZA++ (Och and Ney, 2003), in both directions ® Relative-count based phrase translation proba-
and by combining the results based on a heuristic  Pilities in both directions.

(Och and Ney, 2004). Second, phrase translation o | exically weighted feature functions in both di-
pairs are extracted from the word aligned corpus (gctions.

(Koehn et al., 2003). The method exhaustively ex- _ _

tracts phrase pairsf("", &*") from a sentence pair ~ * The supplied trigram language model.

(fJ,€)) that do not violate the word alignment con- e Distortion model that counts the number of

straintsa. words skipped.
In the hierarchical phrase-based model, produc-

tion rules are accumulated by computing “holes” for
extracted contiguous phrases (Chiang, 2005):

e The number of words in English-side and the
number of phrases that constitute translation.

For details, please refer to Koehn et al. (2003).
In addition, we added three feature functions to
X —s <f_§> rest_rict reor_derings and to represent globalized in-
sertiorideletion of words:

1. Aphrase pair(_,é) constitutes a rule:

2. Arule X — (y,a) and a phrase pairf_(@ S.t.

y = fy” anda = o’&" constitutes a rule: e Lexicalized reordering feature function scores

whether a phrase translation pair is monotoni-
X — <y' Y’ o 0/'> cally translated or not (Och et al., 2004):

2.2 Decoding

The decoder for the phrase-based model is a left-to-
right generation decoder with a beam search strategy
synchronized with the cardinality of already trans-

lated foreign words. The decoding process is very
similar to those described in (Koehn et al., 2003): e Deletion feature function penalizes words that
It starts from an initial empty hypothesis. From an do not constitute a translation according to a

K
@17, &) = log [ | pr(oda. &) (3)
k=1

wheresy = 1iff ax—ax_1 = 1 otherwisesy = 0.
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Table 1: Number of word alignment byfterent preprocessings.

de-en es-en fr-en en-de en-es en-fr
lower 17,660,187 17,221,890 16,176,07517,596,764 17,237,723 16,220,520
stem 17,110,890 16,601,306 15,635,90017,052,808 16,597,274 15,658,940
prefix4 16,975,398 16,540,767 15,610,31916,936,710 16,530,810 15,613,755
intersection| 12,203,979 12,677,192 11,645,40412,218,997 12,688,773 11,653,242
union 23,186,379 21,709,212 20,760,53923,066,052 21,698,267 20,789,570

Table 2: Number of phrases extracted frorffatiently preprocessed corpora.
de-en es-en fr-en en-de en-es en-fr
lower | 37,711,217 61,161,868 56,025,91838,142,663 60,619,435 55,198,497
stem | 46,550,101 75,610,696  68,210,96846,749,195 75,473,313 67,733,045
prefix4 | 53,429,522 78,193,818  70,514,37753,647,033 78,223,236 70,378,947
merged| 80,260,191 111,153,303 103,523,2080,666,414 110,787,982 102,940,840

lexicon modek(f|e) (Bender et al., 2004): In this process, each word is recovered into its lower-

] cased form. The associated counts are aggregated
haa(el, ;) = Z [maxt(fjla) <71ga| (4) o constitute relative count-based feature functions.
— L0<i<l Table 2 summarizes the size of phrase tables in-

The deletion model simply counts the numbefuced from the corpora. The number of rules ex-
of words whose lexicon model probabmty is tracted for the hierarchical phrase-based model was

lower than a thresholdgy. Likewise, we also roughly twice as large as those for the phrase-based
added an insertion modmns(e',fi]) that pe- model. Fewer word alignments resulted in larger

nalizes the spuriously inserted English word$hrase translation table size as observed in the “pre-
using a lexicon modef(e f). fix4” corpus. The size is further increased by our

For the hierarchical phrase-based model, gogregation step (merged).

we em=<. _ _ : .
ployed the same feature set except for the distortion Different inductiofrefinement algorithms or pre-

model and the lexicalized reordering model. processings of a corpus bias word alignment. We
found that some word alignments were consistent

even with diterent preprocessings, though we could
not justify whether such alignments would match
] o against human intuition. If we could trust such
We prepared three kinds of corporafdrentiated cqnsistently aligned words, reliable (hierarchical)

by tokenization methods. First, the simplest preppase translation pairs would be extracted, which,
processing is lower-casing (lower). Second, COrporg y,rn. would result in better estimates for relative

were transformed by a Porter’s algorithm based mulq,nt_hased feature functions. At the same time, dif-

tilingual stemmer (stem). Third, mixed-cased cor- ferently biased word alignment annotations suggest

pora were truncated to the prefix of four letters ofernative phrase translation pairs that is useful for
each word (prefix4). For eachftirently tokenized increasing the coverage of translations.

corpus, we computed word alignments by a HMM

translation model (Och and Ney, 2003) and by @ Results

word alignment refinement heuristic of “grow-diag-

final” (Koehn et al., 2003). Dierent preprocessing Table 3 shows the open test translation results on

yields quite divergent alignment points as illustrate@005 and 2006 test set (the development-test set and

in Table 1. The table also shows the numbers fdhe final test setf. We used the merged (hierar-

the intersection and union of three alignment anncg:hical) phrase tables for decoding. Feature function

tations. scaling factors were optimized on BLEU score us-
The (hierarchical) phrase translation pairs are exdd the supplied development set that is identical to

tracted from three distinctly word aligned corporathe 2005's development set. We observed that our

We used the Snowball stemmer framtp: //snowball.
tartarus. org

3 Phrase Extraction from Different Word
Alignment

2We did not diferetiated in-domain or out-of-domain for
2006 test set.
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Table 3: Open test on the 2Q@B06 test sets (BLEU [%]).
de-en es-en fr-en en-de en-es en-fr
test2005 Phrase 25.72 30.97 30.97 18.08 30.48 32.14
Rule 25.14 30.11 30.31 1796 27.96 31.04
[ 2005's best] 24.77  30.95 30.27
test2006 Phrase 23.16 29.90 27.89 15.79 29.54 29.19
Rule 22.74 28.80 27.28 1599 26.56 27.86

results are very comparable to the last year’s best rReferences

sults in test2005. AISQ found that our hlerarchlcajodfred V. Aho and Jérey D. Ullman. 1969. Syntax
phrase-based translation (Rule) performed slightly directed translations and the pushdown assembler.
inferior to the phrase-based translation (Phrase) in Comput. Syst. Sci., 3(1):37-56.

both test sets. The hierarchically combined phrasesy o ender. Richard zens, Evgeny Matusov, and Her-
seem to be too flexible to represent the relationship mann Ney. 2004. Alignment templates: the RWTH
of similar language pairs. Note that our hierarchical SMT system”. InProc. of IWSLT 2004, pages 79-84,
phrase-based model performed better in the English- Kyoto, Japan.

to-German translation task. Those language pair rgy,iq chiang. 2005. A hierarchical phrase-based model
quires rather distorted reordering, which could be for statistical machine translation. Proc. of ACL
represented by hierarchically combined phrases. 2005, pages 263-270, Ann Arbor, Michigan, June.

‘We also conducted additional studies on hovppjipn koehn, Franz Josef Och, and Daniel Marcu.
differently aligned corpora mightffact the trans-  2003. Statistical phrase-based translation. Ptac.

lation quality on Spanish-to-English task for the of NAACL 2003, pages 48-54, Edmonton, Canada.

2005 test set.  Using our phrase-pased mOd%ranz Josef Och and Hermann Ney. 2002. Discrimina-
the BLEU scores for lowgstenprefix4 were e training and maximum entropy models for statis-
30.9030.8930.76, respectively. Thefiierences of  tical machine translation. IRroc. of ACL 2002, pages

translation qualities were statistically significant at 295-302.
the 95% confidence level. Our phrase translatiopran; josef Och and Hermann Ney. 2003. A system-

pairs aggregated from all the fiirently prepro-  atic comparison of various statistical alignment mod-
cessed corpora improved the translation quality. els. Computational Linguistics, 29(1):19-51, March.

. Franz Josef Och and Hermann Ney. 2004. The align-

5 Conclusion ment template approach to statistical machine transla-
tion. Comput. Linguist., 30(4):417-449.
We presented two translation models, a phras(j::— Josef Och. Daniel Gild San Khud
. . _ anz Jose cn, anie liaea, osanjeev udanpur,

based model and a hierarchical phrase based'mo eIAnoop Sarkar, Kenji Yamada, Shankar Fraser, Alex a
The former performed as well as the last year’s best g Kumar, Libin Shen, David Smith, Katherine Eng,
system, whereas the latter performed comparable toViren Jain, Zhen Jin, and Dragomir Radev. 2004. A
our phrase-based model. We are going to experi- Smorgasbord of features for statistical machine transla-
ment new feature functions to restrict the too flexible U0N- 1N HLT-NAACL 2004: Main Proceedings, pages

. . . 161-168, Boston, Massachusetts, USA, May 2 - May
reordering represented by our hierarchical phrase- ;.

based model.
; ; . ; _ Franz Josef Och. 2003. Minimum error rate training in
We also investigated fierent word alignment an statistical machine translation. Rroc. of ACL 2003,

notation_s, first usi_ng Iower-cgsed corpus, second pages 160-167.
performing stemming, and third retaining only 4-

letter prefix. Diferentl reprocessed corpora re-1aro Watanabe, Hajime Tsukada, and Hideki Isozaki.
P Y prep P 2006. Left-to-right target generation for hierarchical

sulted in quite dlvgrgent word alignment.  Large phrase-based translation. Rroc. of COLING-ACL
phrasgrule translation tables were accumulated 2006 (to appear), Sydney, Australia, July.

from three distinctly aligned corpora, which in turn,
increased the translation quality.
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Mood at work: Ramses versus Pharaoh

Alexandre Patry, Fabrizio Gotti and Philippe Langlais

RALI DIRO
Universige de Monteal
{patryale,gottif,felipe }@iro.umontreal.ca
Abstract Once all the models are built, one can choose

to use RMIARAOH (Koehn, 2004), an efficient full-
We present here the translation systemwe  fledged phrase-based decoder. We only know of
used in this year's WMT shared task. The one major drawback when usingHRRAOH: its
main objective of our participation was licensing policy. Indeed, it is available for non-
to test RAMSES, an open source phrase- commercial use in its binary form only. This
based decoder. For that purpose, we used severely limits its use, both commercially and sci-
the baseline system made available by the entifically (Walker, 2005).
organizers of the shared tasio build the
necessary models. We then carried out a
pair-to-pair comparison of RMSES with
PHARAOH on the six different translation
directions that we were asked to perform.
We present this comparison in this paper.

For this reason, we undertook the design of a
generic architecture calledoob (Modular Object-
Oriented Decoder), especially suited for instantiat-
ing SMT decoders. Two major goals directed our
design of this package: offering open source, state-
of-the-art decoders and providing an architecture to
easily build these decoders. This effort is described
1 Introduction in (Patry et al., 2006).

Phrase-based (PB) machine translation (MT) is now AS & proof of concept that our framework@oD)

a popular paradigm, partly because of the relativi viable, we attempted to use its functionalities to
ease with which we can automatically create an a&r_npleme_nt a clone of RPARAOH, based on th(_e com-
ceptable translation engine from a bitext. As a maréhensive user manual of the latter. This clone,
ter of fact, deriving such an engine from a bitext con¢@/led RAMSES, is now part of thewoob distribu-
sists in (more or less) gluing together dedicated softin: Which can be downloaded freely from the page
ware modules, often freely available. Word-baseftP://smtmood.sourceforge.net

models, or the so-called IBM models, can be trained \we conducted a pair-to-pair comparison between
using the GzA or Giza++ toolkits (Och and Ney, the two engines that we describe in this paper. We
2000). One can then train phrase-based models Ysovide an overview of thenoop architecture in
ing the THOT toolkit (Ortiz-Martinez et al., 2005). Section 2. Then we describe brieflaRsEsin Sec-
For their part, language models currently in use ifion 3. The comparison between the two decoders in

SMT systems can be trained using packages such@sms of automatic metrics is analyzed in Section 4.
SRILM (Stolcke, 2002) and the CMU-SLM toolkit we confirm this comparison by presenting a man-

(Clarkson and Rosenfeld, 1997). ual evaluation we conducted on an random sample
Lwww.statmt. org/wmtO6/shared-task/ of the translations produced by both decoders. This
baseline.html is reported in Section 5. We conclude in Section 6.
126
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2 ThewmoobD Framework model is given 5 scores, described in theARAOH

. . ~training manuaf.
A decoder mustimplement a specific combination of To tune the coefficients of the log-linear

two elements: a model representation and a SearEmeination that both PARAOH and RAMSES
space exploration strategyoobD is a framework use when decoding, we used the organizers’
designed precisely to allow such a combination, b}hinimum-error-rate-training perl

clearly separat'ing its tyvo e!ements. The design (gcript. This tuning step was performed on the
the frameyvqu Is described |_n (Patry et al., 2006). first 500 sentences of the dedicated development
MooD is implemented with the C++ program-cqrhora  Inevitably, RMSEs differs  slightly
ming language and is licensed under the Gnu Gefrym pyaracH, because of some undocumented
eral Public License (GP) This license grants the o yheqded heuristics. Thus, we found appropriate
right to anybody to use, modify and distribute thgq ¢ ne each decoder separately (although with
program and its source code, provided thatany Mogse same material). In effect, each decoder does

ified version be licensed under the GPL as welljighly better (withsLEU) when it uses its own best
As explained in (Walker, 2005), this kind of licenseparameters obtained from tuning, than when it uses
stimulates new ideas and research. the parameters of its counterpart.

Eight coefficents were adjusted this way: five for
the translation table (one for each score associated

As we said above, in order to test our design, wi® €ach pair of phrases), and one for each of the fol-
reproduced the most popular phrase-based decod@¥ing models: the language model, the so-called
PHARAOH (Koehn, 2004), by following as faithfully word pgnalty model and the dlstortlon m_odel (word

as possible its detailed user manual. The commanffrdering model). Each parameter is given a start-

line syntax RMSES recognizes is compatible with N9 value and a range within which it is allowed to
that of PHARAOH. The output produced by both Vary- For instance, the language model coefficient’s
decoders are compatible as well andMRBES can starting value is 1.0 and the coefficient is in the range
also output itsn-best lists in the same format as[0-5-1.5]- Eventually, we obtained two optimal con-
PHARAOH does. i.e. in a format that thearmeL  figurations (one for each decoder) with which we

toolkit can parse (Knight and Al-Onaizan, 1999)lranslated theesTmaterial.

3 MooD atwork: R AMSES

Switching decoders is therefore straightforward. ~ We evaluated the translations produced by both
decoders with the organizersiulti-bleu.perl
4 RAMSES versus PHARAOH script, which computes BLEU score (and displays

then-gram precisions and brevity penalty used). We
To compare the translation performances of botkeport the scores we gathered on the test corpus of
decoders in a meaningful mannerA®SES and 2000 pairs of sentences in Table 1. Overall, both
PHARAOH were given the exact same languagelecoders offer similar performances, down to the
model and translation table for each translation ex;-gram precisions. To assess the statistical signifi-
periment. Both models were produced with theance of the observed differencessireu, we used
scripts provided by the organizers. This means ithe bootstrapping technique described in (Zhang
practice that the language model was trained usirghd Vogel, 2004), randomly selecting 500 sentences
the SRILM toolkit (Stolcke, 2002). The word align- from each test set, 1000 times. Using a 95% con-
ment required to build the phrase table was prdfidence interval, we determined that the small dif-
duced with the &A++ package. A Viterbi align- ferences between the two decoders are not statis-
ment computed from an IBM model 4 (Brown et al. tically significant, except for two tests. For the
1993) was computed for each translation directiordirection English to French, RMSES outperforms
Both alignments were then combined in a heuristiPHARAOH, while in the German to English direc-
way (Koehn et al., ). Each pair of phrases in the

- Shttp://www.statmt.org/wmt06/
2http:/iwww.gnu.org/copyleft/gpl.html shared-task/training-release-1.3.tgz
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tion, PHARAOH is better. Whenever a decoder is D BLEU p; D2 D3 P4 BP

better than the other, Table 1 shows that it is at- es— en

tributable to highem-gram precisions; not to the P 30.65 64.10 36.52 23.70 15.91 1.00

brevity penalty. R 3048 64.08 36.30 2352 15.76 1.00
We further investigated these two cases by calcu- fr —en

lating BLEU for subsets of the test corpus sharing P 30.42 64.28 36.45 23.39 15.64 1.00
similar sentence lengths (Table 2). We see that bottR  30.43  64.58 36.59 23.54 15.73 0.99
decoders have similar performances on short sen- de—en

tences, but can differ by as much as 1%icuon P 2515 61.19 31.32 1853 11.61 0.99
longer ones. In contrast, on the Spanish-to-EnglishR  24.49 61.06 30.75 17.73 10.81 1.00

translation direction, where the two decoders offer en— es

similar performances, the difference betwesmEu P 2940 6186 3532 2277 15.02 1.00

scores never exceeds 0.23%. R 28.75 6223 35.03 2232 1458 0.99
Expectedly, Spanish and French are much easier en— fr

to translate than German. This is because, in thi®> 30.96 61.10 36.56 24.49 16.80 1.00
study, we did not apply any pre-processing strat-R 31.79 61.57 37.38 25.30 17.53 1.00

egy that we know can improve performances, such en— de
as clause reordering or compound-word splitingP 18.03 52.77 22.70 1245 7.25 0.99
(Collins et al., 2005; Langlais et al., 2005). R 1814 53.38 2315 1275 747 0.98

