
HLT-NAACL 06

Statistical
Machine Translation

Proceedings of the Workshop

8-9 June 2006
New York City, USA



Production and Manufacturing by
Omnipress Inc.
2600 Andersen Street
Madison, WI 53704

c©2006 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii



Introduction

The HLT-NAACL 2006 Workshop on Statistical Machine Translation (WMT-06) took place on
Thursday, June 8 and Friday, June 9 in New York City, immediately following the Human Language
Technology Conference — North American Chapter of the Association for Computational Linguistics
Annual Meeting, which was hosted by New York University.

This is the second time that this workshop has been held. The first time was last year as part of the ACL
2005 Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond,
which was a merger of two workshops that were originally proposed as independent events.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source and target language.
In this workshop we encouraged researchers to investigate ways to improve the performance of SMT
systems for diverse languages, including morphologically more complex languages and languages with
partial free word order.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation,
we conducted a shared task that brought together machine translation systems for an evaluation on
previously unseen data. This year’s task resembled the one from last year’s in many ways, but also
included a manual evaluation of MT system output and focused on translation from English into other
languages, whereas most other evaluations focus on translation into English.

The results of the shared task were announced at the workshop, and these proceedings also include an
overview paper for the shared task that summarizes the results, as well as provides information about
the data used and any procedures that were followed in conducting or scoring the task. In addition,
there are short papers from each participating team that describe their underlying system in some detail.

The first day of the workshop, Thursday, June 8 was dedicated to full paper presentations, whereas the
second day, Friday June 9 was mainly dedicated to system descriptions and discussions from teams that
have participated in the shared task.

The workshop attracted a considerably larger number of submissions compared to last year’s workshop.
In total, WMT-06 featured 13 full paper oral presentations and 12 shared task presentations. The invited
talk was given by Kevin Knight of the Information Sciences Institute/University of Southern California.

We would like to thank the members of the Program Committee for their timely reviews. We are also
indebted to the many volunteers who served as judges in the manual evaluation of the shared task.

Philipp Koehn and Christof Monz

Co-Chairs
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B. Mariño, José A. R. Fonollosa and Rafael Banchs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Phramer - An Open Source Statistical Phrase-Based Translator
Marian Olteanu, Chris Davis, Ionut Volosen and Dan Moldovan . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Language Models and Reranking for Machine Translation
Marian Olteanu, Pasin Suriyentrakorn and Dan Moldovan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Constraining the Phrase-Based, Joint Probability Statistical Translation Model
Alexandra Birch, Chris Callison-Burch, Miles Osborne and Philipp Koehn . . . . . . . . . . . . . . . . . 154

Microsoft Research Treelet Translation System: NAACL 2006 Europarl Evaluation
Arul Menezes, Kristina Toutanova and Chris Quirk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

N-gram-based SMT System Enhanced with Reordering Patterns
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Abstract

Evaluation of machine translation output
is an important but difficult task. Over the
last years, a variety of automatic evalua-
tion measures have been studied, some of
them like Word Error Rate (WER), Posi-
tion Independent Word Error Rate (PER)
and BLEU and NIST scores have become
widely used tools for comparing different
systems as well as for evaluating improve-
ments within one system. However, these
measures do not give any details about
the nature of translation errors. Therefore
some analysis of the generated output is
needed in order to identify the main prob-
lems and to focus the research efforts. On
the other hand, human evaluation is a time
consuming and expensive task. In this
paper, we investigate methods for using
of morpho-syntactic information for auto-
matic evaluation: standard error measures
WER and PER are calculated on distinct
word classes and forms in order to get a
better idea about the nature of translation
errors and possibilities for improvements.

1 Introduction

The evaluation of the generated output is an impor-
tant issue for all natural language processing (NLP)
tasks, especially for machine translation (MT). Au-
tomatic evaluation is preferred because human eval-
uation is a time consuming and expensive task.

A variety of automatic evaluation measures have
been proposed and studied over the last years, some
of them are shown to be a very useful tool for com-
paring different systems as well as for evaluating
improvements within one system. The most widely
used are Word Error Rate (WER), Position Indepen-
dent Word Error Rate (PER), the BLEU score (Pap-
ineni et al., 2002) and the NIST score (Doddington,
2002). However, none of these measures give any
details about the nature of translation errors. A rela-
tionship between these error measures and the actual
errors in the translation outputs is not easy to find.
Therefore some analysis of the translation errors is
necessary in order to define the main problems and
to focus the research efforts. A framework for hu-
man error analysis and error classification has been
proposed in (Vilar et al., 2006), but like human eval-
uation, this is also a time consuming task.

The goal of this work is to present a framework
for automatic error analysis of machine translation
output based on morpho-syntactic information.

2 Related Work

There is a number of publications dealing with
various automatic evaluation measures for machine
translation output, some of them proposing new
measures, some proposing improvements and exten-
sions of the existing ones (Doddington, 2002; Pap-
ineni et al., 2002; Babych and Hartley, 2004; Ma-
tusov et al., 2005). Semi-automatic evaluation mea-
sures have been also investigated, for example in
(Nießen et al., 2000). An automatic metric which
uses base forms and synonyms of the words in or-
der to correlate better to human judgements has been
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proposed in (Banerjee and Lavie, 2005). However,
error analysis is still a rather unexplored area. A
framework for human error analysis and error clas-
sification has been proposed in (Vilar et al., 2006)
and a detailed analysis of the obtained results has
been carried out. Automatic methods for error anal-
ysis to our knowledge have not been studied yet.

Many publications propose the use of morpho-
syntactic information for improving the perfor-
mance of a statistical machine translation system.
Various methods for treating morphological and
syntactical differences between German and English
are investigated in (Nießen and Ney, 2000; Nießen
and Ney, 2001a; Nießen and Ney, 2001b). Mor-
phological analysis has been used for improving
Arabic-English translation (Lee, 2004), for Serbian-
English translation (Popović et al., 2005) as well as
for Czech-English translation (Goldwater and Mc-
Closky, 2005). Inflectional morphology of Spanish
verbs is dealt with in (Popović and Ney, 2004; de
Gispert et al., 2005). To the best of our knowledge,
the use of morpho-syntactic information for error
analysis of translation output has not been investi-
gated so far.

3 Morpho-syntactic Information and
Automatic Evaluation

We propose the use of morpho-syntactic informa-
tion in combination with the automatic evaluation
measures WER and PER in order to get more details
about the translation errors.

We investigate two types of potential problems for
the translation with the Spanish-English language
pair:

• syntactic differences between the two lan-
guages considering nouns and adjectives

• inflections in the Spanish language considering
mainly verbs, adjectives and nouns

As any other automatic evaluation measures,
these novel measures will be far from perfect. Pos-
sible POS-tagging errors may introduce additional
noise. However, we expect this noise to be suffi-
ciently small and the new measures to be able to give
sufficiently clear ideas about particular errors.

3.1 Syntactic differences

Adjectives in the Spanish language are usually
placed after the corresponding noun, whereas in En-
glish is the other way round. Although in most cases
the phrase based translation system is able to han-
dle these local permutations correctly, some errors
are still present, especially for unseen or rarely seen
noun-adjective groups. In order to investigate this
type of errors, we extract the nouns and adjectives
from both the reference translations and the sys-
tem output and then calculate WER and PER. If the
difference between the obtained WER and PER is
large, this indicates reordering errors: a number of
nouns and adjectives is translated correctly but in the
wrong order.

3.2 Spanish inflections

Spanish has a rich inflectional morphology, espe-
cially for verbs. Person and tense are expressed
by the suffix so that many different full forms of
one verb exist. Spanish adjectives, in contrast to
English, have four possible inflectional forms de-
pending on gender and number. Therefore the er-
ror rates for those word classes are expected to be
higher for Spanish than for English. Also, the er-
ror rates for the Spanish base forms are expected to
be lower than for the full forms. In order to investi-
gate potential inflection errors, we compare the PER
for verbs, adjectives and nouns for both languages.
For the Spanish language, we also investigate differ-
ences between full form PER and base form PER:
the larger these differences, more inflection errors
are present.

4 Experimental Settings

4.1 Task and Corpus

The corpus analysed in this work is built in the
framework of the TC-Star project. It contains more
than one million sentences and about 35 million run-
ning words of the Spanish and English European
Parliament Plenary Sessions (EPPS). A description
of the EPPS data can be found in (Vilar et al., 2005).
In order to analyse effects of data sparseness, we
have randomly extracted a small subset referred to
as 13k containing about thirteen thousand sentences
and 370k running words (about 1% of the original
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Training corpus: Spanish English
full Sentences 1281427

Running Words 36578514 34918192
Vocabulary 153124 106496
Singletons [%] 35.2 36.2

13k Sentences 13360
Running Words 385198 366055
Vocabulary 22425 16326
Singletons [%] 47.6 43.7

Dev: Sentences 1008
Running Words 25778 26070
Distinct Words 3895 3173
OOVs (full) [%] 0.15 0.09
OOVs (13k) [%] 2.7 1.7

Test: Sentences 840 1094
Running Words 22774 26917
Distinct Words 4081 3958
OOVs (full) [%] 0.14 0.25
OOVs (13k) [%] 2.8 2.6

Table 1: Corpus statistics for the Spanish-English
EPPS task (running words include punctuation
marks)

corpus). The statistics of the corpora can be seen in
Table 1.

4.2 Translation System

The statistical machine translation system used in
this work is based on a log-linear combination of
seven different models. The most important ones are
phrase based models in both directions, additionally
IBM1 models at the phrase level in both directions
as well as phrase and length penalty are used. A
more detailed description of the system can be found
in (Vilar et al., 2005; Zens et al., 2005).

4.3 Experiments

The translation experiments have been done in both
translation directions on both sizes of the corpus. In
order to examine improvements of the baseline sys-
tem, a new system with POS-based word reorderings
of nouns and adjectives as proposed in (Popović and
Ney, 2006) is also analysed. Adjectives in the Span-
ish language are usually placed after the correspond-
ing noun, whereas for English it is the other way
round. Therefore, local reorderings of nouns and ad-

Spanish→English WER PER BLEU
full baseline 34.5 25.5 54.7

reorder 33.5 25.2 56.4
13k baseline 41.8 30.7 43.2

reorder 38.9 29.5 48.5

English→Spanish WER PER BLEU
full baseline 39.7 30.6 47.8

reorder 39.6 30.5 48.3
13k baseline 49.6 37.4 36.2

reorder 48.1 36.5 37.7

Table 2: Translation Results [%]

jective groups in the source language have been ap-
plied. If the source language is Spanish, each noun is
moved behind the corresponding adjective group. If
the source language is English, each adjective group
is moved behind the corresponding noun. An adverb
followed by an adjective (e.g. ”more important”) or
two adjectives with a coordinate conjunction in be-
tween (e.g. ”economic and political”) are treated as
an adjective group. Standard translation results are
presented in Table 2.

5 Error Analysis

5.1 Syntactic errors

As explained in Section 3.1, reordering errors due
to syntactic differences between two languages have
been measured by the relative difference between
WER and PER calculated on nouns and adjectives.
Corresponding relative differences are calculated
also for verbs as well as adjectives and nouns sep-
arately.

Table 3 presents the relative differences for the
English and Spanish output. It can be seen that
the PER/WER difference for nouns and adjectives
is relatively high for both language pairs (more than
20%), and for the English output is higher than for
the Spanish one. This corresponds to the fact that
the Spanish language has a rather free word order:
although the adjective usually is placed behind the
noun, this is not always the case. On the other hand,
adjectives in English are always placed before the
corresponding noun. It can also be seen that the
difference is higher for the reduced corpus for both
outputs indicating that the local reordering problem

3



English output 1− PER
WER

full nouns+adjectives 24.7
+reordering 20.8
verbs 4.1
adjectives 10.2
nouns 20.1

13k nouns+adjectives 25.7
+reordering 20.1
verbs 4.6
adjectives 8.4
nouns 19.1

Spanish output 1− PER
WER

full nouns+adjectives 21.5
+reordering 20.3
verbs 3.3
adjectives 5.6
nouns 16.9

13k nouns+adjectives 22.9
+reordering 19.8
verbs 3.9
adjectives 5.4
nouns 19.3

Table 3: Relative difference between PER and
WER [%] for different word classes

is more important when only small amount of train-
ing data is available. As mentioned in Section 3.1,
the phrase based translation system is able to gen-
erate frequent noun-adjective groups in the correct
word order, but unseen or rarely seen groups intro-
duce difficulties.

Furthermore, the results show that the POS-based
reordering of adjectives and nouns leads to a de-
crease of the PER/WER difference for both out-
puts and for both corpora. Relative decrease of the
PER/WER difference is larger for the small corpus
than for the full corpus. It can also be noted that the
relative decrease for both corpora is larger for the
English output than for the Spanish one due to free
word order - since the Spanish adjective group is not
always placed behind the noun, some reorderings in
English are not really needed.

For the verbs, PER/WER difference is less than
5% for both outputs and both training corpora, in-
dicating that the word order of verbs is not an im-

English output PER

full verbs 44.8
adjectives 27.3
nouns 23.0

13k verbs 56.1
adjectives 38.1
nouns 31.7

Spanish output PER

full verbs 61.4
adjectives 41.8
nouns 28.5

13k verbs 73.0
adjectives 50.9
nouns 37.0

Table 4: PER [%] for different word classes

portant issue for the Spanish-English language pair.
PER/WER difference for adjectives and nouns is
higher than for verbs, for the nouns being signifi-
cantly higher than for adjectives. The reason for this
is probably the fact that word order differences in-
volving only the nouns are also present, for example
“export control = control de exportación”.

5.2 Inflectional errors

Table 4 presents the PER for different word classes
for the English and Spanish output respectively. It
can be seen that all PERs are higher for the Spanish
output than for the English one due to the rich in-
flectional morphology of the Spanish language. It
can be also seen that the Spanish verbs are espe-
cially problematic (as stated in (Vilar et al., 2006))
reaching 60% of PER for the full corpus and more
than 70% for the reduced corpus. Spanish adjectives
also have a significantly higher PER than the English
ones, whereas for the nouns this difference is not so
high.

Results of the further analysis of inflectional er-
rors are presented in Table 5. Relative difference
between full form PER and base form PER is sig-
nificantly lower for adjectives and nouns than for
verbs, thus showing that the verb inflections are the
main source of translation errors into the Spanish
language.

Furthermore, it can be seen that for the small cor-
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Spanish output 1− PERb
PERf

full verbs 26.9
adjectives 9.3
nouns 8.4

13k verbs 23.7
adjectives 15.1
nouns 6.5

Table 5: Relative difference between PER of base
forms and PER of full forms [%] for the Spanish
output

pus base/full PER difference for verbs and nouns is
basically the same as for the full corpus. Since nouns
in Spanish only have singular and plural form as in
English, the number of unseen forms is not partic-
ularly enlarged by the reduction of the training cor-
pus. On the other hand, base/full PER difference of
adjectives is significantly higher for the small corpus
due to an increased number of unseen adjective full
forms.

As for verbs, intuitively it might be expected that
the number of inflectional errors for this word class
also increases by reducing the training corpus, even
more than for adjectives. However, the base/full
PER difference is not larger for the small corpus,
but even smaller. This is indicating that the problem
of choosing the right inflection of a Spanish verb ap-
parently is not related to the number of unseen full
forms since the number of inflectional errors is very
high even when the translation system is trained on
a very large corpus.

6 Conclusion

In this work, we presented a framework for auto-
matic analysis of translation errors based on the use
of morpho-syntactic information. We carried out a
detailed analysis which has shown that the results
obtained by our method correspond to those ob-
tained by human error analysis in (Vilar et al., 2006).
Additionally, it has been shown that the improve-
ments of the baseline system can be adequately mea-
sured as well.

This work is just a first step towards the devel-
opment of linguistically-informed evaluation mea-
sures which provide partial and more specific infor-
mation of certain translation problems. Such mea-

sures are very important to understand what are the
weaknesses of a statistical machine translation sys-
tem, and what are the best ways and methods for
improvements.

For our future work, we plan to extend the pro-
posed measures in order to carry out a more de-
tailed error analysis, for example examinating dif-
ferent types of inflection errors for Spanish verbs.
We also plan to investigate other types of translation
errors and other language pairs.
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Abstract

This paper presents some very prelimi-
nary results for and problems in develop-
ing a statistical machine translation sys-
tem from English to Turkish. Starting with
a baseline word model trained from about
20K aligned sentences, we explore various
ways of exploiting morphological struc-
ture to improve upon the baseline sys-
tem. As Turkish is a language with com-
plex agglutinative word structures, we ex-
periment with morphologically segmented
and disambiguated versions of the parallel
texts in order to also uncover relations be-
tween morphemes and function words in
one language with morphemes and func-
tions words in the other, in addition to re-
lations between open class content words.
Morphological segmentation on the Turk-
ish side also conflates the statistics from
allomorphs so that sparseness can be al-
leviated to a certain extent. We find
that this approach coupled with a simple
grouping of most frequent morphemes and
function words on both sides improve the
BLEU score from the baseline of 0.0752
to 0.0913 with the small training data. We
close with a discussion on why one should
not expect distortion parameters to model
word-local morpheme ordering and that a
new approach to handling complex mor-
photactics is needed.

1 Introduction

The availability of large amounts of so-called par-
allel texts has motivated the application of statisti-
cal techniques to the problem of machine translation
starting with the seminal work at IBM in the early
90’s (Brown et al., 1992; Brown et al., 1993). Statis-
tical machine translation views the translation pro-
cess as a noisy-channel signal recovery process in
which one tries to recover the input “signal”e, from
the observed output signalf.1

Early statistical machine translation systems used
a purely word-based approach without taking into
account any of the morphological or syntactic prop-
erties of the languages (Brown et al., 1993). Lim-
itations of basic word-based models prompted re-
searchers to exploit morphological and/or syntac-
tic/phrasal structure (Niessen and Ney, (2004),
Lee,(2004), Yamada and Knight (2001), Marcu and
Wong (2002), Och and Ney (2004),Koehn et al.
(2003), among others.)

In the context of the agglutinative languages sim-
ilar to Turkish (in at least morphological aspects) ,
there has been some recent work on translating from
and to Finnish with the significant amount of data
in the Europarl corpus. Although the BLEU (Pap-
ineni et al., 2002) score from Finnish to English is
21.8, the score in the reverse direction is reported
as 13.0 which is one of the lowest scores in 11 Eu-
ropean languages scores (Koehn, 2005). Also, re-
portedfrom andto translation scores for Finnish are
the lowest on average, even with the large number of

1DenotingEnglishandFrenchas used in the original IBM
Project which translated from French to English using the paral-
lel text of the Hansards, the Canadian Parliament Proceedings.
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sentences available. These may hint at the fact that
standard alignment models may be poorly equipped
to deal with translation from a poor morphology lan-
guage like English to an complex morphology lan-
guage like Finnish or Turkish.

This paper presents results from some very pre-
liminary explorations into developing an English-to-
Turkish statistical machine translation system and
discusses the various problems encountered. Start-
ing with a baseline word model trained from about
20K aligned sentences, we explore various ways of
exploiting morphological structure to improve upon
the baseline system. As Turkish is a language with
agglutinative word structures, we experiment with
morphologically segmented and disambiguated ver-
sions of the parallel text, in order to also uncover
relations between morphemes and function words in
one language with morphemes and functions words
in the other, in addition to relations between open
class content words; as a cursory analysis of sen-
tence aligned Turkish and English texts indicates
that translations of certain English words are actu-
ally morphemes embedded into Turkish words. We
choose a morphological segmentation representa-
tion on the Turkish side which abstracts from word-
internal morphological variations and conflates the
statistics from allomorphs so that data sparseness
can be alleviated to a certain extent.

This paper is organized as follows: we start with
the some of the issues of building an SMT system
into Turkish followed by a short overview Turk-
ish morphology to motivate its effect on the word
alignment problem with English. We then present
results from our explorations with a baseline sys-
tem and with morphologically segmented parallel
aligned texts, and conclude after a short discussion.

2 Issues in building a SMT system for
Turkish

The first step of building an SMT system is the com-
pilation of a large amount of parallel texts which
turns out to be a significant problem for the Turkish
and English pair. There are not many sources of such
texts and most of what is electronically available
are parallel texts diplomatic or legal domains from
NATO, EU, and foreign ministry sources. There
is also a limited amount data parallel news corpus

available from certain news sources. Although we
have collected about 300K sentence parallel texts,
most of these require significant clean-up (from
HTML/PDF sources) and we have limited our train-
ing data in this paper to about 22,500 sentence sub-
set of these parallel texts which comprises the sub-
set of sentences of 40 words or less from the 30K
sentences that have been cleaned-up and sentence
aligned.2 �3

The main aspect that would have to be seri-
ously considered first for Turkish in SMT is the
productive inflectional and derivational morphol-
ogy. Turkish word forms consist of morphemes
concatenated to a root morpheme or to other mor-
phemes, much like “beads on a string” (Oflazer,
1994). Except for a very few exceptional cases,
the surface realizations of the morphemes are con-
ditioned by various local regular morphophonemic
processes such as vowel harmony, consonant assim-
ilation and elisions. Further, most morphemes have
phrasal scopes: although they attach to a partic-
ular stem, their syntactic roles extend beyond the
stems. The morphotactics of word forms can be
quite complex especially when multiple derivations
are involved. For instance, the derived modifier
sa ǧlamlaştırdı ǧımızdaki 4 would be bro-
ken into surface morphemes as follows:

sa ǧlam+laş+tır+dı ǧ+ımız+da+ki

Starting from an adjectival rootsǎglam, this word
form first derives a verbal stemsǎglamlaş, meaning
“to become strong”. A second suffix, the causative
surface morpheme+tır which we treat as a verbal
derivation, forms yet another verbal stem meaning
“to cause to become strong” or “to make strong (for-
tify)”. The immediately following participle suffix

2We are rapidly increasing our cleaned-up text and expect to
clean up and sentence align all within a few months.

3As the average Turkish word in running text has between
2 and 3 morphemes we limited ourselves to 40 words in the
parallel texts in order not to exceed the maximum number of
words recommended for GIZA++ training.

4Literally, “(the thing existing) at the time we caused (some-
thing) to become strong”. Obviously this is not a word that one
would use everyday, but already illustrates the difficulty as one
Turkish “word” would have to be aligned to a possible discon-
tinues sequence of English words if we were to attempt a word
level alignment. Turkish words (excluding noninflecting fre-
quent words such as conjunctions, clitics, etc.) found in typical
running text average about 10 letters in length. The average
number of bound morphemes in such words is about 2.
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+dıǧ, produces a participial nominal, which inflects
in the normal pattern for nouns (here, for 1

��

per-
son plural possessor which marks agreement with
the subject of the verb, and locative case). The final
suffix, +ki , is a relativizer, producing a word which
functions as a modifier in a sentence, modifying a
noun somewhere to the right.

However, if one further abstracts from the mor-
phophonological processes involved one could get a
lexical form

sa ǧlam+lAş+DHr+DHk+HmHz+DA+ki

In this representation, the lexical morphemes ex-
cept the lexical root utilize meta-symbols that stand
for a set of graphemes which are selected on the
surface by a series of morphographemic processes
which are rooted in morphophonological processes
some of which are discussed below, but have noth-
ing whatsoever with any of the syntactic and se-
mantic relationship that word is involved in. For
instance,A stands for back and unrounded vowels
a and e, in orthography,H stands for high vow-
els ı, i, u and ü, and D stands ford and t, repre-
senting alveolar consonants. Thus, a lexical mor-
pheme represented as+DHr actually represents 8
possible allomorphs, which appear as one of+dır,
+dir, +dur, +d ür, +tır, +tir, +tur, +t ür depending
on the local morphophonemic context. Thus at this
level of representation words that look very differ-
ent on the surface, look very similar. For instance,
although the wordsmasasında’on his table’ anddef-
terinde ’in his notebook’ in Turkish look quite dif-
ferent, the lexical morphemes except for the root
are the same:masasındahas the lexical structure
masa+sH+ndA, while defterindehas the lexical
structuredefter+sH+ndA .

The use of this representation is particularly im-
portant for Turkish for the following reason. Allo-
morphs which differ because of local word-internal
morphographemic and morphotactical constraints
almost always correspond to the same words or units
in English when translated. When such units are
considered by themselves as the units in alignment,
statistics get fragmented and the model quality suf-
fers. On the other hand, this representation if di-
rectly used in a standard SMT model such as IBM
Model 4, will most likely cause problems, since
now, the distortion parameters will have to take on

the task of generating the correct sequence of mor-
phemes in a word (which is really a local word-
internal problem to be solved) in addition to gen-
erating the correct sequence of words.

3 Aligning English–Turkish Sentences

If an alignment between the components of paral-
lel Turkish and English sentences is computed, one
obtains an alignment like the one shown in Figure
1, where it is clear that Turkish words may actually
correspond to whole phrases in the English sentence.

Figure 1: Word level alignment between a Turkish
and an English sentence

One major problem with this situation is that even
if a word occurs many times in the English side,
the actual Turkish equivalent could be either miss-
ing from the Turkish part, or occur with a very low
frequency, but many inflected variants of the form
could be present. For example, Table 1 shows the
occurrences of different forms for the root word
faaliyet ’activity’ in the parallel texts we experi-
mented with. Although, many forms of the root
word appear, none of the forms appear very fre-
quently and one may even have to drop occurrences
of frequency 1 depending on the word-level align-
ment model used, further worsening the sparseness
problem.5

To overcome this problem and to get the max-
imum benefit from the limited amount of parallel
texts, we decided to perform morphological analy-
sis of both the Turkish and the English texts to be
able to uncover relationships between root words,
suffixes and function words while aligning them.

5A noun root in Turkish may have about hundred inflected
forms and substantially more if productive derivations arecon-
sidered, meanwhile verbs can have thousands of inflected and
derived forms if not more.
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Table 1: Forms of the wordfaaliyet ’activity’

Wordform Count Gloss

faaliyet 3 ’activity’
faaliyete 1 ’to the activity’
faaliyetinde 1 ’in its activity’
faaliyetler 3 ’activities’
faaliyetlere 6 ’to the activities’
faaliyetleri 7 ’their activities’
faaliyetlerin 7 ’of the activities’
faaliyetlerinde 1 ’in their activities’
faaliyetlerine 5 ’to their activities’
faaliyetlerini 1 ’their activities (acc.)’
faaliyetlerinin 2 ’of their activities’
faaliyetleriyle 1 ’with their activities’
faaliyette 2 ’in (the) activity’
faaliyetteki 1 ’that which is in activity’
Total 41

On the Turkish side, we extracted the lexical mor-
phemes of each word using a version of the mor-
phological analyzer (Oflazer, 1994) that segmented
the Turkish words along morpheme boundaries and
normalized the root words in cases they were de-
formed due to a morphographemic process. So
the wordfaaliyetleriylewhen segmented into lexical
morphemes becomesfaaliyet +lAr +sH +ylA. Am-
biguous instances were disambiguated statistically
(Külekçi and Oflazer, 2005).

Similarly, the English text was tagged using Tree-
Tagger (Schmid, 1994), which provides a lemma
and a POS for each word. We augmented this pro-
cess with some additional processing for handling
derivational morphology. We then dropped any tags
which did not imply an explicit morpheme (or an
exceptional form). The complete set of tags that are
used from the Penn-Treebank tagset is shown in Ta-
ble 2.6 To make the representation of the Turkish
texts and English texts similar, tags are marked with
a ’+’ at the beginning of all tags to indicate that such
tokens are treated as “morphemes.” For instance,
the English wordactivitieswas segmented asactiv-

6The tagset used by the TreeTagger is a refinement of Penn-
Treebank tagset where the second letter of the verb part-of-
speech tags distinguishes between ”be” verbs (B), ”have” verbs
(H) and other verbs (V),(Schmid, 1994).

ity +NNS. The alignments we expected to obtain are
depicted in Figure 2 for the example sentence given
earlier in Figure 1.

Table 2: The set of tags used to mark explicit mor-
phemes in English

Tag Meaning

JJR Adjective, comparative
JJS Adjective, superlative
NNS Noun, plural
POS Possessive ending
RBR Adverb, comparative
RBS Adverb, superlative
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non3rd person singular present
VBZ Verb, 3rd person singular present

Figure 2: “Morpheme” alignment between a Turkish
and an English sentence

4 Experiments

We proceeded with the following sequence of exper-
iments:

(1) Baseline: As a baseline system, we used a
pure word-based approach and used Pharaoh Train-
ing tool (2004), to train on the 22,500 sentences, and
decoded using Pharaoh (Koehn et al., 2003) to ob-
tain translations for a test set of 50 sentences. This
gave us a baseline BLEU score of 0.0752.

(2) Morpheme Concatenation: We then trained
the same system with the morphemic representation
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of the parallel texts as discussed above. The de-
coder now produced the translations as a sequence
of root words and morphemes. The surface words
were then obtained by just concatenating all the
morphemes following a root word (until the next
root word) taking into just morphographemic rules
but not any morphotactic constraints. As expected
this “morpheme-salad” produces a “word-salad”, as
most of the time wrong morphemes are associated
with incompatible root words violating many mor-
photactic constraints. The BLEU score here was
0.0281, substantially worse than the baseline in (1)
above.

(3) Selective Morpheme Concatenation:With
a small script we injected a bit of morphotactical
knowledge into the surface form generation process
and only combined those morphemes following a
root word (in the given sequence), that gave rise to
a valid Turkish word form as checked by a morpho-
logical analyzer. Any unused morphemes were ig-
nored. This improved the BLEU score to 0.0424
which was still below the baseline.

(4)Morpheme Grouping: Observing that certain
sequence of morphemes in Turkish texts are trans-
lations of some continuous sequence of functional
words and tags in English texts, and that some mor-
phemes should be aligned differently depending on
the other morphemes in their context, we attempted
a morpheme grouping. For example the morpheme
sequence+DHr +mA marks infinitive form of a
causative verb which in Turkish inflects like a noun;
or the lexical morpheme sequence+yAcAk +DHr
usually maps to “it/he/she will”. To find such groups
of morphemes and functional words, we applied a
sequence of morpheme groupings by extracting fre-
quently occuring n-grams of morphemes as follows
(much like the grouping used by Chiang (2005): in a
series of iterations, we obtained high-frequency bi-
grams from the morphemic representation of paral-
lel texts, of either morphemes, or of previously such
identified morpheme groups and neighboring mor-
phemes until up to four morphemes or one root 3
morpheme could be combined. During this process
we ignored those combinations that contain punctu-
ation or a morpheme preceding a root word. A simi-
lar grouping was done on the English side grouping
function words and morphemes before and after root
words.

The aim of this process was two-fold: it let fre-
quent morphemes to behave as a single token and
help Pharaoh with identification of some of the
phrases. Also since the number of tokens on both
sides were reduced, this enabled GIZA++ to produce
somewhat better alignments.

The morpheme level translations that were ob-
tained from training with this parallel texts were then
converted into surface forms by concatenating the
morphemes in the sequence produced. This resulted
in a BLEU score of 0.0644.

(5) Morpheme Grouping with Selective Mor-
pheme Concatenation: This was the same as (4)
with the morphemes selectively combined as in (3).
The BLEU score of 0.0913 with this approach was
now above the baseline.

Table 3 summarizes the results in these five exper-
iments:

Table 3: BLEU scores for experiments (1) to (4)

Exp. System BLEU

(1) Baseline 0.0752
(2) Morph. Concatenation. 0.0281
(3) Selective Morph. Concat. 0.0424
(4) Morph. Grouping and Concat. 0.0644
(5) Morph. Grouping + (3) 0.0913

In an attempt to factor out and see if the transla-
tions were at all successful in getting the root words
in the translations we performed the following: We
morphologically analyzed and disambiguated the
reference texts, and reduced all to sequences of root
words by eliminating all the morphemes. We per-
formed the same for the outputs of (1) (after mor-
phological analysis and disambiguation), (2) and (4)
above, that is, threw away the morphemes ((3) is
the same as (2) and (5) same as (4) here). The
translation root word sequences and the reference
root word sequences were then evaluated using the
BLEU (which would like to label here as BLEU-r
for BLEU root, to avoid any comparison to previous
results, which will be misleading. These scores are
shown in Figure 4.

The results in Tables 3 and 4 indicate that with the
standard models for SMT, we are still quite far from
even identifying the correct root words in the trans-
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Table 4: BLEU-r scores for experiments (1), (2) and
(4)

Exp. System BLEU

(1) Baseline 0.0955
(2) Morph. Concatenation. 0.0787
(4) Morph. Grouping 0.1224

lations into Turkish, let alone getting the morphemes
and their sequences right. Although some of this
may be due to the (relatively) small amount of paral-
lel texts we used, it may also be the case that splitting
the sentences into morphemes can play havoc with
the alignment process by significantly increasing the
number of tokens per sentence especially when such
tokens align to tokens on the other side that is quite
far away.

Nevertheless the models we used produce some
quite reasonable translations for a small number of
test sentences. Table 5 shows the two examples of
translations that were obtained using the standard
models (containing no Turkish specific manipula-
tion except for selective morpheme concatenation).
We have marked thesurfacemorpheme boundaries
in the translated and reference Turkish texts to in-
dicate where morphemes are joined for exposition
purposes here – they neither appear in the reference
translations nor in the produced translations!

5 Discussion

Although our work is only an initial exploration
into developing a statistical machine translation sys-
tem from English to Turkish, our experiments at
least point out that using standard models to deter-
mine the correct sequence of morphemes within the
words, using more powerful mechanisms meant to
determine the (longer) sequence of words in sen-
tences, is probably not a good idea. Morpheme or-
dering is a very local process and the correct se-
quence should be determined locally though the ex-
istence of morphemes could be postulated from sen-
tence level features during the translation process.
Furthermore, insisting on generating the exact se-
quence of morphemes could be an overkill. On
the other hand, a morphological generator could
take a root word and a bag of morphemesand

Table 5: Some good SMT results
Input : international terrorism also remains to be an important
issue .
Baseline: ulus+lararası terörizm de önem+li kal+mış+tır . bir
konu ol+acak+tır
Selective Morpheme Concatenation: ulus+lararası terörizm
de ol+ma+ya devam et+mek+te+dir önem+li bir sorun+dur .
Morpheme Grouping: ulus+lararası terörizm de önem+li bir
sorun ol+ma+ya devam et+mek+te+dir .
Reference Translation: ulus+lararası terörizm de önem+li bir
sorun ol+ma+ya devam et+mek+te+dir .

Input : the initiation of negotiations will represent the
beginning of a next phase in the process of accession
Baseline: müzakere+ler+in gör+üş+me+ler yap+ıl+acak bir
der+ken aşama+nın hasar+ı sürec+i başlangıc+ı+nı 15+’i
Selective Morpheme Concatenation: initiation müzakere+ler
temsil ed+il+me+si+nin başlangıc+ı bir aşama+sı+nda katılım
sürec+i+nin ertesi
Morpheme Grouping: müzakere+ler+in başla+ma+sı+nın
başlangıc+ı+nı temsil ed+ecek+tir katılım sürec+i+ninbir
sonra+ki aşama
Reference Translation: müzakere+ler+in başla+ma+sı ,
katılım sürec+i+nin bir sonra+ki aşama+sı+nın başlangıc+ı+nı
temsil ed+ecek+tir

generate possible legitimate surface words by tak-
ing into account morphotactic constraints and mor-
phographemic constraints, possibly (and ambigu-
ously) filling in any morphemes missing in the trans-
lation but actually required by the morphotactic
paradigm. Any ambiguities from the morphologi-
cal generation could then be filtered by a language
model.

Such a bag-of-morphemes approach suggests that
we do not actually try to determine exactly where the
morphemes actually go in the translation but rather
determine the root words (including any function
words) and thenassociatetranslated morphemes
with the (bag of the) right root word. The resulting
sequence of root words and their bags-of-morpheme
can be run through a morphological generator which
can handle all the word-internal phenomena such as
proper morpheme ordering, filling in morphemes or
even ignoring spurious morphemes, handling local
morphographemic phenomena such as vowel har-
mony, etc. However, this approach of not placing
morphemes into specific position in the translated
output but just associating them with certain root
words requires that a significantly different align-
ment and decoding models be developed.

Another representation option that could be em-
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ployed is to do away completely with morphemes on
the Turkish side and just replace them with morpho-
logical feature symbols (much like we did here for
English). This has the advantage of better handling
allomorphy – all allomorphs including those that are
not just phonological variants map to the same fea-
ture, and homograph morphemes which signal dif-
ferent features map to different features. So in a
sense, this would provide a more accurate decom-
position of the words on the Turkish side, but at the
same time introduce a larger set of features since
default feature symbols are produced for any mor-
phemes that do not exist on the surface. Removing
such redundant features from such a representation
and then using reduced features could be an interest-
ing avenue to pursue. Generation of surface words
would not be a problem since, our morphological
generator does not care if it is input morphemes or
features.

6 Conclusions

We have presented the results of our initial explo-
rations into statistical machine translation from En-
glish to Turkish. Using a relatively small parallel
corpus of about 22,500 sentences, we have exper-
imented with a baseline word-to-word translation
model using the Pharaoh decoder. We have also ex-
perimented with a morphemic representation of the
parallel texts and have aligned the sentences at the
morpheme level. The decoder in this cases produces
root word and morpheme sequences which are then
selectively concatenated into surface words by pos-
sibly ignoring some morphemes which are redun-
dant or wrong. We have also attempted a simple
grouping of root words and morphemes to both help
the alignment by reducing the number of tokens in
the sentences and by already identifying some pos-
sible phrases. This grouping of morphemes and the
use of selective morpheme concatenation in produc-
ing surface words has increased the BLEU score
for our test set from 0.0752 to 0.0913. Current
ongoing work involves increasing the parallel cor-
pus size and the development of bag-of-morphemes
modeling approach to translation to separate the
sentence level word sequencing from word-internal
morpheme sequencing.
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Abstract

The Arabic language has far richer sys-
tems of inflection and derivation than En-
glish which has very little morphology.
This morphology difference causes a large
gap between the vocabulary sizes in any
given parallel training corpus. Segmen-
tation of inflected Arabic words is a way
to smooth its highly morphological na-
ture. In this paper, we describe some
statistically and linguistically motivated
methods for Arabic word segmentation.
Then, we show the efficiency of proposed
methods on the Arabic-English BTEC and
NIST tasks.

1 Introduction

Arabic is a highly inflected language compared to
English which has very little morphology. This mor-
phological richness makes statistical machine trans-
lation from Arabic to English a challenging task. A
usual phenomenon in Arabic is the attachment of a
group of words which are semantically dependent on
each other. For instance, prepositions like “and” and
“then” are usually attached to the next word. This
applies also to the definite article “the”. In addi-
tion, personal pronouns are attached to the end of
verbs, whereas possessive pronouns are attached to
the end of the previous word, which constitutes the
possessed object. Hence, an Arabic word can be de-
composed into “prefixes, stem and suffixes”. We re-
strict the set of prefixes and suffixes to those showed
in Table 1 and 2, where each of the prefixes and suf-
fixes has at least one meaning which can be repre-

sented by a single word in the target language. Some
prefixes can be combined. For example the word
wbAlqlm(ÕÎ

�
®ËAK. ð which means “and with the pen”)

has a prefix which is a combination of three pre-
fixes, namelyw, b andAl. The suffixes we handle
in this paper can not be combined with each other.
Thus, the compound word pattern handled here is
“prefixes-stem-suffix“.

All possible prefix combinations that do not con-
tain Al allow the stem to have a suffix. Note that
there are other suffixes that are not handled here,
such asAt ( �

H@), An ( 	à@) andwn ( 	àð) which make
the plural form of a word. The reason why we omit
them is that they do not have their own meaning. The
impact of Arabic morphology is that the vocabulary
size and the number of singletons can be dramati-
cally high, i.e. the Arabic words are not seen often
enough to be learned by statistical machine transla-
tion models. This can lead to an inefficient align-
ment.

In order to deal with this problem and to improve
the performance of statistical machine translation,
each word must be decomposed into its parts. In
(Larkey et al., 2002) it was already shown that word
segmentation for Arabic improves information re-
trieval. In (Lee et al., 2003) a statistical approach
for Arabic word segmentation was presented. It de-
composes each word into a sequence of morphemes
(prefixes-stem-suffixes), where all possible prefixes
and suffixes (not only those we described in Table 1
and 2) are split from the original word. A compa-
rable work was done by (Diab et al., 2004), where
a POS tagging method for Arabic is also discussed.
As we have access to this tool, we test its impact
on the performance of our translation system. In
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Table 1: Prefixes handled in this work and their meanings.
Prefix ð

	
¬ ¼ È H. È@

Transliteration w f k l b Al
Meaning and and then as, like in order to with, in the

(Habash and Rambow, 2005) a morphology analyzer
was used for the segementation and POS tagging. In
contrast to the methods mentioned above, our seg-
mentation method is unsupervised and rule based.

In this paper we first explain our statistical ma-
chine translation (SMT) system used for testing the
impact of the different segmentation methods, then
we introduce some preprocessing and normalization
tools for Arabic and explain the linguistic motiva-
tion beyond them. Afterwards, we present three
word segmentation methods, a supervised learning
approach, a finite state automaton-based segmenta-
tion, and a frequency-based method. In Section 5,
the experimental results are presented. Finally, the
paper is summarized in Section 6 .

2 Baseline SMT System

In statistical machine translation, we are given a
source language sentencefJ1 = f1 . . . fj . . . fJ ,
which is to be translated into a target language sen-
tenceeI1 = e1 . . . ei . . . eI . Among all possible tar-
get language sentences, we will choose the sentence
with the highest probability:

êÎ1 = argmax
I,eI1

{
Pr(eI1|fJ1 )

}
(1)

The posterior probabilityPr(eI1|fJ1 ) is modeled di-
rectly using a log-linear combination of several
models (Och and Ney, 2002):

Pr(eI1|fJ1 ) =
exp

(∑M
m=1 λmhm(eI1, f

J
1 )

)
∑
e′I
′

1

exp
(∑M

m=1 λmhm(e′I
′

1 , f
J
1 )

)
(2)

The denominator represents a normalization factor
that depends only on the source sentencefJ1 . There-
fore, we can omit it during the search process. As a
decision rule, we obtain:

êÎ1 = argmax
I,eI1

{
M∑
m=1

λmhm(eI1, f
J
1 )

}
(3)

This approach is a generalization of the source-
channel approach (Brown et al., 1990). It has the
advantage that additional modelsh(·) can be eas-
ily integrated into the overall system. The model
scaling factorsλM1 are trained with respect to the fi-
nal translation quality measured by an error criterion
(Och, 2003).

We use a state-of-the-art phrase-based translation
system including the following models: ann-gram
language model, a phrase translation model and a
word-based lexicon model. The latter two mod-
els are used for both directions:p(f |e) andp(e|f).
Additionally, we use a word penalty and a phrase
penalty. More details about the baseline system can
be found in (Zens and Ney, 2004; Zens et al., 2005).

3 Preprocessing and Normalization Tools

3.1 Tokenizer

As for other languages, the corpora must be first to-
kenized. Here words and punctuations (except ab-
breviation) must be separated. Another criterion is
that Arabic has some characters that appear only at
the end of a word. We use this criterion to separate
words that are wrongly attached to each other.

3.2 Normalization and Simplification

The Arabic written language does not contain vow-
els, instead diacritics are used to define the pronun-
ciation of a word, where a diacritic is written under
or above each character in the word. Usually these
diacritics are omitted, which increases the ambigu-
ity of a word. In this case, resolving the ambiguity
of a word is only dependent on the context. Some-
times, the authors write a diacritic on a word to help
the reader and give him a hint which word is really
meant. As a result, a single word with the same
meaning can be written in different ways. For exam-
ple$Eb (I. ª

�
�) can be read1 assha’ab(Eng. nation)

or sho’ab(Eng. options). If the author wants to give
the reader a hint that the second word is meant, he

1There are other possible pronunciations for the word$Eb
than the two mentioned.
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Table 2: Suffixes handled in this work and their meanings.
Suffix ø



ú



	
G ¼ 	á» , Õ» , AÒ»

Transliteration y ny k kmA, km, kn
Meaning my me you, your (sing.) you, your (pl.)

Suffix A
	
K è Aë 	áë , Ñë , AÒë

Transliteration nA h hA hmA, hm, hn
Meaning us, our his, him her them, their

can write$uEb (I. ª
�
�
�) or $uEab(I.

�
ª
�
�
�). To avoid

this problem we normalize the text by removing all
diacritics.

After segmenting the text, the size of the sen-
tences increases rapidly, where the number of the
stripped articleAl is very high. Not every article in
an Arabic sentence matches to an article in the target
language. One of the reasons is that the adjective in
Arabic gets an article if the word it describes is def-
inite. So, if a word has the prefixAl, then its adjec-
tive will also haveAl as a prefix. In order to reduce
the sentence size we decide to remove all these arti-
cles that are supposed to be attached to an adjective.
Another way for determiner deletion is described in
(Lee, 2004).

4 Word Segmentation

One way to simplify inflected Arabic text for a SMT
system is to split the words in prefixes, stem and
suffixes. In (Lee et al., 2003), (Diab et al., 2004)
and (Habash and Rambow, 2005) three supervised
segmentation methods are introduced. However, in
these works the impact of the segmentation on the
translation quality is not studied. In the next subsec-
tions we will shortly describe the method of (Diab et
al., 2004). Then we present our unsupervised meth-
ods.

4.1 Supervised Learning Approach (SL)

(Diab et al., 2004) propose solutions to word seg-
mentation and POS Tagging of Arabic text. For the
purpose of training the Arabic TreeBank is used,
which is an Arabic corpus containing news articles
of the newswire agency AFP. In the first step the text
must be transliterated to the Buckwalter translitera-
tion, which is a one-to-one mapping to ASCII char-
acters. In the second step it will be segmented and
tokenized. In the third step a partial lemmatization is
done. Finally a POS tagging is performed. We will

test the impact of the step 3 (segmentation + lemma-
tization) on the translation quality using our phrase
based system described in Section 2.

4.2 Frequency-Based Approach (FB)

We provide a set of all prefixes and suffixes and
their possible combinations. Based on this set, we
may have different splitting points for a given com-
pound word. We decide whether and where to split
the composite word based on the frequency of dif-
ferent resulting stems and on the frequency of the
compound word, e.g. if the compound word has a
higher frequency than all possible stems, it will not
be split. This simple heuristic harmonizes the cor-
pus by reducing the size of vocabulary, singletons
and also unseen words from the test corpus. This
method is very similar to the method used for split-
ting German compound words (Koehn and Knight,
2003).

4.3 Finite State Automaton-Based Approach
(FSA)

To segment Arabic words into prefixes, stem and one
suffix, we implemented two finite state automata.
One for stripping the prefixes and the other for the
suffixes. Then, we append the suffix automaton to
the other one for stripping prefixes. Figure 1 shows
the finite state automaton for stripping all possible
prefix combinations. We add the prefixs (�), which
changes the verb tense to the future, to the set of
prefixes which must be stripped (see table 1). This
prefix can only be combined withw andf. Our mo-
tivation is that the future tense in English is built by
adding the separate word “will”.
The automaton showed in Figure 1 consists of the
following states:

• S: the starting point of the automaton.

• E: tne end state, which can only be achieved if
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S K

AL

B

L
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C

E

Figure 1: Finite state automaton for stripping pre-
fixes off Arabic words.

the resulting stem exists already in the text.

• WF: is achieved if the word begins withw or f.

• And the states , K, L, B and AL are achieved if
the word begins withs, k, l, bandAl, respec-
tively.

To minimize the number of wrong segmentations,
we restricted the transition from one state to the
other to the condition that the produced stem occurs
at least one time in the corpus. To ensure that most
compound words are recognized and segmented, we
run the segmenter itteratively, where after each it-
eration the newly generated words are added to the
vocabulary. This will enable recognizing new com-
pound words in the next iteration. Experiments
showed that running the segmenter twice is suffi-
cient and in higher iterations most of the added seg-
mentations are wrong.

4.4 Improved Finite State Automaton-Based
Approach (IFSA)

Although we restricted the finite state segmenter in
such a way that words will be segmented only if the
yielded stem already exists in the corpus, we still get
some wrongly segmented words. Thus, some new
stems, which do not make sense in Arabic, occur

in the segmented text. Another problem is that the
finite state segmenter does not care about ambigui-
ties and splits everything it recognizes. For example
let us examine the wordfrd (XQ

	
¯). In one case, the

characterf is an original one and therefore can not
be segmented. In this case the word means “per-
son”. In the other case, the word can be segmented
to “f rd” (which means “and then he answers” or
“and then an answer”). If the wordsAlfrd, frd and
rd(XQ

	
¯ , XQ

	
®Ë @ andXP) occur in the corpus, then the fi-

nite state segmenter will transform theAlfrd (which
means “the person”) toAl f rd (which can be trans-
lated to “the and then he answers”). Thus the mean-
ing of the original word is distorted. To solve all
these problems, we improved the last approach in a
way that prefixes and suffixes are recognized simul-
taneously. The segmentation of the ambiguous word
will be avoided. In doing that, we intend to postpone
resolving such ambiguities to our SMT system.

The question now is how can we avoid the seg-
mentation of ambiguous words. To do this, it is suf-
ficient to find a word that contains the prefix as an
original character. In the last example the wordAl-
frd contains the prefixf as an original character and
therefore onlyAl can be stripped off the word. The
next question we can ask is, how can we decide if a
character belongs to the word or is a prefix. We can
extract this information using the invalid prefix com-
binations. For exampleAl is always the last prefix
that can occur. Therefore all characters that occur in
a word afterAl are original characters. This method
can be applied for all invalid combinations to extract
new rules to decide whether a character in a word is
an original one or not.

On the other side, all suffixes we handle in this
work are pronouns. Therefore it is not possible to
combine them as a suffix. We use this fact to make
a decision whether the end characters in a word are
original or can be stripped. For example the word
trkhm (Ñê»Q�K) means “he lets them”. If we suppose
that hm is a suffix and therefore must be stripped,
then we can conclude thatk is an original character
and not a suffix. In this way we are able to extract
from the corpus itself decisions whether and how a
word can be segmented.

In order to implement these changes the original
automaton was modified. Instead of splitting a word
we mark it with some properties which corespond
to the states traversed untill the end state. On the
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other side, we use the technique described above to
generate negative properties which avoid the corre-
sponding kind of splitting. If a property and its nega-
tion belong to the same word then the property is re-
moved and only the negation is considered. At the
end each word is split corresponding to the proper-
ties it is marked with.

5 Experimental Results

5.1 Corpus Statistics

The experiments were carried out on two tasks: the
corpora of the Arabic-English NIST task, which
contain news articles and UN reports, and the
Arabic-English corpus of the Basic Travel Expres-
sion Corpus (BTEC) task, which consists of typi-
cal travel domain phrases (Takezawa et al., 2002).
The corpus statistics of the NIST and BTEC corpora
are shown in Table 3 and 5. The statistics of the
news part of NIST corpus, consisting of the Ummah,
ATB, ANEWS1 and eTIRR corpora, is shown in Ta-
ble 4. In the NIST task, we make use of the NIST
2002 evaluation set as a development set and NIST
2004 evaluation set as a test set. Because the test
set contains four references for each senence we de-
cided to use only the first four references of the de-
velopment set for the optimization and evaluation.
In the BTEC task, C-Star’03 and IWSLT’04 copora
are considered as development and test sets, respec-
tively.

5.2 Evaluation Metrics

The commonly used criteria to evaluate the trans-
lation results in the machine translation commu-
nity are: WER (word error rate), PER (position-
independent word error rate), BLEU (Papineni et
al., 2002), and NIST (Doddington, 2002). The four
criteria are computed with respect to multiple ref-
erences. The number of reference translations per
source sentence varies from 4 to 16 references. The
evaluation is case-insensitive for BTEC and case-
sensitive for NIST task. As the BLEU and NIST
scores measure accuracy, higher scores are better.

5.3 Translation Results

To study the impact of different segmentation meth-
ods on the translation quality, we apply different
word segmentation methods to the Arabic part of the
BTEC and NIST corpora. Then, we make use of the

phrase-based machine translation system to translate
the development and test sets for each task.

First, we discuss the experimental results on the
BTEC task. In Table 6, the translation results on the
BTEC corpus are shown. The first row of the table is
the baseline system where none of the segmentation
methods is used. All segmentation methods improve
the baseline system, except the SL segmentation
method on the development corpus. The best per-
forming segmentation method is IFSA which gener-
ates the best translation results based on all evalua-
tion criteria, and it is consistent over both develop-
ment and evaluation sets. As we see, the segmen-
tation of Arabic words has a noticeable impact in
improving the translation quality on a small corpus.

To study the impact of word segmentation meth-
ods on a large task, we conduct two sets of experi-
ments on the NIST task using two different amounts
of the training corpus: only news corpora, and full
corpus. In Table 7, the translation results on the
NIST task are shown when just the news corpora
were used to train the machine translation models.
As the results show, except for the FB method, all
segmentation methods improve the baseline system.
For the NIST task, the SL method outperforms the
other segmentation methods, while it did not achieve
good results when comparing to the other methods
in the BTEC task.

We see that the SL, FSA and IFSA segmentation
methods consistently improve the translation results
in the BTEC and NIST tasks, but the FB method
failed on the NIST task, which has a larger training
corpus . The next step is to study the impact of the
segmentation methods on a very large task, the NIST
full corpus. Unfortunately, the SL method failed on
segmenting the large UN corpus, due to the large
processing time that it needs. Due to the negative
results of the FB method on the NIST news corpora,
and very similar results for FSA and IFSA, we were
interested to test the impact of IFSA on the NIST
full corpus. In Table 8, the translation results of the
baseline system and IFSA segmentation method for
the NIST full corpus are depicted. As it is shown in
table, the IFSA method slightly improves the trans-
lation results in the development and test sets.

The IFSA segmentation method generates the
best results among our proposed methods. It
acheives consistent improvements in all three tasks
over the baseline system. It also outperforms the SL
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Table 3: BTEC corpus statistics, where the Arabic part is tokenized and segmented with the SL, FB, FSA
and the IFSA methods.

ARABIC
ENGLISH

TOKENIZED SL FB FSA IFSA

Train: Sentences 20K
Running Words 159K 176.2K 185.5K 190.3K 189.1K 189K

Vocabulary 18,149 14,321 11,235 11,736 12,874 7,162

Dev: Sentences 506
Running Words 3,161 3,421 3,549 3,759 3,715 5,005

OOVs (Running Words) 163 129 149 98 118 NA

Test: Sentences 500
Running Words 3,240 3,578 3,675 3,813 3,778 4,986

OOVs (Running Words) 186 120 156 92 115 NA

Table 4: Corpus statistics for the news part of the NIST task, where the Arabic part is tokenized and seg-
mented with SL, FB, FSA and IFSA methods.

ARABIC
ENGLISH

TOKENIZED SL FB FSA IFSA

Train: Sentences 284.9K
Running Words 8.9M 9.7M 12.2M 10.9M 10.9M 10.2M

Vocabulary 118.7K 90.5K 43.1K 68.4K 62.2K 56.1K

Dev: Sentences 1,043
Running Words 27.7K 29.1K 37.3K 34.4K 33.5K 33K

OOVs (Running Words) 714 558 396 515 486 NA

Test: Sentences 1,353
Running Words 37.9K 41.7K 52.6K 48.6K 48.3K 48.3K

OOVs (Running Words) 1,298 1,027 612 806 660 NA

segmentation on the BTEC task.

Although the SL method outperforms the IFSA
method on the NIST tasks, the IFSA segmentation
method has a few notable advantages over the SL
system. First, it is consistent in improving the base-
line system over the three tasks. But, the SL method
failed in improving the BTEC development corpus.
Second, it is fast and robust, and capable of being
applied to the large corpora. Finally, it employs an
unsupervised learning method, therefore can easily
cope with a new task or corpus.

We observe that the relative improvement over
the baseline system is decreased by increasing the
size of the training corpus. This is a natural effect
of increasing the size of the training corpus. As
the larger corpus provides higher probability to have
more samples per word, this means higher chance
to learn the translation of a word in different con-

texts. Therefore, larger training corpus makes a bet-
ter translation system, i.e. a better baseline, then it
would be harder to outperform this better system.
Using the same reasoning, we can realize why the
FB method achieves good results on the BTEC task,
but not on the NIST task. By increasing the size
of the training corpus, the FB method tends to seg-
ment words more than the IFSA method. This over-
segmentation can be compensated by using longer
phrases during the translation, in order to consider
the same context compared to the non-segmented
corpus. Then, it would be harder for a phrase-based
machine translation system to learn the translation
of a word (stem) in different contexts.

6 Conclusion

We presented three methods to segment Arabic
words: a supervised learning approach, a frequency-
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Table 5: NIST task corpus statistics, where the Arabic part is tokenized and segmented with the IFSA
method.

ARABIC
ENGLISH

TOKENIZED IFSA

Train: Sentences 8.5M
Running Words 260.5M 316.8M 279.2M

Vocabulary 510.3K 411.2K 301.2K

Dev: Sentences 1043
Running Words 30.2K 33.3K 33K

OOVs (Running Words) 809 399 NA

Test: Sentences 1353
Running Words 40K 47.9K 48.3K

OOVs (Running Words) 871 505 NA

Table 6: Case insensitive evaluation results for translating the development and test data of BTEC task after
performing divers preprocessing.

Dev Test
mPER mWER BLEU NIST mPER mWER BLEU NIST

[%] [%] [%] [%] [%] [%]
Non-Segmented Data 21.4 24.6 63.9 10.0 23.5 27.2 58.1 9.6
SL Segmenter 21.2 24.4 62.5 9.7 23.4 27.4 59.2 9.7
FB Segmenter 20.9 24.4 65.3 10.1 22.1 25.8 59.8 9.7
FSA Segmenter 20.1 23.4 64.8 10.2 21.1 25.2 61.3 10.2
IFSA Segmenter 20.0 23.3 65.0 10.4 21.2 25.3 61.3 10.2

based approach and a finite state automaton-based
approach. We explained that the best of our pro-
posed methods, the improved finite state automaton,
has three advantages over the state-of-the-art Arabic
word segmentation method (Diab, 2000), supervised
learning. They are: consistency in improving the
baselines system over different tasks, its capability
to be efficiently applied on the large corpora, and its
ability to cope with different tasks.
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Abstract

Many syntactic models in machine trans-
lation are channels that transform one
tree into another, or synchronous gram-
mars that generate trees in parallel. We
present a new model of the translation pro-
cess: quasi-synchronous grammar (QG).
Given a source-language parse tree T1, a
QG defines a monolingual grammar that
generates translations of T1. The trees
T2 allowed by this monolingual gram-
mar are inspired by pieces of substruc-
ture in T1 and aligned to T1 at those
points. We describe experiments learning
quasi-synchronous context-free grammars
from bitext. As with other monolingual
language models, we evaluate the cross-
entropy of QGs on unseen text and show
that a better fit to bilingual data is achieved
by allowing greater syntactic divergence.
When evaluated on a word alignment task,
QG matches standard baselines.

1 Motivation and Related Work

1.1 Sloppy Syntactic Alignment
This paper proposes a new type of syntax-based
model for machine translation and alignment. The
goal is to make use of syntactic formalisms, such as
context-free grammar or tree-substitution grammar,
without being overly constrained by them.

Let S1 and S2 denote the source and target sen-
tences. We seek to model the conditional probability

p(T2, A | T1) (1)

where T1 is a parse tree for S1, T2 is a parse tree
for S2, and A is a node-to-node alignment between
them. This model allows one to carry out a variety
of alignment and decoding tasks. Given T1, one can
translate it by finding the T2 and A that maximize
(1). Given T1 and T2, one can align them by finding
the A that maximizes (1) (equivalent to maximizing
p(A | T2, T1)). Similarly, one can align S1 and S2

by finding the parses T1 and T2, and alignment A,
that maximize p(T2, A | T1) · p(T1 | S1), where
p(T1 | S1) is given by a monolingual parser. We
usually accomplish such maximizations by dynamic
programming.

Equation (1) does not assume that T1 and T2 are
isomorphic. For example, a model might judge T2

and A to be likely, given T1, provided that many—
but not necessarily all—of the syntactic dependen-
cies in T1 are aligned with corresponding depen-
dencies in T2. Hwa et al. (2002) found that hu-
man translations from Chinese to English preserved
only 39–42% of the unlabeled Chinese dependen-
cies. They increased this figure to 67% by using
more involved heuristics for aligning dependencies
across these two languages. That suggests that (1)
should be defined to consider more than one depen-
dency at a time.

This inspires the key novel feature of our models:
A does not have to be a “well-behaved” syntactic
alignment. Any portion of T2 can align to any por-
tion of T1, or to NULL. Nodes that are syntactically
related in T1 do not have to translate into nodes that
are syntactically related in T2—although (1) is usu-
ally higher if they do.

This property makes our approach especially
promising for aligning freely, or erroneously, trans-
lated sentences, and for coping with syntactic diver-

23



gences observed between even closely related lan-
guages (Dorr, 1994; Fox, 2002). We can patch to-
gether an alignment without accounting for all the
details of the translation process. For instance, per-
haps a source NP (figure 1) or PP (figure 2) appears
“out of place” in the target sentence. A linguist
might account for the position of the PP auf diese
Frage either syntactically (by invoking scrambling)
or semantically (by describing a deep analysis-
transfer-synthesis process in the translator’s head).
But an MT researcher may not have the wherewithal
to design, adequately train, and efficiently compute
with “deep” accounts of this sort. Under our ap-
proach, it is possible to use a simple, tractable syn-
tactic model, but with some contextual probability
of “sloppy” transfer.

1.2 From Synchronous to Quasi-Synchronous
Grammars

Because our approach will let anything align to
anything, it is reminiscent of IBM Models 1–5
(Brown et al., 1993). It differs from the many ap-
proaches where (1) is defined by a stochastic syn-
chronous grammar (Wu, 1997; Alshawi et al., 2000;
Yamada and Knight, 2001; Eisner, 2003; Gildea,
2003; Melamed, 2004) and from transfer-based sys-
tems defined by context-free grammars (Lavie et al.,
2003).

The synchronous grammar approach, originally
due to Shieber and Schabes (1990), supposes that T2

is generated in lockstep to T1.1 When choosing how
to expand a certain VP node in T2, a synchronous
CFG process would observe that this node is aligned
to a node VP′ in T1, which had been expanded in T1

by VP′ → NP′ V′. This might bias it toward choos-
ing to expand the VP in T2 as VP → V NP, with the
new children V aligned to V′ and NP aligned to NP′.
The process then continues recursively by choosing
moves to expand these children.

One can regard this stochastic process as an in-
stance of analysis-transfer-synthesis MT. Analysis
chooses a parse T1 given S1. Transfer maps the
context-free rules in T1 to rules of T2. Synthesis

1The usual presentation describes a process that generates
T1 and T2 jointly, leading to a joint model p(T2, A, T1). Divid-
ing by the marginal p(T1) gives a conditional model p(T2, A |
T1) as in (1). In the text, we directly describe an equivalent
conditional process for generating T2, A given T1.

deterministically assembles the latter rules into an
actual tree T2 and reads off its yield S2.

What is worrisome about the synchronous pro-
cess is that it can only produce trees T2 that are
perfectly isomorphic to T1. It is possible to relax
this requirement by using synchronous grammar for-
malisms more sophisticated than CFG:2 one can per-
mit unaligned nodes (Yamada and Knight, 2001),
duplicated children (Gildea, 2003)3, or alignment
between elementary trees of differing sizes rather
than between single rules (Eisner, 2003; Ding and
Palmer, 2005; Quirk et al., 2005). However, one
would need rather powerful and slow grammar for-
malisms (Shieber and Schabes, 1990; Melamed et
al., 2004), often with discontiguous constituents, to
account for all the linguistic divergences that could
arise from different movement patterns (scrambling,
wh-in situ) or free translation. In particular, a syn-
chronous grammar cannot practically allow S2 to be
any permutation of S1, as IBM Models 1–5 do.