Table 2 shows that it does not seem much mor‘?able 1: Performance of AISES and BHARAOH

dIﬁ.ICl.JIt to trgr!slate into Ef‘g"?h than from Eng"sh'on the provided test set of 2000 pairs of sentences
This is surprising: translating into a morphologically

. : I irP stands for R ,Rf
richer language should be more challenging. Thper anguage pair+~ stands for RARAOH or

L ! _ AMSES. All scores are percentageg,, is then-
opposite is true for German here: without doing any- P gePn "

. o . L . ram precision and BP is the brevity penalty used
thing specific for this language, it is much easier t(\gvhen COMPULIN@LE.

translate from German to English than the other way
around. This may be attributed in part to the lan-

guage model: for the test corpus, the perplexity ah test (1), he stated whether the best translation was
the language models provided is 105.5 for Germasatisfactory while the other was not. Two evalua-

compared to 59.7 for English. tors went through thd x 100 sentence pairs. None
of them understands German; subject B understands
5 Human Evaluation Spanish, and both understand French and English.

o , _The results of this informal, yet informative exercise
In an effort to correlate the objective metrics with, o reported in Table 3.

human reviews, we undertook the blind evaluation Overall, in many cases (64% and 48% for subject
of a sample of 100 pairwise translations for the threg\ and B respectively), the evaluators did not pre-

Foreign language-to-English translation tasks. Thf:ér one translation over the other. On the Spanish-

pa_irs were randomly selected from the 3064 tranggng French-to-English tasks, both subjects slightly
lations produced by each engine. They had to %:D

i ‘ h h eferred the translations produced byNRSES. In
different for each decoder and be no more than out one fourth of the cases where one translation

words long. ) was preferred did the evaluators actually flag the se-
Each evaluator was presented with a source Sefixted translation as significantly better.

tence, its reference translation and the translation

produced by each decoder. The last two were inrag  piscussion

dom order, so the evaluator did not know which en-

gine produced the translation. The evaluator’s task/e presented a pairwise comparison of two de-
was two-fold. (1) He decided whether one translacoders, RMSES and FHARAOH. Although Ram-
tion was better than the other. (2) If he replied 'yesSEsis roughly twice as slow asHARAOH, both de-
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Test set [0,15] [16,25] [26¢] References

en—fr (P) 3352 3065 30.39 P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, and R.L.
en—fr (R) 3378 3119 31.35 Mercer. 1993. The Mathematics of Statistical Ma-
de—en @) 29.74 2430 24.76 chine Translation: Parameter Estimatio@omputa-
de—en (R) 29.85 23.92 23.78 tional Linguistics 19(2):263—-311.

es—en () 3423 2832 30.60 P. Clarkson and R. Rosenfeld. 1997. Statistical language
es—en R) 34.46 2839 30.40 modeling using the CMU-cambridge toolkit. Rroc.

of Eurospeechpages 2707-2710, Rhodes, Greece.

Table 2:BLEU scores on SUbS?tS of the test corpugy. collins, P. Koehn, and 1. Kucerova. 2005. Clause re-
filtered by sentence length ([min words, max words] structuring for statistical machine translation.Rroc.

intervals), forPharaoh andRamses. of the 43rd ACI_pages 531-540, Ann Arbor, MI.
Pref d I q K. Knight and Y. Al-Onaizan, 1999. A Primer on
reterre mprove Finite-State Software for Natural Language Process-
P R No|P R ing. www.isi.edu/licensed-sw/carmel.
es— en P. Koehn, F. Joseph Och, and D. Marc Statistical
. . , F. , . u. isti
sub!ectA 13 16 7116 1 Phrase-Based Translation. Rroc. of HLT, Edmon-
SubjeCt B 23 31 46 3 8 ton, Canada.
fr — en P. Koehn. 2004. Ph h: aB S h Decoder f
: . Koehn. . araoh: a Beam Search Decoder for
sub!ect Al18 19 6315 3 Phrase-Based SMT. IRroc. of the 6th AMTApages
subjectB| 20 21 59 |8 8 115-124, Washington, DC.
de—en I G.C dF. G 200 S
; P. Langlais, G. Cao, and F. Gotti. 5. RALIL: SMT
SUEJ.eCtg gg é? 22 2 g shared task system description.2md ACL workshop
subject on Building and Using Parallel Textpages 137-140,
Total 128 136 336| 30 32 Ann Arbor, MI.

) . . F.J. Och and H. Ney. 2000. Improved Statistical Align-
Table 3: Human evaluation figures. The column ™ ot Models. InProc. of ACL pages 440-447,

Preferred  indicates the preference of the subject Hongkong, China.

(Pharaoh,Ramses oiNo preference). The column B. Ortiz-Mare | Gardh v dE C bert

: , . Ortiz-Marfinez, I. Garca-Varea, and F. Casacuberta.
Improved ShOWS_ when a subject did prefera.trans- 2005. Thot: a toolkit to train phrase-based statistical
lation and also said that the preferred translation was ransiation models. Ifroc. of MT Summit Xpages
correct while the other one was not. 141-148, Phuket, Thailand.

A. Patry, F. Gotti, and P. Langlais. 2006. MOOD
coders offer comparable performances, according to a modular object-oriented decoder for statistical ma-
automatic and informal human evaluations. chine translation. IfProc. of LREC Genoa, Italy.

Moreover, RAmMsSESsis the product of clean frame- A siolcke. 2002. SRILM - an Extensible Language
work: MOOD, a solid tool for research projects. Its Modeling Toolkit. InProc. of ICSLR Denver, USA.
code is open source and the architecture is modular,v_| Walker. 2005. Th it BV G |

. . . . . 1J.J. Walker. . e open "a.l.” Kit": General ma-
making it easier for researchgrs .t'o experiment wit chine learning modules from statistical machine trans-
SMT. We hope that the availability of the source |ation. InWorkshop of MT Summit X, "Open-Source
code and the clean design mbob will make it a Machine Translation} Phuket, Thailand.

useful platform to implement new decoders. Ying Zhang and Stephan Vogel. 2004. Measuring confi-

Ack led dence intervals for the machine translation evaluation
cknowledgments metrics. InProc. of the 10th TMIBaltimore, MD.

We warmly thanks Elliott Macklovitch for his par-
ticipation in the manual annotation task. This work
has been partially funded by an NSERC grant.
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Abstract

An important problem that is related to
phrase-based statistical translation mod-
els is the obtaining of word phrases from
an aligned bilingual training corpus. In
this work, we propose obtaining word
phrases by means of a Stochastic Inver-
sion Translation Grammar. Experiments
on the shared task proposed in this work-
shop with the Europarl corpus have been
carried out and good results have been ob-
tained.

1 Introduction

Phrase-based statistical translation systems are cur-
rently providing excellent results in real machine
translation tasks (Zens et al., 2002; Och and Ney,
2003; Koehn, 2004). In phrase-based statistical
translation systems, the basic translation units are
word phrases.

An important problem that is related to phrase-
based statistical translation is to automatically ob-
tain bilingual word phrases from parallel corpora.
Several methods have been defined for dealing with
this problem (Och and Ney, 2003). In this work, we
study a method for obtaining word phrases that is
based on Stochastic Inversion Transduction Gram-
mars that was proposed in (Wu, 1997).

Stochastic Inversion Transduction Grammars
(SITG) can be viewed as a restricted Stochas-
tic Context-Free Syntax-Directed Transduction
Scheme. SITGs can be used to carry out a simulta-
neous parsing of both the input string and the output
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string. In this work, we apply this idea to obtain
aligned word phrases to be used in phrase-based
translation systems (Sanchez and Benedi, 2006).

In Section 2, we review the phrase-based machine
translation approach. SITGs are reviewed in Sec-
tion 3. In Section 4, we present experiments on the
shared task proposed in this workshop with the Eu-
roparl corpus.

2 Phrase-based Statistical Machine
Transduction

The translation units in a phrase-based statistical
translation system are bilingual phrases rather than
simple paired words. Several systems that fol-
low this approach have been presented in recent
works (Zens et al., 2002; Koehn, 2004). These sys-
tems have demonstrated excellent translation perfor-
mance in real tasks.

The basic idea of a phrase-based statistical ma-
chine translation system consists of the following
steps (Zens et al., 2002): first, the source sentence is
segmented into phrases; second, each source phrase
is translated into a target phrase; and third, the target
phrases are reordered in order to compose the target
sentence.

Bilingual translation phrases are an important
component of a phrase-based system. Different
methods have been defined to obtain bilingual trans-
lations phrases, mainly from word-based alignments
and from syntax-based models (Yamada and Knight,
2001).

In this work, we focus on learning bilingual word
phrases by using Stochastic Inversion Transduction
Grammars (SITGs) (Wu, 1997). This formalism al-
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lows us to obtain bilingual word phrases in a natu-
ral way from the bilingual parsing of two sentences.
In addition, the SITGs allow us to easily incorpo-
rate many desirable characteristics to word phrases
such as length restrictions, selection according to the
word alignment probability, bracketing information,
etc. We review this formalism in the following sec-
tion.

3 Stochastic Inversion Transduction
Grammars

Stochastic  Inversion  Transduction Grammars
(SITGs) (Wu, 1997) can be viewed as a restricted
subset of Stochastic Syntax-Directed Transduction
Grammars. They can be used to simultaneously
parse two strings, both the source and the target
sentences. SITGs are closely related to Stochastic
Context-Free Grammars.

Formally, a SITG in Chomsky Normal Form!
Ts can be defined as a tuple (N, S, W1, W, R, p),
where: N is a finite set of non-terminal symbols;
S € N is the axiom of the SITG; W is a finite set
of terminal symbols of language 1; and W, is a finite
set of terminal symbols of language 2. R is a finite
set of: lexical rules of the type A — z /¢, A — €¢/y,
A — z/y; direct syntactic rules that are noted as
A — [BC]; and inverse syntactic rules that are
noted as A — (BC), where A,B,C € N,z € Wy,
y € Wo, and ¢ is the empty string. When a direct
syntactic rule is used in a parsing, both strings are
parsed with the syntactic rule A — BC. When an
inverse rule is used in a parsing, one string is parsed
with the syntactic rule A — BC, and the other
string is parsed with the syntactic rule A — CB.
Term p of the tuple is a function that attaches a prob-
ability to each rule.

An efficient Viterbi-like parsing algorithm that is
based on a Dynamic Programing Scheme is pro-
posed in (Wu, 1997). The proposed algorithm has
a time complexity of O(|z|3|y|3|R|). It is important
to note that this time complexity restricts the use of
the algorithm to real tasks with short strings.

If a bracketed corpus is available, then a modi-
fied version of the parsing algorithm can be defined
to take into account the bracketing of the strings.

1A Normal Form for SITGs can be defi ned (Wu, 1997) by

analogy to the Chomsky Normal Form for Stochastic Context-
Free Grammars.
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The modifications are similar to those proposed in
(Pereira and Schabes, 1992) for the inside algorithm.
Following the notation that is presented in (Pereira
and Schabes, 1992), we can define a partially brack-
eted corpus as a set of sentence pairs that are an-
notated with parentheses that mark constituent fron-
tiers. More precisely, a bracketed corpus € is a set of
tuples (z, B;,y, By), where z and y are strings, B,
is the bracketing of z, and B, is the bracketing of y.
Let d,, be a parsing of = and y with the SITG 7,. If
the SITG does not have useless symbols, then each
non-terminal that appears in each sentential form
of the derivation d, generates a pair of substrings
zi...x; 0fz, 1 < i < j < |zf, and y ...y of y,
1 <k <1< |y|, and defines a span (i, j) of z and
a span (k,1) of y. A derivation of z and y is com-
patible with B, and B, if all the spans defined by
it are compatible with B, and B,,. This compatibil-
ity can be easily defined by the function ¢(i, j, k, 1),
which takes a value of 1 if (z, ) does not overlap any
b € B and, if (k,1) does not overlap any b € By;
otherwise it takes a value of 0. This function filters
those derivations (or partial derivations) whose pars-
ing is not compatible with the bracketing defined in
the sample (Sanchez and Benedi, 2006).

The algorithm can be implemented to compute
only those subproblems in the Dynamic Program-
ing Scheme that are compatible with the bracket-
ing. Thus, the time complexity is O(|z|3|y|?| R|) for
an unbracketed string, while the time complexity is
O(|=||y||R]) for a fully bracketed string. It is impor-
tant to note that the last time complexity allows us to
work with real tasks with longer strings.

Moreover, the parse tree can be efficiently ob-
tained. Each node in the tree relates two word
phrases of the strings being parsed. The related word
phrases can be considered to be the translation of
each other. These word phrases can be used to com-
pute the translation table of a phrase-based machine
statistical translation system.

4 Experiments

The experiments in this section were carried out for
the shared task proposed in this workshop. This
consisted of building a probabilistic phrase transla-
tion table for phrase-based statistical machine trans-
lation. Evaluation was translation quality on an un-
seen test set. The experiments were carried out using



the Europarl corpus (Koehn, 2005). Table 1 shows
the language pairs and some figures of the training
corpora. The test set had 3,064 sentences.

Languages Sentences  # words (input/output)
De-En 751,088 15,257,871 /16,052,702
Es-En 730,740 15,725,136 / 15,222,505
Fr-En 688,031 15,599,184 / 13,808,505

Table 1: Figures of the training corpora. The lan-
guages are English (En), French (Fr), German (De)
and Spanish (ES)

A common framework was provided to all the par-
ticipants so that the results could be compared. The
material provided comprised of: a training set, a lan-
guage model, a baseline translation system (Koehn,
2004), and a word alignment. The participants could
augment these items by using: their own training
corpus, their own sentence alignment, their own lan-
guage model, or their own decoder. We only used
the provided material for the experiments reported
in this work. The BLEU score was used to measure
the results.

A SITG was obtained for every language pair in
this section as described below. The SITG was used
to parse paired sentences in the training sample by
using the parsing algorithm described in Section 3.
All pairs of word phrases that were derived from
each internal node in the parse tree, except the root
node, were considered for the phrase-based machine
translation system. A translation table was obtained
from paired word phrases by placing them in the ad-
equate order and counting the number of times that
each pair appeared in the phrases. These values were
then appropriately normalized (Sanchez and Benedi,
2006).

4.1 Obtaininga SITG from an aligned cor pus

For this experiment, a SITG was constructed for ev-
ery language pair as follows. The alignment was
used to compose lexical rules of the form A —
e/f. The probability of each rule was obtained by
counting. Then, two additional rules of the form
A — [AA] and A — (AA) were added. It is im-
portant to point out that the constructed SITG did
not parse all the training sentences. Therefore, the
model was smoothed by adding all the rules of the

132

form A — e/e and A — ¢/ f with low probabil-
ity, so that all the training sentences could be parsed.
The rules were then adequately normalized.

This SITG was used to obtain word phrases from
the training corpus. Then, these word phrases were
used by the Pharaoh system (Koehn, 2004) to trans-
late the test set. We used word phrases up to a given
length. In these experiments several lengths were
tested and the best values ranged from 6 to 10. Ta-
ble shows 2 the obtained results and the size of the
translation table.

Lang. BLEU Lang. BLEU

De-En 15.91 (8.7) En-De 11.20 (9.7)
Es-En 22.85(6.5) En-Es 21.18 (8.6)
Fr-En 21.30(7.3) En-Fr 20.12 (8.1)

Table 2: Obtained results for different pairs and di-
rections. The value in parentheses is the number of
word phrases in the translation table (in millions).

Note that better results were obtained when En-
glish was the target language.

4.2 Using bracketing information in the
parsing

As Section 3 describes, the parsing algorithm for
SITGs can be adequately modified in order to take
bracketed sentences into account. If the bracket-
ing respects linguistically motivated structures, then
aligned phrases with linguistic information can be
used. Note that this approach requires having qual-
ity parsed corpora available. This problem can be
reduced by using automatically learned parsers.

This experiment was carried out to determine the
performance of the translation when some kind of
structural information was incorporated in the pars-
ing algorithm described in Section 3. We bracketed
the English sentences of the Europarl corpus with
an automatically learned parser. This automatically
learned parser was trained with bracketed strings ob-
tained from the UPenn Treebank corpus. We then
obtained word phrases according to the bracketing
by using the same SITG that was described in the
previous section. The obtained phrases were used
with the Pharaoh system. Table 3 shows the results
obtained in this experiment.

Note that the results decreased slightly in all



Lang. BLEU Lang. BLEU

De-En 15.13(7.1) En-De 10.40 (9.2)
Es-En 21.61(6.6) En-Es 19.86 (9.6)
Fr-En 20.57 (6.3) En-Fr 18.95 (8.3)

Table 3: Obtained results for different pairs and di-
rections when word phrases were obtained from a
parsed corpus.The value in parentheses is the num-
ber of word phrases in the translation table (in mil-
lions).

cases. This may be due to the fact that the bracket-
ing incorporated hard restrictions to the paired word
phrases and some of them were too forced. In ad-
dition, many sentences could not be parsed (up to
5% on average) due to the bracketing. However, it
is important to point out that incorporating bracket-
ing information to the English sentences notably ac-
celerated the parsing algorithm, thereby accelerating
the process of obtaining word phrases, which is an
important detail given the magnitude of this corpus.

4.3 Combiningword phrases

Finally, we considered the combination of both
kinds of segments. The results can be seen in Ta-
ble 4. This table shows that the results improved the
results of Table 2 when English was the target lan-
guage. However, the results did not improve when
English was the source language. The reason for this
could be that both kinds of segments were different
in nature, and, therefore, the number of word phrases
increased notably, specially in the English part.