Our alternative is to define a “quasi-synchronous”
stochastic process. It generates T2 in a way that is
not in thrall to T1 but is “inspired by it.” (A human
translator might be imagined to behave similarly.)
When choosing how to expand nodes of T2, we are
influenced both by the structure of T1 and by mono-
lingual preferences about the structure of T2. Just as
conditional Markov models can more easily incor-
porate global features than HMMs, we can look at
the entire tree T1 at every stage in generating T2.

2 Quasi-Synchronous Grammar

Given an input S1 or its parse T1, a quasi-
synchronous grammar (QG) constructs a monolin-
gual grammar for parsing, or generating, the possi-
ble translations S2—that is, a grammar for finding
appropriate trees T2. What ties this target-language
grammar to the source-language input? The gram-
mar provides for target-language words to take on

2When one moves beyond CFG, the derived trees T1 and
T2 are still produced from a single derivation tree, but may be
shaped differently from the derivation tree and from each other.

3For tree-to-tree alignment, Gildea proposed a clone opera-
tion that allowed subtrees of the source tree to be reused in gen-
erating a target tree. In order to preserve dynamic programming
constraints, the identity of the cloned subtree is chosen indepen-
dently of its insertion point. This breakage of monotonic tree
alignment moves Gildea’s alignment model from synchronous
to quasi-synchronous.
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Then:1 we:2

could:3

deal:4 .:10

with:5 later:9

Chernobyl:6

some:7

time:8

Tschernobyl/NE:6

koennte/VVFIN:3

dann/ADV:1 etwas/ADV:0 spaeter/ADJ:1 an/PREP:0 kommen/VVINF:0 ./S-SYMBOL:10

Reihe/NN:0

die/ART:0

Figure 1: German and English dependency parses and their alignments from our system where German
is the target language. Tschernobyl depends on könnte even though their English analogues are not in a
dependency relationship. Note the parser’s error in not attaching etwas to später.
German: Tschernobyl könnte dann etwas später an die Reihe kommen .
Literally: Chernobyl could then somewhat later on the queue come.
English: Then we could deal with Chernobyl some time later .

I:1

did:2

not:3 unfortunately:4 receive:5 .:11

answer:7

an:6 to:8

question:10

this:9

Auf/PREP:8

Frage/NN:10

diese/DEM:9

habe/VHFIN:2 ich/PPRO:1 leider/ADV:4

keine/INDEF:3

Antwort/NN:7

bekommen/VVpast:5

./S-SYMBOL:11

Figure 2: Here the German sentence exhibits scrambling of the phrase auf diese Frage and negates the object
of bekommen instead of the verb itself.
German: Auf diese Frage habe ich leider keine Antwort bekommen .
Literally: To this question have I unfortunately no answer received.
English: I did not unfortunately receive an answer to this question .
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multiple hidden “senses,” which correspond to (pos-
sibly empty sets of) word tokens in S1 or nodes in
T1. To take a familiar example, when parsing the
English side of a French-English bitext, the word
bank might have the sense banque (financial) in one
sentence and rive (littoral) in another.

The QG4 considers the “sense” of the former bank
token to be a pointer to the particular banque token
to which it aligns. Thus, a particular assignment of
S1 “senses” to word tokens in S2 encodes a word
alignment.

Now, selectional preferences in the monolingual
grammar can be influenced by these T1-specific
senses. So they can encode preferences for how T2

ought to copy the syntactic structure of T1. For ex-
ample, if T1 contains the phrase banque nationale,
then the QG for generating a corresponding T2 may
encourage any T2 English noun whose sense is
banque (more precisely, T1’s token of banque) to
generate an adjectival English modifier with sense
nationale. The exact probability of this, as well as
the likely identity and position of that English mod-
ifier (e.g., national bank), may also be influenced by
monolingual facts about English.

2.1 Definition

A quasi-synchronous grammar is a monolingual
grammar that generates translations of a source-
language sentence. Each state of this monolingual
grammar is annotated with a “sense”—a set of zero
or more nodes from the source tree or forest.

For example, consider a quasi-synchronous
context-free grammar (QCFG) for generating trans-
lations of a source tree T1. The QCFG generates the
target sentence using nonterminals from the cross
product U × 2V1 , where U is the set of monolingual
target-language nonterminals such as NP, and V1 is
the set of nodes in T1.

Thus, a binarized QCFG has rules of the form

〈A,α〉 → 〈B, β〉〈C, γ〉 (2)

〈A,α〉 → w (3)

where A,B, C ∈ U are ordinary target-language
nonterminals, α, β, γ ∈ 2V1 are sets of source tree

4By abuse of terminology, we often use “QG” to refer to the
T1-specific monolingual grammar, although the QG is properly
a recipe for constructing such a grammar from any input T1.

nodes to which A,B, C respectively align, and w is
a target-language terminal.

Similarly, a quasi-synchronous tree-substitution
grammar (QTSG) annotates the root and frontier
nodes of its elementary trees with sets of source
nodes from 2V1 .

2.2 Taming Source Nodes
This simple proposal, however, presents two main
difficulties. First, the number of possible senses for
each target node is exponential in the number of
source nodes. Second, note that the senses are sets
of source tree nodes, not word types or absolute sen-
tence positions as in some other translation models.
Except in the case of identical source trees, source
tree nodes will not recur between training and test.

To overcome the first problem, we want further re-
strictions on the set α in a QG state such as 〈A,α〉. It
should not be an arbitrary set of source nodes. In the
experiments of this paper, we adopt the simplest op-
tion of requiring |α| ≤ 1. Thus each node in the tar-
get tree is aligned to a single node in the source tree,
or to ∅ (the traditional NULL alignment). This allows
one-to-many but not many-to-one alignments.

To allow many-to-many alignments, one could
limit |α| to at most 2 or 3 source nodes, perhaps fur-
ther requiring the 2 or 3 source nodes to fall in a par-
ticular configuration within the source tree, such as
child-parent or child-parent-grandparent. With that
configurational requirement, the number of possi-
ble senses α remains small—at most three times the
number of source nodes.

We must also deal with the menagerie of differ-
ent source tree nodes in different sentences. In other
words, how can we tie the parameters of the different
QGs that are used to generate translations of differ-
ent source sentences? The answer is that the proba-
bility or weight of a rule such as (2) should depend
on the specific nodes in α, β, and γ only through
their properties—e.g., their nonterminal labels, their
head words, and their grammatical relationship in
the source tree. Such properties do recur between
training and test.

For example, suppose for simplicity that |α| =
|β| = |γ| = 1. Then the rewrite probabilities of (2)
and (3) could be log-linearly modeled using features
that ask whether the single node in α has two chil-
dren in the source tree; whether its children in the
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source are the nodes in β and γ; whether its non-
terminal label in the source is A; whether its fringe
in the source translates as w; and so on. The model
should also consider monolingual features of (2) and
(3), evaluating in particular whether A → BC is
likely in the target language.

Whether rule weights are given by factored gener-
ative models or by naive Bayes or log-linear models,
we want to score QG productions with a small set of
monolingual and bilingual features.

2.3 Synchronous Grammars Again

Finally, note that synchronous grammar is a special
case of quasi-synchronous grammar. In the context-
free case, a synchronous grammar restricts senses to
single nodes in the source tree and the NULL node.
Further, for any k-ary production

〈X0, α0〉 → 〈X1, α1〉 . . . 〈Xk, αk〉

a synchronous context-free grammar requires that
1. (∀i 6= j) αi 6= αj unless αi = NULL,
2. (∀i > 0) αi is a child of α0 in the source tree,

unless αi = NULL.
Since NULL has no children in the source tree, these
rules imply that the children of any node aligned to
NULL are themselves aligned to NULL. The con-
struction for synchronous tree-substitution and tree-
adjoining grammars goes through similarly but op-
erates on the derivation trees.

3 Parameterizing a QCFG

Recall that our goal is a conditional model of
p(T2, A | T1). For the remainder of this paper, we
adopt a dependency-tree representation of T1 and
T2. Each tree node represents a word of the sentence
together with a part-of-speech tag. Syntactic depen-
dencies in each tree are represented directly by the
parent-child relationships.

Why this representation? First, it helps us con-
cisely formulate a QG translation model where the
source dependencies influence the generation of tar-
get dependencies (see figure 3). Second, for evalu-
ation, it is trivial to obtain the word-to-word align-
ments from the node-to-node alignments. Third, the
part-of-speech tags are useful backoff features, and
in fact play a special role in our model below.

When stochastically generating a translation T2,
our quasi-synchronous generative process will be in-
fluenced by both fluency and adequacy. That is, it
considers both the local well-formedness of T2 (a
monolingual criterion) and T2’s local faithfulness
to T1 (a bilingual criterion). We combine these in
a simple generative model rather than a log-linear
model. When generating the children of a node in
T2, the process first generates their tags using mono-
lingual parameters (fluency), and then fills in in the
words using bilingual parameters (adequacy) that se-
lect and translate words from T1.5

Concretely, each node in T2 is labeled by a triple
(tag, word, aligned word). Given a parent node
(p, h, h′) in T2, we wish to generate sequences of
left and right child nodes, of the form (c, a, a′).

Our monolingual parameters come from a simple
generative model of syntax used for grammar induc-
tion: the Dependency Model with Valence (DMV) of
Klein and Manning (2004). In scoring dependency
attachments, DMV uses tags rather than words. The
parameters of the model are:

1. pchoose(c | p, dir): the probability of generat-
ing c as the next child tag in the sequence of
dir children, where dir ∈ {left, right}.

2. pstop(s | h, dir, adj): the probability of gener-
ating no more child tags in the sequence of dir
children. This is conditioned in part on the “ad-
jacency” adj ∈ {true, false}, which indicates
whether the sequence of dir children is empty
so far.

Our bilingual parameters score word-to-word
translation and aligned dependency configurations.
We thus use the conditional probability ptrans(a |
a′) that source word a′, which may be NULL, trans-
lates as target word a. Finally, when a parent word
h aligned to h′ generates a child, we stochastically
decide to align the child to a node a′ in T1 with
one several possible relations to h′. A “monotonic”
dependency alignment, for example, would have
h′ and a′ in a parent-child relationship like their
target-tree analogues. In different versions of the
model, we allowed various dependency alignment
configurations (figure 3). These configurations rep-

5This division of labor is somewhat artificial, and could be
remedied in a log-linear model, Naive Bayes model, or defi-
cient generative model that generates both tags and words con-
ditioned on both monolingual and bilingual context.
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resent cases where the parent-child dependency be-
ing generated by the QG in the target language maps
onto source-language child-parent, for head swap-
ping; the same source node, for two-to-one align-
ment; nodes that are siblings or in a c-command re-
lationship, for scrambling and extraposition; or in
a grandparent-grandchild relationship, e.g. when a
preposition is inserted in the source language. We
also allowed a “none-of-the-above” configuration, to
account for extremely mismatched sentences.

The probability of the target-language depen-
dency treelet rooted at h is thus:

P (D(h) | h, h′, p) =∏
dir∈{l,r}

∏
c∈depsD(p,dir)

P (D(c) | a, a′, c) × pstop(nostop | p, dir, adj)
×pchoose(c | p, dir)

×pconfig(config) × ptrans(a | a′)
pstop(stop | p, dir, adj)

4 Experiments

We claim that for modeling human-translated bitext,
it is better to project syntax only loosely. To evaluate
this claim, we train quasi-synchronous dependency
grammars that allow progressively more divergence
from monotonic tree alignment. We evaluate these
models on cross-entropy over held-out data and on
error rate in a word-alignment task.

One might doubt the use of dependency trees
for alignment, since Gildea (2004) found that con-
stituency trees aligned better. That experiment, how-
ever, aligned only the 1-best parse trees. We too will
consider only the 1-best source tree T1, but in con-
strast to Gildea, we will search for the target tree T2

that aligns best with T1. Finding T2 and the align-
ment is simply a matter of parsing S2 with the QG
derived from T1.

4.1 Data and Training

We performed our modeling experiments with the
German-English portion of the Europarl European
Parliament transcripts (Koehn, 2002). We obtained
monolingual parse trees from the Stanford German
and English parsers (Klein and Manning, 2003).
Initial estimates of lexical translation probabilities

came from the IBM Model 4 translation tables pro-
duced by GIZA++ (Brown et al., 1993; Och and
Ney, 2003).

All text was lowercased and numbers of two or
more digits were converted to an equal number of
hash signs. The bitext was divided into training
sets of 1K, 10K, and 100K sentence pairs. We held
out one thousand sentences for evaluating the cross-
entropy of the various models and hand-aligned
100 sentence pairs to evaluate alignment error rate
(AER).

We trained the model parameters on bitext using
the Expectation-Maximization (EM) algorithm. The
T1 tree is fully observed, but we parse the target lan-
guage. As noted, the initial lexical translation proba-
bilities came from IBM Model 4. We initialized the
monolingual DMV parameters in one of two ways:
using either simple tag co-occurrences as in (Klein
and Manning, 2004) or “supervised” counts from the
monolingual target-language parser. This latter ini-
tialization simulates the condition when one has a
small amount of bitext but a larger amount of tar-
get data for language modeling. As with any mono-
lingual grammar, we perform EM training with the
Inside-Outside algorithm, computing inside prob-
abilities with dynamic programming and outside
probabilities through backpropagation.

Searching the full space of target-language depen-
dency trees and alignments to the source tree con-
sumed several seconds per sentence. During train-
ing, therefore, we constrained alignments to come
from the union of GIZA++ Model 4 alignments.
These constraints were applied only during training
and not during evaluation of cross-entropy or AER.

4.2 Conditional Cross-Entropy of the Model
To test the explanatory power of our QCFG, we eval-
uated its conditional cross-entropy on held-out data
(table 1). In other words, we measured how well a
trained QCFG could predict the true translation of
novel source sentences by summing over all parses
of the target given the source. We trained QCFG
models under different conditions of bitext size and
parameter initialization. However, the principal in-
dependent variable was the set of dependency align-
ment configurations allowed.

From these cross-entropy results, it is clear that
strictly synchronous grammar is unwise. We ob-
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Figure 3: When a head h aligned to h′ generates a new child a aligned to a′ under the QCFG, h′ and a′ may be related in the
source tree as, among other things, (a) parent–child, (b) child–parent, (c) identical nodes, (d) siblings, (e) grandparent–grandchild,
(f) c-commander–c-commandee, (g) none of the above. Here German is the source and English is the target. Case (g), not pictured
above, can be seen in figure 1, in English-German order, where the child-parent pair Tschernobyl könnte correspond to the words
Chernobyl and could, respectively. Since could dominates Chernobyl, they are not in a c-command relationship.

Permitted configurations CE CE CE
at 1k 10k 100k

∅ or parent-child (a) 43.82 22.40 13.44
+ child-parent (b) 41.27 21.73 12.62
+ same node (c) 41.01 21.50 12.38
+ all breakages (g) 35.63 18.72 11.27
+ siblings (d) 34.59 18.59 11.21
+ grandparent-grandchild (e) 34.52 18.55 11.17
+ c-command (f) 34.46 18.59 11.27
No alignments allowed 60.86 53.28 46.94

Table 1: Cross-entropy on held-out data with different depen-
dency configurations (figure 3) allowed, for 1k, 10k, and 100k
training sentences. The big error reductions arrive when we
allow arbitrary non-local alignments in condition (g). Distin-
guishing some common cases of non-local alignments improves
performance further. For comparison, we show cross-entropy
when every target language node is unaligned.

tain comparatively poor performance if we require
parent-child pairs in the target tree to align to parent-
child pairs in the source (or to parent-NULL or
NULL-NULL). Performance improves as we allow
and distinguish more alignment configurations.

4.3 Word Alignment

We computed standard measures of alignment preci-
sion, recall, and error rate on a test set of 100 hand-
aligned German sentence pairs with 1300 alignment

links. As with many word-alignment evaluations,
we do not score links to NULL. Just as for cross-
entropy, we see that more permissive alignments
lead to better performance (table 2).

Having selected the best system using the cross-
entropy measurement, we compare its alignment er-
ror rate against the standard GIZA++ Model 4 base-
lines. As Figure 4 shows, our QCFG for German →
English consistently produces better alignments than
the Model 4 channel model for the same direction,
German → English. This comparison is the appro-
priate one because both of these models are forced
to align each English word to at most one German
word. 6

5 Conclusions

With quasi-synchronous grammars, we have pre-
sented a new approach to syntactic MT: construct-
ing a monolingual target-language grammar that de-
scribes the aligned translations of a source-language
sentence. We described a simple parameterization

6For German → English MT, one would use a German →
English QCFG as above, but an English → German channel
model. In this arguably inappropriate comparison, Figure 4
shows, the Model 4 channel model produces slightly better
word alignments than the QG.
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Permitted configurations AER AER AER
at 1k 10k 100k

∅ or parent-child (a) 40.69 39.03 33.62
+ child-parent (b) 43.17 39.78 33.79
+ same node (c) 43.22 40.86 34.38
+ all breakages (g) 37.63 30.51 25.99
+ siblings (d) 37.87 33.36 29.27
+ grandparent-grandchild (e) 36.78 32.73 28.84
+ c-command (f) 37.04 33.51 27.45

Table 2: Alignment error rate (%) with different dependency
configurations allowed.
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Figure 4: Alignment error rate with best model (all break-
ages). The QCFG consistently beat one GIZA++ model and
was close to the other.

with gradually increasing syntactic domains of lo-
cality, and estimated those parameters on German-
English bitext.

The QG formalism admits many more nuanced
options for features than we have exploited. In par-
ticular, we now are exploring log-linear QGs that
score overlapping elementary trees of T2 while con-
sidering the syntactic configuration and lexical con-
tent of the T1 nodes to which each elementary tree
aligns.

Even simple QGs, however, turned out to do quite
well. Our evaluation on a German-English word-
alignment task showed them to be competitive with
IBM model 4—consistently beating the German-
English direction by several percentage points of
alignment error rate and within 1% AER of the
English-German direction. In particular, alignment
accuracy benefited from allowing syntactic break-
ages between the two dependency structures.

We are also working on a translation decoding us-
ing QG. Our first system uses the QG to find optimal
T2 aligned to T1 and then extracts a synchronous
tree-substitution grammar from the aligned trees.

Our second system searches a target-language vo-
cabulary for the optimal T2 given the input T1.
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Abstract

We investigate why weights from generative mod-
els underperform heuristic estimates in phrase-
based machine translation. We first propose a sim-
ple generative, phrase-based model and verify that
its estimates are inferior to those given by surface
statistics. The performance gap stems primarily
from the addition of a hidden segmentation vari-
able, which increases the capacity for overfitting
during maximum likelihood training with EM. In
particular, while word level models benefit greatly
from re-estimation, phrase-level models do not: the
crucial difference is that distinct word alignments
cannot all be correct, while distinct segmentations
can. Alternate segmentations rather than alternate
alignments compete, resulting in increased deter-
minization of the phrase table, decreased general-
ization, and decreased final BLEU score. We also
show that interpolation of the two methods can re-
sult in a modest increase in BLEU score.

1 Introduction

At the core of a phrase-based statistical machine
translation system is a phrase table containing
pairs of source and target language phrases, each
weighted by a conditional translation probability.
Koehn et al. (2003a) showed that translation qual-
ity is very sensitive to how this table is extracted
from the training data. One particularly surprising
result is that a simple heuristic extraction algorithm
based on surface statistics of a word-aligned training
set outperformed the phrase-based generative model
proposed by Marcu and Wong (2002).

This result is surprising in light of the reverse sit-
uation for word-based statistical translation. Specif-
ically, in the task of word alignment, heuristic ap-
proaches such as the Dice coefficient consistently
underperform their re-estimated counterparts, such
as the IBM word alignment models (Brown et al.,
1993). This well-known result is unsurprising: re-
estimation introduces an element of competition into

the learning process. The key virtue of competition
in word alignment is that, to a first approximation,
only one source word should generate each target
word. If a good alignment for a word token is found,
other plausible alignments are explained away and
should be discounted as incorrect for that token.

As we show in this paper, this effect does not pre-
vail for phrase-level alignments. The central differ-
ence is that phrase-based models, such as the ones
presented in section 2 or Marcu and Wong (2002),
contain an element of segmentation. That is, they do
not merely learn correspondences between phrases,
but also segmentations of the source and target sen-
tences. However, while it is reasonable to sup-
pose that if one alignment is right, others must be
wrong, the situation is more complex for segmenta-
tions. For example, if one segmentation subsumes
another, they are not necessarily incompatible: both
may be equally valid. While in some cases, such
as idiomatic vs. literal translations, two segmenta-
tions may be in true competition, we show that the
most common result is for different segmentations
to be recruited for different examples, overfitting the
training data and overly determinizing the phrase
translation estimates.

In this work, we first define a novel (but not rad-
ical) generative phrase-based model analogous to
IBM Model 3. While its exact training is intractable,
we describe a training regime which uses word-
level alignments to constrain the space of feasible
segmentations down to a manageable number. We
demonstrate that the phrase analogue of the Dice co-
efficient is superior to our generative model (a re-
sult also echoing previous work). In the primary
contribution of the paper, we present a series of ex-
periments designed to elucidate what re-estimation
learns in this context. We show that estimates are
overly determinized because segmentations are used
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in unintuitive ways for the sake of data likelihood.
We comment on both the beneficial instances of seg-
ment competition (idioms) as well as the harmful
ones (most everything else). Finally, we demon-
strate that interpolation of the two estimates can
provide a modest increase in BLEU score over the
heuristic baseline.

2 Approach and Evaluation Methodology

The generative model defined below is evaluated
based on the BLEU score it produces in an end-
to-end machine translation system from English to
French. The top-performing diag-and extraction
heuristic (Zens et al., 2002) serves as the baseline for
evaluation.1 Each approach – the generative model
and heuristic baseline – produces an estimated con-
ditional distribution of English phrases given French
phrases. We will refer to the distribution derived
from the baseline heuristic as φH . The distribution
learned via the generative model, denoted φEM , is
described in detail below.

2.1 A Generative Phrase Model

While our model for computing φEM is novel, it
is meant to exemplify a class of models that are
not only clear extensions to generative word align-
ment models, but also compatible with the statistical
framework assumed during phrase-based decoding.

The generative process we modeled produces a
phrase-aligned English sentence from a French sen-
tence where the former is a translation of the lat-
ter. Note that this generative process is opposite to
the translation direction of the larger system because
of the standard noisy-channel decomposition. The
learned parameters from this model will be used to
translate sentences from English to French. The gen-
erative process modeled has four steps:2

1. Begin with a French sentence f.
1This well-known heuristic extracts phrases from a sentence

pair by computing a word-level alignment for the sentence and
then enumerating all phrases compatible with that alignment.
The word alignment is computed by first intersecting the direc-
tional alignments produced by a generative IBM model (e.g.,
model 4 with minor enhancements) in each translation direc-
tion, then adding certain alignments from the union of the di-
rectional alignments based on local growth rules.

2Our notation matches the literature for phrase-based trans-
lation: e is an English word, ē is an English phrase, and ēI

1 is a
sequence of I English phrases, and e is an English sentence.

2. Segment f into a sequence of I multi-word
phrases that span the sentence, f̄ I

1 .

3. For each phrase f̄i ∈ f̄ I
1 , choose a correspond-

ing position j in the English sentence and es-
tablish the alignment aj = i, then generate ex-
actly one English phrase ēj from f̄i.

4. The sequence ēj ordered by a describes an En-
glish sentence e.

The corresponding probabilistic model for this gen-
erative process is:

P (e|f) =
∑

f̄I
1 ,ēI

1,a

P (e, f̄ I
1 , ēI

1, a|f)

=
∑

f̄I
1 ,ēI

1,a

σ(f̄ I
1 |f)

∏
f̄i∈f̄I

1

φ(ēj |f̄i)d(aj = i|f)

where P (e, f̄ I
1 , ēI

1, a|f) factors into a segmentation
model σ, a translation model φ and a distortion
model d. The parameters for each component of this
model are estimated differently:

• The segmentation model σ(f̄ I
1 |f) is assumed to

be uniform over all possible segmentations for
a sentence.3

• The phrase translation model φ(ēj |f̄i) is pa-
rameterized by a large table of phrase transla-
tion probabilities.

• The distortion model d(aj = i|f) is a discount-
ing function based on absolute sentence posi-
tion akin to the one used in IBM model 3.

While similar to the joint model in Marcu and Wong
(2002), our model takes a conditional form com-
patible with the statistical assumptions used by the
Pharaoh decoder. Thus, after training, the param-
eters of the phrase translation model φEM can be
used directly for decoding.

2.2 Training
Significant approximation and pruning is required
to train a generative phrase model and table – such
as φEM – with hidden segmentation and alignment
variables using the expectation maximization algo-
rithm (EM). Computing the likelihood of the data

3This segmentation model is deficient given a maximum
phrase length: many segmentations are disallowed in practice.
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for a set of parameters (the e-step) involves summing
over exponentially many possible segmentations for
each training sentence. Unlike previous attempts to
train a similar model (Marcu and Wong, 2002), we
allow information from a word-alignment model to
inform our approximation. This approach allowed
us to directly estimate translation probabilities even
for rare phrase pairs, which were estimated heuristi-
cally in previous work.

In each iteration of EM, we re-estimate each
phrase translation probability by summing fractional
phrase counts (soft counts) from the data given the
current model parameters.

φnew(ēj |f̄i) =
c(f̄i, ēj)
c(f̄i)

=

∑
(f,e)

∑
f̄I
1 :f̄i∈f̄I

1

∑
ēI
1:ēj∈ēI

1

∑
a:aj=i P (e, f̄ I

1 , ēI
1, a|f)∑

f̄I
1 :f̄i∈f̄I

1

∑
ēI
1

∑
a P (e, f̄ I

1 , ēI
1, a|f)

This training loop necessitates approximation be-
cause summing over all possible segmentations and
alignments for each sentence is intractable, requiring
time exponential in the length of the sentences. Ad-
ditionally, the set of possible phrase pairs grows too
large to fit in memory. Using word alignments, we
can address both problems.4 In particular, we can
determine for any aligned segmentation (f̄ I

1 , ēI
1, a)

whether it is compatible with the word-level align-
ment for the sentence pair. We define a phrase pair
to be compatible with a word-alignment if no word
in either phrase is aligned with a word outside the
other phrase (Zens et al., 2002). Then, (f̄ I

1 , ēI
1, a)

is compatible with the word-alignment if each of its
aligned phrases is a compatible phrase pair.

The training process is then constrained such that,
when evaluating the above sum, only compatible
aligned segmentations are considered. That is, we
allow P (e, f̄ I

1 , ēI
1, a|f) > 0 only for aligned seg-

mentations (f̄ I
1 , ēI

1, a) such that a provides a one-
to-one mapping from f̄ I

1 to ēI
1 where all phrase pairs

(f̄aj , ēj) are compatible with the word alignment.
This constraint has two important effects. First,

we force P (ēj |f̄i) = 0 for all phrase pairs not com-
patible with the word-level alignment for some sen-
tence pair. This restriction successfully reduced the

4The word alignments used in approximating the e-step
were the same as those used to create the heuristic diag-and
baseline.

total legal phrase pair types from approximately 250
million to 17 million for 100,000 training sentences.
However, some desirable phrases were eliminated
because of errors in the word alignments.

Second, the time to compute the e-step is reduced.
While in principle it is still intractable, in practice
we can compute most sentence pairs’ contributions
in under a second each. However, some spurious
word alignments can disallow all segmentations for
a sentence pair, rendering it unusable for training.
Several factors including errors in the word-level
alignments, sparse word alignments and non-literal
translations cause our constraint to rule out approx-
imately 54% of the training set. Thus, the reduced
size of the usable training set accounts for some of
the degraded performance of φEM relative to φH .
However, the results in figure 1 of the following sec-
tion show that φEM trained on twice as much data
as φH still underperforms the heuristic, indicating a
larger issue than decreased training set size.

2.3 Experimental Design
To test the relative performance of φEM and φH ,
we evaluated each using an end-to-end translation
system from English to French. We chose this non-
standard translation direction so that the examples
in this paper would be more accessible to a primar-
ily English-speaking audience. All training and test
data were drawn from the French/English section of
the Europarl sentence-aligned corpus. We tested on
the first 1,000 unique sentences of length 5 to 15 in
the corpus and trained on sentences of length 1 to 60
starting after the first 10,000.

The system follows the structure proposed in
the documentation for the Pharaoh decoder and
uses many publicly available components (Koehn,
2003b). The language model was generated from
the Europarl corpus using the SRI Language Model-
ing Toolkit (Stolcke, 2002). Pharaoh performed de-
coding using a set of default parameters for weight-
ing the relative influence of the language, translation
and distortion models (Koehn, 2003b). A maximum
phrase length of three was used for all experiments.

To properly compare φEM to φH , all aspects of
the translation pipeline were held constant except for
the parameters of the phrase translation table. In par-
ticular, we did not tune the decoding hyperparame-
ters for the different phrase tables.
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Source 25k 50k 100k

Heuristic 0.3853 0.3883 0.3897

Iteration 1 0.3724 0.3775 0.3743

Iteration 2 0.3735 0.3851 0.3814

iteration 3 0.3705 0.384 0.3827

Iteration 4 0.3695 0.285 0.3801

iteration 5 0.3705 0.284 0.3774

interp
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Figure 1: Statistical re-estimation using a generative
phrase model degrades BLEU score relative to its
heuristic initialization.

3 Results

Having generated φH heuristically and φEM with
EM, we now compare their performance. While the
model and training regimen for φEM differ from the
model from Marcu and Wong (2002), we achieved
results similar to Koehn et al. (2003a): φEM slightly
underperformed φH . Figure 1 compares the BLEU
scores using each estimate. Note that the expecta-
tion maximization algorithm for training φEM was
initialized with the heuristic parameters φH , so the
heuristic curve can be equivalently labeled as itera-
tion 0.

Thus, the first iteration of EM increases the ob-
served likelihood of the training sentences while si-
multaneously degrading translation performance on
the test set. As training proceeds, performance on
the test set levels off after three iterations of EM. The
system never achieves the performance of its initial-
ization parameters. The pruning of our training regi-
men accounts for part of this degradation, but not all;
augmenting φEM by adding back in all phrase pairs
that were dropped during training does not close the
performance gap between φEM and φH .

3.1 Analysis

Learning φEM degrades translation quality in large
part because EM learns overly determinized seg-
mentations and translation parameters, overfitting
the training data and failing to generalize. The pri-

mary increase in richness from generative word-
level models to generative phrase-level models is
due to the additional latent segmentation variable.
Although we impose a uniform distribution over
segmentations, it nonetheless plays a crucial role
during training. We will characterize this phe-
nomenon through aggregate statistics and transla-
tion examples shortly, but begin by demonstrating
the model’s capacity to overfit the training data.

Let us first return to the motivation behind in-
troducing and learning phrases in machine transla-
tion. For any language pair, there are contiguous
strings of words whose collocational translation is
non-compositional; that is, they translate together
differently than they would in isolation. For in-
stance, chat in French generally translates to cat in
English, but appeler un chat un chat is an idiom
which translates to call a spade a spade. Introduc-
ing phrases allows us to translate chat un chat atom-
ically to spade a spade and vice versa.

While introducing phrases and parameterizing
their translation probabilities with a surface heuris-
tic allows for this possibility, statistical re-estimation
would be required to learn that chat should never be
translated to spade in isolation. Hence, translating I
have a spade with φH could yield an error.

But enforcing competition among segmentations
introduces a new problem: true translation ambigu-
ity can also be spuriously explained by the segmen-
tation. Consider the french fragment carte sur la
table, which could translate to map on the table or
notice on the chart. Using these two sentence pairs
as training, one would hope to capture the ambiguity
in the parameter table as:

French English φ(e|f)
carte map 0.5
carte notice 0.5
carte sur map on 0.5
carte sur notice on 0.5
sur on 1.0
... ... ...
table table 0.5
table chart 0.5

Assuming we only allow non-degenerate seg-
mentations and disallow non-monotonic alignments,
this parameter table yields a marginal likelihood
P (f|e) = 0.25 for both sentence pairs – the intu-
itive result given two independent lexical ambigu-
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ities. However, the following table yields a likeli-
hood of 0.28 for both sentences:5

French English φ(e|f)
carte map 1.0
carte sur notice on 1.0
carte sur la notice on the 1.0
sur on 1.0
sur la table on the table 1.0
la the 1.0
la table the table 1.0
table chart 1.0

Hence, a higher likelihood can be achieved by al-
locating some phrases to certain translations while
reserving overlapping phrases for others, thereby
failing to model the real ambiguity that exists across
the language pair. Also, notice that the phrase sur
la can take on an arbitrary distribution over any en-
glish phrases without affecting the likelihood of ei-
ther sentence pair. Not only does this counterintu-
itive parameterization give a high data likelihood,
but it is also a fixed point of the EM algorithm.

The phenomenon demonstrated above poses a
problem for generative phrase models in general.
The ambiguous process of translation can be mod-
eled either by the latent segmentation variable or the
phrase translation probabilities. In some cases, opti-
mizing the likelihood of the training corpus adjusts
for the former when we would prefer the latter. We
next investigate how this problem manifests in φEM

and its effect on translation quality.

3.2 Learned parameters

The parameters of φEM differ from the heuristically
extracted parameters φH in that the conditional dis-
tributions over English translations for some French
words are sharply peaked for φEM compared to flat-
ter distributions generated by φH . This determinism
– predicted by the previous section’s example – is
not atypical of EM training for other tasks.

To quantify the notion of peaked distributions
over phrase translations, we compute the entropy of
the distribution for each French phrase according to

5For example, summing over the first translation ex-
pands to 1

7
(φ(map | carte)φ(on the table | sur la table)

+φ(map | carte)φ(on | sur)φ(the table | la table)).
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Figure 2: Many more French phrases have very low
entropy under the learned parameterization.

the standard definition.

H(φ(ē|f̄)) =
∑
ē

φ(ē|f̄) log2 φ(ē|f̄)

The average entropy, weighted by frequency, for the
most common 10,000 phrases in the learned table
was 1.55, comparable to 3.76 for the heuristic table.
The difference between the tables becomes much
more striking when we consider the histogram of
entropies for phrases in figure 2. In particular, the
learned table has many more phrases with entropy
near zero. The most pronounced entropy differences
often appear for common phrases. Ten of the most
common phrases in the French corpus are shown in
figure 3.

As more probability mass is reserved for fewer
translations, many of the alternative translations un-
der φH are assigned prohibitively small probabili-
ties. In translating 1,000 test sentences, for example,
no phrase translation with φ(ē|f̄) less than 10−5 was
used by the decoder. Given this empirical threshold,
nearly 60% of entries in φEM are unusable, com-
pared with 1% in φH .

3.3 Effects on Translation
While this determinism of φEM may be desirable
in some circumstances, we found that the ambi-
guity in φH is often preferable at decoding time.
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Figure 3: Entropy of 10 common French phrases.
Several learned distributions have very low entropy.

In particular, the pattern of translation-ambiguous
phrases receiving spuriously peaked distributions (as
described in section 3.1) introduces new translation
errors relative to the baseline. We now investigate
both positive and negative effects of the learning
process.

The issue that motivated training a generative
model is sometimes resolved correctly: for a word
that translates differently alone than in the context
of an idiom, the translation probabilities can more
accurately reflect this. Returning to the previous ex-
ample, the phrase table for chat has been corrected
through the learning process. The heuristic process
gives the incorrect translation spade with 61% prob-
ability, while the statistical learning approach gives
cat with 95% probability.

While such examples of improvement are en-
couraging, the trend of spurious determinism over-
whelms this benefit by introducing errors in four re-
lated ways, each of which will be explored in turn.

1. Useful phrase pairs can be assigned very low
probabilities and therefore become unusable.

2. A proper translation for a phrase can be over-
ridden by another translation with spuriously
high probability.

3. Error-prone, common, ambiguous phrases be-
come active during decoding.

4. The language model cannot distinguish be-
tween different translation options as effec-
tively due to deterministic translation model
distributions.

The first effect follows from our observation in
section 3.2 that many phrase pairs are unusable due
to vanishingly small probabilities. Some of the en-
tries that are made unusable by re-estimation are
helpful at decoding time, evidenced by the fact
that pruning the set of φEM ’s low-scoring learned
phrases from the original heuristic table reduces
BLEU score by 0.02 for 25k training sentences (be-
low the score for φEM ).

The second effect is more subtle. Consider the
sentence in figure 4, which to a first approxima-
tion can be translated as a series of cognates, as
demonstrated by the decoding that follows from the
heuristic parameterization φH .6 Notice also that the
translation probabilities from heuristic extraction are
non-deterministic. On the other hand, the translation
system makes a significant lexical error on this sim-
ple sentence when parameterized by φEM : the use
of caractérise in this context is incorrect. This error
arises from a sharply peaked distribution over En-
glish phrases for caractérise.

This example illustrates a recurring problem: er-
rors do not necessarily arise because a correct trans-
lation is not available. Notice that a preferable trans-
lation of degree as degré is available under both pa-
rameterizations. Degré is not used, however, be-
cause of the peaked distribution of a competing
translation candidate. In this way, very high prob-
ability translations can effectively block the use of
more appropriate translations at decoding time.

What is furthermore surprising and noteworthy in
this example is that the learned, near-deterministic
translation for caractérise is not a common trans-
lation for the word. Not only does the statistical
learning process yield low-entropy translation dis-
tributions, but occasionally the translation with un-
desirably high conditional probability does not have
a strong surface correlation with the source phrase.
This example is not unique; during different initial-
izations of the EM algorithm, we noticed such pat-

6While there is some agreement error and awkwardness, the
heuristic translation is comprehensible to native speakers. The
learned translation incorrectly translates degree, degrading the
translation quality.
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the situation varies to an

la situation varie d ' une

Heuristically Extracted Phrase Table

Learned Phrase Table

enormous

immense

degree

degré

situation varies to

la varie d '

an enormous

une immense

degree

caractérise

the

situation

caractérise
English φ(e|f)
degree 0.998
characterises 0.001
characterised 0.001

caractérise
English φ(e|f)
characterises 0.49
characterised 0.21
permeate 0.05
features 0.05
typifies 0.05

degré
English φ(e|f)
degree 0.49
level 0.38
extent 0.02
amount 0.02
how 0.01

degré
English φ(e|f)
degree 0.64
level 0.26
extent 0.10

Figure 4: Spurious determinism in the learned phrase parameters degrades translation quality.

terns even for common French phrases such as de
and ne.

The third source of errors is closely related: com-
mon phrases that translate in many ways depending
on the context can introduce errors if they have a
spuriously peaked distribution. For instance, con-
sider the lone apostrophe, which is treated as a sin-
gle token in our data set (figure 5). The shape of
the heuristic translation distribution for the phrase is
intuitively appealing, showing a relatively flat dis-
tribution among many possible translations. Such
a distribution has very high entropy. On the other
hand, the learned table translates the apostrophe to
the with probability very near 1.

Heuristic
English φH(e|f)
our 0.10
that 0.09
is 0.06
we 0.05
next 0.05

Learned
English φEM (e|f)
the 0.99
, 4.1 · 10−3

is 6.5 · 10−4

to 6.3 · 10−4

in 5.3 · 10−4

Figure 5: Translation probabilities for an apostro-
phe, the most common french phrase. The learned
table contains a highly peaked distribution.

Such common phrases whose translation depends
highly on the context are ripe for producing transla-
tion errors. The flatness of the distribution of φH en-
sures that the single apostrophe will rarely be used
during decoding because no one phrase table entry
has high enough probability to promote its use. On
the other hand, using the peaked entry φEM (the|′)
incurs virtually no cost to the score of a translation.

The final kind of errors stems from interactions
between the language and translation models. The
selection among translation choices via a language
model – a key virtue of the noisy channel frame-
work – is hindered by the determinism of the transla-
tion model. This effect appears to be less significant
than the previous three. We should note, however,
that adjusting the language and translation model
weights during decoding does not close the perfor-
mance gap between φH and φEM .

3.4 Improvements
In light of the low entropy of φEM , we could hope to
improve translations by retaining entropy. There are
several strategies we have considered to achieve this.
Broadly, we have tried two approaches: combin-
ing φEM and φH via heuristic interpolation methods
and modifying the training loop to limit determin-
ism.

The simplest strategy to increase entropy is to
interpolate the heuristic and learned phrase tables.
Varying the weight of interpolation showed an im-
provement over the heuristic of up to 0.01 for 100k
sentences. A more modest improvement of 0.003 for
25k training sentences appears in table 1.

In another experiment, we interpolated the out-
put of each iteration of EM with its input, thereby
maintaining some entropy from the initialization pa-
rameters. BLEU score increased to a maximum of
0.394 using this technique with 100k training sen-
tences, outperforming the heuristic by a slim margin
of 0.005.

We might address the determinization in φEM

without resorting to interpolation by modifying the
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training procedure to retain entropy. By imposing a
non-uniform segmentation model that favors shorter
phrases over longer ones, we hope to prevent the
error-causing effects of EM training outlined above.
In principle, this change will encourage EM to ex-
plain training sentences with shorter sentences. In
practice, however, this approach has not led to an
improvement in BLEU.

Another approach to maintaining entropy during
the training process is to smooth the probabilities
generated by EM. In particular, we can use the fol-
lowing smoothed update equation during the train-
ing loop, which reserves a portion of probability
mass for unseen translations.

φnew(ēj |f̄i) =
c(f̄i, ēj)

c(f̄i) + kl−1

In the equation above, l is the length of the French
phrase and k is a tuning parameter. This formula-
tion not only serves to reduce very spiked probabili-
ties in φEM , but also boosts the probability of short
phrases to encourage their use. With k = 2.5, this
smoothing approach improves BLEU by .007 using
25k training sentences, nearly equaling the heuristic
(table 1).

4 Conclusion

Re-estimating phrase translation probabilities using
a generative model holds the promise of improving
upon heuristic techniques. However, the combina-
torial properties of a phrase-based generative model
have unfortunate side effects. In cases of true ambi-
guity in the language pair to be translated, parameter
estimates that explain the ambiguity using segmen-
tation variables can in some cases yield higher data
likelihoods by determinizing phrase translation esti-
mates. However, this behavior in turn leads to errors
at decoding time.

We have also shown that some modest benefit can
be obtained from re-estimation through the blunt in-
strument of interpolation. A remaining challenge is
to design more appropriate statistical models which
tie segmentations together unless sufficient evidence
of true non-compositionality is present; perhaps
such models could properly combine the benefits of
both current approaches.

Estimate BLEU
φH 0.385
φH phrase pairs that also appear in φEM 0.365
φEM 0.374
φEM with a non-uniform segmentation model 0.374
φEM with smoothing 0.381
φEM with gaps filled in by φH 0.374
φEM interpolated with φH 0.388

Table 1: BLEU results for 25k training sentences.
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{felipe,gottif}@iro.umontreal.ca

Abstract

In this article, we present a translation
system which builds translations by glu-
ing together Tree-Phrases, i.e. associ-
ations between simple syntactic depen-
dency treelets in a source language and
their corresponding phrases in a target
language. The Tree-Phrases we use in
this study are syntactically informed and
present the advantage of gathering source
and target material whose words do not
have to be adjacent. We show that the
phrase-based translation engine we imple-
mented benefits from Tree-Phrases.

1 Introduction

Phrase-based machine translation is now a popular
paradigm. It has the advantage of naturally cap-
turing local reorderings and is shown to outper-
form word-based machine translation (Koehn et al.,
2003). The underlying unit (a pair of phrases), how-
ever, does not handle well languages with very dif-
ferent word orders and fails to derive generalizations
from the training corpus.

Several alternatives have been recently proposed
to tackle some of these weaknesses. (Matusov et
al., 2005) propose to reorder the source text in or-
der to mimic the target word order, and then let a
phrase-based model do what it is good at. (Simard
et al., 2005) detail an approach where the standard
phrases are extended to account for “gaps” either on
the target or source side. They show that this repre-

sentation has the potential to better exploit the train-
ing corpus and to nicely handle differences such as
negations in French and English that are poorly han-
dled by standard phrase-based models.

Others are considering translation as a syn-
chronous parsing process e.g. (Melamed, 2004;
Ding and Palmer, 2005)) and several algorithms
have been proposed to learn the underlying produc-
tion rule probabilities (Graehl and Knight, 2004;
Ding and Palmer, 2004). (Chiang, 2005) proposes
an heuristic way of acquiring context free transfer
rules that significantly improves upon a standard
phrase-based model.

As mentioned in (Ding and Palmer, 2005), most
of these approaches require some assumptions on
the level of isomorphism (lexical and/or structural)
between two languages. In this work, we consider
a simple kind of unit: a Tree-Phrase (TP), a com-
bination of a fully lexicalized treelet (TL) and an
elastic phrase (EP), the tokens of which may be in
non-contiguous positions. TPs capture some syntac-
tic information between two languages and can eas-
ily be merged with standard phrase-based engines.

A TP can be seen as a simplification of the treelet
pairs manipulated in (Quirk et al., 2005). In particu-
lar, we do not address the issue of projecting a source
treelet into a target one, but take the bet that collect-
ing (without structure) the target words associated
with the words encoded in the nodes of a treelet will
suffice to allow translation. This set of target words
is what we call an elastic phrase.

We show that these units lead to (modest) im-
provements in translation quality as measured by au-
tomatic metrics. We conducted all our experiments
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on an in-house version of the French-English Cana-
dian Hansards.

This paper is organized as follows. We first define
a Tree-Phrase in Section 2, the unit with which we
built our system. Then, we describe in Section 3
the phrase-based MT decoder that we designed to
handle TPs. We report in Section 4 the experiments
we conducted combining standard phrase pairs and
TPs. We discuss this work in Section 5 and then
conclude in Section 6.

2 Tree-Phrases

We call tree-phrase (TP) a bilingual unit consisting
of a source, fully-lexicalized treelet (TL) and a tar-
get phrase (EP), that is, the target words associated
with the nodes of the treelet, in order. A treelet can
be an arbitrary, fully-lexicalized subtree of the parse
tree associated with a source sentence. A phrase can
be an arbitrary sequence of words. This includes
the standard notion of phrase, popular with phrased-
based SMT (Koehn et al., 2003; Vogel et al., 2003)
as well as sequences of words that contain gaps (pos-
sibly of arbitrary size).

In this study, we collected a repository of tree-
phrases using a robust syntactic parser called SYN-
TEX (Bourigault and Fabre, 2000). SYNTEX identi-
fies syntactic dependency relations between words.
It takes as input a text processed by the TREETAG-
GER part-of-speech tagger.1 An example of the out-
put SYNTEX produces for the source (French) sen-
tence “on a demandé des crédits fédéraux” (request
for federal funding) is presented in Figure 1.

We parsed with SYNTEX the source (French) part
of our training bitext (see Section 4.1). From this
material, we extracted all dependency subtrees of
depth 1 from the complete dependency trees found
by SYNTEX. An elastic phrase is simply the list of
tokens aligned with the words of the corresponding
treelet as well as the respective offsets at which they
were found in the target sentence (the first token of
an elastic phrase always has an offset of 0).

For instance, the two treelets in Figure 2 will be
collected out of the parse tree in Figure 1, yielding
2 tree-phrases. Note that the TLs as well as the EPs
might not be contiguous as is for instance the case

1www.ims.uni-stuttgart.de/projekte/
corplex/.

a demandé
SUB

llllllllll OBJ

YYYYYYYYYYYYYYYYYY

on crédits
DET

llllllllll ADJ
RRRRRRRRRR

des fédéraux

Figure 1: Parse of the sentence “on a demandé des
crédits fédéraux” (request for federal funding). Note
that the 2 words “a” and “demandé” (literally “have”
and “asked”) from the original sentence have been
merged together by SYNTEX to form a single token.
These tokens are the ones we use in this study.

with the first pair of structures listed in the example.

3 The Translation Engine

We built a translation engine very similar to the sta-
tistical phrase-based engine PHARAOH described in
(Koehn, 2004) that we extended to use tree-phrases.
Not only does our decoder differ from PHARAOH by
using TPs, it also uses direct translation models. We
know from (Och and Ney, 2002) that not using the
noisy-channel approach does not impact the quality
of the translation produced.

3.1 The maximization setting

For a source sentence f , our engine incrementally
generates a set of translation hypotheses H by com-
bining tree-phrase (TP) units and phrase-phrase (PP)
units.2 We define a hypothesis in this set as h =
{Ui ≡ (Fi, Ei)}i∈[1,u], a set of u pairs of source
(Fi) and target sequences (Ei) of ni and mi words
respectively:

Fi ≡ {fji
n

: ji
n ∈ [1, |f |]}n∈[1,ni]

Ei ≡ {elim
: lim ∈ [1, |e|]}m∈[1,mi]

under the constraints that for all i ∈ [1, u], ji
n <

ji
n+1 ,∀n ∈ [1, ni[ for a source treelet (similar con-

straints apply on the target side), and ji
n+1 = ji

n +
1 ,∀n ∈ [1, ni[ for a source phrase. The way the
hypotheses are built imposes additional constraints
between units that will be described in Section 3.3.
Note that, at decoding time, |e|, the number of words

2What we call here a phrase-phrase unit is simply a pair of
source/target sequences of words.
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alignment:

a demandé ≡ request for, fédéraux ≡ federal,
crédits ≡ funding

treelets:

a demandé

qqqqqqq
MMMMMMM

on crédits

crédits

qqqqqqq
MMMMMMM

des fédéraux

tree-phrases:

TL? {{on@-1} a_demandé {crédits@2}}
EP? |request@0||for@1||funding@3|

TL {{des@-1} crédits {fédéraux@1}}
EP |federal@0||funding@1|

Figure 2: The Tree-Phrases collected out of the
SYNTEX parse for the sentence pair of Figure 1.
Non-contiguous structures are marked with a star.
Each dependent node of a given governor token is
displayed as a list surrounding the governor node,
e.g. {governor {right-dependent}}. Along with the
tokens of each node, we present their respective off-
set (the governor/root node has the offset 0 by defi-
nition). The format we use to represent the treelets
is similar to the one proposed in (Quirk et al., 2005).

of the translation is unknown, but is bounded accord-
ing to |f | (in our case, |e|max = 2× |f |+ 5).

We define the source and target projection of a
hypothesis h by the proj operator which collects in
order the words of a hypothesis along one language:

projF (h) =
{
fp : p ∈

⋃u
i=1{ji

n}n∈[1,ni]

}
projE(h) =

{
ep : p ∈

⋃u
i=1{lim}m∈[1,mi]

}
If we denote by Hf the set of hypotheses that

have f as a source projection (that is, Hf = {h :
projF (h) ≡ f}), then our translation engine seeks
ê = projE(ĥ) where:

ĥ = argmax
h∈Hf

s(h)

The function we seek to maximize s(h) is a log-
linear combination of 9 components, and might be

better understood as the numerator of a maximum
entropy model popular in several statistical MT sys-
tems (Och and Ney, 2002; Bertoldi et al., 2004; Zens
and Ney, 2004; Simard et al., 2005; Quirk et al.,
2005). The components are the so-called feature
functions (described below) and the weighting co-
efficients (λ) are the parameters of the model:

s(h) = λpprf
log ppprf

(h) + λp|h|+
λtprf

log ptprf
(h) + λt|h|+

λppibm
log pppibm

(h)+
λtpibm

log ptpibm
(h)+

λlm log plm(projE(h))+
λd d(h) + λw|projE(h)|

3.2 The components of the scoring function
We briefly enumerate the features used in this study.

Translation models Even if a tree-phrase is a gen-
eralization of a standard phrase-phrase unit, for in-
vestigation purposes, we differentiate in our MT
system between two kinds of models: a TP-based
model ptp and a phrase-phrase model ppp. Both rely
on conditional distributions whose parameters are
learned over a corpus. Thus, each model is assigned
its own weighting coefficient, allowing the tuning
process to bias the engine toward a special kind of
unit (TP or PP).

We have, for k ∈ {rf, ibm}:

pppk
(h) =

∏u
i=1 ppp(Ei|Fi)

ptpk
(h) =

∏u
i=1 ptp(Ei|Fi)

with p•rf
standing for a model trained by rel-

ative frequency, whereas p•ibm
designates a non-

normalized score computed by an IBM model-1
translation model p, where f0 designates the so-
called NULL word:

p•ibm
(Ei|Fi) =

mi∏
m=1

ni∑
n=1

p(elim
|fji

n
) + p(eki

m
|f0)

Note that by setting λtprf
and λtpibm

to zero, we
revert back to a standard phrase-based translation
engine. This will serve as a reference system in the
experiments reported (see Section 4).

The language model Following a standard prac-
tice, we use a trigram target language model
plm(projE(h)) to control the fluency of the trans-
lation produced. See Section 3.3 for technical sub-
tleties related to their use in our engine.

41



Distortion model d This feature is very similar to
the one described in (Koehn, 2004) and only de-
pends on the offsets of the source units. The only
difference here arises when TPs are used to build a
translation hypothesis:

d(h) = −
n∑

i=1

abs(1 + F i−1 − F i)

where:

F i =

{ ∑
n∈[1,ni] j

i
n/ni if Fi is a treelet

ji
ni

otherwise
F i = ji

1

This score encourages the decoder to produce a
monotonous translation, unless the language model
strongly privileges the opposite.

Global bias features Finally, three simple fea-
tures help control the translation produced. Each
TP (resp. PP) unit used to produce a hypothesis
receives a fixed weight λt (resp. λp). This allows
the introduction of an artificial bias favoring either
PPs or TPs during decoding. Each target word pro-
duced is furthermore given a so-called word penalty
λw which provides a weak way of controlling the
preference of the decoder for long or short transla-
tions.

3.3 The search procedure

The search procedure is described by the algorithm
in Figure 3. The first stage of the search consists in
collecting all the units (TPs or PPs) whose source
part matches the source sentence f . We call U the
set of those matching units.

In this study, we apply a simple match policy that
we call exact match policy. A TL t matches a source
sentence f if its root matches f at a source position
denoted r and if all the other words w of t satisfy:

fow+r = w

where ow designates the offset of w in t.
Hypotheses are built synchronously along with

the target side (by appending the target material to
the right of the translation being produced) by pro-
gressively covering the positions of the source sen-
tence f being translated.

Require: a source sentence f
U ← {u : s-match(u, f)}
FUTURECOST(U)
for s← 1 to |f | do

S[s]← ∅

S[0]← {(∅, ε, 0)}
for s← 0 to |f | − 1 do

PRUNE(S[s], β)
for all hypotheses alive h ∈ S[s] do

for all u ∈ U do
if EXTENDS(u, h) then

h′ ← UPDATE(u, h)
k ← |projF (h′)|
S[k]← S[k] ∪ {h′}

return argmaxh∈S[|f |] ρ : h→ (ps, t, ρ)

Figure 3: The search algorithm. The symbol ← is
used in place of assignments, while→ denotes uni-
fication (as in languages such as Prolog).

The search space is organized into a set S of |f |
stacks, where a stack S[s] (s ∈ [1, |f |]) contains all
the hypotheses covering exactly s source words. A
hypothesis h = (ps, t, ρ) is composed of its target
material t, the source positions covered ps as well as
its score ρ. The search space is initialized with an
empty hypothesis: S[0] = {(∅, ε, 0)}.

The search procedure consists in extending each
partial hypothesis h with every unit that can con-
tinue it. This process ends when all partial hypothe-
ses have been expanded. The translation returned is
the best one contained in S[|f |]:

ê = projE(argmax
h∈S[|f |]

ρ : h→ (ps, t, ρ))

PRUNE — In order to make the search tractable,
each stack S[s] is pruned before being expanded.
Only the hypotheses whose scores are within a frac-
tion (controlled by a meta-parameter β which typi-
cally is 0.0001 in our experiments) of the score of
the best hypothesis in that stack are considered for
expansion. We also limit the number of hypotheses
maintained in a given stack to the top maxStack
ones (maxStack is typically set to 500).

Because beam-pruning tends to promote in a stack
partial hypotheses that translate easy parts (i.e. parts
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that are highly scored by the translation and lan-
guage models), the score considered while pruning
not only involves the cost of a partial hypothesis so
far, but also an estimation of the future cost that will
be incurred by fully expanding it.

FUTURECOST — We followed the heuristic de-
scribed in (Koehn, 2004), which consists in comput-
ing for each source range [i, j] the minimum cost
c(i, j) with which we can translate the source se-
quence f j

i . This is pre-computed efficiently at an
early stage of the decoding (second line of the algo-
rithm in Figure 3) by a bottom-up dynamic program-
ming scheme relying on the following recursion:

c(i, j) = min

{
mink∈[i,j[c(i, k) + c(k, j)
min

u∈U/us∩fj
i =us

score(us)

where us stands for the projection of u on the tar-
get side (us ≡ projE(u)), and score(u) is com-
puted by considering the language model and the
translation components ppp of the s(h) score. The
future cost of h is then computed by summing the
cost c(i, j) of all its empty source ranges [i, j].

EXTENDS — When we simply deal with standard
(contiguous) phrases, extending a hypothesis h by a
unit u basically requires that the source positions of
u be empty in h. Then, the target material of u is
appended to the current hypothesis h.

Because we work with treelets here, things are
a little more intricate. Conceptually, we are con-
fronted with the construction of a (partial) source
dependency tree while collecting the target mate-
rial in order. Therefore, the decoder needs to check
whether a given TL (the source part of u) is compati-
ble with the TLs belonging to h. Since we decided in
this study to use depth-one treelets, we consider that
two TLs are compatible if either they do not share
any source word, or, if they do, this shared word
must be the governor of one TL and a dependent in
the other TL.

So, for instance, in the case of Figure 2, the
two treelets are deemed compatible (they obviously
should be since they both belong to the same orig-
inal parse tree) because crédit is the governor
in the right-hand treelet while being the depen-
dent in the left-hand one. On the other hand, the
two treelets in Figure 4 are not, since président

is the governor of both treelets, even though mr.
le président suppléant would be a valid
source phrase. Note that it might be the case that
the treelet {{mr.@-2} {le@-1} président
{suppléant@1}} has been observed during
training, in which case it will compete with the
treelets in Figure 2.

président

mr.

président

qqqqqqq
MMMMMMM

le suppléant

Figure 4: Example of two incompatible treelets.
mr. speaker and the acting speaker
are their respective English translations.

Therefore, extending a hypothesis containing a
treelet with a new treelet consists in merging the two
treelets (if they are compatible) and combining the
target material accordingly. This operation is more
complicated than in a standard phrase-based decoder
since we allow gaps on the target side as well. More-
over, the target material of two compatible treelets
may intersect. This is for instance the case for the
two TPs in Figure 2 where the word funding is
common to both phrases.

UPDATE — Whenever u extends h, we add a
new hypothesis h′ in the corresponding stack
S[|projF (h′)|]. Its score is computed by adding to
that of h the score of each component involved in
s(h). For all but the one language model compo-
nent, this is straightforward. However, care must be
taken to update the language model score since the
target material of u does not come necessarily right
after that of h as would be the case if we only ma-
nipulated PP units.

Figure 5 illustrates the kind of bookkeeping
required. In practice, the target material of
a hypothesis is encoded as a vector of triplets
{〈wi, log plm(wi|ci), li〉}i∈[1,|e|max] where wi is the
word at position i in the translation, log plm(wi|ci)
is its score as given by the language model, ci de-
notes the largest conditioning context possible, and
li indicates the length (in words) of ci (0 means a
unigram probability, 1 a bigram probability and 2 a
trigram probability). This vector is updated at each
extension.
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u

des fédérauxon a_demandé crédits

TL: {on@−1}  a_demandé  {crédits@2}

EP: request@0  for@1  funding@3

TL: {des@−1}  crédits  {fédéraux@1}

EP: federal@0  funding@1

U B F U

request for funding

créditson a_demandé des fédéraux

forrequest funding
U B T T

federal

h

h’

S[3]

S[4]

u

Figure 5: Illustration of the language model up-
dates that must be made when a new target unit
(circles with arrows represent dependency links) ex-
tends an existing hypothesis (rectangles). The tag
inside each occupied target position shows whether
this word has been scored by a Unigram, a Bigram
or a Trigram probability.

4 Experimental Setting

4.1 Corpora

We conducted our experiments on an in-house ver-
sion of the Canadian Hansards focussing on the
translation of French into English. The split of this
material into train, development and test corpora is
detailed in Table 1. The TEST corpus is subdivided
in 16 (disjoints) slices of 500 sentences each that
we translated separately. The vocabulary is atypi-
cally large since some tokens are being merged by
SYNTEX, such as étaient#financées (were
financed in English).

The training corpus has been aligned at the
word level by two Viterbi word-alignments
(French2English and English2French) that we
combined in a heuristic way similar to the refined
method described in (Och and Ney, 2003). The
parameters of the word models (IBM model 2) were
trained with the GIZA++ package (Och and Ney,
2000).

TRAIN DEV TEST

sentences 1 699 592 500 8000
e-toks 27 717 389 8 160 130 192
f-toks 30 425 066 8 946 143 089
e-toks/sent 16.3 (± 9.0) 16.3 (± 9.1) 16.3 (± 9.0)

f-toks/sent 17.9 (± 9.5) 17.9 (± 9.5) 17.9 (± 9.5)

e-types 164 255 2 224 12 591
f-types 210 085 2 481 15 008
e-hapax 68 506 1 469 6 887
f-hapax 90 747 1 704 8 612

Table 1: Main characteristics of the corpora used in
this study. For each language l, l-toks is the number
of tokens, l-toks/sent is the average number of to-
kens per sentence (± the standard deviation), l-types
is the number of different token forms and l-hapax
is the number of tokens that appear only once in the
corpus.

4.2 Models

Tree-phrases Out of 1.7 million pairs of sen-
tences, we collected more than 3 million different
kinds of TLs from which we projected 6.5 million
different kinds of EPs. Slightly less than half of
the treelets are contiguous ones (i.e. involving a se-
quence of adjacent words); 40% of the EPs are con-
tiguous. When the respective frequency of each TL
or EP is factored in, we have approximately 11 mil-
lion TLs and 10 million EPs. Roughly half of the
treelets collected have exactly two dependents (three
word long treelets).

Since the word alignment of non-contiguous
phrases is likely to be less accurate than the align-
ment of adjacent word sequences, we further filter
the repository of TPs by keeping the most likely EPs
for each TL according to an estimate of p(EP |TL)
that do not take into account the offsets of the EP or
the TL.

PP-model We collected the PP parameters by sim-
ply reading the alignment matrices resulting from
the word alignment, in a way similar to the one
described in (Koehn et al., 2003). We use an in-
house tool to collect pairs of phrases of up to 8
words. Freely available packages such as THOT

(Ortiz-Martı́nez et al., 2005) could be used as well
for that purpose.
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Language model We trained a Kneser-Ney tri-
gram language model using the SRILM toolkit (Stol-
cke, 2002).

4.3 Protocol
We compared the performances of two versions of
our engine: one which employs TPs ans PPs (TP-
ENGINE hereafter), and one which only uses PPs
(PP-ENGINE). We translated the 16 disjoint sub-
corpora of the TEST corpus with and without TPs.

We measure the quality of the translation pro-
duced with three automatic metrics. Two error
rates: the sentence error rate (SER) and the word
error rate (WER) that we seek to minimize, and
BLEU (Papineni et al., 2002), that we seek to
maximize. This last metric was computed with
the multi-bleu.perl script available at www.
statmt.org/wmt06/shared-task/.

We separately tuned both systems on the DEV cor-
pus by applying a brute force strategy, i.e. by sam-
pling uniformly the range of each parameter (λ) and
picking the configuration which led to the best BLEU

score. This strategy is inelegant, but in early experi-
ments we conducted, we found better configurations
this way than by applying the Simplex method with
multiple starting points. The tuning roughly takes
24 hours of computation on a cluster of 16 comput-
ers clocked at 3 GHz, but, in practice, we found that
one hour of computation is sufficient to get a con-
figuration whose performances, while subobptimal,
are close enough to the best one reachable by an ex-
haustive search.