Lang. BLEU Lang. BLEU

De-En  16.39 (17.1) En-De 11.02 (15.3)
Es-En  22.96 (11.7) En-Es 20.86 (14.1)
Fr-En 2173 (17.0) En-Fr 19.93 (14.9)

Table 4. Obtained results for different pairs and di-
rections when word phrases were obtained from a
non-parsed corpus and a parsed corpus.The value in
parentheses is the number of word phrases in the
translation table (in millions).

5 Conclusions

In this work, we have explored the problem of
obtaining word phrases for phrase-based machine
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translation systems from SITGs. We have described
how the parsing algorithms for this formalism can
be modified in order to take into account a brack-
eted corpus. If bracketed corpora are used the time
complexity can decrease notably and large tasks can
be considered. Experiments were reported for the
Europarl corpus, and the results obtained were com-
petitive.

For future work, we propose to work along dif-
ferent lines: first, to incorporate new linguistic in-
formation in both the parsing algorithm and in the
aligned corpus; second, to obtain better SITGs from
aligned bilingual corpora; an third, to improve the
SITG by estimating the syntactic rules. We also in-
tend to address other machine translation tasks.
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Abstract

Improvements to Portage and its partici-
pation in the shared task of NAACL 2006
Workshop on Statistical Machine Trans-
lation are described. Promising ideas in
phrase table smoothing and global dis-
tortion using feature-rich models are dis-
cussed as well as numerous improvements
in the software base.

1 Introduction

The statistical machine translation system Portage is
participating in the NAACL 2006 Workshop on Sta-
tistical Machine Translation. This is a good opportu-
nity to do benchmarking against a publicly available
data set and explore the benefits of a number of re-
cently added features.

Section 2 describes the changes that have been
made to Portage in the past year that affect the par-
ticipation in the 2006 shared task. Section 3 outlines
the methods employed for this task and extensions
of it. In Section 4 the results are summarized in tab-
ular form. Following these, there is a conclusions
section that highlights what can be gleaned of value
from these results.

2 Portage

Because this is the second participation of Portage in
such a shared task, a description of the base system
can be found elsewhere (Sadat et al, 2005). Briefly,
Portage is a research vehicle and development pro-
totype system exploiting the state-of-the-art in sta-
tistical machine translation (SMT). It uses a custom
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built decoder followed by a rescoring module that
adjusts weights based on a number of features de-
fined on the source sentence. We will devote space
to discussing changes made since the 2005 shared
task.

2.1 Phrase-Table Smoothing

Phrase-based SMT relies on conditional distribu-
tions p(s|t) and p(t|s) that are derived from the joint
frequencies c(s, t) of source/target phrase pairs ob-
served in an aligned parallel corpus. Traditionally,
relative-frequency estimation is used to derive con-
ditional distributions, ie p(s|t) = c¢(s,t)/ >4 c(s, ).
However, relative-frequency estimation has the
well-known problem of favouring rare events. For
instance, any phrase pair whose constituents occur
only once in the corpus will be assigned a probabil-
ity of 1, almost certainly higher than the probabili-
ties of pairs for which much more evidence exists.
During translation, rare pairs can directly compete
with overlapping frequent pairs, so overestimating
their probabilities can significantly degrade perfor-
mance.

To address this problem, we implemented two
simple smoothing strategies. The first is based on
the Good-Turing technique as described in (Church
and Gale, 1991). This replaces each observed joint
frequency ¢ with ¢; = (¢ + 1)ncq1/nc, where n
is the number of distinct pairs with frequency c
(smoothed for large c). It also assigns a total count
mass of n; to unseen pairs, which we distributed
in proportion to the frequency of each conditioning
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phrase. The resulting estimates are:

cq(s,t)
sCg(s,t) +p(t)n1’

where p(t) = c(t)/ >, c(t).
pgy(t]s) are analogous.

The second strategy is Kneser-Ney smoothing
(Kneser and Ney, 1995), using the interpolated vari-
ant described in (Chen and Goodman., 1998):!

Py(slt) = 55

The estimates for

c(s,t) — D+ D nyy(*,t) pr(s)
2sc(s,t)

where D = ny/(n1 + 2n2), ni4(*,t) is the num-
ber of distinct phrases s with which ¢ co-occurs, and
pr(s) = nig(s, %)/ 2 ni (s, %), with nig (s, *)
analogous to nyy (x,1).

Our approach to phrase-table smoothing contrasts
to previous work (Zens and Ney, 2004) in which
smoothed phrase probabilities are constructed from
word-pair probabilities and combined in a log-linear
model with an unsmoothed phrase-table. We believe
the two approaches are complementary, so a combi-
nation of both would be worth exploring in future
work.

pr(slt) =

2.2 Feature-Rich DT-based distortion

In a recent paper (Kuhn et al, 2006), we presented a
new class of probabilistic ’Segment Choice Models”
(SCMs) for distortion in phrase-based systems. In
some situations, SCMs will assign a better distortion
score to a drastic reordering of the source sentence
than to no reordering; in this, SCMs differ from the
conventional penalty-based distortion, which always
favours less rather than more distortion.

We developed a particular kind of SCM based on
decision trees (DTs) containing both questions of a
positional type (e.g., questions about the distance
of a given phrase from the beginning of the source
sentence or from the previously translated phrase)
and word-based questions (e.g., questions about the
presence or absence of given words in a specified
phrase).

The DTs are grown on a corpus consisting of
segment-aligned bilingual sentence pairs. This

'As for Good-Turing smoothing, this formula applies only

to pairs s, ¢ for which c(s, t) > 0, since these are the only ones
considered by the decoder.
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segment-aligned corpus is obtained by training a
phrase translation model on a large bilingual cor-
pus and then using it (in conjunction with a distor-
tion penalty) to carry out alignments between the
phrases in the source-language sentence and those
in the corresponding target-language sentence in a
second bilingual corpus. Typically, the first corpus
(on which the phrase translation model is trained) is
the same as the second corpus (on which alignment
is carried out). To avoid overfitting, the alignment
algorithm is leave-one-out: statistics derived from
a particular sentence pair are not used to align that
sentence pair.

Note that the experiments reported in (Kuhn et
al, 2006) focused on translation of Chinese into En-
glish. The interest of the experiments reported here
on WMT data was to see if the feature-rich DT-based
distortion model could be useful for MT between
other language pairs.

3 Application to the Shared Task: Methods

3.1 Restricted Resource Exercise

The first exercise that was done is to replicate the
conditions of 2005 as closely as possible to see the
effects of one year of research and development.
The second exercise was to replicate all three of
these translation exercises using the 2006 language
model, and to do the three exercises of translat-
ing out of English into French, Spanish, and Ger-
man. This was our baseline for other studies. A
third exercise involved modifying the generation
of the phrase-table to incorporate our Good-Turing
smoothing. All six language pairs were re-processed
with these phrase-tables. The improvement in the
results on the devtest set were compelling. This be-
came the baseline for further work. A fourth ex-
ercise involved replacing penalty-based distortion
modelling with the feature-rich decision-tree based
distortion modelling described above. A fifth ex-
ercise involved the use of a Kneser-Ney phrase-
table smoothing algorithm as an alternative to Good-
Turing.

For all of these exercises, 1-best results after de-
coding were calculated as well as rescoring on 1000-
best lists of results using 12 feature functions (13
in the case of decision-tree based distortion mod-
elling). The results submitted for the shared task



were the results of the third and fourth exercises
where rescoring had been applied.

3.2 Open Resource Exercise

Our goal in this exercise was to conduct a com-
parative study using additional training data for the
French-English shared task. Results of WPT 2005
showed an improvement of at least 0.3 BLEU point
when exploiting different resources for the French-
English pair of languages. In addition to the training
resources used in WPT 2005 for the French-English
task, i.e. Europarl and Hansard, we used a bilingual
dictionary, Le Grand Dictionnaire Terminologique
(GDT) 2 to train translation models and the English
side of the UN parallel corpus (LDC2004E13) to
train an English language model. Integrating termi-
nological lexicons into a statistical machine transla-
tion engine is not a straightforward operation, since
we cannot expect them to come with attached prob-
abilities. The approach we took consists on view-
ing all translation candidates of each source term or
phrase as equiprobable (Sadat et al, 2006).

In total, the data used in this second part of our
contribution to WMT 2006 is described as follows:
(1) A set of 688,031 sentences in French and En-
glish extracted from the Europarl parallel corpus (2)
A set of 6,056,014 sentences in French and English
extracted from the Hansard parallel corpus, the offi-
cial record of Canada’s parliamentary debates. (3) A
set of 701,709 sentences in French and English ex-
tracted from the bilingual dictionary GDT. (4) Lan-
guage models were trained on the French and En-
glish parts of the Europarl and Hansard. We used
the provided Europarl corpus while omitting data
from Q4/2000 (October-December), since it is re-
served for development and test data. (5) An addi-
tional English language model was trained on 128
million words of the UN Parallel corpus.

For the supplied Europarl corpora, we relied on
the existing segmentation and tokenization, except
for French, which we manipulated slightly to bring
into line with our existing conventions (e.g., convert-
ing 1> aninto I’ an, aujourd * hui into aujourd’hui).

For the Hansard corpus used to supplement our
French-English resources, we used our own align-
ment based on Moore’s algorithm, segmentation,

Zhttp://www.granddictionnaire.com/
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and tokenization procedures. English preprocessing
simply included lower-casing, separating punctua-
tion from words and splitting off ’s.

4 Results

The results are shown in Table 1. The numbers
shown are BLEU scores. The MC rows correspond
to the multi-corpora results described in the open re-
source exercise section above. All other rows are
from the restricted resource exercise.

The devtest results are the scores computed be-
fore the shared-task submission and were used to
drive the choice of direction of the research. The
test results were computed after the shared-task sub-
mission and serve for validation of the conclusions.

We believe that our use of multiple training cor-
pora as well as our re-tokenization for French and
an enhanced language model resulted in our overall
success in the English-French translation track. The
results for the in-domain test data puts our group at
the top of the ranking table drawn by the organizers
(first on Adequacy and fluency and third on BLEU
scores).

5 Conclusion

Benchmarking with same language model and pa-
rameters as WPTO5 reproduces the results with a
tiny improvement. The larger language model used
in 2006 for English yields about half a BLEU. Good-
Turing phrase table smoothing yields roughly half
a BLEU point. Kneser-Ney phrase table smooth-
ing yields between a third and half a BLEU point
more than Good-Turing. Decision tree based distor-
tion yields a small improvement for the devtest set
when rescoring was not used but failed to show im-
provement on the test set.

In summary, the results from phrase-table
smoothing are extremely encouraging. On the other
hand, the feature-rich decision tree distortion mod-
elling requires additional work before it provides a
good pay-back. Fortunately we have some encour-
aging avenues under investigation. Clearly there is
more work needed for both of these areas.
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Table 1: Restricted and open resource results

fr—en es—en de—en en—fr en—es en—de
devtest: with rescoring
WPTO05 29.32 29.08 23.21
LM-2005 29.30 29.21 23.41
LM-2006 29.88 29.54 23.94 30.43 28.81 17.33
GT-PTS 30.35 29.84 24.60 30.89 29.54 17.62
GT-PTS+DT-dist  30.09 29.44 24.62 31.06 29.46 17.84
KN-PTS 30.55 30.12 24.66 31.28 29.90 17.78
MC WPTO05 29.63
MC 30.09 31.30
MC+GT-PTS 30.75 31.37
devtest: 1-best after decoding
LM-2006 28.59 28.45 23.22 29.22 28.30 16.94
GT-PTS 29.23 2891 23.67 30.07 28.86 17.32
GT-PTS+DT-dist  29.48 29.07 23.50 30.22 29.46 17.42
KN-PTS 29.77 29.76 23.27 30.73 29.62 17.78
MC WPTO05 28.71
MC 29.63 31.01
MC+GT-PTS 29.90 31.22
test: with rescoring
LM-2006 26.64 28.43 21.33 28.06 28.01 15.19
GT-PTS 27.19 28.95 21.91 28.60 28.83 15.38
GT-PTS+DT-dist  26.84 28.56 21.84 28.56 28.59 15.45
KN-PTS 27.40 29.07 21.98 28.96 29.06 15.64
MC 26.95 29.12
MC+GT-PTS 27.10 29.46
test: 1-best after decoding
LM-2006 25.35 27.25 20.46 27.20 27.18 14.60
GT-PTS 25.95 28.07 21.06 27.85 27.96 15.05
GT-PTS+DT-dist 25.86 28.04 20.74 27.85 27.97 14.92
KN-PTS 26.83 28.66 21.36 28.62 28.71 15.42
MC 26.70 28.74
MC+GT-PTS 26.81 29.03
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Abstract

We present translation results on the
shared task "Exploiting Parallel Texts for
Statistical Machine Translation” gener-
ated by a chart parsing decoder operating
on phrase tables augmented and general-
ized with target language syntactic cate-
gories. We use a target language parser
to generate parse trees for each sentence
on the target side of the bilingual train-
ing corpus, matching them with phrase
table lattices built for the corresponding
source sentence. Considering phrases that
correspond to syntactic categories in the
parse trees we develop techniques to aug-
ment (declare a syntactically motivated
category for a phrase pair) and general-
ize (form mixed terminal and nonterminal
phrases) the phrase table into a synchro-
nous bilingual grammar. We present re-
sults on the French-to-English task for this
workshop, representing significant im-
provements over the workshop’s baseline
system. Our translation system is avail-
able open-source under the GNU General
Public License.

Introduction

Recent work in machine translation has evolveditional decoding.
from the traditional word (Brown et al., 1993) anddescribe our phrase annotation and generalization
phrase based (Koehn et al., 2003a) models to iprocess followed by the design and pruning deci-
clude hierarchical phrase models (Chiang, 2005) argions in our chart parser. We give results on the
bilingual synchronous grammars (Melamed, 2004French-English Europarl data and conclude with
These advances are motivated by the desire to iprospects for future work.
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tegrate richer knowledge sources within the transla-
tion process with the explicit goal of producing more
fluent translations in the target language. The hi-
erarchical translation operations introduced in these
methods call for extensions to the traditional beam
decoder (Koehn et al., 2003a). In this work we
introduce technigues to generate syntactically mo-
tivated generalized phrases and discuss issues in
chart parser based decoding in the statistical ma-
chine translation environment.

(Chiang, 2005) generates synchronous context-
free grammar (SynCFG) rules from an existing
phrase translation table. These rules can be viewed
as phrase pairs with mixed lexical and non-terminal
entries, where non-terminal entries (occurring as
pairs in the source and target side) represent place-
holders for inserting additional phrases pairs (which
again may contain nonterminals) at decoding time.
While (Chiang, 2005) uses only two nonterminal
symbols in his grammar, we introduce multiple syn-
tactic categories, taking advantage of a target lan-
guage parser for this information. While (Yamada
and Knight, 2002) represent syntactical information
in the decoding process through a series of transfor-
mation operations, we operate directly at the phrase
level. In addition to the benefits that come from
a more structured hierarchical rule set, we believe
that these restrictions serve as a syntax driven lan-
guage model that can guide the decoding process,
as n-gram context based language models do in tra-
In the following sections, we
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2 Rule Generation

X -> reprise de/resumption of

NP->l|a session/the session

We start with phrase translations on the parallel
training data using the techniques and implementa-
tion described in (Koehn et al., 2003a). This phraS@.srepriseiresumption  IN->de/of

table provides the purely lexical entries in the final

hierarchical rule set that will be used in decoding.
We then use Charniak’s parser (Charniak, 2000) to

generate the most likely parse tree for each Eng- " e

lish target sentence in the training corpus. Next, § -> reprise de @NP/resumption of @NP

we determine all phrase pairs in the phrase tables - e (v resumption) ] [PP (IN o] [NP [ (DT the) (N session) ]
whose source and target side occur in each respec-

tive source and target sentence pair defining the

scope of the initial rules in our SynCFG.

DT->la/the N->session/session

Figure 1: Selected annotated and generalized (dotted arc)
rules for the first sentence of Europarl.

Annotation If the target side of any of these ini-
tial rules correspond to a syntactic categ6rpfthe 3 Scoring
target side parse tree, we label the phrase pair wiw

that syntactic category. This label corresponds to th§ enemploy a log-linear model to assign costs to the

left-hand side of our synchronous grammar. Phra%‘r%nslation output is determined by computing the

airs that do not correspond to a span in the parse A S . .
P P b P Towest-cost derivation (combination of hierarchical

tree are given a default category "X”, and can stil D . .
lay a role in the decoding process. In work done af?nd glue rules) yielding as its source side, where
b ) the cost of a derivatio®; o - - - o R,, with respective

ter submission to the 2006 data track, we assign Su?ehature vectors’ o € R™ is given by
phrases an extended category of the farp Co, B

C41/Cs, or C5\C1, indicating that the phrase pair's m no

target side spans two adjacent syntactic categories Z)\i Z(W )i -

(e.g., she went: NP+Y, a partial syntactic cate- =1 j=l

gory Cy missing aCs to the right (e.g.the great:
NP/NN), or a partialC; missing aCs to the left (e.qg.,
great wall: DT\NP), respectively.