Both configurations were set up to avoid distor-
tions exceeding 3 (maxDist = 3). Stacks were
allowed to contain no more than 500 hypotheses
(maxStack = 500) and we further restrained the
number of hypotheses considered by keeping for
each matching unit (treelet or phrase) the 5 best
ranked target associations. This setting has been
fixed experimentally on the DEV corpus.

4.4 Results
The scores for the 16 slices of the test corpus are re-
ported in Table 2. TP-ENGINE shows slightly better
figures for all metrics.

For each system and for each metric, we had
16 scores (from each of the 16 slices of the test cor-
pus) and were therefore able to test the statistical sig-

nicance of the difference between the TP-ENGINE

and PP-ENGINE using a Wilcoxon signed-rank test
for paired samples. This test showed that the dif-
ference observed between the two systems is signif-
icant at the 95% probability level for BLEU and sig-
nificant at the 99% level for WER and SER.

Engine WER% SER% BLEU%
PP 52.80 ± 1.2 94.32 ± 0.9 29.95 ± 1.2

TP 51.98 ± 1.2 92.83 ± 1.3 30.47 ± 1.4

Table 2: Median WER, SER and BLEU scores
(± value range) of the translations produced by the
two engines on a test set of 16 disjoint corpora of
500 sentences each. The figures reported are per-
centages.

On the DEV corpus, we measured that, on aver-
age, each source sentence is covered by 39 TPs (their
source part, naturally), yielding a source coverage of
approximately 70%. In contrast, the average number
of covering PPs per sentence is 233.

5 Discussion

On a comparable test set (Canadian Hansard texts),
(Simard et al., 2005) report improvements by adding
non-contiguous bi-phrases to their engine without
requiring a parser at all. At the same time, they also
report negative results when adding non-contiguous
phrases computed from the refined alignment tech-
nique that we used here.

Although the results are not directly comparable,
(Quirk et al., 2005) report much larger improve-
ments over a phrase-based statistical engine with
their translation engine that employs a source parser.
The fact that we consider only depth-one treelets in
this work, coupled with the absence of any particular
treelet projection algorithm (which prevents us from
training a syntactically motivated reordering model
as they do) are other possible explanations for the
modest yet significant improvements we observe in
this study.

6 Conclusion

We presented a pilot study aimed at appreciating the
potential of Tree-Phrases as base units for example-
based machine translation.
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We developed a translation engine which makes
use of tree-phrases on top of pairs of source/target
sequences of words. The experiments we conducted
suggest that TPs have the potential to improve trans-
lation quality, although the improvements we mea-
sured are modest, yet statistically significant.

We considered only one simple form of tree in this
study: depth-one subtrees. We plan to test our en-
gine on a repository of treelets of arbitrary depth. In
theory, there is not much to change in our engine
to account for such units and it would offer an al-
ternative to the system proposed recently by (Liu et
al., 2005), which performs translations by recycling
a collection of tree-string-correspondence (TSC) ex-
amples.
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Abstract

In statistical machine translation, an align-
ment defines a mapping between the
words in the source and in the target sen-
tence. Alignments are used, on the one
hand, to train the statistical models and, on
the other, during the decoding process to
link the words in the source sentence to the
words in the partial hypotheses generated.
In both cases, the quality of the alignments
is crucial for the success of the translation
process. In this paper, we propose an al-
gorithm based on an Estimation of Dis-
tribution Algorithm for computing align-
ments between two sentences in a paral-
lel corpus. This algorithm has been tested
on different tasks involving different pair
of languages. In the different experiments
presented here for the two word-alignment
shared tasks proposed in the HLT-NAACL
2003 and in the ACL 2005, the EDA-
based algorithm outperforms the best par-
ticipant systems.

1 Introduction

Nowadays, statistical approach to machine trans-
lation constitutes one of the most promising ap-
proaches in this field. The rationale behind this ap-
proximation is to learn a statistical model from a par-
allel corpus. A parallel corpus can be defined as a set

∗This work has been supported by the Spanish Projects
JCCM (PBI-05-022) and HERMES 05/06 (Vic. Inv. UCLM)

of sentence pairs, each pair containing a sentence in
a source language and a translation of this sentence
in a target language. Word alignments are neces-
sary to link the words in the source and in the tar-
get sentence. Statistical models for machine trans-
lation heavily depend on the concept of alignment,
specifically, the well known IBM word based mod-
els (Brown et al., 1993). As a result of this, differ-
ent task on aligments in statistical machine transla-
tion have been proposed in the last few years (HLT-
NAACL 2003 (Mihalcea and Pedersen, 2003) and
ACL 2005 (Joel Martin, 2005)).

In this paper, we propose a novel approach to deal
with alignments. Specifically, we address the prob-
lem of searching for the best word alignment be-
tween a source and a target sentence. As there is
no efficient exact method to compute the optimal
alignment (known asViterbi alignment) in most of
the cases (specifically in the IBM models 3,4 and 5),
in this work we propose the use of a recently ap-
peared meta-heuristic family of algorithms,Estima-
tion of Distribution Algorithms(EDAs). Clearly, by
using a heuristic-based method we cannot guarantee
the achievement of the optimal alignment. Nonethe-
less, we expect that the global search carried out
by our algorithm will produce high quality results
in most cases, since previous experiments with this
technique (Larrãnaga and Lozano, 2001) in different
optimization task have demonstrated. In addition to
this, the results presented in section 5 support the
approximation presented here.

This paper is structured as follows. Firstly, Sta-
tistical word alignments are described in section 2.
Estimation of Distribution Algorithms (EDAs) are
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introduced in section 3. An implementation of the
search for alignments using an EDA is described in
section 4. In section 5, we discuss the experimental
issues and show the different results obtained. Fi-
nally, some conclussions and future work are dis-
cussed in section 6.

2 Word Alignments In Statistical Machine
translation

In statistical machine translation, a word alignment
between two sentences (a source sentencef and a
target sentencee) defines a mapping between the
wordsf1...fJ in the source sentence and the words
e1..eI in the target sentence. The search for the op-
timal alignment between the source sentencef and
the target sentencee can be stated as:

â = argmax
a∈A

Pr(a|f , e) = argmax
a∈A

Pr(f ,a|e) (1)

beingA the set of all the possible alignments be-
tweenf ande.

The transformation made in Eq. (1) allows us to
address the alignment problem by using the statitisti-
cal approach to machine translation described as fol-
lows. This approach can be stated as: a source lan-
guage stringf = fJ1 = f1 . . . fJ is to be translated
into a target language stringe = eI1 = e1 . . . eI .
Every target string is regarded as a possible transla-
tion for the source language string with maximum a-
posteriori probabilityPr(e|f). According to Bayes’
decision rule, we have to choose the target string
that maximizes the product of both the target lan-
guage modelPr(e) and the string translation model
Pr(f |e). Alignment models to structure the trans-
lation model are introduced in (Brown et al., 1993).
These alignment models are similar to the concept
of Hidden Markov models (HMM) in speech recog-
nition. The alignment mapping isj → i = aj from
source positionj to target positioni = aj . In sta-
tistical alignment models,Pr(f ,a|e), the alignment
a is usually introduced as a hidden variable. Never-
theless, in the problem described in this article, the
source and the target sentences are given, and we are
focusing on the optimization of the aligmenta.

The translation probabilityPr(f ,a|e) can be

rewritten as follows:

Pr(f ,a|e) =
J∏

j=1

Pr(fj , aj |f j−1
1 , aj−1

1 , eI1)

=
J∏

j=1

Pr(aj |f j−1
1 , aj−1

1 , eI1)

·Pr(fj |f j−1
1 , aj1, e

I
1) (2)

The probabilityPr(f ,a|e) can be estimated by
using the word-based IBM statistical alignment
models (Brown et al., 1993). These models, how-
ever, constrain the set of possible alignments so that
each word in the source sentence can be aligned at
most to one word in the target sentence. Of course,
“real” alignments, in most of the cases, do not fol-
low this limitation. Hence, the alignments obtained
from the IBM models have to be extended in some
way to achieve more realistic alignments. This is
usually performed by computing the alignments in
both directions (i.e, first fromf to e and then from
e to f ) and then combining them in a suitable way
(this process is known as symmetrization).

3 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms(EDAs)
(Larrãnaga and Lozano, 2001) are metaheuristics
which has gained interest during the last five years
due to their high performance when solving com-
binatorial optimization problems. EDAs, as well
as genetics algorithms (Michalewicz, 1996), are
population-based evolutionary algorithms but, in-
stead of using genetic operators are based on the es-
timation/learning and posterior sampling of a prob-
ability distribution, which relates the variables or
genes forming and individual or chromosome. In
this way the dependence/independence relations be-
tween these variables can be explicitly modelled in
the EDAs framework. The operation mode of a
canonical EDA is shown in Figure 1.

As we can see, the algorithm maintains a popu-
lation of m individuals during the search. An in-
dividual is a candidate or potential solution to the
problem being optimized, e.g., in the problem con-
sidered here an individual would be a possible align-
ment. Usually, in combinatorial optimization prob-
lems an individual is represented as a vector of inte-
gersa = 〈a1, . . . , aJ〉, where each positionaj can
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1. D0 ← Generate the initial population (m individuals)

2. Evaluate the population D0

3. k = 1

4. Repeat

(a) Dtra ← Select s ≤ m individuals from Dk−1

(b) Estimate/learn a new modelM from Dtra

(c) Daux ← Sample m individuals fromM

(d) Evaluate Daux

(e) Dk ← Select m individuals from Dk−1 ∪Daux

(f) k = k + 1

Until stop condition

Figure 1: A canonical EDA

take a set of finite valuesΩaj = {0, . . . , I}. The first
step in an evolutionary algorithm is to generate the
initial populationD0. AlthoughD0 is usually gener-
ated randomly (to ensure diversity), prior knowledge
can be of utility in this step.

Once we have a population our next step is to
evaluate it, that is, we have to measure the goodness
or fitness of each individual with respect to the prob-
lem we are solving. Thus, we use a fitness function
f(a) = Pr(f ,a|e) (see Eq. (3)) to score individu-
als. Evolutionary algorithms in general and EDAs in
particular seek to improve the quality of the individ-
uals in the population during the search. In genetic
algorithms the main idea is to build a new popula-
tion from the current one by copying some individu-
als and constructing new ones from those contained
in the current population. Of course, as we aim to
improve the quality of the population with respect to
fitness, the best/fittest individuals have more chance
to be copied or selected for recombination.

In EDAs, the transition between populations is
quite different. The basic idea is to summarize
the properties of the individuals in the population
by learning a probability distribution that describes
them as much as possible. Since the quality of the
population should be improved in each step, only
thes fittest individuals are selected to be included in
the dataset used to learn the probability distribution
Pr(a1, . . . ,aJ), in this way we try to discover the
common regularities among good individuals. The
next step is to obtain a set of new individuals by
sampling the learnt distribution. These individuals
are scored by using the fitness function and added to
the ones forming the current population. Finally, the

new population is formed by selectingn individuals
from the2n contained in the current one. A common
practice is to use some kind of fitness-based elitism
during this selection, in order to guarantee that the
best(s) individual(s) is/are retained.

The main problem in the previous description is
related to the estimation/learning of the probability
distribution, since estimating the joint distribution is
intractable in most cases. In the practice, what is
learnt is a probabilistic model that consists in a fac-
torization of the joint distribution. Different levels
of complexity can be considered in that factoriza-
tion, from univariate distributions to n-variate ones
or Bayesian networks (see (Larrañaga and Lozano,
2001, Chapter 3) for a review). In this paper, as
this is the first approximation to the alignment prob-
lem with EDAs and, because of some questions that
will be discussed later, we use the simplest EDA
model: theUnivariate Marginal Distribution Algo-
rithm or UMDA (Muhlenbein, 1997). In UMDA
it is assumed that all the variables are marginally
independent, thus, the n-dimensional probability
distribution, Pr(a1, . . . , aJ), is factorized as the
product ofJ marginal/unidimensional distributions:∏J
j=1 Pr(aj). Among the advantages of UMDA

we can cite the following: no structural learning is
needed; parameter learning is fast; small dataset can
be used because only marginal probabilities have to
be estimated; and, the sampling process is easy be-
cause each variable is independently sampled.

4 Design of an EDA to search for
alignments

In this section, an EDA algorithm to align a source
and a target sentences is described.

4.1 Representation

One of the most important issues in the definition
of a search algorithm is to properly represent the
space of solutions to the problem. In the problem
considered here, we are searching for an “optimal”
alignment between a source sentencef and a target
sentencee. Therefore, the space of solutions can be
stated as the set of possible alignments between both
sentences. Owing to the constraints imposed by the
IBM models (a word inf can be aligned at most to
one word ine), the most natural way to represent a
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solution to this problem consists in storing each pos-
sible alignment in a vectora = a1...aJ , beingJ the
length off. Each position of this vector can take the
value of “0” to represent a NULL alignment (that is,
a word in the source sentence that is aligned to no
words in the target sentence) or an index represent-
ing any position in the target sentence. An example
of alignment is shown in Figure 4.1.

Please , I would like to book a roomnull

desearia reservar una habitacion .

.e :

Por favorf : ,

( 0     1     2     4     6     7     8     9 )

Figure 2: Example of alignment and its representa-
tion as a vector

4.2 Evaluation function

During the search process, each individual (search
hypothesis) is scored using the fitness function de-
scribed as follows. Leta = a1 · · · aJ be the align-
ment represented by an individual. This alignmenta
is evaluated by computing the probabilityp(f ,a|e).
This probability is computed by using the IBM
model 4 as:

p(f ,a|e) =
∑

(τ,π)∈〈f ,a〉
p(τ, π|e)

I∏

i=1

n(φi|ei)×
I∏

i=1

φi∏

k=1

t(τik|ei)×

I∏

i=1,φi>0

d=1(πi1 − cρi |Ec(eρi),Fc(τi1))×

I∏

i=1

φi∏

k=2

d>1(πik − πi(k−1)|Fc(τik))×

(
J − φ0

φ0

)
pJ−2φ0

0 pφ0
1 ×

φ0∏

k=1

t(τ0k|e0) (3)

where the factors separated by× symbols denote
fertility, translation, head permutation, non-head
permutation, null-fertility, and null-translation prob-

abilities1.
This model was trained using the GIZA++ toolkit

(Och and Ney, 2003) on the material available for the
different alignment tasks described in section 5.1

4.3 Search

In this section, some specific details about the search
are given. As was mentioned in section 3, the algo-
rithm starts by generating an initial set of hypothe-
ses (initial population). In this case, a set of ran-
domly generated alignments between the source and
the target sentences are generated. Afterwards, all
the individuals in this population (a fragment of a
real population is shown in figure 3) are scored using
the function defined in Eq.(4.2). At this point, the
actual search starts by applying the scheme shown
in section 3, thereby leading to a gradual improve-
ment in the hypotheses handled by the algorithm in
each step of the search.

This process finishes when some finalization cri-
terium (or criteria) is reached. In our implementa-
tion, the algorithm finishes when it passes a certain
number of generations without improving the qual-
ity of the hypotheses (individuals). Afterwards, the
best individual in the current population is returned
as the final solution.

Regarding the EDA model, as commented before,
our approach rely on the UMDA model due mainly
to the size of the search space defined by the task.
The algorithm has to deal with individuals of length
J , where each position can take(I + 1) possible
values. Thus, in the case of UMDA, the number of
free parameters to be learnt for each position isI
(e.g., in the English-French taskavg(J) = 15 and
avg(I) = 17.3). If more complex models were con-
sidered, the size of the probability tables would have
grown exponentially. As an example, in a bivariate
model, each variable (position) is conditioned on an-
other variable and thus the probability tablesP (.|.)
to be learnt haveI(I + 1) free parameters. In or-
der to properly estimate the probabilty distributions,
the size of the populations has to be increased con-
siderably. As a result, the computational resources

1The symbols in this formula are:J (the length ofe), I (the
length off ), ei (the i-th word ineI1), e0 (the NULL word),φi
(the fertility of ei), τik (thek-th word produced byei in a), πik
(the position ofτik in f ), ρi (the position of the first fertile word
to the left ofei in a), cρi (the ceiling of the average of allπρik
for ρi, or 0 if ρi is undefined).
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1 1 5 3 2 0 6 0 (-60.7500)
1 6 5 2 3 0 0 5 (-89.7449)
1 2 2 6 4 0 5 0 (-90.2221)
1 2 3 5 0 3 6 2 (-99.2313)
0 6 0 2 4 6 3 5 (-99.7786)
2 0 0 2 2 0 3 4 (-100.587)
1 0 1 6 3 6 0 5 (-101.335)

Figure 3: Part of one population generated during
the search for the alignments between the English
sentenceand then he tells us the correct result !
and the Romanian sentencesi ne spune noua rezul-
tatul corect !. These sentences are part of the HLT-
NAACL 2005 shared task. Some individuals and
their scores (fitness) are shown.

required by the algorithm rise dramatically.
Finally, as was described in section 3, some pa-

rameters have to be fixed in the design of an EDA.
On the one hand, the size of each population must
be defined. In this case, this size is proportional to
the length of the sentences to be aligned. Specifi-
cally, the size of the population adopted is equal to
the length of source sentencef multiplied by a factor
of ten.

On the other hand, as we mentioned in section 3
the probability distribution over the individuals is
not estimated from the whole population. In the
present task about 20% of the best individuals in
each population are used for this purpose.

As mentioned above, the fitness function used in
the algorithm just allows for unidirectional align-
ments. Therefore, the search was conducted in
both directions (i.e, fromf to e and from e to
f ) combining the final results to achieve bidirec-
tional alignments. To this end, diffferent approaches
(symmetrization methods) were tested. The results
shown in section 5.2 were obtained by applying the
refined methodproposed in (Och and Ney, 2000).

5 Experimental Results

Different experiments have been carried out in or-
der to assess the correctness of the search algorithm.
Next, the experimental metodology employed and
the results obtained are described.

5.1 Corpora and evaluation

Three different corpora and four different test sets
have been used. All of them are taken from the
two shared tasks in word alignments developed in
HLT/NAACL 2003 (Mihalcea and Pedersen, 2003)
and ACL 2005 (Joel Martin, 2005). These two tasks
involved four different pair of languages, English-
French, Romanian-English, English-Inuktitut and
English-Hindi. English-French and Romanian-
English pairs have been considered in these exper-
iments (owing to the lack of timeto properly pre-
process the Hindi and the Inuktitut). Next, a brief
description of the corpora used is given.

Regarding the Romanian-English task, the test
data used to evaluate the alignments consisted in
248 sentences for the 2003 evaluation task and 200
for the 2005 evaluation task. In addition to this, a
training corpus, consisting of about 1 million Ro-
manian words and about the same number of En-
glish word has been used. The IBM word-based
alignment models were training on the whole cor-
pus (training + test). On the other hand, a subset
of the Canadian Hansards corpus has been used in
the English-French task. The test corpus consists of
447 English-French sentences. The training corpus
contains about 20 million English words, and about
the same number of French words. In Table 1, the
features of the different corpora used are shown.

To evaluate the quality of the final alignments ob-
tained, different measures have been taken into ac-
count:Precision, Recall, F-measure, andAlignment
Error Rate. Given an alignmentA and a reference
alignmentG (bothA andG can be split into two
subsetsAS ,AP andGS ,GP , respectively represent-
ing SureandProbablealignments)Precision(PT ),
Recall(RT ), F-measure(FT ) andAlignment Error
Rate(AER) are computed as (whereT is the align-
ment type, and can be set to eitherS or P ):

PT =
|AT

⋂
GT |

|AT |
RT =

|AT
⋂
GT |

|GT |
FT =

|2PTRT |
|PT +RT |

AER =
1− |AS

⋂
GS |+ |AP

⋂
GP |

|AP |+ |GS |
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Table 1: Features of the corpora used in the different alignment task
En-Fr Ro-En 03 Ro-En 05

Training size 1M 97K 97K
Vocabulary 68K / 86K 48K / 27K 48K / 27K

Running words 20M / 23M 1.9M / 2M 1.9M / 2M
Test size 447 248 200

It is important to emphasize that EDAs are non-
deterministics algorithms. Because of this, the re-
sults presented in section 5.2 are actually the mean
of the results obtained in ten different executions of
the search algorithm.

5.2 Results

In Tables 2, 3 and 4 the results obtained from the
different tasks are presented. The results achieved
by the technique proposed in this paper are com-
pared with the best results presented in the shared
tasks described in (Mihalcea and Pedersen, 2003)
(Joel Martin, 2005). The results obtained by the
GIZA++ hill-climbing algorithm are also presented.
In these tables, the mean and the variance of the re-
sults obtained in ten executions of the search algo-
rithm are shown. According to the small variances
observed in the results we can conclude that the non-
deterministic nature of this approach it is not statis-
tically significant.

According to these results, the proposed EDA-
based search is very competitive with respect to the
best result presented in the two shared task.

In addition to these results, additional experi-
ments were carried out in to evaluate the actual be-
havior of the search algorithm. These experiments
were focused on measuring the quality of the algo-
rithm, distinguishing between the errors produced
by the search process itself and the errors produced
by the model that leads the search (i.e, the errors in-
troduced by the fitness function). To this end, the
next approach was adopted. Firstly, the (bidirec-
tional) reference alignments used in the computation
of the Alignment Error Rate were split into two sets
of unidirectional alignments. Owing to the fact that
there is no exact method to perform this decomposi-
tion, we employed the method described in the fol-
lowing way. For each reference alignment, all the
possible decompositions into unidirectional align-

ments were perfomed, scoring each of them with
the evaluation functionF (a) = p(f ,a|e) defined in
section (3), and being selected the best one,aref .
Afterwards, this alignment was compared with the
solution provided by the EDA,aeda . This com-
parison was made for each sentence in the test set,
being measuried the AER for both alignments as
well as the value of the fitness function. At this
point, we can say that a model-error is produced if
F (aeda) > F (aref ). In addition, we can say that a
search-error is produced ifF (aeda) < F (aref ). In
table 5, a summary for both kinds of errors for the
English-Romanian 2005 task is shown. In this table
we can also see that these results correlate with the
AER figures.

These experiments show that most of the errors
were not due to the search process itself but to an-
other different factors. From this, we can conclude
that, on the one hand, the model used to lead the
search should be improved and, on the other, dif-
ferent techniques for symmetrization should be ex-
plored.

6 Conclusions and Future Work

In this paper, a new approach, based on the use of an
Estimation of Distribution Algorithm has been pre-
sented. The results obtained with this technique are
very promising even with the simple scheme here
considered.

According to the results presented in the previ-
ous section, the non-deterministic nature of the algo-
rithm has not a real influence in the performance of
this approach. Therefore, the main theoretical draw-
back of evolutionary algorithms have been proven
not to be an important issue for the task we have ad-
dressed here.

Finally, we are now focusing on the influence of
these improved alignments in the statistical models
for machine translation and on the degree of accu-
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Table 2: Alignment quality (%) for the English-French task with NULL alignments

System Ps Rs Fs Pp Rp Fp AER
EDA 73.82 82.76 78.04 83.91 29.50 43.36 13.61±0.03
GIZA++ 73.61 82.56 77.92 79.94 32.96 46.67 15.89
Ralign.EF1 72.54 80.61 76.36 77.56 36.79 49.91 18.50
XRCE.Nolem.EF.3 55.43 93.81 69.68 72.01 36.00 48.00 21.27

Table 3: Alignment quality (%) for the Romanian-English 2003 task with NULL aligments

System Ps Rs Fs Pp Rp Fp AER
EDA 94.22 49.67 65.05 76.66 60.97 67.92 32.08±0.05
GIZA++ 95.20 48.54 64.30 79.89 57.82 67.09 32.91
XRCE.Trilex.RE.3 80.97 53.64 64.53 63.64 61.58 62.59 37.41
XRCE.Nolem-56k.RE.2 82.65 54.12 65.41 61.59 61.50 61.54 38.46

Table 4: Alignment quality (%) for the Romanian-English 2005 task

System Ps Rs Fs Pp Rp Fp AER
EDA 95.37 54.90 69.68 80.61 67.83 73.67 26.33±0.044
GIZA++ 95.68 53.29 68.45 81.46 65.83 72.81 27.19
ISI.Run5.vocab.grow 87.90 63.08 73.45 87.90 63.08 73.45 26.55
ISI.Run4.simple.intersect 94.29 57.42 71.38 94.29 57.42 71,38 28.62
ISI.Run2.simple.union 70.46 71.31 70.88 70.46 71.31 70.88 29.12

Table 5: Comparison between reference aligments (decomposed into two unidirectional alignments) and
the alignments provided by the EDA. Search errors and model errors for EDA and GIZA++ algorithms are
presented. In addition, the AER for the unidirectional EDA and reference alignments is also shown. These
result are obtained on the Romanian-English 05 task

Romanian-English English-Romanian
EDA search errors (%) 35 (17.5 %) 18 (9 %)
EDA model errors (%) 165 (82.5 %) 182 (91 %)
GIZA++ search errors (%) 87 (43 %) 81 (40 %)
GIZA++ model errors (%) 113 (57 %) 119 (60 %)
AER-EDA 29.67 % 30.66 %
AER-reference 12.77 % 11.03 %
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racy that could be achieved by means of these alig-
ments. In addition to this, the integration of the
aligment algorithm into the training process of the
statistical translation models is currently being per-
formed.
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Abstract

We present discriminative reordering
models for phrase-based statistical ma-
chine translation. The models are trained
using the maximum entropy principle.
We use several types of features: based on
words, based on word classes, based on
the local context. We evaluate the overall
performance of the reordering models as
well as the contribution of the individual
feature types on a word-aligned corpus.
Additionally, we show improved transla-
tion performance using these reordering
models compared to a state-of-the-art
baseline system.

1 Introduction

In recent evaluations, phrase-based statistical ma-
chine translation systems have achieved good per-
formance. Still the fluency of the machine transla-
tion output leaves much to desire. One reason is
that most phrase-based systems use a very simple re-
ordering model. Usually, the costs for phrase move-
ments are linear in the distance, e.g. see (Och et al.,
1999; Koehn, 2004; Zens et al., 2005).

Recently, in (Tillmann and Zhang, 2005) and in
(Koehn et al., 2005), a reordering model has been
described that tries to predict the orientation of a
phrase, i.e. it answers the question ’should the next
phrase be to the left or to the right of the current
phrase?’ This phrase orientation probability is con-
ditioned on the current source and target phrase and
relative frequencies are used to estimate the proba-
bilities.

We adopt the idea of predicting the orientation,
but we propose to use a maximum-entropy based
model. The relative-frequency based approach may
suffer from the data sparseness problem, because
most of the phrases occur only once in the training
corpus. Our approach circumvents this problem by
using a combination of phrase-level and word-level
features and by using word-classes or part-of-speech
information. Maximum entropy is a suitable frame-
work for combining these different features with a
well-defined training criterion.

In (Koehn et al., 2005) several variants of the ori-
entation model have been tried. It turned out that for
different tasks, different models show the best per-
formance. Here, we let the maximum entropy train-
ing decide which features are important and which
features can be neglected. We will see that addi-
tional features do not hurt performance and can be
safely added to the model.

The remaining part is structured as follows: first
we will describe the related work in Section 2 and
give a brief description of the baseline system in
Section 3. Then, we will present the discriminative
reordering model in Section 4. Afterwards, we will
evaluate the performance of this new model in Sec-
tion 5. This evaluation consists of two parts: first we
will evaluate the prediction capabilities of the model
on a word-aligned corpus and second we will show
improved translation quality compared to the base-
line system. Finally, we will conclude in Section 6.

2 Related Work

As already mentioned in Section 1, many current
phrase-based statistical machine translation systems
use a very simple reordering model: the costs
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for phrase movements are linear in the distance.
This approach is also used in the publicly available
Pharaoh decoder (Koehn, 2004). The idea of pre-
dicting the orientation is adopted from (Tillmann
and Zhang, 2005) and (Koehn et al., 2005). Here,
we use the maximum entropy principle to combine
a variety of different features.

A reordering model in the framework of weighted
finite state transducers is described in (Kumar and
Byrne, 2005). There, the movements are defined at
the phrase level, but the window for reordering is
very limited. The parameters are estimated using an
EM-style method.

None of these methods try to generalize from the
words or phrases by using word classes or part-of-
speech information.

The approach presented here has some resem-
blance to the bracketing transduction grammars
(BTG) of (Wu, 1997), which have been applied to
a phrase-based machine translation system in (Zens
et al., 2004). The difference is that, here, we do
not constrain the phrase reordering. Nevertheless
the inverted/monotone concatenation of phrases in
the BTG framework is similar to the left/right phrase
orientation used here.

3 Baseline System

In statistical machine translation, we are given a
source language sentencefJ

1 = f1 . . . fj . . . fJ ,
which is to be translated into a target language sen-
tenceeI

1 = e1 . . . ei . . . eI . Among all possible tar-
get language sentences, we will choose the sentence
with the highest probability:

êÎ
1 = argmax

I,eI

1

{

Pr(eI
1|f

J
1 )
}

(1)

The posterior probabilityPr(eI
1|f

J
1 ) is modeled di-

rectly using a log-linear combination of several
models (Och and Ney, 2002):

Pr(eI
1|f

J
1 ) =

exp
(

∑M
m=1

λmhm(eI
1, f

J
1 )
)

∑

I′,e′I
′

1

exp
(

∑M
m=1

λmhm(e′I′

1 , fJ
1
)
)

(2)
The denominator represents a normalization factor
that depends only on the source sentencefJ

1 . There-
fore, we can omit it during the search process. As a

decision rule, we obtain:

êÎ
1 = argmax

I,eI

1

{

M
∑

m=1

λmhm(eI
1, f

J
1 )

}

(3)

This approach is a generalization of the source-
channel approach (Brown et al., 1990). It has the
advantage that additional modelsh(·) can be eas-
ily integrated into the overall system. The model
scaling factorsλM

1 are trained with respect to the fi-
nal translation quality measured by an error criterion
(Och, 2003).

We use a state-of-the-art phrase-based translation
system (Zens and Ney, 2004; Zens et al., 2005) in-
cluding the following models: ann-gram language
model, a phrase translation model and a word-based
lexicon model. The latter two models are used for
both directions: p(f |e) and p(e|f). Additionally,
we use a word penalty and a phrase penalty. The
reordering model of the baseline system is distance-
based, i.e. it assigns costs based on the distance from
the end position of a phrase to the start position of
the next phrase. This very simple reordering model
is widely used, for instance in (Och et al., 1999;
Koehn, 2004; Zens et al., 2005).

4 The Reordering Model

4.1 Idea

In this section, we will describe the proposed dis-
criminative reordering model.

To make use of word level information, we need
the word alignment within the phrase pairs. This can
be easily stored during the extraction of the phrase
pairs from the bilingual training corpus. If there are
multiple possible alignments for a phrase pair, we
use the most frequent one.

The notation is introduced using the illustration in
Figure 1. There is an example of a left and a right
phrase orientation. We assume that we have already
produced the three-word phrase in the lower part.
Now, the model has to predict if the start position
of the next phrasej′ is to the left or to the right of
the current phrase. The reordering model is applied
only at the phrase boundaries. We assume that the
reordering within the phrases is correct.

In the remaining part of this section, we will de-
scribe the details of this reordering model. The
classes our model predicts will be defined in Sec-
tion 4.2. Then, the feature functions will be defined
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Figure 1: Illustration of the phrase orientation.

in Section 4.3. The training criterion and the train-
ing events of the maximum entropy model will be
described in Section 4.4.

4.2 Class Definition

Ideally, this model predicts the start position of the
next phrase. But as predicting the exact position is
rather difficult, we group the possible start positions
into classes. In the simplest case, we use only two
classes. One class for the positions to the left and
one class for the positions to the right. As a refine-
ment, we can use four classes instead of two: 1) one
position to the left, 2) more than one positions to the
left, 3) one position to the right, 4) more than one
positions to the right.

In general, we use a parameterD to specify2 · D
classes of the types:

• exactlyd positions to the left,d = 1, ...,D − 1

• at leastD positions to the left

• exactlyd positions to the right,d = 1, ...,D−1

• at leastD positions to the right

Let cj,j′ denote the orientation class for a move-
ment from source positionj to source positionj′ as
illustrated in Figure 1. In the case of two orientation
classes,cj,j′ is defined as:

cj,j′ =

{

left, if j′ < j

right, if j′ > j
(4)

Then, the reordering model has the form

p(cj,j′|fJ
1 , eI

1, i, j)

A well-founded framework for directly modeling the
probability p(cj,j′|fJ

1 , eI
1, i, j) is maximum entropy

(Berger et al., 1996). In this framework, we have a
set ofN feature functionshn(fJ

1 , eI
1, i, j, cj,j′), n =

1, . . . ,N . Each feature functionhn is weighted with
a factorλn. The resulting model is:

pλN

1

(cj,j′|fJ
1 , eI

1, i, j)

=

exp

(

N
∑

n=1

λnhn(fJ
1 , eI

1, i, j, cj,j′)

)

∑

c′

exp

(

N
∑

n=1

λnhn(fJ
1 , eI

1, i, j, c
′)

) (5)

The functional form is identical to Equation 2,
but here we will use a large number of binary
features, whereas in Equation 2 usually only a
very small number of real-valued features is used.
More precisely, the resulting reordering model
pλN

1

(cj,j′|fJ
1 , eI

1, i, j) is used as an additional com-
ponent in the log-linear combination of Equation 2.

4.3 Feature Definition

The feature functions of the reordering model de-
pend on the last alignment link(j, i) of a phrase.
Note that the source positionj is not necessarily the
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end position of the source phrase. We use the source
position j which is aligned to the last word of the
target phrase in target positioni. The illustration in
Figure 1 contains such an example.

To introduce generalization capabilities, some of
the features will depend on word classes or part-
of-speech information. LetF J

1 denote the word
class sequence that corresponds to the source lan-
guage sentencefJ

1 and letEI
1 denote the target word

class sequence that corresponds to the target lan-
guage sentenceeI

1. Then, the feature functions are
of the formhn(fJ

1 , eI
1, F

J
1 , EI

1 , i, j, j′). We consider
the following binary features:

1. source words within a window around the cur-
rent source positionj

hf,d,c(f
J
1 , eI

1, F
J
1 , EI

1 , i, j, j′) (6)

= δ(fj+d, f) · δ(c, cj,j′)

2. target words within a window around the cur-
rent target positioni

he,d,c(f
J
1 , eI

1, F
J
1 , EI

1 , i, j, j′) (7)

= δ(ei+d, e) · δ(c, cj,j′)

3. word classes or part-of-speech within a window
around the current source positionj

hF,d,c(f
J
1 , eI

1, F
J
1 , EI

1 , i, j, j′) (8)

= δ(Fj+d, F ) · δ(c, cj,j′)

4. word classes or part-of-speech within a window
around the current target positioni

hE,d,c(f
J
1 , eI

1, F
J
1 , EI

1 , i, j, j′) (9)

= δ(Ei+d, E) · δ(c, cj,j′)

Here,δ(·, ·) denotes the Kronecker-function. In the
experiments, we will used ∈ {−1, 0, 1}. Many
other feature functions are imaginable, e.g. combi-
nations of the described feature functions,n-gram
or multi-word features, joint source and target lan-
guage feature functions.

4.4 Training

As training criterion, we use the maximum class
posterior probability. This corresponds to maximiz-
ing the likelihood of the maximum entropy model.

Since the optimization criterion is convex, there is
only a single optimum and no convergence problems
occur. To train the model parametersλN

1 , we use the
Generalized Iterative Scaling (GIS) algorithm (Dar-
roch and Ratcliff, 1972).

In practice, the training procedure tends to result
in an overfitted model. To avoid overfitting, (Chen
and Rosenfeld, 1999) have suggested a smoothing
method where a Gaussian prior distribution of the
parameters is assumed.

This method tried to avoid very large lambda val-
ues and prevents features that occur only once for a
specific class from getting a value of infinity.

We train IBM Model 4 with GIZA++ (Och and
Ney, 2003) in both translation directions. Then the
alignments are symmetrized using a refined heuris-
tic as described in (Och and Ney, 2003). This word-
aligned bilingual corpus is used to train the reorder-
ing model parameters, i.e. the feature weightsλN

1 .
Each alignment link defines an event for the max-
imum entropy training. An exception are the one-
to-many alignments, i.e. one source word is aligned
to multiple target words. In this case, only the top-
most alignment link is considered because the other
ones cannot occur at a phrase boundary. Many-to-
one and many-to-many alignments are handled in a
similar way.

5 Experimental Results

5.1 Statistics

The experiments were carried out on theBasic
Travel Expression Corpus (BTEC) task (Takezawa
et al., 2002). This is a multilingual speech cor-
pus which contains tourism-related sentences sim-
ilar to those that are found in phrase books. We
use the Arabic-English, the Chinese-English and the
Japanese-English data. The corpus statistics are
shown in Table 1.

As the BTEC is a rather clean corpus, the prepro-
cessing consisted mainly of tokenization, i.e., sep-
arating punctuation marks from words. Addition-
ally, we replaced contractions such asit’s or I’m in
the English corpus and we removed the case infor-
mation. For Arabic, we removed the diacritics and
we split common prefixes: Al, w, f, b, l. There
was no special preprocessing for the Chinese and the
Japanese training corpora.

To train and evaluate the reordering model, we
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Table 1: Corpus statistics after preprocessing for the BTECtask.
Arabic Chinese Japanese English

Train Sentences 20 000
Running Words 180 075 176 199 198 453 189 927

Vocabulary 15 371 8 687 9 277 6 870

C-Star’03 Sentences 506
Running Words 3 552 3 630 4 130 3 823

Table 2: Statistics of the training and test word align-
ment links.

Ara-Eng Chi-Eng Jap-Eng
Training 144K 140K 119K
Test 16.2K 15.7K 13.2K

use the word aligned bilingual training corpus. For
evaluating the classification power of the reordering
model, we partition the corpus into a training part
and a test part. In our experiments, we use about
10% of the corpus for testing and the remaining
part for training the feature weights of the reorder-
ing model with the GIS algorithm using YASMET
(Och, 2001). The statistics of the training and test
alignment links is shown in Table 2. The number
of training events ranges from 119K for Japanese-
English to 144K for Arabic-English.

The word classes for the class-based features are
trained using themkcls tool (Och, 1999). In the
experiments, we use 50 word classes. Alternatively,
one could use part-of-speech information for this
purpose.

Additional experiments were carried out on the
large data track of the Chinese-English NIST task.
The corpus statistics of the bilingual training cor-
pus are shown in Table 3. The language model was
trained on the English part of the bilingual train-
ing corpus and additional monolingual English data
from the GigaWord corpus. The total amount of lan-
guage model training data was about 600M running
words. We use a fourgram language model with
modified Kneser-Ney smoothing as implemented in
the SRILM toolkit (Stolcke, 2002). For the four En-
glish reference translations of the evaluation sets, the
accumulated statistics are presented.

Table 3: Chinese-English NIST task: corpus statis-
tics for the bilingual training data and the NIST eval-
uation sets of the years 2002 to 2005.

Chinese English
Train Sentence Pairs 7M

Running Words 199M 213M
Vocabulary Size 223K 351K
Dictionary Entry Pairs 82K

Eval 2002 Sentences 878 3 512
Running Words 25K 105K

2003 Sentences 919 3 676
Running Words 26K 122K

2004 Sentences 1788 7 152
Running Words 52K 245K

2005 Sentences 1082 4 328
Running Words 33K 148K

5.2 Classification Results

In this section, we present the classification results
for the three language pairs. In Table 4, we present
the classification results for two orientation classes.

As baseline we always choose the most frequent
orientation class. For Arabic-English, the baseline
is with 6.3% already very low. This means that the
word order in Arabic is very similar to the word or-
der in English. For Chinese-English, the baseline
is with 12.7% about twice as large. The most dif-
ferences in word order occur for Japanese-English.
This seems to be reasonable as Japanese has usu-
ally a different sentence structure, subject-object-
verb compared to subject-verb-object in English.

For each language pair, we present results for sev-
eral combination of features. The three columns per
language pair indicate if the features are based on the
words (column label ’Words’), on the word classes
(column label ’Classes’) or on both (column label
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Table 4: Classification error rates [%] using two orientation classes.

Arabic-English Chinese-English Japanese-English
Baseline 6.3 12.7 26.2

Lang. Window Words Classes W+C Words Classes W+C Words Classes W+C

Tgt d = 0 4.7 5.3 4.4 9.3 10.4 8.9 13.6 15.1 13.4
d ∈ {0, 1} 4.5 5.0 4.3 8.9 9.9 8.6 13.7 14.9 13.4
d ∈ {−1, 0, 1} 4.5 4.9 4.3 8.6 9.5 8.3 13.5 14.6 13.3

Src d = 0 5.6 5.0 3.9 7.9 8.3 7.2 12.2 11.8 11.0
d ∈ {0, 1} 3.2 3.0 2.6 4.7 4.7 4.2 10.1 9.7 9.4
d ∈ {−1, 0, 1} 2.9 2.5 2.3 3.9 3.5 3.3 9.0 8.0 7.8

Src d = 0 4.3 3.9 3.7 7.1 7.8 6.5 10.8 10.9 9.8
+ d ∈ {0, 1} 2.9 2.6 2.5 4.6 4.5 4.1 9.3 9.1 8.6

Tgt d ∈ {−1, 0, 1} 2.8 2.1 2.1 3.9 3.4 3.3 8.7 7.7 7.7

’W+C’). We also distinguish if the features depend
on the target sentence (’Tgt’), on the source sentence
(’Src’) or on both (’Src+Tgt’).

For Arabic-English, using features based only on
words of the target sentence the classification er-
ror rate can be reduced to 4.5%. If the features are
based only on the source sentence words, a classifi-
cation error rate of 2.9% is reached. Combining the
features based on source and target sentence words,
a classification error rate of 2.8% can be achieved.
Adding the features based on word classes, the clas-
sification error rate can be further improved to 2.1%.
For the other language pairs, the results are similar
except that the absolute values of the classification
error rates are higher.

We observe the following:

• The features based on the source sentence per-
form better than features based on the target
sentence.

• Combining source and target sentence features
performs best.

• Increasing the window always helps, i.e. addi-
tional context information is useful.

• Often the word-class based features outperform
the word-based features.

• Combining word-based and word-class based
features performs best.

• In general, adding features does not hurt the
performance.

These are desirable properties of an appropriate
reordering model. The main point is that these are
fulfilled not only on the training data, but on unseen
test data. There seems to be no overfitting problem.

In Table 5, we present the results for four orien-
tation classes. The final error rates are a factor2-4
larger than for two orientation classes. Despite that
we observe the same tendencies as for two orien-
tation classes. Again, using more features always
helps to improve the performance.

5.3 Translation Results

For the translation experiments on the BTEC task,
we report the two accuracy measures BLEU (Pap-
ineni et al., 2002) and NIST (Doddington, 2002) as
well as the two error rates: word error rate (WER)
and position-independent word error rate (PER).
These criteria are computed with respect to 16 refer-
ences.

In Table 6, we show the translation results for
the BTEC task. In these experiments, the reorder-
ing model uses two orientation classes, i.e. it pre-
dicts either a left or a right orientation. The fea-
tures for the maximum-entropy based reordering
model are based on the source and target language
words within a window of one. The word-class
based features are not used for the translation ex-
periments. The maximum-entropy based reordering
model achieves small but consistent improvement
for all the evaluation criteria. Note that the baseline
system, i.e. using the distance-based reordering, was
among the best systems in the IWSLT 2005 evalua-
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Table 5: Classification error rates [%] using four orientation classes.

Arabic-English Chinese-English Japanese-English
Baseline 31.4 44.9 59.0

Lang. Window Words Classes W+C Words Classes W+C Words Classes W+C

Tgt d = 0 24.5 27.7 24.2 30.0 34.4 29.7 28.9 31.4 28.7
d ∈ {0, 1} 23.9 27.2 23.7 29.2 32.9 28.9 28.7 30.6 28.3
d ∈ {−1, 0, 1} 22.1 25.3 21.9 27.6 31.4 27.4 28.3 30.1 28.2

Src d = 0 22.1 23.2 20.4 25.9 27.7 20.4 24.1 24.9 22.3
d ∈ {0, 1} 11.9 12.0 10.8 14.0 14.9 13.2 18.6 19.5 17.7
d ∈ {−1, 0, 1} 10.1 8.7 8.0 11.4 11.1 10.5 15.6 15.6 14.5

Src d = 0 20.9 21.8 19.6 24.1 26.8 19.6 22.3 23.4 21.1
+ d ∈ {0, 1} 11.8 11.5 10.6 13.5 14.5 12.8 18.6 18.8 17.1

Tgt d ∈ {−1, 0, 1} 9.6 7.7 7.6 11.3 10.1 10.1 15.6 15.2 14.2

Table 6: Translation Results for the BTEC task.
Language Pair Reordering WER [%] PER [%] NIST BLEU [%]
Arabic-English Distance-based 24.1 20.9 10.0 63.8

Max-Ent based 23.6 20.7 10.1 64.8
Chinese-English Distance-based 50.4 43.0 7.67 44.4

Max-Ent based 49.3 42.4 7.36 45.8
Japanese-English Distance-based 32.1 25.2 8.96 56.2

Max-Ent based 31.2 25.2 9.00 56.8

tion campaign (Eck and Hori, 2005).
Some translation examples are presented in Ta-

ble 7. We observe that the system using the
maximum-entropy based reordering model produces
more fluent translations.

Additional translation experiments were carried
out on the large data track of the Chinese-English
NIST task. For this task, we use only the BLEU
and NIST scores. Both scores are computed case-
insensitive with respect to four reference translations
using the mteval-v11b tool1.

For the NIST task, we use the BLEU score as pri-
mary criterion which is optimized on the NIST 2002
evaluation set using the Downhill Simplex algorithm
(Press et al., 2002). Note that only the eight or nine
model scaling factors of Equation 2 are optimized
using the Downhill Simplex algorithm. The feature
weights of the reordering model are trained using
the GIS algorithm as described in Section 4.4. We
use a state-of-the-art baseline system which would
have obtained a good rank in the last NIST evalua-

1http://www.nist.gov/speech/tests/mt/resources/scoring.htm

tion (NIST, 2005).
The translation results for the NIST task are pre-

sented in Table 8. We observe consistent improve-
ments of the BLEU score on all evaluation sets. The
overall improvement due to reordering ranges from
1.2% to 2.0% absolute. The contribution of the
maximum-entropy based reordering model to this
improvement is in the range of 25% to 58%, e.g. for
the NIST 2003 evaluation set about 58% of the im-
provement using reordering can be attributed to the
maximum-entropy based reordering model.

We also measured the classification performance
for the NIST task. The general tendencies are iden-
tical to the BTEC task.

6 Conclusions

We have presented a novel discriminative reorder-
ing model for statistical machine translation. This
model is trained on the word aligned bilingual cor-
pus using the maximum entropy principle. Several
types of features have been used:

• based on the source and target sentence
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Table 7: Translation examples for the BTEC task.

System Translation
Distance-based I would like to check out time one day before.
Max-Ent based I would like to check out one day before the time.
Reference I would like to check out one day earlier.
Distance-based I hate pepper green.
Max-Ent based I hate the green pepper.
Reference I hate green peppers.
Distance-based Is there a subway map where?
Max-Ent based Where is the subway route map?
Reference Where do they have a subway map?

Table 8: Translation results for several evaluation sets ofthe Chinese-English NIST task.
Evaluation set 2002 (dev) 2003 2004 2005

Reordering NIST BLEU[%] NIST BLEU[%] NIST BLEU[%] NIST BLEU[%]
None 8.96 33.5 8.67 32.7 8.76 32.0 8.62 30.8
Distance-based 9.19 34.6 8.85 33.2 9.05 33.2 8.79 31.6
Max-Ent based 9.24 35.5 8.87 33.9 9.04 33.6 8.78 32.1

• based on words and word classes

• using local context information

We have evaluated the performance of the re-
ordering model on a held-out word-aligned corpus.
We have shown that the model is able to predict the
orientation very well, e.g. for Arabic-English the
classification error rate is only 2.1%.

We presented improved translation results for
three language pairs on the BTEC task and for the
large data track of the Chinese-English NIST task.

In none of the cases additional features have hurt
the classification performance on the held-out test
corpus. This is a strong evidence that the maximum
entropy framework is suitable for this task.

Another advantage of our approach is the gener-
alization capability via the use of word classes or
part-of-speech information. Furthermore, additional
features can be easily integrated into the maximum
entropy framework.

So far, the word classes were not used for the
translation experiments. As the word classes help
for the classification task, we might expect further
improvements of the translation results. Using part-
of-speech information instead (or in addition) to the
automatically computed word classes might also be
beneficial. More fine-tuning of the reordering model

toward translation quality might also result in im-
provements. As already mentioned in Section 4.3, a
richer feature set could be helpful.
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Abstract

In this paper we propose a generalization
of the Stack-based decoding paradigm for
Statistical Machine Translation. The well
known single and multi-stack decoding
algorithms defined in the literature have
been integrated within a new formalism
which also defines a new family of stack-
based decoders. These decoders allows
a tradeoff to be made between the ad-
vantages of using only one or multiple
stacks. The key point of the new formal-
ism consists in parameterizeing the num-
ber of stacks to be used during the de-
coding process, and providing an efficient
method to decide in which stack each par-
tial hypothesis generated is to be inserted-
during the search process. Experimental
results are also reported for a search algo-
rithm for phrase-based statistical transla-
tion models.

1 Introduction

The translation process can be formulated from a
statistical point of view as follows: A source lan-
guage stringfJ

1
= f1 . . . fJ is to be translated into

a target language stringeI
1

= e1 . . . eI . Every tar-
get string is regarded as a possible translation for the
source language string with maximum a-posteriori
probability Pr(eI

1
|fJ

1
). According to Bayes’ theo-

rem, the target strinĝeI
1

that maximizes1 the product
∗This work has been partially supported by the Spanish

project TIC2003-08681-C02-02, theAgencia Valenciana de
Ciencia y Tecnologı́aunder contract GRUPOS03/031, theGen-
eralitat Valenciana, and the project HERMES (Vicerrectorado
de Investigación - UCLM-05/06)

1Note that the expression should also be maximized byI ;
however, for the sake of simplicity we suppose that it is known.

of both the target language modelPr(eI
1
) and the

string translation modelPr(fJ
1
|eI

1
) must be chosen.

The equation that models this process is:

êI
1 = arg max

eI
1

{Pr(eI
1) · Pr(fJ

1 |e
I
1)} (1)

The search/decoding problem in SMT consists in
solving the maximization problem stated in Eq. (1).
In the literature, we can find different techniques to
deal with this problem, ranging from heuristic and
fast (as greedy decoders) to optimal and very slow
decoding algorithms (Germann et al., 2001). Also,
under certain circumstances, stack-based decoders
can obtain optimal solutions.

Many works (Berger et al., 1996; Wang and
Waibel, 1998; Germann et al., 2001; Och et al.,
2001; Ortı́z et al., 2003) have adopted different types
of stack-based algorithms to solve the global search
optimization problem for statistical machine trans-
lation. All these works follow two main different
approaches according to the number of stacks used
in the design and implementation of the search algo-
rithm (the stacks are used to store partial hypotheses,
sorted according to their partial score/probability,
during the search process) :

• On the one hand, in (Wang and Waibel, 1998;
Och et al., 2001) a single stack is used. In
that case, in order to make the search feasible,
the pruning of the number of partial hypothe-
ses stored in the stack is needed. This causes
many search errors due to the fact that hy-
potheses covering a different number of source
(translated) words compete in the same condi-
tions. Therefore, the greater number of covered
words the higher possibility to be pruned.

• On the other hand (Berger et al., 1996; Ger-
mann et al., 2001) make use of multiple stacks
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(one for each set of source covered/translated
words in the partial hypothesis) in order to
solve the disadvantages of the single-stack ap-
proach. By contrast, the problem of finding
the best hypothesis to be expanded introduces
an exponential term in the computational com-
plexity of the algorithm.

In (Ortı́z et al., 2003) the authors present an em-
pirical comparison (about efficiency and translation
quality) of the two approaches paying special atten-
tion to the advantages and disadvantages of the two
approaches.

In this paper we present a new formalism consist-
ing of a generalization of the classical stack-based
decoding paradigm for SMT. This new formalism
defines a new family of stack-based decoders, which
also integrates the well known stack-based decoding
algorithms proposed so far within the framework of
SMT, that is single and multi-stack decoders.

The rest of the paper is organized as follows: in
section 2 the phrase-based approach to SMT is de-
picted; in section 3 the main features of classical
stack-based decoders are presented; in section 4 the
new formalism is presented and in section 5 exper-
imental results are shown; finally some conclusions
are drawn in section 6.

2 Phrase Based Statistical Machine
Translation

Different translation models(TMs) have been pro-
posed depending on how the relation between the
source and the target languages is structured; that is,
the way a target sentence is generated from a source
sentence. This relation is summarized using the con-
cept ofalignment; that is, how the constituents (typ-
ically words or group-of-words) of a pair of sen-
tences are aligned to each other. The most widely
used single-word-basedstatistical alignment mod-
els (SAMs) have been proposed in (Brown et al.,
1993; Ney et al., 2000). On the other hand, models
that deal with structures or phrases instead of single
words have also been proposed: the syntax trans-
lation models are described in (Yamada and Knight,
2001) , alignment templates are used in (Och, 2002),
and the alignment template approach is re-framed
into the so-calledphrase based translation(PBT)

in (Marcu and Wong, 2002; Zens et al., 2002; Koehn
et al., 2003; Tomás and Casacuberta, 2003).

For the translation model (Pr(fJ
1
|eI

1
)) in Eq. (1),

PBT can be explained from a generative point of
view as follows (Zens et al., 2002):

1. The target sentenceeI
1

is segmented intoK
phrases (̃eK

1
).

2. Each target phrasẽek is translated into a source
phrasef̃ .

3. Finally, the source phrases are reordered in or-
der to compose the source sentencef̃K

1
= fJ

1
.

In PBT, it is assumed that the relations between
the words of the source and target sentences can
be explained by means of the hidden variableãK

1
,

which contains all the decisions made during the
generative story.

Pr(fJ
1
|eI

1
) =

∑

K,ãK
1

Pr(, f̃K
1

, ãK
1
|ẽK

1
)

=
∑

K,ãK
1

Pr(ãK
1
|ẽK

1
)Pr(f̃K

1
|ãK

1
, ẽK

1
)

(2)

Different assumptions can be made from the pre-
vious equation. For example, in (Zens et al., 2002)
the following model is proposed:

pθ(f
J
1 |e

I
1) = α(eI

1)
∑

K,ãK
1

K∏

k=1

p(f̃k|ẽãk
) (3)

where ãk notes the index of the source phraseẽ

which is aligned with thek-th target phrasẽfk and
that all possible segmentations have the same proba-
bility. In (Tomás and Casacuberta, 2001; Zens et al.,
2002), it also is assumed that the alignments must be
monotonic. This led us to the following equation:

pθ(f
J
1 |e

I
1) = α(eI

1)
∑

K,ãK
1

K∏

k=1

p(f̃k|ẽk) (4)

In both cases the model parameters that have to be
estimated are the translation probabilities between
phrase pairs (θ = {p(f̃ |ẽ)}), which typically are es-
timated as follows:

p(f̃ |ẽ) =
N(f̃ , ẽ)

N(ẽ)
(5)
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whereN(f̃ |ẽ) is the number of times that̃f have
been seen as a translation ofẽ within the training
corpus.

3 Stack-Decoding Algorithms

The stack decoding algorithm, also calledA∗ algo-
rithm, was first introduced by F. Jelinek in (Jelinek,
1969). The stack decoding algorithm attempts to
generate partial solutions, calledhypotheses, until a
complete translation is found2; these hypotheses are
stored in a stack and ordered by theirscore. Typi-
cally, this measure or score is the probability of the
product of the translation and the language models
introduced above. TheA∗ decoder follows a se-
quence of steps for achieving a complete (and possi-
bly optimal) hypothesis:

1. Initialize the stack with an empty hypothesis.

2. Iterate

(a) Poph (the best hypothesis) off the stack.

(b) If h is a complete sentence, outputh and
terminate.

(c) Expandh.

(d) Go to step 2a.

The search is started from a null string and obtains
new hypotheses after an expansion process (step 2c)
which is executed at each iteration. The expansion
process consists of the application of a set of op-
erators over the best hypothesis in the stack, as it
is depicted in Figure 1. Thus, the design of stack
decoding algorithms involves defining a set of oper-
ators to be applied over every hypothesis as well as
the way in which they are combined in the expansion
process. Both the operators and the expansion algo-
rithm depend on the translation model that we use.
For the case of the phrase-based translation models
described in the previous section, the operatoradd is
defined, which adds a sequence of words to the tar-
get sentence, and aligns it with a sequence of words
of the source sentence.

The number of hypotheses to be stored during the
search can be huge. In order then to avoid mem-

2Each hypothesis has associated a coverage vector of length
J , which indicates the set of source words already cov-
ered/translated so far. In the following we will refer to this
simply as coverage.

Figure 1: Flow chart associated to the expansion of
a hypothesis when using anA⋆ algorithm.

ory overflow problems, the maximum number of hy-
potheses that a stack may store has to be limited. It
is important to note that for a hypothesis, the higher
the aligned source words, the worse the score. These
hypotheses will be discarded sooner when anA∗

search algorithm is used due to the stack length lim-
itation. Because of this, themulti-stack algorithms
were introduced.

Multi-stack algorithms store those hypotheses
with different subsets of source aligned words in dif-
ferent stacks. That is to say, given an input sentence
fJ
1

composed ofJ words, multi-stack algorithms
employes2J stacks to translate it. Such an organi-
zation improves the pruning of the hypotheses when
the stack length limitation is exceeded, since only
hypotheses with the same number of covered posi-
tions can compete with each other.

All the search steps given forA∗ algorithm can
also be applied here, except step 2a. This is due
to the fact that multiple stacks are used instead of
only one. Figure 2 depicts the expansion process
that the multi-stack algorithms execute, which is
slightly different than the one presented in Figure 1.
Multi-stack algorithms have the negative property of
spending significant amounts of time in selecting the
hypotheses to be expanded, since at each iteration,
the best hypothesis in a set of2J stacks must be
searched for (Ortı́z et al., 2003). By contrast, for the
A∗ algorithm, it is not possible to reduce the length
of the stack in the same way as in the multi-stack
case without loss of translation quality.

Additionally, certain translation systems, e.g. the
Pharaoh decoder (Koehn, 2003) use an alternative
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Figure 2: Flow chart associated to the expansion of
a hypothesis when using a multi-stack algorithm.

approach which consists in assigning to the same
stack, those hypotheses with the same number of
source words covered.

4 Generalized Stack-Decoding Algorithms

As was mentioned in the previous section, given a
sentencefJ

1
to be translated, a single stack decod-

ing algorithm employs only one stack to perform the
translation process, while a multi-stack algorithm
employs2J stacks. We propose a possible way to
make a tradeoff between the advantages of both al-
gorithms that introduces a new parameter which will
be referred to as thegranularity of the algorithm.
The granularity parameter determines the number of
stacks used during the decoding process.

4.1 Selecting thegranularity of the algorithm

The granularity (G) of a generalized stack algorithm
is an integer which takes values between1 andJ ,
whereJ is the number of words which compose the
sentence to translate.

Given a sentencefJ
1

to be translated, a general-
ized stack algorithm with a granularity parameter
equal tog, will have the following features:

• The algorithm will use at most2g stacks to per-
form the translation

• Each stack will contain hypotheses which have
2J−g different coverages offJ

1

• If the algorithm can store at mostS = s hy-
potheses, then, the maximum size of each stack
will be equal to s

2g

4.2 Mapping hypotheses to stacks

Generalized stack-decoding algorithms require a
mechanism to decide in which stack each hypothesis
is to be inserted. As stated in section 4.1, given an
input sentencefJ

1
and a generalized stack-decoding

algorithm withG = g, the decoder will work with
2g stacks, and each one will contain2J−g different
coverages. Therefore, the above mentioned mecha-
nism can be expressed as a function which will be
referred to as theµ function. Given a hypothesis
coverage composed ofJ bits, theµ function return
a stack identifier composed of onlyg bits:

µ : ({0, 1})J −→ ({0, 1})g (6)

Generalized stack algorithms are strongly in-
spired by multi-stack algorithms; however, both
types of algorithms differ in the way the hypothesis
expansion is performed. Figure 3 shows the expan-
sion algorithm of a generalized stack decoder with
a granularity parameter equal tog and a functionµ
which maps hypotheses coverages to stacks.

Figure 3: Flow chart associated to the expansion of
a hypothesis when using a generalized-stack algo-
rithm.

The functionµ can be defined in many ways,
but there are two essential principles which must be
taken into account:

• Theµ function must be efficiently calculated

• Hypotheses whose coverage have a similar
number of bits set to one must be assigned to
the same stack. This requirement allows the
pruning of the stacks to be improved, since the
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hypotheses with a similar number of covered
words can compete fairly

A possible way to implement theµ function,
namelyµ1, consists in simply shifting the coverage
vectorJ − g positions to the right, and then keeping
only the firstg bits. Such a proposal is very easy
to calculate, however, it has a poor performance ac-
cording to the second principle explained above.

A better alternative to implement theµ function,
namelyµ2, can be formulated as a composition of
two functions. A constructive definition of such a
implementation is detailed next:

1. Let us suppose that the source sentence is com-
posed byJ words, we order the set ofJ bit
numbers as follows: first the numbers which do
not have any bit equal to one, next, the numbers
which have only one bit equal to one, and so on

2. Given the list of numbers described above, we
define a function which associates to each num-
ber of the list, the order of the number within
this list

3. Given the coverage of a partial hypothesis,x,
the stack on which this partial hypothesis is to
be inserted is obtained by a two step process:
First, we obtain the image ofx returned by the
function described above. Next, the result is
shiftedJ − g positions to the right, keeping the
first g bits

Let β be the function that shifts a bit vectorJ − g

positions to the right, keeping the firstg bits; and let
α be the function that for each coverage returns its
order:

α : ({0, 1})J −→ ({0, 1})J (7)

Then,µ2 is expressed as follows:

µ2(x) = β ◦ α(x) (8)

Table 1 shows an example of the values which re-
turns theµ1 and theµ2 functions when the input sen-
tence has4 words and the granularity of the decoder
is equal to2. As it can be observed,µ2 function
performs better thanµ1 function according to the
second principle described at the beginning of this
section.

x µ1(x) α(x) µ2(x)
0000 00 0000 00
0001 00 0001 00
0010 00 0010 00
0100 01 0011 00
1000 10 0100 01
0011 00 0101 01
0101 01 0110 01
0110 01 0111 01
1001 10 1000 10
1010 10 1001 10
1100 11 1010 10
0111 01 1011 10
1011 10 1100 11
1101 11 1101 11
1110 11 1110 11
1111 11 1111 11

Table 1: Values returned by theµ1 andµ2 function
defined as a composition of theα andβ functions

4.3 Single and Multi Stack Algorithms

The classical single and multi-stack decoding al-
gorithms can be expressed/instantiated as particular
cases of the general formalism that have been pro-
posed.

Given the input sentencefJ
1

, a generalized stack
decoding algorithm withG = 0 will have the fol-
lowing features:

• The algorithm works with20 = 1 stacks.

• Such a stack may store hypotheses with2J dif-
ferent coverages. That is to say, all possible
coverages.

• The mapping function returns the same stack
identifier for each coverage

The previously defined algorithm has the same
features as a single stack algorithm.

Let us now consider the features of a generalized
stack algorithm with a granularity value ofJ :

• The algorithm works with2J stacks

• Each stack may store hypotheses with only
20 = 1 coverage.