Here, A\1,..., A\, are the parameters of the log-
linear model, which we optimize on a held-out por-
tion of the training set (2005 development data) us-
ing minimum-error-rate training (Och, 2003). We

Generalization In order to mitigate the effects use the following features for our rules:

of sparse data when working with phrase and n- e source- and target-conditioned neg-log lexical
gram models we would like to generate generalized  weights as described in (Koehn et al., 2003b)
phrases, which include non-terminal symbols that ) _

can be filled with other phrases. Therefore, after ® neg-log relative frequencies: left-hand-
annotating the initial rules from the current train-  Side-conditioned,  target-phrase-conditioned,
ing sentence pair, we adhere to (Chiang, 2005) to  Source-phrase-conditioned

recursively generalize each existing rule; however, |
we abstract on a per-sentence basis. The grammar
extracted from this evaluation’s training data con-
tains 75 nonterminals in our standard system, and e Flags: IsPurelyLexical (i.e., contains only ter-
4000 nonterminals in the extended-category system. minals), IsPurelyAbstract (i.e., contains only
Figure 1 illustrates the annotation and generalization  nonterminals), IsXRule (i.e., non-syntactical
process. span), IsGlueRule

Counters: n.o. rule applications, n.o. target
words
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e Penalties: rareness penaltyexp(l — To improve the diversity of the final K-Best list,
RuleFrequency  unbalancedness penaltywe keep track of partially expanded hypotheses that
|[MeanTargetSourceRatio'n.o. source words- have generated identical target words and refer to the

‘n.o. target words| same hypergraph nodes. Any arising twin hypothe-
_ sis is immediately removed from the K-Best extrac-
4 Parsing tion beam during the expansion process.

Our SynCFG rules are equivalent to a probabilistig Results

context-free grammar and decoding is therefore an

application of chart parsing. Instead of the commobVe present results that compare our system against
method of converting the CFG grammar into Chomthe baseline Pharaoh implementation (Koehn et al.,
sky Normal Form and applying a CKY algorithm 2003a) and MER training scripts provided for this
to produce the most likely parse for a given sourceorkshop. Our results represent work done before
sentence, we avoided the explosion of the rule sthe submission due date as well as after with the fol-
caused by the introduction of new non-terminals iflowing generalized phrase systems.

the conversion process and implemented a variant
of the CKY+ algorithm as described in (J.Earley,
1970).

Each cell of the parsing process in (J.Earley,
1970) contains a set of hypergraph nodes (Huang
and Chiang, 2005). A hypergraph node is an equiv- e Lex - Phrase-decoder simulation: using only
alence class of complete hypotheses (derivations) the initial lexical rules from the phrase table,
with identical production results (left-hand sides of  all with LHS X, the Glue rule, and a binary
the corresponding applied rules). Complete hy-  reordering rule with its own reordering-feature
potheses point directly to nodes in their backwards
star, and the cost of the complete hypothesis is cal- ® XCat - All nonterminals merged into a single
culated with respect to each back pointer node’s best X nonterminal: simulation of the system Hiero
cost. (Chiang, 2005).

This structure affords efficient parsing with mini-
mal pruning (we use a single parameter to restrict the
number of hierarchical rules applied), but sacrifices
effective management of unique language model
states contributing to significant search errors dur-
ing parsing. At initial submission time we simply e SynExt - Syntactic extraction using the
re-scored a K-Best list extracted after first best pars- extended-category scheme, but with rules only
ing using the lazy retrieval process in (Huang and containing up to 2 nonterminal abstraction
Chiang, 2005). sites.

e Baseline - Pharaoh with phrases extracted from
IBM Model 4 training with maximum phrase
length 7 and extraction method ‘diag-growth-
final’ (Koehn et al., 2003a)

e Syn - Syntactic extraction using the Penn Tree-
bank parse categories as nonterminals; rules
containing up to 4 nonterminal abstraction
sites.

Post-submission After our workshop submission, We also explored the impact of longer initial
we modified the K-Best list extraction process to inphrases by training another phrase table with phrases
tegrate an n-gram language model during K-Best exip to length 12. Our results are presented in Ta-
traction. Instead of expanding each derivation (conble 1. While our submission time system (Syn using
plete hypothesis) in a breadth-first fashion, we ex-M for rescoring only) shows no improvement over
pand only a single back pointer, and score this nethe baseline, we clearly see the impact of integrating
derivation with its translation model scores and #he language model into the K-Best list extraction
language model cost estimate, consisting of an aprocess. Our final system shows at statistically sig-
curate component, based on the words translated sificant improvement over the baseline (0.78 BLEU
far, and an estimate based on each remaining (npoints is the 95 confidence level). We also see a
expanded) back pointer’s top scoring hypothesis. trend towards improving translation quality as we
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System Dev: w/o LM | Dev: LM-rescoring Test: LM-r.| Dev: integrated LM Test: int. LM
Baseline - max. phr. length 7 - - - 31.11 30.61
Lex - max. phrase length 7 27.94 29.39 29.95 28.96 29.12
XCat - max. phrase length 7 27.56 30.27 29.81 30.89 31.01
Syn - max. phrase length 7 29.20 30.95 30.58 31.52 31.31
SynExt - max. phrase length |7 - - - 31.73 31.41
Baseline - max. phr. length 12 - - - 31.16 30.90
Lex - max. phr. length 12 - - - 29.30 29.51
XCat - max. phr. length 12 - - - 30.79 30.59
SynExt - max. phr. length 12 - - - 31.07 31.76

Table 1: Translation results (IBM BLEU) for each system on the Fr-En '06 Shared Task ‘Development Set’ (used for MER
parameter tuning) and '06 ‘Development Test Set’ (identical to last year's Shared Task’s test set). The system submitted for
evaluation is highlighted in bold.

employ richer extraction techniques. The relatively parser. InProceedings of the North American Associ-
poor performance of Lex with LM in K-Best com- ation for Computatlonal Linguistics (HLT/NAACL)
pared to the baseline shows that we are still makingayid Chiang. 2005. A hierarchical phrase-based model

search errors during parsing despite tighter integra- for statistical machine translation. Rroc. of the As-
tion of the language model. sociation for Computational Linguistics

We also ran an experiment with CMU's phraset jang Huang and David Chiang. 2005. Better k-best
based decoder (Vogel et al., 2003) using the length- parsing. InProceedings of the 9th International Work-

7 phrase table. While its development-set score wasshop on Parsing Technologies

only 31-0_1, the decoder achieved 31.42 on the tegfeariey. 1970. An efficient context-free parsing algo-
set, placing it at the same level as our extended- rithm. Communications of the Assocation for Com-
category system for that phrase table. puting Machinery 13(2):94-102.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.

2003a. Pharaoh: A beam search decoder for phrase-

: : base statistical machine translation models. Pio-
In this work we applied syntax based resources ceedings of the Sixth Confernence of the Association

(the target language parser) to annotate and generor Machine Translation in the Americadomonton,
alize phrase translation tables extracted via exist- Canada, May 27-June 1.

ing phrase extraction techniques. Our work r(_:‘aIf’hiIipp Koehn, Franz Josef Och, and Daniel Marcu.

firms the feasibility of parsing approaches to ma- >q03p,  Statistical phrase-based translation. In
chine translation in a large data setting, and il- Proceedings of the Human Language Technology
lustrates the impact of adding syntactic categories and North American Association for Computational
to drive and constrain the structured search space,-inguistics Conference (HLT/NAAGLJEdomonton,

. . . . Canada, May 27-June 1.
While no improvements were available at submis-
sion time, our subsequent performance highlights Dan Melamed. 2004. Statistical machine translation
the importance of tight integration of n-gram lan- PY Parsing. IPACL, pages 653-660.
guage modeling within the syntax driven parsing enFranz Josef Och. 2003. Minimum error rate training in
vironment. Our translation system is available open- statistical machine translation. Rroc. of the Associ-
source under the GNU General Public License at: :‘]‘t'lor‘Gf‘;r Computational LinguisticsSapporo, Japan,
www.cs.cmu.edu/~zollmann/samt Hy o

6 Conclusions

Stephan Vogel, Ying Zhang, Fei Huang, Alicia Trib-
ble, Ashish Venogupal, Bing Zhao, and Alex Waibel.
References 2003. The CMU statistical translation system Plro-

] . ceedings of MT Summit ] Xlew Orleans, LA, Septem-
Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della per.

Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter estKenji Yamada and Kevin Knight. 2002. A decoder for
mation. Comput. Linguis{.19(2):263-311. syntax-based statistical mt. Rroc. of the Association

for Computational Linguistics
Eugene Charniak. 2000. A maximum entropy-inspired
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Abstract

This paper reports translation results for
the “Exploiting Parallel Texts for Statis-
tical Machine Translation” (HLT-NAACL
Workshop on Parallel Texts 2006). We
have studied different techniques to im-
prove the standard Phrase-Based transla-
tion system. Mainly we introduce two re-
ordering approaches and add morphologi-
cal information.

1 Introduction

Nowadays most Statistical Machine Translation
(SMT) systems use phrases as translation units. In
addition, the decision rule is commonly modelled
through a log-linear maximum entropy framework
which is based on several feature functions (in-
cluding the translation model), h,,. Each feature
function models the probability that a sentence e in
the target language is a translation of a given sen-
tence f in the source language. The weights, \;,
of each feature function are typically optimized to
maximize a scoring function. It has the advantage
that additional features functions can be easily in-
tegrated in the overall system.

This paper describes a Phrase-Based system
whose baseline is similar to the system in Costa-
jussa and Fonollosa (2005). Here we introduce
two reordering approaches and add morphological
information. Translation results for all six trans-
lation directions proposed in the shared task are
presented and discussed. More specifically, four
different languages are considered: English (en),
Spanish (es), French (fr) and German (de); and
both translation directions are considered for the
pairs: EnEs, EnFr, and EnDe. The paper is orga-
nized as follows: Section 2 describes the system;

This work has been supported by the European Union
under grant FP6-506738 (TC-STAR project) and the TALP
Research Center (under a TALP-UPC-Recerca grant).
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Section 3 presents the shared task results; and, fi-
nally, in Section 4, we conclude.

2 System Description

This section describes the system procedure fol-
lowed for the data provided.

2.1 Alignment

Given a bilingual corpus, we use GIZA++ (Och,
2003) as word alignment core algorithm. During
word alignment, we use 50 classes per language
estimated by *mkcls’, a freely-available tool along
with GIZA++. Before aligning we work with low-
ercase text (which leads to an Alignment Error
Rate reduction) and we recover truecase after the
alignment is done.

In addition, the alignment (in specific pairs of
languages) was improved using two strategies:

Full verb forms The morphology of the verbs
usually differs in each language. Therefore, it is
interesting to classify the verbs in order to address
the rich variety of verbal forms. Each verb is re-
duced into its base form and reduced POS tag as
explained in (de Gispert, 2005). This transforma-
tion is only done for the alignment, and its goal
is to simplify the work of the word alignment im-
proving its quality.

Block reordering (br) The difference in word
order between two languages is one of the most
significant sources of error in SMT. Related works
either deal with reordering in general as (Kanthak
et al., 2005) or deal with local reordering as (Till-
mann and Ney, 2003). We report a local reorder-
ing technique, which is implemented as a pre-
processing stage, with two applications: (1) to im-
prove only alignment quality, and (2) to improve
alignment quality and to infer reordering in trans-
lation. Here, we present a short explanation of the
algorithm, for further details see Costa-jussa and
Fonollosa (2006).

Proceedings of the Workshop on Statistical Machine Translation, pages 142—145,
New York City, June 2006. (©)2006 Association for Computational Linguistics



Europe
Eastern

and

Europa central y oriental

SRC: Europa central y oriental

“ L Alignment
TRG: Central and Eastern Europe

Alignment Block = (Europa, central y oriental)

block block
Figure 1: Example of an Alignment Block, i.e. a

pair of consecutive blocks whose target translation
is swapped

This reordering strategy is intended to infer the
most probable reordering for sequences of words,
which are referred to as blocks, in order to mono-
tonize current data alignments and generalize re-
ordering for unseen pairs of blocks.

Given a word alignment, we identify those pairs
of consecutive source blocks whose translation is
swapped, i.e. those blocks which, if swapped,
generate a correct monotone translation. Figure 1
shows an example of these pairs (hereinafter called
Alignment Blocks).

Then, the list of Alignment Blocks (LAB) is
processed in order to decide whether two consec-
utive blocks have to be reordered or not. By using
the classification algorithm, see the Appendix, we
divide the LAB in groups (G,,n = 1... N). In-
side the same group, we allow new internal com-
bination in order to generalize the reordering to
unseen pairs of blocks (i.e. new Alignment Blocks
are created). Based on this information, the source
side of the bilingual corpora are reordered.

In case of applying the reordering technique for
purpose (1), we modify only the source training
corpora to realign and then we recover the origi-
nal order of the training corpora. In case of using
Block Reordering for purpose (2), we modify all
the source corpora (both training and test), and we
use the new training corpora to realign and build
the final translation system.

2.2 Phrase Extraction

Given a sentence pair and a corresponding word
alignment, phrases are extracted following the cri-
terion in Och and Ney (2004). A phrase (or
bilingual phrase) is any pair of m source words
and n target words that satisfies two basic con-

straints: words are consecutive along both sides
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of the bilingual phrase, and no word on either side
of the phrase is aligned to a word out of the phrase.
We limit the maximum size of any given phrase to
7. The huge increase in computational and storage
cost of including longer phrases does not provide
a significant improvement in quality (Koehn et al.,
2003) as the probability of reappearance of larger
phrases decreases.

2.3 Feature functions

Conditional and posterior probability (cp, pp)
Given the collected phrase pairs, we estimate the
phrase translation probability distribution by rela-
tive frequency in both directions.

The target language model (Im) consists of an
n-gram model, in which the probability of a trans-
lation hypothesis is approximated by the product
of word n-gram probabilities. As default language
model feature, we use a standard word-based 5-
gram language model generated with Kneser-Ney
smoothing and interpolation of higher and lower
order n-grams (Stolcke, 2002).

The POS target language model (fpos) con-
sists of an N-gram language model estimated over
the same target-side of the training corpus but us-
ing POS tags instead of raw words.

The forward and backwards lexicon mod-
els (ibml, ibmI~') provide lexicon translation
probabilities for each phrase based on the word
IBM model 1 probabilities. For computing the
forward lexicon model, IBM model 1 probabili-
ties from GIZA++ source-to-target alignments are
used. In the case of the backwards lexicon model,
target-to-source alignments are used instead.

The word bonus model (wb) introduces a sen-
tence length bonus in order to compensate the sys-
tem preference for short output sentences.

The phrase bonus model (pb)
stant bonus per produced phrase.

introduces a con-

2.4 Decoding

The search engine for this translation system is de-
scribed in Crego et al. (2005) which takes into ac-
count the features described above.

Using reordering in the decoder (rgraph) A
highly constrained reordered search is performed
by means of a set of reordering patterns (linguisti-
cally motivated rewrite patterns) which are used to



extend the monotone search graph with additional
arcs. See the details in Crego et al. (2006).

2.5 Optimization

It is based on a simplex method (Nelder and
Mead, 1965). This algorithm adjusts the log-
linear weights in order to maximize a non-linear
combination of translation BLEU and NIST: 10 x
loglO((BLEU % 100) 4 1) + NIST. The max-
imization is done over the provided development
set for each of the six translation directions under
consideration. We have experimented an improve-
ment in the coherence between all the automatic
figures by integrating two of these figures in the
optimization function.

3 Shared Task Results
3.1 Data

The data provided for this shared task corresponds
to a subset of the official transcriptions of the
European Parliament Plenary Sessions, and it
is available through the shared task website at:
http://www.statmt.org/wmt06/shared-task/.
The development set used to tune the system
consists of a subset (500 first sentences) of the
official development set made available for the
Shared Task.

We carried out a morphological analysis of the
data. The English POS-tagging has been carried
out using freely available T'NT tagger (Brants,
2000). In the Spanish case, we have used the
Freeling (Carreras et al., 2004) analysis tool
which generates the POS-tagging for each input
word.

3.2 Systems configurations

The baseline system is the same for all tasks and
includes the following features functions: cp, pp,
Im, ibml, ibm1~', wb, pb. The POStag target
language model has been used in those tasks for
which the tagger was available. Table 1 shows the
reordering configuration used for each task.

The Block Reordering (application 2) has been
used when the source language belongs to the Ro-
manic family. The length of the block is lim-
ited to 1 (i.e. it allows the swapping of single
words). The main reason is that specific errors are
solved in the tasks from a Romanic language to
a Germanic language (as the common reorder of
Noun + Adjective that turns into Adjective +

Noun). Although the Block Reordering approach
144

Task | Reordering Configuration

Es2En | br2

En2Es | brl + rgraph
Fr2En | br2

En2Fr | brl + rgraph
De2En | -

En2De | -

Table 1: Additional reordering models for each
task: brl (br2) stands for Block Reordering ap-
plication 1 (application 2); and rgraph refers to
the reordering integrated in the decoder

does not depend on the task, we have not done
the corresponding experiments to observe its ef-
ficiency in all the pairs used in this evaluation.

The rgraph has been applied in those cases
where: we do not use br2 (there is no sense in
applying them simultaneously); and we have the
tagger for the source language model available.

In the case of the pair GeEn, we have not exper-
imented any reordering, we left the application of
both reordering approaches as future work.

3.3 Discussion

Table 2 presents the BLEU scores evaluated on the
test set (using TRUECASE) for each configuration.
The official results were slightly better because a
lowercase evaluation was used, see (Koehn and
Monz, 2006).

For both, Es2En and Fr2En tasks, br helps
slightly. The improvement of the approach de-
pends on the quality of the alignment. The better
alignments allow to extract higher quality Align-
ment Blocks (Costa-jussa and Fonollosa, 2006).

The En2Es task is improved when adding both
brl and rgraph. Similarly, the En2Fr task seems to
perform fairly well when using the rgraph. In this
case, the improvement of the approach depends on
the quality of the alignment patterns (Crego et al.,
2006). However, it has the advantage of delay-
ing the final decision of reordering to the overall
search, where all models are used to take a fully
informed decision.