• The mapping function returns a different stack
identifier for each coverage

The above mentioned features characterizes the
multi-stack algorithms described in the literature.
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EUTRANS-I XEROX
Spanish English Spanish English

Training
Sentences 10,000 55,761
Words 97,131 99,292 753,607 665,400
Vocabulary size 686 513 11,051 7,957
Average sentence leng. 9.7 9.9 13.5 11.9

Test
Sentence 2,996 1,125
Words 35,023 35,590 10,106 8,370
Perplexity (Trigrams) – 3.62 – 48.3

Table 2: EUTRANS-I and XEROX corpus statistics

5 Experiments and Results

In this section, experimental results are presented for
two well-known tasks: the EUTRANS-I (Amengual
et al., 1996), a small size and easy translation task,
and the XEROX (Cubel et al., 2004), a medium size
and difficult translation task. The main statistics of
these corpora are shown in Table 2. The translation
results were obtained using a non-monotone gener-
alized stack algorithm. For both tasks, the training
of the different phrase models was carried out us-
ing the publicly availableThot toolkit (Ortiz et al.,
2005).

Different translation experiments have been car-
ried out, varying the value ofG (ranging from 0 to
8) and the maximum number of hypothesis that the
algorithm is allow to store for all used stacks (S)
(ranging from28 to 212). In these experiments the
following statistics are computed: the average score
(or logProb) that the phrase-based translation model
assigns to each hypothesis, the translation quality
(by means of WER and Bleu measures), and the av-
erage time (in secs.) per sentence3.

In Figures 4 and 5 two plots are shown: the av-
erage time per sentence (left) and the average score
(right), for EUTRANS and XEROX corpora respec-
tively. As can be seen in both figures, the bigger the
value ofG the lower the average time per sentence.
This is true up to the value ofG = 6. For higher
values ofG (keeping fixed the value ofS) the aver-
age time per sentence increase slightly. This is due
to the fact that at this point the algorithm start to
spend more time to decide which hypothesis is to be
expanded. With respect to the average score similar
values are obtained up to the value ofG = 4. Higher

3All the experiments have been executed on a PC with a
2.60 Ghz Intel Pentium 4 processor with 2GB of memory. All
the times are given in seconds.

values ofG slightly decreases the average score. In
this case, asG increases, the number of hypothe-
ses per stack decreases, taking into account that the
value of S is fixed, then the “optimal” hypothesis
can easily be pruned.

In tables 3 and 4 detailed experiments are shown
for a value ofS = 212 and different values ofG, for
EUTRANS and XEROX corpora respectively.

G WER Bleu secsXsent logprob
0 6.6 0.898 2.4 -18.88
1 6.6 0.898 1.9 -18.80
2 6.6 0.897 1.7 -18.81
4 6.6 0.898 1.3 -18.77
6 6.7 0.896 1.1 -18.83
8 6.7 0.896 1.5 -18.87

Table 3: Translation experiments for EUTRANS cor-
pus using a generalized stack algorithm with differ-
ent values ofG and a fixed value ofS = 212

G WER Bleu secsXsent logProb
0 32.6 0.658 35.1 -33.92
1 32.8 0.657 20.4 -33.86
2 33.1 0.656 12.8 -33.79
4 32.9 0.657 7.0 -33.70
6 33.7 0.652 6.3 -33.69
8 36.3 0.634 13.7 -34.10

Table 4: Translation experiments for XEROX cor-
pus using a generalized stack algorithm with differ-
ent values ofG and a fixed value ofS = 212

According to the experiments presented here we
can conclude that:

• The results correlates for the two considered
tasks: one small and easy, and other larger and
difficult.

• The proposed generalized stack decoding
paradigm can be used to make a tradeoff be-
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Figure 4: Average time per sentence (in secs.) and average score per sentence. The results are shown for
different values ofG andS for the EUTRANS corpus.
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different values ofG andS for the XEROX corpus.

tween the advantages of classical single and
multi-stack decoding algorithms.

• As we expected, better results (regarding effi-
ciency and accuracy) are obtained when using
a value ofG between0 andJ .

6 Concluding Remarks

In this paper, a generalization of the stack-decoding
paradigm has been proposed. This new formalism
includes the well known single and multi-stack de-
coding algorithms and a new family of stack-based
algorithms which have not been described yet in the
literature.

Essentially, generalized stack algorithms use a pa-
rameterized number of stacks during the decoding

process, and try to assign hypotheses to stacks such
that there is ”fair competition” within each stack,
i.e., brother hypotheses should cover roughly the
same number of input words (and the same words)
if possible.

The new family of stack-based algorithms allows
a tradeoff to be made between the classical single
and multi-stack decoding algorithms. For this pur-
pose, they employ a certain number of stacks be-
tween1 (the number of stacks used by a single stack
algorithm) and2J (the number of stacks used by a
multiple stack algorithm to translate a sentence with
J words.)

According to the experimental results, it has been
proved that an appropriate value ofG yields in a
stack decoding algorithm that outperforms (in effi-
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ciency and acuraccy) the single and multi-stack al-
gorithms proposed so far.

As future work, we plan to extend the experimen-
tation framework presented here to larger and more
complex tasks as HANSARDS and EUROPARL cor-
pora.
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September. ESPRIT, EuTrans IT-LTR-OS-20268.

Adam L. Berger, Peter F. Brown, Stephen A. Della Pietra,
Vincent J. Della Pietra, John R. Gillett, A. S. Kehler,
and R. L. Mercer. 1996. Language translation ap-
paratus and method of using context-based translation
models. United States Patent, No. 5510981, April.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and R. L. Mercer. 1993. The mathematics of
statistical machine translation: Parameter estimation.
Computational Linguistics, 19(2):263–311.

E. Cubel, J. Civera, J. M. Vilar, A. L. Lagarda,
E. Vidal, F. Casacuberta, D. Picó, J. González, and
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Abstract

Word posterior probabilities are a com-
mon approach for confidence estimation
in automatic speech recognition and ma-
chine translation. We will generalize this
idea and introducen-gram posterior prob-
abilities and show how these can be used
to improve translation quality. Addition-
ally, we will introduce a sentence length
model based on posterior probabilities.

We will show significant improvements on
the Chinese-English NIST task. The abso-
lute improvements of the BLEU score is
between 1.1% and 1.6%.

1 Introduction

The use of word posterior probabilities is a com-
mon approach for confidence estimation in auto-
matic speech recognition, e.g. see (Wessel, 2002).
This idea has been adopted to estimate confidences
for machine translation, e.g. see (Blatz et al., 2003;
Ueffing et al., 2003; Blatz et al., 2004). These confi-
dence measures were used in the computer assisted
translation (CAT) framework, e.g. (Gandrabur and
Foster, 2003). The (simplified) idea is that the con-
fidence measure is used to decide if the machine-
generated prediction should be suggested to the hu-
man translator or not.

There is only few work on how to improve
machine translation performance using confidence
measures. The only work, we are aware of, is
(Blatz et al., 2003). The outcome was that the con-
fidence measures did not result in improvements of

the translation quality measured with the BLEU and
NIST scores. Here, we focus on how the ideas and
methods commonly used for confidence estimation
can be adapted and/or extended to improve transla-
tion quality.

So far, always word-level posterior probabilities
were used. Here, we will generalize this idea ton-
grams.

In addition to then-gram posterior probabili-
ties, we introduce a sentence-length model based
on posterior probabilities. The common phrase-
based translation systems, such as (Och et al., 1999;
Koehn, 2004), do not use an explicit sentence length
model. Only the simple word penalty goes into that
direction. It can be adjusted to prefer longer or
shorter translations. Here, we will explicitly model
the sentence length.

The novel contributions of this work are to in-
troducen-gram posterior probabilities and sentence
length posterior probabilities. Using these methods,
we achieve significant improvements of translation
quality.

The remaining part of this paper is structured as
follows: first, we will briefly describe the baseline
system, which is a state-of-the-art phrase-based sta-
tistical machine translation system. Then, in Sec-
tion 3, we will introduce then-gram posterior prob-
abilities. In Section 4, we will define the sentence
length model. Afterwards, in Section 5, we will
describe how these novel models can be used for
rescoring/reranking. The experimental results will
be presented in Section 6. Future applications will
be described in Section 7. Finally, we will conclude
in Section 8.
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2 Baseline System

In statistical machine translation, we are given a
source language sentencefJ

1 = f1 . . . fj . . . fJ ,
which is to be translated into a target language sen-
tenceeI

1 = e1 . . . ei . . . eI . Among all possible tar-
get language sentences, we will choose the sentence
with the highest probability:

êÎ
1 = argmax

I,eI

1

{

Pr(eI
1|f

J
1 )
}

(1)

The posterior probabilityPr(eI
1|f

J
1 ) is modeled di-

rectly using a log-linear combination of several
models (Och and Ney, 2002):

Pr(eI
1|f

J
1 ) =

exp
(

∑M
m=1

λmhm(eI
1, f

J
1 )
)

∑

I′,e′I
′

1

exp
(

∑M
m=1

λmhm(e′I
′

1 , fJ
1
)
)

(2)
The denominator is a normalization factor that de-
pends only on the source sentencefJ

1 . Therefore,
we can omit it during the search process. As a deci-
sion rule, we obtain:

êÎ
1 = argmax

I,eI

1

{

M
∑

m=1

λmhm(eI
1, f

J
1 )

}

(3)

This approach is a generalization of the source-
channel approach (Brown et al., 1990). It has the
advantage that additional modelsh(·) can be eas-
ily integrated into the overall system. The model
scaling factorsλM

1 are trained with respect to the fi-
nal translation quality measured by an error criterion
(Och, 2003).

We use a state-of-the-art phrase-based translation
system as described in (Zens and Ney, 2004; Zens
et al., 2005). The baseline system includes the fol-
lowing models: ann-gram language model, a phrase
translation model and a word-based lexicon model.
The latter two models are used for both directions:
p(f |e) and p(e|f). Additionally, we use a word
penalty and a phrase penalty.

3 N-Gram Posterior Probabilities

The idea is similar to the word posterior probabili-
ties: we sum the sentence posterior probabilities for
each occurrence of ann-gram.

Let δ(·, ·) denote the Kronecker function. Then,
we define the fractional countC(en

1 , fJ
1 ) of an n-

gramen
1 for a source sentencefJ

1 as:

C(en
1 , fJ

1 ) =
∑

I,e′I

1

I−n+1
∑

i=1

p(e′
I
1|f

J
1 ) · δ(e′

i+n−1

i , en
1 )

(4)
The sums over the target language sentences are lim-
ited to anN -best list, i.e. theN best translation
candidates according to the baseline model. In this
equation, the termδ(e′i+n−1

i , en
1 ) is one if and only

if the n-gram en
1 occurs in the target sentencee′I1

starting at positioni.
Then, the posterior probability of ann-gram is ob-

tained as:

p(en
1 |f

J
1 ) =

C(en
1 , fJ

1 )
∑

e′n

1

C(e′n1 , fJ
1
)

(5)

Note that the widely used word posterior proba-
bility is obtained as a special case, namely ifn is set
to one.

4 Sentence Length Posterior Probability

The common phrase-based translation systems, such
as (Och et al., 1999; Koehn, 2004), do not use an ex-
plicit sentence length model. Only the simple word
penalty goes into that direction. It can be adjusted to
prefer longer or shorter translations.

Here, we will use the posterior probability of a
specific target sentence lengthI as length model:

p(I|fJ
1 ) =

∑

eI

1

p(eI
1|f

J
1 ) (6)

Note that the sum is carried out only over target sen-
tenceseI

1 with the a specific lengthI. Again, the
candidate target language sentences are limited to an
N -best list.

5 Rescoring/Reranking

A straightforward application of the posterior prob-
abilities is to use them as additional features in
a rescoring/reranking approach (Och et al., 2004).
The use ofN -best lists in machine translation has
several advantages. It alleviates the effects of the
huge search space which is represented in word
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graphs by using a compact excerpt of theN best hy-
potheses generated by the system.N -best lists are
suitable for easily applying several rescoring tech-
niques since the hypotheses are already fully gen-
erated. In comparison, word graph rescoring tech-
niques need specialized tools which can traverse the
graph accordingly.

The n-gram posterior probabilities can be used
similar to ann-gram language model:

hn(fJ
1 , eI

1) =
1

I
log

(

I
∏

i=1

p(ei|e
i−1

i−n+1
, fJ

1 )

)

(7)

with:

p(ei|e
i−1

i−n+1
, fJ

1 ) =
C(ei

i−n+1, f
J
1 )

C(ei−1

i−n+1
, fJ

1
)

(8)

Note that the models do not require smoothing as
long as they are applied to the sameN -best list they
are trained on.

If the models are used for unseen sentences,
smoothing is important to avoid zero probabilities.
We use a linear interpolation with weightsαn and
the smoothed(n − 1)-gram model as generalized
distribution.

pn(ei|e
i−1

i−n+1
, fJ

1 ) = αn ·
C(ei

i−n+1
, fJ

1 )

C(ei−1

i−n+1
, fJ

1
)

(9)

+(1 − αn) · pn−1(ei|e
i−1

i−n+2
, fJ

1 )

Note that absolute discounting techniques that are
often used in language modeling cannot be applied
in a straightforward way, because here we havefrac-
tional counts.

The usage of the sentence length posterior prob-
ability for rescoring is even simpler. The resulting
feature is:

hL(fJ
1 , eI

1) = log p(I|fJ
1 ) (10)

Again, the model does not require smoothing as long
as it is applied to the sameN -best list it is trained
on. If it is applied to other sentences, smoothing
becomes important. We propose to smooth the sen-
tence length model with a Poisson distribution.

pβ(I|fJ
1 ) = β·p(I|fJ

1 )+(1−β)·
λI exp(−λ)

I!
(11)

We use a linear interpolation with weightβ. The
mean λ of the Poisson distribution is chosen to
be identical to the mean of the unsmoothed length
model:

λ =
∑

I

I · p(I|fJ
1 ) (12)

6 Experimental Results

6.1 Corpus Statistics

The experiments were carried out on the large data
track of the Chinese-English NIST task. The cor-
pus statistics of the bilingual training corpus are
shown in Table 1. The language model was trained
on the English part of the bilingual training cor-
pus and additional monolingual English data from
the GigaWord corpus. The total amount of lan-
guage model training data was about 600M running
words. We use a fourgram language model with
modified Kneser-Ney smoothing as implemented in
the SRILM toolkit (Stolcke, 2002).

To measure the translation quality, we use the
BLEU score (Papineni et al., 2002) and the NIST
score (Doddington, 2002). The BLEU score is the
geometric mean of then-gram precision in com-
bination with a brevity penalty for too short sen-
tences. The NIST score is the arithmetic mean of
a weightedn-gram precision in combination with a
brevity penalty for too short sentences. Both scores
are computed case-sensitive with respect to four ref-
erence translations using the mteval-v11b tool1. As
the BLEU and NIST scores measure accuracy higher
scores are better.

We use the BLEU score as primary criterion
which is optimized on the development set using the
Downhill Simplex algorithm (Press et al., 2002). As
development set, we use the NIST 2002 evaluation
set. Note that the baseline system is already well-
tuned and would have obtained a high rank in the
last NIST evaluation (NIST, 2005).

6.2 Translation Results

The translation results for the Chinese-English NIST
task are presented in Table 2. We carried out experi-
ments for evaluation sets of several years. For these
rescoring experiments, we use the 10 000 best trans-
lation candidates, i.e.N -best lists of sizeN=10 000.

1http://www.nist.gov/speech/tests/mt/resources/scoring.htm
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Table 1: Chinese-English NIST task: corpus statis-
tics for the bilingual training data and the NIST eval-
uation sets of the years 2002 to 2005.

Chinese English
Train Sentence Pairs 7M

Running Words 199M 213M
Vocabulary Size 223K 351K
Dictionary Entry Pairs 82K

Eval 2002 Sentences 878 3 512
Running Words 25K 105K

2003 Sentences 919 3 676
Running Words 26K 122K

2004 Sentences 1788 7 152
Running Words 52K 245K

2005 Sentences 1082 4 328
Running Words 33K 148K

Using the1-gram posterior probabilities, i.e. the
conventional word posterior probabilities, there is
only a very small improvement, or no improvement
at all. This is consistent with the findings of the
JHU workshop on confidence estimation for statis-
tical machine translation 2003 (Blatz et al., 2003),
where the word-level confidence measures also did
not help to improve the BLEU or NIST scores.

Successively adding higher ordern-gram poste-
rior probabilities, the translation quality improves
consistently across all evaluation sets. We also
performed experiments withn-gram orders beyond
four, but these did not result in further improve-
ments.

Adding the sentence length posterior probability
feature is also helpful for all evaluation sets. For the
development set, the overall improvement is 1.5%
for the BLEU score. On the blind evaluation sets,
the overall improvement of the translation quality
ranges between 1.1% and 1.6% BLEU.

Some translation examples are shown in Table 3.

7 Future Applications

We have shown that then-gram posterior probabil-
ities are very useful in a rescoring/reranking frame-
work. In addition, there are several other potential
applications. In this section, we will describe two of
them.

7.1 Iterative Search

The n-gram posterior probability can be used for
rescoring as described in Section 5. An alternative is
to use them directly during the search. In this second
search pass, we use the models from the first pass,
i.e. the baseline system, and additionally then-gram
and sentence length posterior probabilities. As the
n-gram posterior probabilities are basically a kind
of sentence-specific language model, it is straight-
forward to integrate them. This process can also be
iterated. Thus, using theN -best list of the second
pass to recompute then-gram and sentence length
posterior probabilities and do a third search pass,
etc..

7.2 Computer Assisted Translation

In the computer assisted translation (CAT) frame-
work, the goal is to improve the productivity of hu-
man translators. The machine translation system
takes not only the current source language sentence
but also the already typed partial translation into ac-
count. Based on this information, the system suggest
completions of the sentence. Word-level posterior
probabilities have been used to select the most ap-
propriate completion of the system, for more details
see e.g. (Gandrabur and Foster, 2003; Ueffing and
Ney, 2005). Then-gram based posterior probabili-
ties as described in this work, might be better suited
for this task as they explicitly model the dependency
on the previous words, i.e. the given prefix.

8 Conclusions

We introducedn-gram and sentence length poste-
rior probabilities and demonstrated their usefulness
for rescoring purposes. We performed systematic
experiments on the Chinese-English NIST task and
showed significant improvements of the translation
quality. The improvements were consistent among
several evaluation sets.

An interesting property of the introduced meth-
ods is that they do not require additional knowledge
sources. Thus the given knowledge sources are bet-
ter exploited. Our intuition is that the posterior mod-
els prefer hypotheses withn-grams that are common
in theN -best list.

The achieved results are promising. Despite that,
there are several ways to improve the approach.
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Table 2: Case-sensitive translation results for several evaluation sets of the Chinese-English NIST task.
Evaluation set 2002 (dev) 2003 2004 2005

System NIST BLEU[%] NIST BLEU[%] NIST BLEU[%] NIST BLEU[%]
Baseline 8.49 30.5 8.04 29.5 8.14 29.0 8.01 28.2
+ 1-grams 8.51 30.5 8.08 29.5 8.17 29.0 8.03 28.2
+ 2-grams 8.47 30.8 8.03 29.7 8.12 29.2 7.98 28.1
+ 3-grams 8.73 31.6 8.25 30.1 8.45 30.0 8.20 28.6
+ 4-grams 8.74 31.7 8.26 30.1 8.47 30.1 8.20 28.6
+ length 8.87 32.0 8.42 30.9 8.60 30.6 8.34 29.3

Table 3: Translation examples for the Chinese-English NISTtask.
Baseline At present, there is no organization claimed the attack.
Rescored At present, there is no organization claimed responsibility for the attack.
Reference So far, no organization whatsoever has claimed responsibility for the attack.

Baseline FIFA to severely punish football fraud
Rescored The International Football Federation (FIFA) will severely punish football’s deception
Reference FIFA will severely punish all cheating acts in the football field

Baseline In more than three months of unrest, a total of more than 60 dead and 2000 injured.
Rescored In more than three months of unrest, a total of more than 60 people were killed and more

than 2000 injured.
Reference During the unrest that lasted more than three months, a totalof more than 60 people died

and over 2,000 were wounded.

For the decision rule in Equation 3, the model
scaling factorsλM

1 can be multiplied with a constant
factor without changing the result. This global fac-
tor would affect the proposed posterior probabilities.
So far, we have not tuned this parameter, but a proper
adjustment might result in further improvements.

Currently, the posterior probabilities are com-
puted on anN -best list. Using word graphs instead
should result in more reliable estimates, as the num-
ber of hypotheses in a word graph is some orders of
a magnitude larger than in anN -best list.
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Abstract

In statistical machine translation, large
numbers of parallel sentences are required
to train the model parameters. However,
plenty of the bilingual language resources
available on web are aligned only at the
document level. To exploit this data,
we have to extract the bilingual sentences
from these documents.

The common method is to break the doc-
uments into segments using predefined
anchor words, then these segments are
aligned. This approach is not error free,
incorrect alignments may decrease the
translation quality.

We present an alternative approach to ex-
tract the parallel sentences by partitioning
a bilingual document into two pairs. This
process is performed recursively until all
the sub-pairs are short enough.

In experiments on the Chinese-English
FBIS data, our method was capable of
producing translation results comparable
to those of a state-of-the-art sentence
aligner. Using a combination of the two
approaches leads to better translation per-
formance.

1 Introduction

Current statistical machine translation systems use
bilingual sentences to train the parameters of the

translation models. The exploitation of more bilin-
gual sentences automatically and accurately as well
as the use of these data with the limited computa-
tional requirements become crucial problems.

The conventional method for producing parallel
sentences is to break the documents into sentences
and to align these sentences using dynamic program-
ming. Previous investigations can be found in works
such as (Gale and Church, 1993) and (Ma, 2006).
A disadvantage is that only the monotone sentence
alignments are allowed.

Another approach is the binary segmentation
method described in (Simard and Langlais, 2003),
(Xu et al., 2005) and (Deng et al., 2006), which
separates a long sentence pair into two sub-pairs re-
cursively. The binary reordering in alignment is al-
lowed but the segmentation decision is only opti-
mum in each recursion step.

Hence, a combination of both methods is ex-
pected to produce a more satisfying result. (Deng
et al., 2006) performs a two-stage procedure. The
documents are first aligned at level using dynamic
programming, the initial alignments are then refined
to produce shorter segments using binary segmen-
tation. But on the Chinese-English FBIS training
corpus, the alignment accuracy and recall are lower
than with Champollion (Ma, 2006).

We refine the model in (Xu et al., 2005) using
a log-linar combination of different feature func-
tions and combine it with the approach of (Ma,
2006). Here the corpora produced using both ap-
proaches are concatenated, and each corpus is as-
signed a weight. During the training of the word
alignment models, the counts of the lexicon entries
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are linear interpolated using the corpus weights. In
the experiments on the Chinese-English FBIS cor-
pus the translation performance is improved by 0.4%
of the BLEU score compared to the performance
only with Champollion.

The remainder of this paper is structured as fol-
lows: First we will briefly review the baseline statis-
tical machine translation system in Section 2. Then,
in Section 3, we will describe the refined binary seg-
mentation method. In Section 4.1, we will introduce
the methods to extract bilingual sentences from doc-
ument aligned texts. The experimental results will
be presented in Section 4.

2 Review of the Baseline Statistical
Machine Translation System

In this section, we briefly review our translation sys-
tem and introduce the word alignment models.

In statistical machine translation, we are given
a source language sentencefJ1 = f1 . . . fj . . . fJ ,
which is to be translated into a target language sen-
tenceeI1 = e1 . . . ei . . . eI . Among all possible tar-
get language sentences, we will choose the sentence
with the highest probability:

êÎ1 = argmax
I,eI1

{
Pr(eI1|fJ1 )

}

= argmax
I,eI1

{
Pr(eI1) · Pr(fJ1 |eI1)

}
(1)

The decomposition into two knowledge sources in
Equation 1 allows independent modeling of tar-
get language modelPr(eI1) and translation model
Pr(fJ1 |eI1)1. The translation model can be further
extended to a statistical alignment model with the
following equation:

Pr(fJ1 |eI1) =
∑

aJ1

Pr(fJ1 , a
J
1 |eI1)

The alignment modelPr(fJ1 , a
J
1 |eI1) introduces a

‘hidden’ word alignmenta = aJ1 , which describes a
mapping from a source positionj to a target position
aj .

1The notational convention will be as follows: we use the
symbolPr(·) to denote general probability distributions with
(nearly) no specific assumptions. In contrast, for model-based
probability distributions, we use the generic symbolp(·).

Monotone Non-
monotone

Target B A

Positions C D
Source Positions

Figure 1: Two Types of Alignment

The IBM model 1 (IBM-1) (Brown et al., 1993)
assumes that all alignments have the same probabil-
ity by using a uniform distribution:

p(fJ1 |eI1) =
1
IJ
·
J∏

j=1

I∑

i=1

p(fj |ei) (2)

We use the IBM-1 to train the lexicon parameters
p(f |e), the training software is GIZA++ (Och and
Ney, 2003).

To incorporate the context into the translation
model, the phrase-based translation approach (Zens
et al., 2005) is applied. Pairs of source and tar-
get language phrases are extracted from the bilin-
gual training corpus and a beam search algorithm is
implemented to generate the translation hypothesis
with maximum probability.

3 Binary Segmentation Method

3.1 Approach

Here a document or sentence pair(fJ1 , e
I
1) 2 is repre-

sented as a matrix. Every element in the matrix con-
tains a lexicon probabilityp(fj |ei), which is trained
on the original parallel corpora. Each position di-
vides a matrix into four parts as shown in Figure 1:
the bottom left (C), the upper left (A), the bottom
right (D) and the upper right (B). We usem to de-
note the alignment direction,m = 1 means that the
alignment is monotone, i.e. the bottom left part is
connected with the upper right part, andm = 0
means the alignment is non-monotone, i.e. the upper
left part is connected with the bottom right part, as
shown in Figure 1.

3.2 Log-Linear Model

We use a log-linear interpolation to combine differ-
ent models: the IBM-1, the inverse IBM-1, the an-

2Sentences are equivalent to segments in this paper.
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chor words model as well as the IBM-4.K denotes
the total number of models.

We go through all positions in the bilingual sen-
tences and find the best position for segmenting the
sentence:

(̂i, ĵ, m̂) = argmax
i,j,m

{
K∑

k=1

λkhk(j, i,m|fJ1 , eI1)

}
,

wherei ∈ [1, I − 1] andj ∈ [1, J − 1] are posi-
tions in the source and target sentences respectively.
The feature functions are described in the follow-
ing sections. In most cases, the sentence pairs are
quite long and even after one segmentation we may
still have long sub-segments. Therefore, we separate
the sub-segment pairs recursively until the length of
each new segment is less than a defined value.

3.3 Normalized IBM-1

The function in Equation 2 can be normalized by
the source sentence length with a weightingβ as de-
scribed in (Xu et al., 2005):

The monotone alignment is calculated as

h1(j, i, 1|fJ1 , eI1) = log(p(f j1 |ei1)β·
1
j

+(1−β) (3)

·p(fJj+1|eIi+1)β·
1

J−j+(1−β)),

and the non-monotone alignment is formulated in
the same way.

We also use the inverse IBM-1 as a feature, by ex-
changing the place ofei1 andf j1 its monotone align-
ment is calculated as:

h2(j, i, 1|fJ1 , eI1) = log(p(ei1|f j1 )β·
1
i
+(1−β) (4)

·p(eIi+1|fJj+1)β·
1
I−i+(1−β))

3.4 Anchor Words

In the task of extracting parallel sentences from
the paragraph-aligned corpus, selecting some anchor
words as preferred segmentation positions can ef-
fectively avoid the extraction of incomplete segment
pairs. Therefore we use an anchor words model to
prefer the segmentation at the punctuation marks,
where the source and target words are identical:

h3(j, i,m|fJ1 , eI1) =
{

1 : fj = ei ∧ ei ∈ A
0 : otherwise

A is a user defined anchor word list, here we use
A={.,”?;}. If the corresponding model scaling factor
λ3 is assigned a high value, the segmentation posi-
tions are mostly after anchor words.

3.5 IBM-4 Word Alignment

If we already have the IBM-4 Viterbi word align-
ments for the parallel sentences and need to retrain
the system, for example to optimize the training pa-
rameters, we can include the Viterbi word align-
ments trained on the original corpora into the binary
segmentation. In the monotone case, the model is
represented as

h4(j, i, 1|fJ1 , eI1) =

log

(
N(f j1 , e

i
1) +N(fJj+1, e

I
i+1)

N(fJ1 , e
I
1)

)
,

whereN(f j1 , e
i
1) denotes the number of the align-

ment links inside the matrix(1, 1) and(j, i). In the
non-monotone case the model is formulated in the
same way.

3.6 Word Alignment Concatenation

As described in Section 2, our translation is based on
phrases, that means for an input sentence we extract
all phrases matched in the training corpus and trans-
late with these phrase pairs. Although the aim of
segmentation is to split parallel text into translated
segment pairs, but the segmentation is still not per-
fect. During sentence segmentation we might sep-
arate a phrase into two segments, so that the whole
phrase pair can not be extracted.

To avoid this, we concatenate the word align-
ments trained with the segmentations of one sen-
tence pair. During the segmentation, the position of
each segmentation point in the sentence is memo-
rized. After training the word alignment model with
the segmented sentence pairs, the word alignments
are concatenated again according to the positions of
their segments in the sentences. The original sen-
tence pairs and the concatenated alignments are then
used for the phrase extraction.

80



Table 1: Corpus Statistics: NIST
Chinese English

Train Sentences 8.64 M
Running Words 210 M 226 M

Average Sentence Length 24.4 26.3
Vocabulary 224 268 359 623
Singletons 98 842 156 493

Segmentation Sentences 17.9 M
Running Words 210 M 226 M

Average Sentence Length 11.7 12.6
Vocabulary 221 517 353 148
Singletons 97 062 152 965

Segmentation with Additional Data Sentences 19.5 M
Running Words 230 M 248 M

Added Running Words 8.0% 8.2%
Evaluation Sentences 878 3 512

Running Words 24 111 105 516
Vocabulary 4 095 6 802

OOVs (Running Words) 8 658

4 Translation Experiments

4.1 Bilingual Sentences Extraction Methods

In this section, we describe the different methods to
extract the bilingual sentence pairs from the docu-
ment aligned corpus.

Given each document pair, we assume that the
paragraphs are aligned one to one monotone if both
the source and target language documents contain
the same number of paragraphs; otherwise the para-
graphs are aligned with the Champollion tool.

Starting from the parallel paragraphs we extract
the sentences using three methods:

1. Binary segmentation

The segmentation method described in Sec-
tion 3 is applied by treating the paragraph pairs
as long sentence pairs. We can use the anchor
words model described in Section 3.4 to prefer
splitting at punctuation marks.

The lexicon parametersp(f |e) in Equation 2
are estimated as follows: First the sentences are
aligned roughly using the dynamic program-
ming algorithm. Training on these aligned sen-
tences, we get the initial lexicon parameters.

Then the binary segmentation algorithm is ap-
plied to extract the sentences again.

2. Champollion

After a paragraph is divided into sentences at
punctuation marks, the Champollion tool (Ma,
2006) is used, which applies dynamic program-
ming for the sentence alignment.

3. Combination

The bilingual corpora produced by the binary
segmentation and Champollion methods are
concatenated and are used in the training of the
translation model. Each corpus is assigned a
weight. During the training of the word align-
ment models, the counts of the lexicon en-
tries are linearly interpolated using the corpus
weights.

4.2 Translation Tasks

We will present the translation results on two
Chinese-English tasks.

1. On the large data track NIST task (NIST,
2005), we will show improvements using the
refined binary segmentation method.
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Table 2: Corpus Statistics: FBIS
Segmentation Champollion

Chinese English Chinese English

Train Sentences 739 899 177 798
Running Words 8 588 477 10 111 752 7 659 776 9 801 257

Average Sentence Length 11.6 13.7 43.1 55.1
Vocabulary 34 896 56 573 34 377 55 775
Singletons 4 775 19 283 4 588 19 004

Evaluation Sentences 878 3 513 878 3 513
Running Words 24 111 105 516 24 111 105 516

Vocabulary 4 095 6 802 4 095 6 802
OOVs (Running Words) 109 2 257 119 2 309

2. On the FBIS corpus, we will compare the dif-
ferent sentence extraction methods described in
Section 4.1 with respect to translation perfor-
mance. We do not apply the extraction meth-
ods on the whole NIST corpora, because some
corpora provided by the LDC (LDC, 2005) are
sentence aligned but not document aligned.