Finally, the tpos does not help much when trans-
lating to English. It is not surprising because it was
used in order to improve the gender and number
agreement, and in English there is no need. How-
ever, in the direction to Spanish, the tpos added
to the corresponding reordering helps more as the
Spanish language has gender and number agree-
ment.



Task ‘ Baseline ‘ +tpos ‘ +rc ‘ +tpos-+rc ‘
Es2En | 29.08 29.08 | 29.89 | 29.98
En2Es | 27.73 27.66 | 28.79 | 28.99
Fr2En | 27.05 27.06 | 27.43 | 27.23
En2Fr | 26.16 - 27.80 | -

De2En | 21.59 21.33 | - -

En2De | 15.20 - - -

Table 2: Results evaluated using TRUECASE on
the test set for each configuration: rc stands for
Reordering Configuration and refers to Table 1.
The bold results were the configurations submit-
ted.

4 Conclusions

Reordering is important when using a Phrase-
Based system. Although local reordering is sup-
posed to be included in the phrase structure, per-
forming local reordering improves the translation
quality. In fact, local reordering, provided by the
reordering approaches, allows for those general-
izations which phrases could not achieve. Re-
ordering in the DeEn task is left as further work.
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A Appendix

Here we describe the classification algorithm used
in Section 1.
1. Initialization: setn < 1and LAB’ «+ LAB.
2. Main part: while LAB’ is not empty do

o Gy = {(ax, Bk)} where (ag, Bx) is any
element of LAB’, i.e. «y is the first
block and 3}, is the second block of the
Alignment Block & of the LAB’.

e Recursively, move elements (o, 3;)
from LAB’ to G,, if there is an element
(e, Bj) € Gy such that a; = o or
Bi = Bj

e Increase n (i.e. n «— n—+1)

3. Ending: For each G,,, construct the two sets
A,, and B,, which consists on the first and
second element of the pairs in GG, respec-
tively.
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Abstract Phar aoh and easily adaptable to other SMT
or non-SMT tasks and
This paper describes the open-source
Phrase-Based Statistical Machine Transla-
tion Decoder Phr aner . The paper also The decoder is fully compatible witRhar aoh
presents the UTD (HLTRI) system build 1. 2 in the algorithms that are implemented, input
for the WMTO6 shared task. Ourgoalwas fijles (configuration file, translation table, language

e various tools.

to improve the translation quality by en-  models) and command line. Some of the advantages
hancing the translation table and by pre-  of Phr aner over Phar aoh are: (1) source code
processing the source language text availability and its permissive license; (2) it is very
fast (1.5-3 times faster for most of the configura-
1 Introduction tions); (3) it can work with various storage layers for

the translation table (TT) and the language models
Despite the fact that the research in Statisticgl Ms): memory, remote (access through TCP/IP),
Machine Translation (SMT) is very active, theregisk (using SQLite databasdsExtensions for other
isn’t an abundance of open-source tools availabl§orage layers can be very easily implemented; (4) it
to the community. In this paper, we presenis more configurable; (5) it accepts compressed data
Phraner, an open-source system that embeds fjes (TTs and LMs); (6) it is very easy to extend; an
phrase-based decoder, a minimum error rate traigxample is provided in the package — part-of-speech
ing (Och, 2003) module and various tools relategiecoding on either source language, target language
to Machine Translation (MT). The software is re-gr poth: support for POS-based language models;
leased under BSD license and it is available &) it can internally generate n-best lists. Thus no

http://ww. phramer. org/. external tools are required.
We also describe ouPhr anmer -based system  The MERT module is a highly modular, efficient
that we build for the WMTO6 shared task. and customizable implementation of the algorithm

described in (Och, 2003). The release has imple-
mentations for BLEU (Papineni et al., 2002), WER
Phr amer is a phrase-based SMT system written irand PER error criteria and it has decoding interfaces
Java. It includes: for Phr amer and Phar aoh. It can be used to
_ _ _ search parameters over more than one million vari-
* A decoder that is compatible withhar aoh  gpjes |t offers features as resume search, reuse hy-
(Koehn, 2004), potheses from previous runs and various strategies

e A minimum error rate training (MERT) mod- {© Search for optimak weight vectors.
ule, compatible withPhr arrer 's decoder, with Thttp://www.sglite.org/

2 Phramer
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The package contains a set of tools that include:coder for the MERT algorithm.

e Distributed decoding (compatible with both3.1.4 Preprocessing

Phramer and Phar aoh) — it automatically e removed from the source text the words that
splits decoding jobs and distributes them tQyont appear either in the source side of the train-
workers and assembles the results. Itis compafig corpus (thus we know that the translation table
ible with lattice generation, therefore it can alsqyj|| not be able to translate them) or in the lan-
be used during weights search (using MERT).qage model for the target language (and we esti-
« Tools to process translation tables — filter thdnate th.at there is a low chance that the untranslated
TT based on the input file, flip TT to reuse itvyord might actually be part of the refgrence Frgngla—
for English-to-Foreign translation, filter the TT tON)- The purpose of this procedure is to minimize
by phrase length, convert the TT to a databaséh? risk of msertmg words into the automgtlc trans-
lation that are not in the reference translation.

3 WMTO06 Shared Task We applied this preprocessing step only when the

.. .. . target language was English.
We have assembled a system for participation in the g guag g

WMT 2006 shared task based &hramer and 3.2 Enhancementsto the basdline systems

Eﬁeré?\]OIZSVXZpNaEﬁ::iS mé—'; ISEllj\lb_t)aESSkS:DEN’ Our goal was to improve the translation quality by
N ’ an ' enhancing the the translation table.

3.1 Basdine system The following enhancements were implemented:

311 Transation table generation e reduce the vocabulary size perceived by the
To generate a translation table for each pair oflan-  GIZA++ and preset alignment for certain

guages starting from a sentence-aligned parallel cor- words

pus, we used a modified version of tRear aoh

training software?. The software also required ® ‘normalize” distortion between pairs of lan-

GIZA++ word alignment tool(Och and Ney, 2003). guages by reordering noun-adjective construc-
We generated for each phrase pair in the trans-  tions

lation table 5 features: phrase translation probabil-

ity (both directions), lexical weighting (Koehn et al.,

2003) (both directions) and phrase penalty (constal

value).

The first enhancement identifies pairs of tokens in
ttge parallel sentences that, with a very high proba-
Bllity, align together and they don't align with other
tokens in the sentence. These tokens are replaced
3.1.2 Decoder with a special identifier, chosen so that GIZA++ will

The Phr anmer decoder was used to translate théearn the alignment between them easier than before

devtest2006 andtest2006 files. We accelerated the replacement. The targeted token types are proper
decoding process by using tdistributed decoding  houns (detected when the same upper-cased token

tool. were present in both the foreign sentence and the
o o English sentence) and numbers, also taking into ac-
3.1.3  Minimum Error Rate Training count the differences between number representa-

We determined the weights to combine the modion in different languages (i.e.: 399.99 vs. 399,99).
els using the MERT component Phr amer . Be-  Each distinct proper noun to be replaced in the sen-
cause of the time constrains for the shared task sulgnce was replaced with a specific identifier, distinct
missiorf, we usedPhar aoh + Car nel % as the de- from other replacement identifiers already used in
" http:/www.iccs.inf.ed.ac.uk/pkoehn/training.tgz the sentence. The same procedure was applied also

3After the shared task submission, we optimized a lot oufor numbers. The specific identifiers were reused in
decoder. Before the optimizations (LM optimizations, f&in gther sentences. This has the effect of reducing the
bugs that affected performanc®ir amer was 5 to 15 times . . .
slower tharPhar aoh. vocabulary, thus it provides a large number of in-

*http://www.isi.edu/licensed-sw/carmel/ stances for the special token forms. The change in
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Figure 1: NN-ADJ reordering

[ Corpus| Before | After |

closer to the expected alignment (monotone).

DE 195,290] 184,754
FR 80,348 | 70,623 e More phrases extracted from the word aligned
ES 102,885 92,827

corpus. Monotone alignment tends to generate
Table 1: Vocabulary size change due to forced align- ~ more phrases than a random alignment.

ment . . . .
e Higher mixture weight for the monotone dis-

tortion model because of fewer reordering con-

the vocabulary size is shown in Table 1. To simplify ~ Straints during MERT, thus the value of the
the process, we limited the replacement of tokens ~Monotone distortion model increases, “tighten-
to one-to-one (one real token to one special token),  iNg” the translation.
so that the word alignment file can be directly use
together with the original parallel corpus to extract .
phrases required for the generation of the translatioff€ implemented the first enhancement on-&SN
table. Table 2 shows an example of the output. ~ Subtask by part-of-speech tagging the Spanish text

The second enhancement tries to improve tH&SINGTr e_e'l_'agger5followed by a NN-ADJ inver-
quality of the translation by rearranging the words irsion heuristic. _
the source sentence to better match the correct word ' N€ language models provided for the task was
order in the target language (Collins et al., 2005)/S€d-
We focused on a very specific pattern — based on the V& used the 1,000 out of the 2,000 sentences
part-of-speech tags, changing the order of NN-ADY' €ach of thedev2006 datasets to determine
phrases in the non-English sentences. This proce¥§ights for the 8 models used during decoding (one
was also applied to the input devitest files, when tH@onotone distortion mode, one language model,
target language was English. Figure 1 shows the rfive translation models, one sentence length model)

ordering process and its effect on the alignment. through MERT. The weights were determined in-
The expected benefits are: dividually for each pair of source-target languages.

Experimental Setup

] ] Shttp://www.ims.uni-stuttgart.de/projekte/corplex/
e Better word alignment due to an alignmentTreeTagger/DecisionTreeTagger.html
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There arel45 settlements in the West Bank6 in Gaza , 9 in East Jerusalem400,000 people live in them .
Existen145 asentamientos en Cisjordanid6 enGazay 9 en Jerusaln Este ; en ellos vivé00.000 personas .
There ardx1] settlements in the West Bankx2] in [y1] , [x3] in East Jerusalem[x4] people live in them .
Existen[x1] asentamientos en Cisjordanigx?] en[y1] y [x3] en Jerusaln Este ; en ellos vivp@] personas .

Table 2: Forced alignment example

Subtask fil?e?i\r(g aI]ichCn(:gnt mye-g%]n let_:grl(Ja D.E_)EN’ +.O'43 on FR-EN and -0.18 on ES'EN
SE=EN 7 — — >E A5 difference in BLEU score compared to WPTO5’s
v v _ 2553 best system (Koehn and Monz, 2005). This fact is
FR—EN v — — 30.70 caused by the MERT module. This module is capa-
ESSEN \\? i — gg'_7707 ble of estimating parameters over a large develop-
v v — 30.84 ment corpus in a reasonable time, thus it is able to
Vv Vv Vv 30.92 generate highly relevant parameters.
EN—FR — — — 31.67
— v — 3179
SNmES v _ 381117 References

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine
translation. InProceedings of the 43rd Annual Meet-

Table 3: Results on thdevtest2006 files

|_Subtask [ BLEU | 1/2/3/4-gram precision (bp) ing of the Association for Computational Linguis-
DE—EN | 22.96 | 58.8/28.8/16.5/9.9 (1.000 tics (ACL'05), pages 531-540, Ann Arbor, Michigan,
FR—EN | 27.78 | 61.8/33.6/21.0/13.7 (1.000 June. Association for Computational Linguistics.
ES—EN | 29.93 | 63.5/36.0/23.0/15.2 (1.000
EN—FR | 28.87 | 60.0/34.7/22.7/15.2 (0.991 Philipp Koehn and Christof Monz. 2005. Shared task:
EN—ES | 29.00 | 62.9/35.8/23.0/15.1 (0.975 Statistical machine translation between European lan-
i guages. InProceedings of the ACL Wobrkshop on
Table 4: Results on thest2006 files Building and Using Parallel Texts, pages 119-124,

Ann Arbor, Michigan, June. Association for Compu-
tational Linguistics.
Using these weights, we measured the BLEU score

hilipp Koehn, Franz Josef Och, and Daniel Marcu.
on the devtest2006 datasets. Based on the modeF 2003. Statistical phrase-based translatiorPrivceed-

chosen, we decoded thest2006 datasets using the  jngs of HLT/NAACL 2003, Edmonton, Canada.

same weights as fatevtest2006.
g Philipp Koehn. 2004. Pharaoh: A beam search decoder

34 Reallts for phrase-based statistical machine translation mod-
' els. InProceedings of AMTA.
Table 3 presents the results on theetest2006 files
using different settings. Bold values represent thg'@nz Josef Och and Hermann Ney. 2003. A system-
result for the settings that were also chosen for the atic comparison of various statistical alignment mod-
g els. Computational Linguistics, 29(1):19-51.

final test. Table 4 shows the results on the submitted

files (test2006). Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Erhard Hinrichs

and Dan Roth, editor®roceedings of the 41st Annual

Meeting of the Association for Computational Linguis-

The enhancements that we proposed provide smalltics, pages 160-167.

Improvements on théevtestZOQG f|Ie§. As expef:ted, Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
when we used the NN-ADJ inversion the ra&% Jing Zhu. 2002. Bleu: a method for automatic evalua-
increased from 0.545 to 0.675. The LM is the only tion of machine translation. IRroceedings of the 40th
model that opposes the tendency of the distortion Annual Meeting of the Association for Computational
model towards monotone phrase order. Linguistics (ACL), pages 311-318.

Phr aner delivers a very good baseline system.
Using only the baseline system, we obtain +0.68 on

3.5 Conclusions
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L anguage M odels and Reranking for Machine Translation

Marian Olteanu, Pasin Suriyentrakorn and Dan Moldovan
Language Computer Corp.
Richardson, TX 75080
{mari an, psuri, nol dovan}@ anguageconput er. com

Abstract the WMT 2006 shared task we opted for the rerank-

ing solution. This paper describes our solution and
Complex Language Models cannotbe eas-  results.

ily integrated in the first pass decoding of o
a Statistical Machine Translation system— 2 System Description

the decode_r queries the LM a very I_arge We developed for the WMT 2006 shared task a sys-
number of times; the search process in the : . . .
. . . tem that is trained on a (a) word-aligned bilingual
decoding builds the hypotheses incremen- : .
corpus, (b) alarge monolingual (English) corpus and
tally and cannot make use of LMs that . .
(c) an English treebank and it is capable of translat-
analyze the whole sentence. We present . .
. : , ing from a source language (German, Spanish and
in this paper the Language Computer’s French) into English
system for WMTO06 that employs LM- ' 2 -
) Our system embedBhr aner < (used for mini-
powered reranking on hypotheses gener- - . .
ted by ohr based SMT svstemn mum error rate training, decoding, decoding tools),
ated by phrase-base systems Phar aoh (Koehn, 2004) (decoding)Car nel 3
(helper forPhar aoh in n-best generation), Char-
1 Introduction niak’s parser (Charniak, 2001) (language model) and

4 :
Statistical machine translation (SMT) systems (:ong”"vI (n-gram LM construction).

bine a number of translation models with one op 1 Trandation table construction
more language models. Adding complex Ianguagﬁ/e

: : L9 developed a component that builds a translation

models in the incremental process of decoding is a .
: table from a word-aligned parallel corpus. The com-
very challenging task. Some language models can ) ;
onent generates the translation table according to
only score sentences as a whole. Also, SMT de; . . L,
. he process described in the Pharaoh training man-
coders generate during the search process a very .
. uaP. It generates a vector of 5 numeric values for
large number of partial hypotheses and query the

language model/models cach phrase pair:

The solution to these problems is either to use e phrase translation probability:
multiple iterations for decoding, to make use of the - -
complex LMs only for complete hypotheses in the o(Fle) = count(f,e) (el F) = count(f,e)
search space or to generate n-best lists and to rescore count(e) ’ f

count(f)
the hypotheses using also the additional LMs. F 2http://www.phramer.org/ — Java-based open-source phrase

During the translation of the first 10 sentences ofdge based SMT system
Vtest2006.de dataset using Phramer and the configuration de- http://www.isi.edu/licensed-sw/carmel/
scribed in Section 3, the 3-gram LM was queried 27 million  “http://www.speech.sri.com/projects/srilm/
times (3 million distinct queries). Shttp://www.iccs.inf.ed.ac.uképkoehn/training.tgz
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e lexical weighting (Koehn et al., 2003): No. of sentences 96.7 M

No. of tokens 2.3B

o - 1 Vocabulary size 16M

lez(fle,a) = H [G1G,j) € a}| Z wifiles) Distinct grams 1B
i=1 V(i,7)€a

Table 1: English Gigaword LM statistics
S| £ P M 1 . .
lex(e|f,a) = 1_]1: m Z w(€]|f2)
J=

V(i,j)€a

2.4 Language Modelsfor reranking

e phrase penaltyr(f|e) = e; log(r(f|e)) = 1 We employed both syntactic language models and
n-gram based language models extracted from very

2.2 Decoding large corpora for improving the quality of the trans-
. lation through reranking of the n-best list. These lan-
We used théPhar aoh decoder for both the Min-

. e uage models add a total of 13 new features to the
imum Error Rate Training (Och, 2003) and tesig

) 4 og-linear model.
dataset decoding. Althoudbhr aner provides de-
coding functionality equivalent t®har aoh’s, we 2.4.1 English Gigaword

preferred to uséhar aoh for this task because it  \we created large-scale n-gram language models
is much faster thahr amer — between 2 and 15 using English Gigaword Second Editt(EGW).
times faster, depending on the configuration — and \yg split the corpus into sentences, tokenized the
preliminary tests showed that there is no noticeabl@orpus, lower-cased the sentences, replaced every
difference between the output of these two in termgigit with “9” to cluster different numbers into the
of BLEU (Papineni et al., 2002) score. same unigram entry, filtered noisy sentences and we
The Iog—Iinear model uses 8 features: one diStOlf:o”ected n-gram counts (up to 4-grams). Table 1
tion feature, one basic LM feature, 5 features fronpjresents the statistics related to this process.
the translation table and one sentence length feature\we pruned the unigrams that appeared less than
o o 15 times in the corpus and all the n-grams that con-
2.3 Minimum Error Rate Training tain the pruned unigrams. We also pruned 3-grams
To determine the best coefficients of the log-linea@nd 4-grams that appear only once in the corpus.
model (\) for both the initial stage decoding andBased on these counts, we calculated 4 features for
the second stage reranking, we usedutsmoothed ~ €ach sentence: the logarithm of the probability of
Minimum Error Rate Training (MERT) component the sentence based on unigrams, on bigrams, on 3-
present in thé*>hr anmer package. The MERT com- grams and on 4-grams. The probabilities of each
ponent is highly efficient; the time required to searchvord in the analyzed translation hypotheses were
a set of 200,000 hypotheses is less than 30 secorfg@unded byl0~° (to avoid overall zero probability
per iteration (search from a previous/randonto  ©Of a sentence caused by zero-counts).
a local maximum) on a 3GHz P4 machine. We Based on the unpruned counts, we calculated 8
also used thelistributed decoding component from additional features: how many of the n-grams in the
Phr aner to speed up the search process. the hypothesis appear in the EGW corpus and also
We generated the n-best lists required for MERTIOW many of the n-grams in the hypotheses don't
using theCar el toolkit. Phar aoh outputs a lat- appear in the Gigaword corpus. (= 1..4). The
tice for each input sentence, from whicar mel  two types of counts will have different behavior only
extracts a specific number of hypotheses. We us&¢hen they are used to discriminate between two hy-
the europarl.en.srilm language model for decoding Potheses with different length.
the n-best lists. The number of n-grams in each of the two cases
The weighting vector is calculated individually IS Presented in Table 2.
for each subtask (pair of source and target lan-

Shttp://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
guages). catalogld=LDC2005T12
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sentence probability  n-gram hit/miss ally infinite. In order to avoid OOV issues for new
model model

T-grams 310K 310K text, we applied a heuristic to improve the probabil-
2-grams 45 M 45 M ity of properly translating compound words that are
3-grams 123 M 283 M

not present in the translation table. We extracted the
German vocabulary from the translation table. Then,
Table 2: Number of n-gram entries in the EGW LMfor each word in a text to be translated (development
set or test set), we checked if itis present in the trans-
lation dictionary. If it was not present, we checked
24.2 Charniak parsing if it can be obtained by concatenating two words in
We used Charniak’s parser as an additional LMhe dictionary. If we found at least one variant of
(Charniak, 2001) in reranking. The parser prosplitting the unknown word, we altered the text by
vides one feature for our model — the log-grammardividing the word into the corresponding pieces. If
probability of the sentence. there are multiple ways of splitting, we randomly
We retrained the parser on lowercased Penn Trel@0k one. The minimum length for the generated
bank Il (Marcus et al., 1993), to match the lowerword is 3 letters.
cased output of the MT decoder. In order to minimize the risk of inserting words
Considering the huge number of hypotheses th##at are not in the reference translation into the out-
needed to be parsed for this task, we set it to parg@it translation, we applied a OOV pruning algorithm

very fast (using the command-line paramef&t0’).  (Koehn et al., 2005) —we removed every word in the
text to be translated that we know we cannot trans-

2.5 Reranking and voting late (doesn't appear either in the foreign part of the
A X weights vector trained over the 8 basic featureBarallel corpus used for training) or in what we ex-
(\1) is used to decode a n-best list. Then, wector !oect to be prese_nt in an English text (doesn’t appear
trained over all 21 featuresyf) is used to rerank In the English Gigaword corpus). This method was

the n-best list, potentially generating a new first-bestPPlied to all the input text that was automatically
hypothesis. translated — development and test; German, French

4-grams 235 M 675 M

To improve the results, we generated during trair@"d Spanish.
ing a set of distinch, weight vectors (4-10 different ~ For the German-to-English translation, the com-
weight vectors). Each, picks a preferred hypoth- pound word splitting algorithm was applied before
esis. The final hypothesis is chosen using a votingte unknown word removal process.
mechanism. The computational cost of the voting
process is very low - each of the is applied onthe 3 Experimental Setup

same set of hypotheses - generated by a sikgle
yp g y 9 We generated the translation tables for each pair

2.6 Preprocessing of languages using the alignment provided for this

. . shared task.
The vocabulary of languages like English, French We split thedev2006 files into two halves. The

and Spanish is relatively small. Most of the new, L — =
. . . first half was used to determing. Using A{, we

words that appear in a text and didn’t appear in a pre- ) .
. . . created a 500-best list for each sentence in the sec-
defined large text (i.e.: translation table) are abbre-
- , ond half. We calculated the value of the enhanced
viations and proper nouns, that usually don’t chang :
. : eatures (EGW and Charniak) for each of these hy-
their form when they are translated into another lan-

guage. ThusPhar aoh and Phr aner deal with potheses. Over this set of almost 500 K hypothe-

out-of-vocabulary (OOV) words — words that don't>¢S W€ computed 10 differeng using MERT. The

appear in the translation table — by copying therﬁearCh process was seeded usingadded with 0

or the new 13 features. We sorted thes by the

into the output translation. German is a compound- ) :

. P pot LEU score estimated by the MERT algorithm. We

ing language, thus the German vocabulary is virtu- — .
pruned manually thass that diverge too much from

"Time factor. Higher is better. Default: 210 the overall set of\;s (based on the observation that
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500-best best voting WPTOS in this shared task — mostly European Parliament

SEEN oracle M Az A best  proceedings, which is different than the domain of
- no split 25.70 both Treebank and English Gigaword — newswire.
— split 33.63 2581 2629 2628 2477 The enhanced LMs compete with the default LM

FR-EN 37.33 30.90 31.21 31.21 30.27

ES-EN 3806 3113 3115 3122 13095 (Whichis also part of the model) that is trained on

European Parliament data.
Table 3: BLEU scores on thaevtest2006 datasets.  The word splitting heuristics offers also a small

Comparison with WPTO5 results improvement for the performance on DE-EN sub-
task.
500-bestoracle \;  votingXa Voting seems to slightly improve the results in
DE-EN (split) 30.93 23.03 2355 some cases (ES-EN subtask). We believe that the
FR-EN 34.71 27.83  28.00 L . : .
ES-EN 3768 2997 3012 voting implementation reduces weights overfit-

ting, by combining the output of multiple local max-
Table 4: BLEU scores on thest2006 datasets. Sub- jma of the development set. The size of the de-
mitted results are bolded. velopment set used to generat¢ and X\, (1000
sentences) compensates the tendency of the un-

smoothed MERT algorithm to overfit (Och, 2003)

thesg vyeights are overfitting). We picked from th%y providing a high ratio between number of vari-
remaining set the best, and a preferred subset of ables and number of parameters to be estimated.

28 to be used in voting.
The\; was also used to decode a 500-best list for

each sentence in thdevtest2006 andtest2006 sets. References

After computing value of the enhanced features foéugene Charniak. 2001. Immediate-head parsing for

each of these hypotheses, we applied the rerankingjanguage models. IfProceedings of 39th Annual
algorithm to pick a new first-best hypothesis — the Meeting of the Association for Computational Linguis-

output of our system. tics, pages 124-131.

We used the following parameters for decodingPhilipp Koehn, Franz Josef Och, and Daniel Marcu.
-dl 5-b 0.0001 -ttable-limit 30 -s 200 for French and 2003. Statistical phrase-based translatiorPrivceed-
Spanish anddl 9 -b 0.00001 -ttable-limit 30 -s 200 ings of HLT/NAACL 2003, Edmonton, Canada.

for German. Philipp Koehn, Amittai Axelrod, Alexandra Birch
Mayne, Chris Callison-Burch, Miles Osborne, David
4 Results Talbot, and Michael White. 2005. Edinburgh system

description for the 2005 NIST MT Evaluation.

Table 3 presents the detailed results. of our'system %ilipp Koehn. 2004. Pharaoh: A beam search decoder
the devtest2006 datasets and comparison with WMT  for phrase-based statistical machine translation mod-

2006 best result®. The final results, on the test set els. InProceedings of AMTA.

of the shared task, are reported in Table 4. Mitchell Marcus, Beatrice Santorini, and Mary Ann

. Marcinkiewicz. 1993. Building a large annotated cor-
5 Conclusions pus of English: the Penn TreebankComputational
. Linguistics, 19(2):313-330.
By analyzing the results, we observe that a very

powerful component of our system is the MERTanz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Erhard Hinrichs

Comppnent ofPhramer . It provided a very high and Dan Roth, editor®roceedings of the 41st Annual
baseline for thelevtest2006 sets (WPTO5 test sets).  Meeting of the Association for Computational Linguis-

The additional language models seem to consis- tics, pages 160-167.
tently improve the results, although the increase igjshore papineni, Salim Roukos, Todd Ward, and Wei-
not very significant on FR-EN and ES-EN subtasks. Jing Zhu. 2002. Bleu: a method for automatic evalua-

The cause might be the specifics of the data involved tion of machine translation. IRroceedings of the 40th
Annual Meeting of the Association for Computational
®http://www.statmt.org/wpt05/mt-shared-task/ Linguistics (ACL), pages 311-318.
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Constraining the Phrase-Based, Joint Probability Statistical Translation
Model
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University of Edinburgh
2 Buccleuch Place
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a.c.birch-mayne@sms.ed.ac.uk

Abstract

The joint probability model proposed by
Marcu and Wong (2002) provides a strong
probabilistic framework for phrase-based
statistical machine translation (SMT). The
model’s usefulness is, however, limited by
the computational complexity of estimat-
ing parameters at the phrase level. We
present the first model to use word align-
ments for constraining the space of phrasal
alignments searched during Expectation
Maximization (EM) training. Constrain-
ing the joint model improves performance,
showing results that are very close to state-
of-the-art phrase-based models. It also al-
lows it to scale up to larger corpora and
therefore be more widely applicable.

1 Introduction

Machine translation is a hard problem because of
the highly complex, irregular and diverse nature
of natural languages. It is impossible to accurately
model all the linguistic rules that shape the trans-
lation process, and therefore a principled approach
uses statistical methods to make optimal decisions
given incomplete data.

The original IBM Models (Brown et al., 1993)
learn word-to-word alignment probabilities which
makes it computationally feasible to estimate
model parameters from large amounts of train-
ing data. Phrase-based SMT models, such as the
alignment template model (Och, 2003), improve
on word-based models because phrases provide
local context which leads to better lexical choice
and more reliable local reordering. However, most
phrase-based models extract their phrase pairs
from previously word-aligned corpora using ad-
hoc heuristics. These models perform no search
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for optimal phrasal alignments. Even though this
is an efficient strategy, it is a departure from the
rigorous statistical framework of the IBM Models.

Marcu and Wong (2002) proposed the joint
probability model which directly estimates the
phrase translation probabilities from the corpus in
a theoretically governed way. This model neither
relies on potentially sub-optimal word alignments
nor on heuristics for phrase extraction. Instead, it
searches the phrasal alignment space, simultane-
ously learning translation lexicons for both words
and phrases. The joint model has been shown to
outperform standard models on restricted data sets
such as the small data track for Chinese-English in
the 2004 NIST MT Evaluation (Przybocki, 2004).

However, considering all possible phrases and
all their possible alignments vastly increases the
computational complexity of the joint model when
compared to its word-based counterpart. In this
paper, we propose a method of constraining the
search space of the joint model to areas where
most of the unpromising phrasal alignments are
eliminated and yet as many potentially useful
alignments as possible are still explored. The
joint model is constrained to phrasal alignments
which do not contradict a set high confidence word
alignments for each sentence. These high con-
fidence alignments could incorporate information
from both statistical and linguistic sources. In this
paper we use the points of high confidence from
the intersection of the bi-directional Viterbi word
alignments to constrain the model, increasing per-
formance and decreasing complexity.
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2 Translation Models

2.1 Standard Phrase-based Model

Most phrase-based translation models (Och, 2003;
Koehn et al., 2003; Vogel et al., 2003) rely on
a pre-existing set of word-based alignments from
which they induce their parameters. In this project
we use the model described by Koehn et al. (2003)
which extracts its phrase alignments from a corpus
that has been word aligned. From now on we re-
fer to this phrase-based translation model as the
standard model. The standard model decomposes
the foreign input sentence F' into a sequence of
I phrases fq,...,f;. Each foreign phrase f; is
translated to an English phrase €; using the prob-
ability distribution 0(f;|¢;). English phrases may
be reordered using a relative distortion probability.

This model performs no search for optimal
phrase pairs. Instead, it extracts phrase pairs
(f:,€:) in the following manner. First, it uses the
IBM Models to learn the most likely word-level
Viterbi alignments for English to Foreign and For-
eign to English. It then uses a heuristic to recon-
cile the two alignments, starting from the points
of high confidence in the intersection of the two
Viterbi alignments and growing towards the points
in the union. Points from the union are selected if
they are adjacent to points from the intersection
and their words are previously unaligned.

Phrases are then extracted by selecting phrase
pairs which are ‘consistent” with the symmetrized
alignment, which means that all words within the
source language phrase are only aligned to the
words of the target language phrase and vice versa.
Finally the phrase translation probability distribu-
tion is estimated using the relative frequencies of
the extracted phrase pairs.

This approach to phrase extraction means that
phrasal alignments are locked into the sym-
metrized alignment. This is problematic because
the symmetrization process will grow an align-
ment based on arbitrary decisions about adjacent
words and because word alignments inadequately
represent the real dependencies between transla-
tions.

2.2 Joint Probability Model

The joint model (Marcu and Wong, 2002), does
not rely on a pre-existing set of word-level align-
ments. Like the IBM Models, it uses EM to align
and estimate the probabilities for sub-sentential
units in a parallel corpus. Unlike the IBM Mod-
155

els, it does not constrain the alignments to being
single words.

The joint model creates phrases from words and
commonly occurring sequences of words. A con-
cept, ¢;, is defined as a pair of aligned phrases
< &, f; >. A set of concepts which completely
covers the sentence pair is denoted by C. Phrases
are restricted to being sequences of words which
occur above a certain frequency in the corpus.
Commonly occurring phrases are more likely to
lead to the creation of useful phrase pairs, and
without this restriction the search space would be
much larger.

The probability of a sentence and its translation
is the sum of all possible alignments C, each of
which is defined as the product of the probability
of all individual concepts:

p(<e, f;>) D)

p(F,E):Z H

CeC <g;,f,>eC

The model is trained by initializing the trans-
lation table using Stirling numbers of the second
kind to efficiently estimate p(< €;, f; >) by cal-
culating the proportion of alignments which con-
tain p(< €;, f; >) compared to the total number
of alignments in the sentence (Marcu and Wong,
2002). EM is then performed by first discovering
an initial phrasal alignments using a greedy algo-
rithm similar to the competitive linking algorithm
(Melamed, 1997). The highest probability phrase
pairs are iteratively selected until all phrases are
are linked. Then hill-climbing is performed by
searching once for each iteration for all merges,
splits, moves and swaps that improve the proba-
bility of the initial phrasal alignment. Fractional
counts are collected for all alignments visited.

Training the IBM models is computationally
challenging, but the joint model is much more de-
manding. Considering all possible segmentations
of phrases and all their possible alignments vastly
increases the number of possible alignments that
can be formed between two sentences. This num-
ber is exponential with relation to the length of the
shorter sentence.

3 Constraining the Joint Model

The joint model requires a strategy for restricting
the search for phrasal alignments to areas of the
alignment space which contain most of the proba-
bility mass. We propose a method which examines



phrase pairs that are consistent with a set of high
confidence word alignments defined for the sen-
tence. The set of alignments are taken from the in-
tersection of the bi-directional Viterbi alignments.

This strategy for extracting phrase pairs is simi-
lar to that of the standard phrase-based model and
the definition of ‘consistent’ is the same. How-
ever, the constrained joint model does not lock
the search into a heuristically derived symmetrized
alignment. Joint model phrases must also occur
above a certain frequency in the corpus to be con-
sidered.

The constraints on the model are binding during
the initialization phase of training. During EM,
inconsistent phrase pairs are given a small, non-
zero probability and are thus not considered un-
less unaligned words remain after linking together
high probability phrase pairs. All words must be
aligned, there is no NULL alignment like in the
IBM models.

By using the IBM Models to constrain the joint
model, we are searching areas in the phrasal align-
ment space where both models overlap. We com-
bine the advantage of prior knowledge about likely
word alignments with the ability to perform a
probabilistic search around them.

4 Experiments

All data and software used was from the NAACL
2006 Statistical Machine Translation workshop
unless otherwise indicated.

4.1 Constraints

The unconstrained joint model becomes in-
tractable with very small amounts of training data.
On a machine with 2 Gb of memory, we were
only able to train 10,000 sentences of the German-
English Europarl corpora. Beyond this, pruning is
required to keep the model in memory during EM.
Table 1 shows that the application of the word con-
straints considerably reduces the size of the space
of phrasal alignments that is searched. It also im-
proves the BLEU score of the model, by guiding it
to explore the more promising areas of the search
space.

4.2 Scalability

Even though the constrained joint model reduces
complexity, pruning is still needed in order to scale
up to larger corpora. After the initialization phase
of the training, all phrase pairs with counts less
156

Unconstrained | Constrained
No. Concepts 6,178k 1,457k
BLEU 19.93 22.13
Time(min) 299 169

Table 1. The impact of constraining the joint model
trained on 10,000 sentences of the German-English
Europarl corpora and tested with the Europarl test set
used in Koehn et al. (2003)

than 10 million times that of the phrase pair with
the highest count, are pruned from the phrase ta-
ble. The model is also parallelized in order to
speed up training.

The translation models are included within a
log-linear model (Och and Ney, 2002) which al-
lows a weighted combination of features func-
tions. For the comparison of the basic systems
in Table 2 only three features were used for both
the joint and the standard model: p(e|f), p(fle)
and the language model, and they were given equal
weights.

The results in Table 2 show that the joint model
is capable of training on large data sets, with a
reasonable performance compared to the standard
model. However, here it seems that the standard
model has a slight advantage. This is almost cer-
tainly related to the fact that the joint model results
in a much smaller phrase table. Pruning eliminates
many phrase pairs, but further investigations indi-
cate that this has little impact on BLEU scores.

BLEU Size
Joint Model 25.49 2.28
Standard Model | 26.15 | 19.04

Table 2. Basic system comparisons: BLEU scores
and model size in millions of phrase pairs for Spanish-
English

The results in Table 3 compare the joint and the
standard model with more features. Apart from
including all Pharaoh’s default features, we use
two new features for both the standard and joint
models: a 5-gram language model and a lexical-
ized reordering model as described in Koehn et al.
(2005). The weights of the feature functions, or
model components, are set by minimum error rate
training provided by David Chiang from the Uni-
versity of Maryland.

On smaller data sets (Koehn et al., 2003) the
joint model shows performance comparable to the
standard model, however the joint model does
not reach the level of performance of the stan-



EN-ES | ES-EN
Joint
3-gram, dl4 20.51 26.64
5-gram, d16 26.34 | 27.17
+ lex. reordering | 26.82 | 27.80
Standard Model
5-gram, d16
+ lex. reordering | 31.18 | 31.86

Table 3. Bleu scores for the joint model and the stan-
dard model showing the effect of the 5-gram language
model, distortion length of 6 (dl) and the addition of
lexical reordering for the English-Spanish and Spanish-
English tasks.

dard model for this larger data set. This could
be due to the fact that the joint model results in
a much smaller phrase table. During EM only
phrase pairs that occur in an alignment visited dur-
ing hill-climbing are retained. Only a very small
proportion of the alignment space can be searched
and this reduces the chances of finding optimum
parameters. The small number of alignments vis-
ited would lead to data sparseness and over-fitting.
Another factor could be efficiency trade-offs like
the fast but not optimal competitive linking search
for phrasal alignments.

4.3 German-English submission

We also submitted a German-English system using
the standard approach to phrase extraction. The
purpose of this submission was to validate the syn-
tactic reordering method that we previously pro-
posed (Collins et al., 2005). We parse the Ger-
man training and test corpus and reorder it accord-
ing to a set of manually devised rules. Then, we
use our phrase-based system with standard phrase-
extraction, lexicalized reordering, lexical scoring,
5-gram LM, and the Pharaoh decoder.

On the development test set, the syntactic re-
ordering improved performance from 26.86 to
27.70. The best submission in last year’s shared
task achieved a score of 24.77 on this set.

5 Conclusion

We presented the first attempt at creating a system-
atic framework which uses word alignment con-
straints to guide phrase-based EM training. This
shows competitive results, to within 0.66 BLEU
points for the basic systems, suggesting that a
rigorous probabilistic framework is preferable to
heuristics for extracting phrase pairs and their
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probabilities.

By introducing constraints to the alignment
space we can reduce the complexity of the joint
model and increase its performance, allowing it to
train on larger corpora and making the model more
widely applicable.

For the future, the joint model would benefit
from lexical weighting like that used in the stan-
dard model (Koehn et al., 2003). Using IBM
Model 1 to extract a lexical alignment weight for
each phrase pair would decrease the impact of data
sparseness, and other kinds smoothing techniques
will be investigated. Better search algorithms for
Viterbi phrasal alignments during EM would in-
crease the number and quality of model parame-
ters.

This work was supported in part under the
GALE program of the Defense Advanced Re-
search Projects Agency, Contract No. HROO011-
06-C-0022.
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Abstract

The Microsoft Research trandation system is a
syntacticaly informed phrasal SMT system that
uses a phrase trandation model based on
dependency treelets and a global reordering model
based on the source dependency tree. These
models are combined with several other
knowledge sources in a log-linear manner. The
weights of the individual components in the log-
linear model are set by an automatic parameter-
tuning method. We give a brief overview of the
components of the system and discuss our
experience with the Europarl data translating from
English to Spanish.

1. Introduction

The dependency treelet trandation system
developed at MSR is a statistical MT system that
takes advantage of linguistic tools, namely a
source language dependency parser, as well as a
word alignment component. [1]

To train a trandation system, we require a
sentence-aligned parallel corpus. First the source
side is parsed to obtain dependency trees. Next the
corpus is word-aligned, and the source
dependencies are projected onto the target
sentences using the word alignments. From the
aligned dependency corpus we extract all treelet
trandation pairs, and train an order model and a
bi-lexical dependency model.

To trandlate, we parse the input sentence, and
employ a decoder to find a combination and
ordering of treelet translation pairs that cover the
source tree and are optimal according to a set of
models. In a now-common generalization of the
classic noisy-channel framework, we use a log-
linear combination of models [2], asin below:
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translation(S, F, /| )=argmax
T

) Aff<s,T>]

feF

Such an approach toward translation scoring has
proven very effective in practice, as it alows a
translation system to incorporate information from
a variety of probabilistic or non-probabilistic
sources. The weights A = { A } are selected by
discriminatively training against held out data.

2. System Details

A brief word on notation: s and t represent source
and target lexical nodes; Sand T represent source
and target trees; sand t represent source and target
treelets (connected subgraphs of the dependency
tree). The expression OtO T refers to all the
lexical items in the target language tree T and [T
refers to the count of lexical itemsin T. We use
subscripts to indicate selected words: T, represents
then lexical itemin anin-order traversal of T.

2.1. Training

We use the broad coverage dependency parser
NLPWIN [3] to obtain source language
dependency trees, and we use GIZA++ [4] to
produce word alignments. The GIZA++ training
regimen and parameters are tuned to optimize
BLEU [5] scores on held-out data. Using the word
alignments, we follow a set of dependency tree
projection heuristics [1] to construct target
dependency trees, producing a word-aigned
paralel dependency tree corpus. Treelet
tranglation pairs are extracted by enumerating all
source treelets (to a maximum size) aligned to a
target treelet.

2.2.Decoding

We use a tree-based decoder, inspired by dynamic
programming. It searches for an approximation of

Proceedings of the Workshop on Statistical Machine Translation, pages 158-161,
New York City, June 2006. (©)2006 Association for Computational Linguistics
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Figure 1: Aligned dependency tree pair, annotated with head-
relative positions

the n-best trandations of each subtree of the input
dependency tree. Trandlation candidates are
composed from treelet trandation pairs extracted
from the training corpus. This process is described
in more detail in [1].

2.3.Modds

2.3.1. Channd models

We employ several channel models. a direct
maximum likelihood estimate of the probability of
target given source, as well as an estimate of
source given target and target given source using
the word-based IBM Model 1 [6]. For MLE, we
use absolute discounting to smooth the
probabilities:

c(s,t)— A

c(s,*)

PMLE(t|s)=

Here, ¢ represents the count of instances of the
treelet pair [$, tOin the training corpus, and A is
determined empirically.

For Model 1 probabilities we compute the sum
over al possible alignments of the treelet without
normalizing for length. The calculation of source
given target is presented below; target given
source is calculated symmetrically.

=112 r(ls)

tEt sEs

2.3.2. Bilingual n-gram channel models

Traditional phrasal SMT systems are beset by a
number of theoretical problems, such asthe ad hoc
estimation of phrasal probability, the failure to
model the partition probability, and the tenuous
connection between the phrases and the
underlying word-based alignment model. In
string-based SMT systems, these problems are
outweighed by the key role played by phrases in
capturing “local” order. In the absence of good
global ordering models, this has led to an
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inexorable push towards longer and longer
phrases, resulting in serious practical problems of
scale, without, in the end, obviating the need for a
real global ordering story.

In [13] we discuss these issues in greater detail
and also present our approach to this problem.
Briefly, we take as our basic unit the Minimal
Trandation Unit (MTU) which we define as a set
of source and target word pairs such that there are
no word alignment links between distinct MTUs,
and no smaller MTUs can be extracted without
violating the previous constraint. In other words,
these are the minimal non-compositional phrases.
We then build models based on n-grams of MTUs
in source string, target string and source
dependency tree order. These bilingual n-gram
models in combination with our global ordering
model allow us to use shorter phrases without any
loss in quality, or alternately to improve quality
while keeping phrase size constant.

As an example, consider the aligned sentence
pair in Figure 1. There are seven MTUs:

m, = <we should / hemos>

m, = <NULL / de>

m; = <follow / cumplir>

m, = <the/ el>

ms = <Rio/ Rio>

me = <agenda / programa>

m; = <NULL / de>
We can then predict the probability of each MTU
in the context of (a) the previous MTUs in source
order, (b) the previous MTUs in target order, or
(c) the ancestor MTUs in the tree. We consider al
of these traversal orders, each acting as a separate
feature function in the log linear combination. For
source and target traversal order we use a trigram
model, and abigram model for tree order.

2.3.3. Target language models

We use both a surface level trigram language
model and a dependency-based bigram language
model [7], similar to the bilexical dependency
modes used in some English Treebank parsers

(eg. [8]).

[T|
surf H trtsmf T )

|T|
btlex U bidep Tl| parent ( Ti ))

Prisut 1S @ Kneser-Ney smoothed trigram language
model trained on the target side of the training
corpus, and Puiec iS @ Kneser-Ney smoothed



bigram language model trained on target language
dependencies extracted from the aligned parallel
dependency tree corpus.

2.3.4. Order mod€

The order model assigns a probability to the
position (pos) of each target node relative to its
head based on information in both the source and
target trees:

P (order(T)|S,T)=]] P(pos(t, parent(1))|S,T)
order eT

Here, position is modeled in terms of closeness to
the head in the dependency tree. The closest pre-
modifier of a given head has position -1; the
closest post-modifier has a position 1. Figure 1
shows an example dependency tree pair annotated
with head-relative positions.

We use a small set of features reflecting local
information in the dependency tree to model P(pos
(t,parent(t)) | S, T):

» Lexica itemsof t and parent(t), the parent of t
in the dependency tree.

» Lexica items of the source nodes aligned to t
and head(t).

e Part-of-speech ("cat") of the source nodes
aligned to the head and modifier.

» Head-relative position of the source node
aligned to the source modifier.

These features along with the target feature are

gathered from the word-aigned parale

dependency tree corpus and used to tran a

statistical model. In previous versions of the

system, we trained a decision tree model [9]. In

the current version, we explored log-linear

models. In addition to providing a different way of

combining information from multiple features,

log-linear models alow us to model the similarity

among different classes (target positions), which is

advantageous for our task.

We implemented a method for automatic
selection of features and feature conjunctions in
the log-linear model. The method greedily selects
feature conjunction templates that maximize the
accuracy on a development set. Our feature
selection study showed that the part-of-speech
labels of the source nodes aligned to the head and
the modifier and the head-relative position of the
source node corresponding to the modifier were
the most important features. It was useful to
concatenate the part-of-speech of the source head
with every feature. This effectively achieves
learning of separate movement models for each
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source head category. Lexical information on the
pairs of head and dependent in the source and
target was also very useful.

To model the similarity among different target
classes and to achieve pooling of data across
similar classes, we added multiple features of the
target position. These features let our model know,
for example, that position -5 looks more like
position -6 than like position 3. We added a
feature “positive”/“negative” which is shared by
all positive/negative positions. We also added a
feature looking at the displacement of a position in
the target from the corresponding position in the
source and features which group the target
positions into bins. These features of the target
position are combined with features of the inpuit.

This model was trained on the provided
paralel corpus. As described in Section 2.1 we
parsed the source sentences, and projected target
dependencies. Each head-modifier pair in the
resulting target trees constituted a training instance
for the order model.

The score computed by the log-linear order
model is used as a single feature in the overall 1og-
linear combination of models (see Section 1),
whose parameters were optimized using
MaxBLEU [2]. This order model replaced the
decision tree-based model described in [1].

We compared the decision tree model to the
log-linear model on predicting the position of a
modifier using reference parallel sentences,
independent of the full MT system. The decision
tree achieved per decision accuracy of 69%
whereas the log-linear model achieved per
decision accuracy of 79%. In the context of the
full MT system, however, the new order model
provided a more modest improvement in the
BLEU score of 0.39%.

2.3.5. Other models

We include two pseudo-models that help balance
certain biases inherent in our other models.
» Tredet count. This feature is a count of
treelets used to construct the candidate. It
acts as a bias toward trandations that use a
smaler number of tredets, hence toward
larger sized treelets incorporating more
context.

«  Word count. We dso include a count of the
words in the target sentence. This feature

! The per-decision accuracy numbers were obtained on
different (random) splits of training and test data.



helps to offset the bias of the target
language model toward shorter sentences.

3. Discussion

We participated in the English to Spanish track,
using the supplied bilingual data only. We used
only the target side of the bilingual corpus for the
target language model, rather than the larger
supplied language model. We did find that
increasing the target language order from 3 to 4
had a noticeable impact on trandation quality. It is
likely that a larger target language corpus would
have an impact, but we did not explore this.

BLEU
Basdline treelet system 27.60
Add bilingual MTU models 28.42

Replace DT order model with log-linear model 28.81
Table 1: Results on development set

We found that the addition of bilingual n-gram
based models had a substantial impact on
trandation quality. Adding these models raised
BLEU scores about 0.8%, but anecdotal evidence
suggests that human-evaluated quality rose by
much more than the BLEU score difference would
suggest. In general, we felt that in this corpus, due
to the great diversity in trandations for the same
source language words and phrases, and given just
one reference trandation, BLEU score correlated
rather poorly with human judgments. This was
borne out in the human evaluation of the fina test
results. Humans ranked our system first and
second, in-domain and out-of-domain
respectively, even though it was in the middle of a
field of ten systems by BLEU score. Furthermore,
n-gram channel models may provide greater
robustness. While our BLEU score dropped 3.61%
on out-of-domain data, the average BLEU score of
the other nine competing systems dropped 5.11%.
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Abstract

This work presents translation results for
the three data sets made available in the
shared task “Exploiting Parallel Texts for
Statistical Machine Translation” of the
HLT-NAACL 2006 Workshop on Statisti-
cal Machine Translation. All results pre-
sented were generated by using the N-
gram-based statistical machine translation
system which has been enhanced from the
last year’s evaluation with a tagged target
language model (using Part-Of-Speech
tags). For both Spanish-English transla-
tion directions and the English-to-French
translation task, the baseline system al-
lows for linguistically motivated source-
side reorderings.

1 Introduction

The statistical machine translation approach used
in this work implements a log-linear combination
of feature functions along with a translation model
which is based on bilingual n-grams (de Gispert and
Marifio, 2002).

This translation model differs from the well
known phrase-based translation approach (Koehn
et al., 2003) in two basic issues: first, training data
is monotonously segmented into bilingual units; and
second, the model considers n-gram probabilities in-
stead of relative frequencies. This translation ap-
proach is described in detail in (Marifio et al., 2005).

For those translation tasks with Spanish or En-
glish as target language, an additional tagged (us-
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ing POS information) target language model is used.
Additionally a reordering strategy that includes POS
information is described and evaluated.

Translation results for all six translation directions
proposed in the shared task are presented and dis-
cussed. Both translation directions are considered
for the pairs: English-Spanish, English-French,
and English-German.

The paper is structured as follows: Section 2
briefly outlines the baseline system. Section 3 de-
scribes in detail the implemented POS-based re-
ordering strategy. Section 4 presents and discusses
the shared task results and, finally, section 5 presents
some conclusions and further work.

2 Baseline N-gram-based SMT System

As already mentioned, the translation model used
here is based on bilingual n-grams. It actually con-
stitutes a language model of bilingual units, referred
to as tuples, which approximates the joint probabil-
ity between source and target languages by using
bilingual n-grams (de Gispert and Marifio, 2002).

Tuples are extracted from a word-to-word aligned
corpus according to the following two constraints:
first, tuple extraction should produce a monotonic
segmentation of bilingual sentence pairs; and sec-
ond, no smaller tuples can be extracted without vi-
olating the previous constraint. See (Crego et al.,
2004) for further details.

For all experiments presented here, the translation
model consisted of a 4-gram language model of tu-
ples. In addition to this bilingual n-gram translation
model, the baseline system implements a log linear
combination of five feature functions.
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These five additional models are:

o A target language model. 5-gram of the target
side of the bilingual corpus.

e A word bonus. Based on the number of tar-
get words in the partial-translation hypothesis,
to compensate the LM preference for short sen-
tences.

e A Source-to-target lexicon model. Based on
IBM Model 1 lexical parameters(Brown et al.,
1993), providing a complementary probability
for each tuple in the translation table. These
parameters are obtained from source-to-target
alignments.

o A Target-to-source lexicon model. Analo-
gous to the previous feature, but obtained from
target-to-source alignments.

o A Tagged (POS) target language model. This
feature implements a 5-gram language model
of target POS-tags. In this case, each trans-
lation unit carried the information of its target
side POS-tags, though this is not used for trans-
lation model estimation (only in order to eval-
uate the target POS language model at decod-
ing time). Due to the non-availability of POS-
taggers for French and German, it was not pos-
sible to incorporate this feature in all transla-
tion tasks considered, being only used for those
translation tasks with Spanish and English as
target languages.

The search engine for this translation system is
described in (Crego et al., 2005) and implements
a beam-search strategy based on dynamic program-
ming, taking into account all feature functions de-
scribed above, along with the bilingual n-gram trans-
lation model. Monotone search is performed, in-
cluding histogram and threshold pruning and hy-
pothesis recombination.

An optimization tool, which is based on a down-
hill simplex method was developed and used for
computing log-linear weights for each of the feature
functions. This algorithm adjusts the weights so that
a non-linear combination of BLEU and NIST scores
is maximized over the development set for each of
the six translation directions considered.
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This baseline system is actually very similar to
the system used for last year’s shared task “Exploit-
ing Parallel Texts for Statistical Machine Transla-
tion” of ACL’05 Workshop on Building and Us-
ing Parallel Texts: Data-Driven Machine Translation
and Beyond (Banchs et al., 2005), whose results
are available at: http://www.statmt.org/wpt05/
mt-shared-task/. A more detailed description of
the system can be found in (2005).

The tools used for POS-tagging were Freel-
ing (Carreras et al., 2004) for Spanish and
TnT (Brants, 2000) for English. All language mod-
els were estimated using the SRI language mod-
eling toolkit. Word-to-word alignments were ex-
tracted with GIZA++. Improvements in word-to-
word alignments were achieved through verb group
classification as described in (de Gispert, 2005).

3 Reordering Framework

In this section we outline the reordering framework
used for the experiments (Crego and Marifio, 2000).
A highly constrained reordered search is performed
by means of a set of reordering patterns (linguisti-
cally motivated rewrite patterns) which are used to
extend the monotone search graph with additional
arcs.

To extract patterns, we use the word-to-word
alignments (the union of both alignment directions)
and source-side POS tags. The main procedure con-
sists of identifying all crossings produced in the

Figure 1: Reordering patterns are extracted using
word-to-word alignments. The generalization power
is achieved through the POS tags. Three instances of
different patterns are extracted using the sentences
in the example.

c3
c2
C1
Ideas excelentes y constructivas

NC AQ cC AQ

AL

excellent and constructive ideas

Cl: NCAQ-10
C2: NCAQCC-120
C3:NCAQCCAQ-1230



word-to-word alignments. Once a crossing has been
detected, its source POS tags and alignments are
used to account for a new instance of pattern. The
target side of a pattern (source-side positions after
reordering), is computed using the original order
of the target words to which the source words are
aligned. See figure 1 for a clarifying example of
pattern extraction.

The monotone search graph is extended with re-
orderings following the patterns found in training.
The procedure identifies first the sequences of words
in the input sentence that match any available pat-
tern. Then, each of the matchings implies the ad-
dition of an arc into the search graph (encoding the
reordering learnt in the pattern). However, this ad-
dition of a new arc is not performed if a translation
unit with the same source-side words already exists
in the training. Figure 2 shows an example of the
procedure.

Figure 2: Three additional arcs have been added
to the original monotone graph (bold arcs) given
the reordering patterns found matching any of the
source POS tags sequence.

programa ambicioso y realista
NC AQ CC AQ

NCAQ-10

NCAQCC-120
NCAQCCAQ-1230

ambici6so programa
» »
grama’ ambicioso y 7 realista

y realista

Once the search graph is built, the decoder tra-
verses the graph looking for the best translation.
Hence, the winner hypothesis is computed using
all the available information (the whole SMT mod-
els). The reordering strategy is additionally sup-
ported by a 5-gram language model of reordered
source POS-tags. In training, POS-tags are re-
ordered according with the extracted reordering pat-
terns and word-to-word links. The resulting se-
quence of source POS-tags are used to train the n-
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gram LM.

Notice that this reordering framework has only
been used for some translation tasks (Spanish-
to-English, English-to-Spanish and English-to-
French). The reason is double: first, because we
did not have available a French POS-tagger. Second,
because the technique used to learn reorderings (de-
tailed below) does not seem to apply for language
pairs like German-English, because the agglutina-
tive characteristic of German (words are formed by
joining morphemes together).

Table 1: BLEU, NIST and mWER scores (com-
puted using two reference translations) obtained for
both translation directions (Spanish-to-English and
English-to-Spanish).

[ Conf [ BLEU [ NIST | mWER |

Spanish-to-English

base 55.23 | 10.69 | 34.40
+rgraph | 55.59 | 10.70 | 34.23
+pos 56.39 | 10.75 | 33.75
English-to-Spanish

base 48.03 | 9.84 | 41.18
+rgraph | 48.53 | 9.81 41.15
+pos 4891 | 9.91 40.29

Table 1 shows the improvement of the original
baseline system described in section 2 (base), en-
hanced using reordering graphs (+rgraph) and pro-
vided the tagged-source language model (+pos).
The experiments in table 1 were not carried out over
the official corpus of this shared task. The Spanish-
English corpus of the TC-Star 2005 Evaluation was
used. Due to the high similarities between both cor-
pus (this shared task corpus consists of a subset of
the whole corpus used in the TC-Star 2005 Evalua-
tion), it makes sense to think that comparable results
would be obtained.

It is worth mentioning that the official corpus of
the shared task (HLT-NAACL 2006) was used when
building and tuning the present shared task system.

4 Shared Task Results

The data provided for this shared task corresponds
to a subset of the official transcriptions of the Euro-
pean Parliament Plenary Sessions. The development
set used to tune the system consists of a subset (500
first sentences) of the official development set made
available for the Shared Task.



Table 2 presents the BLEU, NIST and mWER
scores obtained for the development-test data set.
The last column shows whether the target POS lan-
guage model feature was used or not. Computed
scores are case sensitive and compare to one refer-
ence translation. Tasks in bold were conducted al-
lowing for the reordering framework. For French-
to-English task, block reordering strategy was used,
which is described in (Costa-jussa et al., 2006). As it
can be seen, for the English-to-German task we did
not use any of the previous enhancements.

Table 2: Translation results

[ Task | BLEU | NIST | mWER ] tPOS |
en—es | 2950 | 7.32 58.95 yes
es—en | 30.29 | 7.51 57.72 yes
en—fr | 3023 | 740 59.76 no
fr —en | 30.21 | 7.61 56.97 yes
en—de | 17.40 | 5.61 71.18 no
de —en | 23.78 | 6.70 65.83 yes

Important differences can be observed between
the German-English and the rest of translation tasks.
They result from the greater differences in word
order present in this language pair (the German-
English results are obtained under monotone decod-
ing conditions). Also because the greater vocabulary
of words of German, which increases sparseness in
any task where German is envolved. As expected,
differences in translation accuracy between Spanish-
English and French-English are smaller.

5 Conclusions and Further Work

As it can be concluded from the presented results,
although in principle some language pairs (Spanish-
English-French) seem to have very little need for re-
orderings (due to their similar word order), the use
of linguistically-based reorderings proves to be use-
ful to improve translation accuracy.

Additional work is to be conducted to allow for
reorderings when translating from/to German.
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Abstract than lexical such apart-of-speech (PoS)emma
andchunk IOB label

We describe theDv-CcOMBO system pre-
sented at the Shared Task. Our approach
explores the possibility of working with
alignments at different levels of abstrac-
tion using different degrees of linguis-
tic analysis from the lexical to the shal-
low syntactic level. Translation mod-
els are built on top of combinations of
these alignments. We present results
for the Spanish-to-English and English-to-
Spanish tasks. We show that liniguistic in-
formation may be helpful, specially when
the target language has a rich morphology.

For instance, suppose the case illustrated in Fig-
ure 1 where the lexical iterplays’ is seen acting as
a verb and as a noun. Considering these two words,
with the same lexical realization, as a single token
adds noise to the word alignment process. Repre-
senting this information, by means of linguistic data
views, asplays, -’ and‘playsy s’ would allow us
to distinguish between the two cases. ldeally, one
would wish to have still deeper information, moving
through syntax onto semantics, suchwasd senses
Therefore, it would be possible to distinguish for
instance between two realizations ‘plays’ with
different meanings:he:x» plays s« guitaryy’ and
‘herrr plays s footballyy’. Of course, there is a
1 Introduction natural trade-off between the use of linguistic data

views and data sparsity. Fortunately, we hava data

The main motivation behind our work is to introduceenough so that statistical parameter estimation re-
linguistic information, other than lexical units, to themains reliable.
process of building word and phrase alignments. In

the last years, many efforts have been devoted to thés{lh? app[joich Whl'(Ch 2'% glsoseﬁt to ours tls dthat by
matter (Yamada and Knight, 2001; Gildea, 2003). chafer and Yarowsky ( ) who suggested a com-

: . o bination of models based on shallow syntactic anal-
Following our previous work (Giménez and

ysis (part-of-speech tagging and phrase chunking).

Marquez, 2005), we use shallow syntactic |nforma;|_hey followed a backoff strategy in the application

ion nerate more preci lignments. Far from . . S
tion to ge gate ore precise alighme f(s a Oof their models. Decoding was based on Finite State
full syntactic complexity, we suggest going back to

the simpler alignment methods first described bAutomatg. Although no significant |mproveme_nt_|n
. - . MT quality was reported, results were promising

IBM (1993). Our approach exploits the possibil- . 7~ ) .

. . : . ) taking into account the short time spent in the de-

ity of working with alignments at two different lev- L .

. h velopment of the linguistic tools utilized.

els of granularity, lexical (words) and shallow pars-

ing (chunks). Apart from redefining the scope of Our system is further described in Section 2. Re-

the alignment unit, we may use different linguisticsults are reported in Section 3. Conclusions and fur-

data views. We enrich tokens with features furthether work are briefly outlined in Section 4.
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He plays football, he plays guitar, and he loves romantic plays
. a ' X ’ ’ ’ .
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VBZ VP N NP V! o 7 >
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P
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.
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(a) (futbol), (toca) (la guitarra) y (le) (encantan) (las obras romanticas).

or ¥ NN Ne vs VP pr NN NP prp NP VB VP pr NS 108 NP

(E1) (juegd

VP
PRP VE

Figure 1: A case of word alignment possibilities on top ofdakunits (a) and linguistic data views (b).

2 System Description and Marquez (2005). We build a single translation
_ model from the union of alignments from the 6 data
TheLDv-comBo system follows the SMT architec- yjews described above. This model must match the
ture suggested by the workshop organizers. We Uggy i format. For instance, if the input is annotated
the Pharachbeam-search decoder (Koehn, 2004). yith word and PoS (WP), so must be the translation
First, training data are linguistically annotated. INnodel. Therefore either the input must be enriched
order to achieve robustness the same tools have begi, linguistic annotation or translation models must
used to linguistically annotate both languages. Thge post-processed in order to remove the additional
SVMToot has been used for PoS-tagging (Giménegnguistic annotation. We did not observe significant
and Marquez, 2004). Thereeling® package (Car- (ifferences in either alternative. Therefore, we sim-

reras et al., 2004) has been used for lemmatizingyy adapted translations models to work under the
Finally, thePhrecosoftware (Carreras et al., 2005) agssumption of unannotated inputs (W).

has been used for shallow parsing. In this paper we
focus on data views at the word level. 6 differen -
data views have been built: (W) word, (L) Iemmaj;3 Experimental Work
(WP) word and PoS, (WC) word and chunk IOB Ia-?)_1 Setting
bel, (WPC) word, PoS and chunk IOB label, (LC)
lemma and chunk IOB label. We have used only the data sets and language model
Then, runningG1ZA++ (Och and Ney, 2003), we Provided by the organization. For evaluation we
obtain token alignments for each of the data viewd1ave selected a set of 8 metric variants correspond-
Combined phrase-based translation models are builgd to seven different familiessLEuU (n = 4) (Pa-
on top of the Viterbi alignments output I§§iZA++.  pineni et al., 2001)NIST (n = 5) (Lin and Hovy,
Phrase extraction is performed following the phrase2002),GTM F;-measured = 1, 2) (Melamed et al.,
extract algorithm depicted by Och (2002). We da2003), 1wER (Nief3en et al., 2000), RER (Leusch
not apply any heuristic refinement. We work with€t al., 2003),ROUGE (ROUGE-S*) (Lin and Och,
phrases up to 5 tokens. Phrase pairs appearing o@904) andMETEOR® (Banerjee and Lavie, 2005).
once have been discarded. Scoring is performed [@ptimization of the decoding parameteis £, Aim,
relative frequency. No smoothing is applied. A\w) is performed by means of tHigzownhill Simplex
In this paper we focus on the global phrase exMethod in MultidimensiongWilliam H. Press and
traction GPHEX) method described by GiménezFlannery, 2002) over theLeu metric.

The SVMTool may be freely downloaded at 3For Spanish-to-English we applied all available modules:
http://www.Isi.upc.es/nlp/SVMTool/ . exact + stemming + WordNet stemming + WordNet synonymy
2Freeling Suite of Language Analyzers may be downloadetbokup. However, for English-to-Spanish we were forcedse u

athttp://wwwe.Isi.upc.es/ nlp/freeling/ the exact module alone.
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Spanish-to-English
| System | 1-PER| 1-WER| BLEU-4 | GTM-1 | GTM-2 | METEOR | NIST-5 | ROUGE-S*|
Baseline 0.5514| 0.3741| 0.2709] 0.6159] 0.2579| 0.5836| 7.2958 0.3643
LDV-cOMBO | 0.5478| 0.3657| 0.2708| 0.6202| 0.2585] 0.5928| 7.2433 0.3671

English-to-Spanish
| System | 1-PER| 1-WER| BLEU-4 | GTM-1 | GTM-2 | METEOR | NIST-5 | ROUGE-S*
Baseline 0.5158] 0.3776] 0.2272] 0.5673] 0.2418]  0.4954| 6.6835 0.3028
LDv-comMBO | 0.5382| 0.3560| 0.2611| 0.5910| 0.2462]  0.5400| 7.1054 0.3240

Table 1: MT results comparing thedv-cOMBO system to a baseline system, for the test set both on the
Spanish-to-English and English-to-Spanish tasks.

English Reference: considergermany , where some leaders [...]
Spanish Reference: penseman alemania , donde algunos dirigentes [...]

English-to-Spanish | Baseline estimanque alemania , donde algunos dirigentes [.|.
LDV-COMBO | pensemogn alemania , donde algunos dirigentes |...]

—

Table 2: A case of error analysis.

3.2 Results between 30% and 40% smaller than the models

bl its for th b based on lexical items alone. The reason is that we
Table 1 presents MT results for the test set 0'[Hre working with the union of alignments from dif-

for the Spanish-to-English and English-to-Spanisy, .o\t qata views, thus adding more constraints into
tasks. The variant of theDv-COMBO system de- o hhrase extraction step. Fewer phrase pairs are
scribed in Section 2 is compared to a baseline vark, .~ +od and as a consequence we are also effec-

ant b_ased only_on lexical items. I_n the case o_lfively eliminating noise from translation models.
Spanish-to-English performance varies from metric

to metric. Therefore, an open issue is which metrigr Conclusions and Eurther Work
should be trusted. In any case, the differences are
minor. However, in the case of English-to-SpanisiMany researchers remain sceptical about the use-
all metrics but “1weR’ agree to indicate that the fulness of linguistic information in SMT, because,
LDV-CcOMBO system significantly outperforms theexcept in a couple of cases (Charniak et al., 2003;
baseline. We suspect this may be due to the rich@ollins et al., 2005), little success has been reported.
morphology of Spanish. In order to test this hy4n this work we have shown that liniguistic informa-
pothesis we performed an error analysys at the setien may be helpful, specially when the target lan-
tence level based on the GTM F-measure. We fourgliage has a rich morphology (e.g. Spanish).
many cases where thé®v-COMBO system outper-  Moreover, it has often been argued that linguistic
forms the baseline system by choosing a more afformation does not yield significant improvements
curate translation. For instance, in Table 2 we mayy MT guality, because (i) linguistic processors in-
see a fragment of the case of sentence 2176 in th@duce many errors and (ii) trELEU score is not
test set. A better translation for “consider” is pro-specially sensitive to the grammaticality of MT out-
vided, “pensemos”, which corresponds to the righbut. We have minimized the impact of the first ar-
verb and verbal form (instead of “estiman”). By in-gument by using highly accurate tools for both lan-
specting translation models we confirmed the bettjuages. In order to solve the second problem more
adjustment of probabilities. sophisticated metrics are required. Current MT eval-
Interestingly,LDv-cOMBO translation models are uation metrics fail to capture many aspects of MT
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guality that characterize human translations with relesis Giménez and Lluis Marquez. 2004. SVMTool: A
spect to those produced by MT systems. We are de-9eneral POS tagger generator based on Support Vector
voting most of our efforts to the deployment of anew Machines. InProceedings of 4th LREC

MT evaluation framework which allows to combineJests Giménez and Lluis Marquez. 2005. Combining

several similarity metrics into a single measure of Linguistic Data Views for Phrase-based SMT.Rro-
quality (Giménez and Amigd, 2006). ceedings of the Workshop on Building and Using Par-

) allel Texts, ACL
We also leave for further work the experimenta-
tion of new data views such as word senses and sbilipp K?ehn-h 2004. Pharaoh: a IBeamh_Search Dle-
mantic roles, as well as their natural porting from the SCde" for Phrase-Based Statistical Machine Transla-

. . . tion Models. InProceedings of AMTA
alignment step to phrase extraction and decoding.
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