4.3 Corpus Statistics

The training corpora used in NIST task are a set of
individual corpora including the FBIS corpus. These
corpora are provided by the Linguistic Data Consor-
tium (LDC, 2005), the domains are news articles.
The translation experiments are carried out on the
NIST 2002 evaluation set.

As shown in Table 1, there are 8.6 million sen-
tence pairs in the original corpora of the NIST task.
The average sentence length is about 25. After seg-
mentation, there are twice as many sentence pairs,
i.e. 17.9 million, and the average sentence length
is around 12. Due to a limitation of GIZA++, sen-
tences consisting of more than one hundred words
are filtered out. Segmentation of long sentences cir-
cumvents this restriction and allows us include more
data. Here we were able to add 8% more Chinese
and 8.2% more English running words to the train-
ing data. The training time is also reduced.

Table 2 presents statistics of the FBIS data. Af-
ter the paragraph alignment described in Section 4.1
we have nearly 81 thousand paragraphs, 8.6 million
Chinese and 10.1 million English running words.
One of the advantages of the binary segmentation is
that we do not loose words during the bilingual sen-

tences extraction. However, we produce sentence
pairs with very different lengths. Using Champol-
lion we loose 10.8% of the Chinese and 3.1% of the
English words.

4.4 Segmentation Parameters

We did not optimize the log-linear model scaling
factors for the binary segmentation but used the fol-
lowing fixed values:λ1 = λ2 = 0.5 for the IBM-1
models in both directions;λ3 = 108, if the anchor
words model is is used;λ4 = 30, if the IBM-4 model
is used. The maximum sentence length is 25.

4.5 Evaluation Criteria

We use four different criteria to evaluate the transla-
tion results automatically:

• WER (word error rate):
The WER is computed as the minimum num-
ber of substitution, insertion and deletion oper-
ations that have to be performed to convert the
generated sentence into the reference sentence,
divided by the reference sentence length.

• PER (position-independent word error rate):
A shortcoming of the WER is that it requires a
perfect word order. The word order of an ac-
ceptable sentence can be differ from that of the
target sentence, so that the WER measure alone
could be misleading. The PER compares the
words in the two sentences ignoring the word
order.

• BLEU score:
This score measures the precision of unigrams,
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Figure 2: Translation performance as a function of
the weight for the binary segmentationα ( weight
for Champollion:1− α )

bigrams, trigrams and fourgrams with a penalty
for too short sentences. (Papineni et al., 2002).

• NIST score:
This score is similar to BLEU, but it uses
an arithmetic average of N-gram counts rather
than a geometric average, and it weights more
heavily those N-grams that are more informa-
tive. (Doddington, 2002).

The BLEU and NIST scores measure accuracy,
i.e. larger scores are better. In our evaluation the
scores are measured as case insensitive and with re-
spect to multiple references.

4.6 Translation Results

For the segmentation of long sentences into short
segments, we performed the experiments on the
NIST task. Both in the baseline and the segmenta-
tion systems we obtain 4.7 million bilingual phrases
during the translation. The method of alignment
concatenation increases the number of the extracted
bilingual phrase pairs from 4.7 million to 4.9 mil-
lion, the BLEU score is improved by 0.1%. By
including the IBM-4 Viterbi word alignment, the
NIST score is improved. The training of the base-
line system requires 5.9 days, after the sentence seg-
mentation it requires only 1.5 days. Moreover, the
segmentation allows the inclusion of long sentences
that are filtered out in the baseline system. Using

the added data, the translation performance is en-
hanced by 0.3% in the BLEU score. Because of
the long translation period, the translation parame-
ters are only optimized on the baseline system with
respect to the BLEU score, we could expect a further
improvement if the parameters were also optimized
on the segmentation system.

Our major objective here is to introduce another
approach to parallel sentence extraction: binary seg-
mentation of the bilingual texts recursively. We use
the paragraph-aligned corpus as a starting point. Ta-
ble 4 presents the translation results on the train-
ing corpora generated by the different methods de-
scribed in Section 4.1. The translation parameters
are optimized with the respect to the BLEU score.
We observe that the binary segmentation methods
are comparable to Champollion and the segmenta-
tion with anchors outperforms the one without an-
chors. By combining the methods of Champol-
lion and the binary segmentation with anchors, the
BLEU score is improved by 0.4% absolutely.

We optimized the weightings for the binary seg-
mentation method, the sum of the weightings for
both methods is one. As shown in Figure 2, using
one of the methods alone does not produce the best
result. The maximum BLEU score is attained when
both methods are combined with equal weightings.

5 Discussion and Future Work

We successfully applied the binary sentence seg-
mentation method to extract bilingual sentence pairs
from the document aligned texts. The experiments
on the FBIS data show an enhancement of 0.4% of
the BLEU score compared to the score obtained us-
ing a state-of-art sentence aligner. In addition to the
encouraging results obtained, further improvements
could be achieved in the following ways:

1. By extracting bilingual paragraphs from the
documents, we lost running words using Cham-
pollion. Applying the segmentation approach
to paragraph alignment might avoid the loss of
this data.

2. We combined a number of different models in
the binary segmentation, such as IBM-1, and
anchor words. The model weightings could be
optimized with respect to translation quality.
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Table 3: Translation Results using Refined Segmentation Methods on NIST task

Error Rate[%] Accuracy
WER PER NIST BLEU[%]

Baseline 62.7 42.1 8.95 33.5

Segmentation 62.6 42.4 8.80 33.5
Segmentation + concatenation 62.4 42.3 8.84 33.6
Segmentation + concatenation + IBM-462.8 42.4 8.91 33.6
Segmentation + added data 62.9 42.5 9.00 33.9

Table 4: Translation Results on Sentence Alignment Task with FBIS Training Corpus

Error Rate[%] Accuracy
WER PER NIST BLEU[%]

Champollion 64.2 43.7 8.61 31.8
Segmentation without Anchors 64.3 44.4 8.57 31.8
Segmentation with Anchors 64.0 43.9 8.58 31.9
Champollion + Segmentation with Anchors64.3 44.2 8.57 32.2

3. In the binary segmentation method, an incor-
rect segmentation results in further mistakes
in the segmentation decisions of all its sub-
segments. An alternative method (Wu, 1997)
makes decisions at the end but has a high com-
putational requirement. A restricted expansion
of the search space might better balance seg-
mentation accuracy and the efficiency.
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Abstract 

In this paper we present a novel method 
for deriving paraphrases during automatic 
MT evaluation using only the source and 
reference texts, which are necessary for 
the evaluation, and word and phrase 
alignment software. Using target language 
paraphrases produced through word and 
phrase alignment a number of alternative 
reference sentences are constructed auto-
matically for each candidate translation. 
The method produces lexical and low-
level syntactic paraphrases that are rele-
vant to the domain in hand, does not use 
external knowledge resources, and can be 
combined with a variety of automatic MT 
evaluation system. 

1 Introduction 

Since their appearance, BLEU (Papineni et al., 
2002) and NIST (Doddington, 2002) have been the 
standard tools used for evaluating the quality of 
machine translation. They both score candidate 
translations on the basis of the number of n-grams 
it shares with one or more reference translations 
provided. Such automatic measures are indispen-
sable in the development of machine translation 
systems, because they allow the developers to con-
duct frequent, cost-effective, and fast evaluations 
of their evolving models.  

These advantages come at a price, though: an 
automatic comparison of n-grams measures only 

the string similarity of the candidate translation to 
one or more reference strings, and will penalize 
any divergence from them. In effect, a candidate 
translation expressing the source meaning accu-
rately and fluently will be given a low score if the 
lexical choices and syntactic structure it contains, 
even though perfectly legitimate, are not present in 
at least one of the references. Necessarily, this 
score would not reflect a much more favourable 
human judgment that such a translation would re-
ceive. 

The limitations of string comparison are the 
reason why it is advisable to provide multiple ref-
erences for a candidate translation in the BLEU- or 
NIST-based evaluation in the first place. While 
(Zhang and Vogel, 2004) argue that increasing the 
size of the test set gives even more reliable system 
scores than multiple references, this still does not 
solve the inadequacy of BLEU and NIST for sen-
tence-level or small set evaluation. On the other 
hand, in practice even a number of references do 
not capture the whole potential variability of the 
translation. Moreover, often it is the case that mul-
tiple references are not available or are too difficult 
and expensive to produce: when designing a statis-
tical machine translation system, the need for large 
amounts of training data limits the researcher to 
collections of parallel corpora like Europarl 
(Koehn, 2005), which provides only one reference, 
namely the target text; and the cost of creating ad-
ditional reference translations of the test set, usu-
ally a few thousand sentences long, often exceeds 
the resources available. Therefore, it would be de-
sirable to find a way to automatically generate le-
gitimate translation alternatives not present in the 
reference(s) already available. 

86



In this paper, we present a novel method that 
automatically derives paraphrases using only the 
source and reference texts involved in for the 
evaluation of French-to-English Europarl transla-
tions produced by two MT systems: statistical 
phrase-based Pharaoh (Koehn, 2004) and rule-
based Logomedia.1 In using what is in fact a minia-
ture bilingual corpus our approach differs from the 
mainstream paraphrase generation based on mono-
lingual resources. We show that paraphrases pro-
duced in this way are more relevant to the task of 
evaluating machine translation than the use of ex-
ternal lexical knowledge resources like thesauri or 
WordNet2, in that our paraphrases contain both 
lexical equivalents and low-level syntactic vari-
ants, and in that, as a side-effect, evaluation bitext-
derived paraphrasing naturally yields domain-
specific paraphrases. The paraphrases generated 
from the evaluation bitext are added to the existing 
reference sentences, in effect creating multiple ref-
erences and resulting in a higher score for the can-
didate translation. Our hypothesis, confirmed by 
the experiments in this paper, is that the scores 
raised by additional references produced in this 
way will correlate better with human judgment 
than the original scores. 

The remainder of this paper is organized as fol-
lows: Section 2 describes related work; Section 3 
describes our method and presents examples of 
derived paraphrases; Section 4 presents the results 
of the comparison between the BLUE and NIST 
scores for a single-reference translation and the 
same translation using the paraphrases automati-
cally generated from the bitext, as well as the cor-
relations between the scores and human judgment; 
Section 5 discusses ongoing work; Section 6 con-
cludes. 

2 

2.1 

                                                          

Related work 

Word and phrase alignment 

Several researchers noted that the word and 
phrase alignment used in training translation mod-
els in Statistical MT can be used for other purposes 
as well. (Diab and Resnik, 2002) use second lan-
guage alignments to tag word senses. Working on 
an assumption that separate senses of a L1 word 

 

2.2 

1 http://www.lec.com/ 
2 http://wordnet.princeton.edu/ 

can be distinguished by its different translations in 
L2, they also note that a set of possible L2 transla-
tions for a L1 word may contain many synonyms. 
(Bannard and Callison-Burch, 2005), on the other 
hand, conduct an experiment to show that para-
phrases derived from such alignments can be se-
mantically correct in more than 70% of the cases. 

Automatic MT evaluation 

The insensitivity of BLEU and NIST to per-
fectly legitimate variation has been raised, among 
others, in (Callison-Burch et al., 2006), but the 
criticism is widespread. Even the creators of BLEU 
point out that it may not correlate particularly well 
with human judgment at the sentence level (Pap-
ineni et al., 2002), a problem also noted by (Och et 
al., 2003) and (Russo-Lassner et al., 2005). A side 
effect of this phenomenon is that BLEU is less re-
liable for smaller data sets, so the advantage it pro-
vides in the speed of evaluation is to some extent 
counterbalanced by the time spent by developers 
on producing a sufficiently large test data set in 
order to obtain a reliable score for their system.  

Recently a number of attempts to remedy these 
shortcomings have led to the development of other 
automatic machine translation metrics. Some of 
them concentrate mainly on the word reordering 
aspect, like Maximum Matching String (Turian et 
al., 2003) or Translation Error Rate (Snover et al., 
2005). Others try to accommodate both syntactic 
and lexical differences between the candidate 
translation and the reference, like CDER (Leusch 
et al., 2006), which employs a version of edit dis-
tance for word substitution and reordering; 
METEOR (Banerjee and Lavie, 2005), which uses 
stemming and WordNet synonymy; and a linear 
regression model developed by (Russo-Lassner et 
al., 2005), which makes use of stemming, Word-
Net synonymy, verb class synonymy, matching 
noun phrase heads, and proper name matching. 

A closer examination of these metrics suggests 
that the accommodation of lexical equivalence is 
as difficult as the appropriate treatment of syntactic 
variation, in that it requires considerable external 
knowledge resources like WordNet, verb class da-
tabases, and extensive text preparation: stemming, 
tagging, etc. The advantage of our method is that it 
produces relevant paraphrases with nothing more 
than the evaluation bitext and a widely available 
word and phrase alignment software, and therefore 
can be used with any existing evaluation metric. 
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3 Contextual bitext-derived paraphrases 

The method presented in this paper rests on a 
combination of two simple ideas. First, the compo-
nents necessary for automatic MT evaluation like 
BLEU or NIST, a source text and a reference text, 
constitute a miniature parallel corpus, from which 
word and phrase alignments can be extracted 
automatically, much like during the training for a 
statistical machine translation system. Second, tar-
get language words ei1, …,  ein aligned as the likely 
translations to a source language word fi are often 
synonyms or near-synonyms of each other. This 
also holds for phrases: target language phrases epi1, 
…, epin aligned with a source language phrase fpi 
are often paraphrases of each other. For example, 
in our experiment, for the French word question 
the most probable automatically aligned English 
translations are question, matter, and issue, which 
in English are practically synonyms. Section 3.2 
presents more examples of such equivalent expres-
sions.  

3.1 

3.2 

                                                          

Experimental design 

For our experiment, we used two test sets, 
each consisting of 2000 sentences, drawn ran-
domly from the test section of the Europarl parallel 
corpus. The source language was French and the 
target language was English. One of the test sets 
was translated by Pharaoh trained on 156,000 
French-English sentence pairs. The other test set 
was translated by Logomedia, a commercially 
available rule-based MT system. Each test set con-
sisted therefore of three files: the French source 
file, the English translation file, and the English 
reference file. 

Each translation was evaluated by the BLEU 
and NIST metrics first with the single reference, 
then with the multiple references for each sentence 
using the paraphrases automatically generated 
from the source-reference mini corpus. A subset of 
a 100 sentences was randomly extracted from each 
test set and evaluated by two independent human 
judges with respect to accuracy and fluency; the 
human scores were then compared to the BLEU 
and NIST scores for the single-reference and the 
automatically generated multiple-reference files. 

Word alignment and phrase extraction 

We used the GIZA++ word alignment soft-
ware3 to produce initial word alignments for our 
miniature bilingual corpus consisting of the source 
French file and the English reference file, and the 
refined word alignment strategy of (Och and Ney, 
2003; Koehn et al., 2003; Tiedemann, 2004) to 
obtain improved word and phrase alignments. 

For each source word or phrase fi that is 
aligned with more than one target words or 
phrases, its possible translations ei1, ..., ein were 
placed in a list as equivalent expressions (i.e. 
synonyms, near-synonyms, or paraphrases of each 
other). A few examples are given in (1). 
 

(1) agreement - accordance 
adopted - implemented 
matter - lot - case 
funds - money 
arms - weapons 
area - aspect  
question – issue – matter 
we would expect - we cer-
tainly expect 
bear on - are centred 
around 

 
Alignment divides target words and 

phrases into equivalence sets; each set corresponds 
to one source word/phrase that was originally 
aligned with the target elements. For example, for 
the French word citoyens three English words were 
deemed to be the most appropriate translations: 
people, public, and citizens; therefore these three 
words constitute an equivalence set. Another 
French word population was aligned with two 
English translations: population and people; so the 
word people appears in two equivalence set (this 
gives rise to the question of equivalence transitiv-
ity, which will be discussed in Section 3.3). From 
the 2000-sentence evaluation bitext we derived 769 
equivalence sets, containing in total 1658 words or 
phrases. Each set contained on average two or 
three elements. In effect, we produced at least one 
equivalent expression for 1658 English words or 
phrases. 

An advantage of our method is that the tar-
get paraphrases and words come ordered with re-

 
3 http://www.fjoch.com/GIZA++ 
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spect to their likelihood of being the translation of 
the source word or phrase – each of them is as-
signed a probability expressing this likelihood, so 
we are able to choose only the most likely transla-
tions, according to some experimentally estab-
lished threshold. The experiment reported here was 
conducted without such a threshold, since the word 
and phrase alignment was of a very high quality. 

3.3 

3.4 

3.5 

Domain-specific lexical and syntactic 
paraphrases 

It is important to notice here how the para-
phrases produced are more appropriate to the task 
at hand than synonyms extracted from a general-
purpose thesaurus or WordNet. First, our para-
phrases are contextual - they are restricted to only 
those relevant to the domain of the text, since they 
are derived from the text itself. Given the context 
provided by our evaluation bitext, the word area in 
(1) turns out to be only synonymous with aspect, 
and not with land, territory, neighbourhood, divi-
sion, or other synonyms a general-purpose thesau-
rus or WordNet would give for this entry. This 
allows us to limit our multiple references only to 
those that are likely to be useful in the context pro-
vided by the source text. Second, the phrase align-
ment captures something neither a thesaurus nor 
WordNet will be able to provide: a certain amount 
of syntactic variation of paraphrases. Therefore, we 
know that a string such as we would expect in (1), 
with the sequence noun-aux-verb, might be para-
phrased by we certainly expect, a sequence of 
noun-adv-verb. 

Open and closed class items 

One important conclusion we draw from 
analysing the synonyms obtained through word 
alignment is that equivalence is limited mainly to 
words that belong to open word classes, i.e. nouns, 
verbs, adjectives, adverbs, but is unlikely to extend 
to closed word classes like prepositions or pro-
nouns. For instance, while the French preposition à 
can be translated in English as to, in, or at, depend-
ing on the context, it is not the case that these three 
prepositions are synonymous in English. The divi-
sion is not that clear-cut, however: within the class 
of pronouns, he, she, and you are definitely not 
synonymous, but the demonstrative pronouns this 
and that might be considered equivalent for some 
purposes. Therefore, in our experiment we exclude 

prepositions and in future work we plan to examine 
the word alignments more closely to decide 
whether to exclude any other words. 

Creating multiple references 

After the list of synonyms and paraphrases is 
extracted from the evaluation bitext, for each 
reference sentence a string search replaces every 
eligible word or phrase with its equivalent(s) from 
the paraphrase list, one at a time, and the resulting 
string is added to the array of references. The 
original string is added to the array as well. This 
process results in a different number of reference 
sentences for every test sentence, depending on 
whether there was anything to replace in the refer-
ence and how many paraphrases we have available 
for the original substring. One example of this 
process is shown in (2). 

 
(2) Original reference: 
i admire the answer mrs parly 
gave this morning but we have 
turned a blind eye to that 
Paraphrase 1: 
i admire the reply mrs parly 
gave this morning but we have 
turned a blind eye to that 
Paraphrase 2: 
i admire the answer mrs parly 
gave this morning however we 
have turned a blind eye to 
that  
Paraphrase 3: 
i admire the answer mrs parly 
gave this morning but we have 
turned a blind eye to it 
 

Transitivity 

As mentioned before, an interesting question 
that arises here is the potential transitivity of our 
automatically derived synonyms/paraphrases. It 
could be argued that if the word people is equiva-
lent to public according to one set from our list, 
and to the word population according to another 
set, then public can be thought of as equivalent to 
population. In this case, the equivalence is not con-
troversial. However, consider the following rela-
tion: if sure in one of the equivalence sets is 
synonymous to certain, and certain in a different 
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set is listed as equivalent to some, then treating 
sure and some as synonyms is a mistake. In our 
experiment we do not allow synonym transitivity; 
we only use the paraphrases from equivalence sets 
containing the word/phrase we want to replace.  

Multiple simultaneous substitution 

Note that at the moment the references we are 
producing do not contain multiple simultaneous 
substitutions of equivalent expressions; for exam-
ple, in (2) we currently do not produce the follow-
ing versions: 

 
(3) Paraphrase 4:  
i admire the reply mrs parly 
gave this morning however we 
have turned a blind eye to 
that 
Paraphrase 5: 
i admire the answer mrs parly 
gave this morning however we 
have turned a blind eye to it 
Paraphrase 6: 
i admire the reply mrs parly 
gave this morning but we have 
turned a blind eye to it 
 

This can potentially prevent higher n-grams being 
successfully matched if two or more equivalent 
expressions find themselves within the range of n-
grams being tested by BLEU and NIST. To avoid 
combinatorial problems, implementing multiple 
simultaneous substitutions could be done using a 
lattice, much like in (Pang et al., 2003). 

4 Results 

As expected, the use of multiple references 
produced by our method raises both the BLEU and 
NIST scores for translations produced by Pharaoh 
(test set PH) and Logomedia (test set LM). The 
results are presented in Table 1. 
 
 BLEU NIST 
PH single ref 0.2131 6.1625 
PH multi ref 0.2407 7.0068 
LM single ref 0.1782 5.5406 
LM multi ref 0.2043 6.3834 

 
Table 1. Comparison of single-reference and multi-
reference scores for test set PH and test set LM 

 
The hypothesis that the multiple-reference 

scores reflect better human judgment is also con-
firmed. For 100-sentence subsets (Subset PH and 
Subset LM) randomly extracted from our test sets 
PH and LM, we calculated Pearson’s correlation 
between the average accuracy and fluency scores 
that the translations in this subset received from 
two human judges (for each subset) and the single-
reference and multiple-reference sentence-level 
BLEU and NIST scores.  

There are two issues that need to be noted at 
this point. First, BLEU scored many of the sen-
tences as zero, artificially leveling many of the 
weaker translations.4 This explains the low, al-
though still statistically significant (p value < 
0.015) correlation with BLEU for both single and 
multiple reference translations. Using a version of 
BLEU with add-one smoothing we obtain consid-
erably higher correlations. Table 2 shows Pear-
son’s correlation coefficient for BLEU, BLEU 
with add-one smoothing, NIST, and human judg-
ments for Subsets PH. Multiple paraphrase refer-
ences produced by our method consistently lead to 
a higher correlation with human judgment for 
every metric.6 
 
                           Subset PH 
Metric  

single 
ref 

multi 
ref 

H & BLEU 0.297 0.307 
H & BLEU smoothed 0.396 0.404 
H & NIST  0.323 0.355 

 
Table 2. Pearson’s correlation between human 
judgment and single-reference and multiple-
reference BLEU, smoothed BLEU, and NIST for 
subset PH (of test set PH)  
 

The second issue that requires explanation is 
the lower general scores Logomedia’s translation 
received on the full set of 2000 sentences, and the 
extremely low correlation of its automatic evalua-
tion with human judgment, irrespective of the 
number of references. It has been noticed (Calli-

                                                           
4 BLEU uses a geometric average while calculating the sen-
tence-level score and will score a sentence as 0 if it does not 
have at least one 4-gram.  
5 A critical value for Pearson’s correlation coefficient for the 
sample size between 90 and 100 is 0.267, with p < 0.01. 
6 The significance of the rise in scores was confirmed in a 
resampling/bootstrapping test, with p < 0.0001. 
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son-Burch et al., 2006) that BLEU and NIST fa-
vour n-gram based MT models such as Pharaoh, so 
the translation produced by Logomedia scored 
lower on the automatic evaluation, even though the 
human judges rated Logomedia output higher than 
Pharaoh’s translation. Both human judges consis-
tently gave very high scores to most sentences in 
subset LM (Logomedia), and as a consequence 
there was not enough variation in the scores as-
signed by them to create a good correlation with 
the BLEU and NIST scores. The average human 
scores for the subsets PH and LM and the coeffi-
cients of variation are presented in Table 3. It is 
easy to see that Logomedia’s translation received a 
higher mean score (on a scale 0 to 5) from the hu-
man judges and with less variance than Pharaoh. 
 
 Mean score  Variation 
Subset PH 3.815 19.1% 
Subset LM 4.005 16.25% 

 
Table 3. Human judgment mean scores and coeffi-
cients of variation for Subset PH and Subset LM 
 
As a result of the consistently high human scores 
for Logomedia, none of the Pearson’s correlations 
computed for Subset LM is high enough to be sig-
nificant. The values are lower than the critical 
value 0.164 corresponding to p < 0.10. 
 
                          Subset LM 
Metric  

single 
ref 

multi 
ref 

H & BLEU 0.046* 0.067* 
H & BLEU smoothed 0.163* 0.151* 
H & NIST  0.078* 0.116* 

 
Table 4. Pearson’s correlation between human 
judgment and single-reference and multiple-
reference BLEU, smoothed BLEU, and NIST for 
subset LM (of test set LM). * denotes values with p >  
0.10. 

5 Current and future work 

We would like to experiment with the way in 
which the list of equivalent expressions is pro-
duced. One possible development would be to de-
rive the expressions from a very large training 
corpus used by a statistical machine translation 
system, following (Bannard and Callison-Burch, 
2005), for instance, and use it as an external wider-

purpose knowledge resource (rather than a current 
domain-tailored resource as in our experiment), 
which would be nevertheless improve on a thesau-
rus in that it would also include phrase equivalents 
with some syntactic variation. According to (Ban-
nard and Callison-Burch, 2005), who derived their 
paraphrases automatically from a corpus of over a 
million German-English Europarl sentences, the 
baseline syntactic and semantic accuracy of the 
best paraphrases (those with the highest probabil-
ity) reaches 48.9% and 64.5%, respectively. That 
is, by replacing a phrase with its one most likely 
paraphrase the sentence remained syntactically 
well-formed in 48.9% of the cases and retained its 
meaning in 65% of the cases. 

In a similar experiment we generated para-
phrases from a French-English Europarl corpus of 
700,000 sentences. The data contained a consid-
erably higher level of noise than our previous ex-
periment on the 2000-sentence test set, even 
though we excluded any non-word entities from 
the results. Like (Bannard and Callison-Burch, 
2005), we used the product of probabilities p(fi|ei1) 
and p(ei2|fi) to determine the best paraphrase for a 
given English word ei1. We then compared the ac-
curacy across four samples of data. Each sample 
contained 50 randomly drawn words/phrases and 
their paraphrases. For the first two samples, the 
paraphrases were derived from the initial 2000-
sentence corpus; for the second two, the para-
phrases were derived from the 700,000-sentence 
corpus. For each corpus, one of the two samples 
contained only one best paraphrase for each entry, 
while the other listed all possible paraphrases. We 
then evaluated the quality of each paraphrase with 
respect to its syntactic and semantic accuracy. In 
terms of syntax, we considered the paraphrase ac-
curate either if it had the same category as the 
original word/phrase; in terms of semantics, we 
relied on human judgment of similarity. Tables 5 
and 6 summarize the syntactic and semantic accu-
racy levels in the samples. 
 
                       Paraphrases 
Derived from 

Best All 

2000-sent. corpus 59% 60% 
700,000-sent. corpus 70% 48% 

 
Table 5. Syntactic accuracy of paraphrases 
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                       Paraphrases 
Derived from 

Best All 

2000-sent. corpus 83% 74% 
700,000-sent. corpus 76% 68% 

 
Table 6. Semantic accuracy of paraphrases 
 

Although it has to be kept in mind that these 
percentages were taken from relatively small sam-
ples, an interesting pattern emerges from compar-
ing the results. It seems that the average syntactic 
accuracy of all paraphrases decreases with in-
creased corpus size, but the syntactic accuracy of 
the one best paraphrase improves. This reflects the 
idea behind word alignment: the bigger the corpus, 
the more potential alignments there are for a given 
word, but at the same time the better their order in 
terms of probability and the likelihood to obtain 
the correct translation. Interestingly, the same pat-
tern is not repeated for semantic accuracy, but 
again, these samples are quite small. In order to 
address this issue, we plan to repeat the experiment 
with more data. 

Additionally, it should be noted that certain 
expressions, although not completely correct syn-
tactically, could be retained in the paraphrase lists 
for the purposes of machine translation evaluation. 
Consider the case where our equivalence set looks 
like this: 
 

(4) abandon – abandoning – 
abandoned 

 
The words in (4) are all inflected forms of the verb 
abandon, and although they would produce rather 
ungrammatical paraphrases, those ungrammatical 
paraphrases still allow us to score our translation 
higher in terms of BLEU or NIST if it contains one 
of the forms of abandon than when it contains 
some unrelated word like piano instead. This is 
exactly what other scoring metrics mentioned in 
Section 2 attempt to obtain with the use of stem-
ming or prefix matching. 

6 Conclusions 

In this paper we present a novel combination 
of existing ideas from statistical machine transla-
tion and paraphrase generation that leads to the 
creation of multiple references for automatic MT 
evaluation, using only the source and reference 

files that are required for the evaluation. The 
method uses simple word and phrase alignment 
software to find possible synonyms and para-
phrases for words and phrases of the target text, 
and uses them to produce multiple reference sen-
tences for each test sentence, raising the BLEU and 
NIST evaluation scores and reflecting human 
judgment better. The advantage of this method 
over other ways to generate paraphrases is that (1) 
unlike other methods, it does not require extensive 
parallel monolingual paraphrase corpora, but it 
extracts equivalent expressions from the miniature 
bilingual corpus of the source and reference 
evaluation files; (2) unlike other ways to accom-
modate synonymy in automatic evaluation, it does 
not require external lexical knowledge sources like 
thesauri or WordNet; (3) it extracts only synonyms 
that are relevant to the domain in hand; and (4) the 
equivalent expressions it produces include a certain 
amount of syntactic paraphrases.  

The method is general and it can be used with 
any automatic evaluation metric that supports mul-
tiple references. In our future work, we plan to ap-
ply it to newly developed evaluation metrics like 
CDER and TER that aim to allow for syntactic 
variation between the candidate and the reference, 
therefore bringing together solutions for the two 
shortcomings of automatic evaluation systems: 
insensitivity to allowable lexical differences and 
syntactic variation. 
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Abstract

State of the art in statistical machine trans-
lation is currently represented by phrase-
based models, which typically incorpo-
rate a large number of probabilities of
phrase-pairs and word n-grams. In this
work, we investigate data compression
methods for efficiently encoding n-gram
and phrase-pair probabilities, that are usu-
ally encoded in 32-bit floating point num-
bers. We measured the impact of com-
pression on translation quality through a
phrase-based decoder trained on two dis-
tinct tasks: the translation of European
Parliament speeches from Spanish to En-
glish, and the translation of news agencies
from Chinese to English. We show that
with a very simple quantization scheme all
probabilities can be encoded in just 4 bits
with a relative loss in BLEU score on the
two tasks by 1.0% and 1.6%, respectively.

1 Introduction
In several natural language processing tasks, such as
automatic speech recognition and machine transla-
tion, state-of-the-art systems rely on the statistical
approach.

Statistical machine translation (SMT) is based
on parametric models incorporating a large num-
ber of observations and probabilities estimated from
monolingual and parallel texts. The current state of
the art is represented by the so-called phrase-based
translation approach (Och and Ney, 2004; Koehn et

al., 2003). Its core components are a translation
model that contains probabilities of phrase-pairs,
and a language model that incorporates probabilities
of word n-grams.

Due to the intrinsic data-sparseness of language
corpora, the set of observations increases almost lin-
early with the size of the training data. Hence, to
efficiently store observations and probabilities in a
computer memory the following approaches can be
tackled: designing compact data-structures, pruning
rare or unreliable observations, and applying data
compression.

In this paper we only focus on the last approach.
We investigate two different quantization methods
to encode probabilities and analyze their impact on
translation performance. In particular, we address
the following questions:

• How does probability quantization impact on
the components of the translation system,
namely the language model and the translation
model?

• Which is the optimal trade-off between data
compression and translation performance?

• How do quantized models perform under dif-
ferent data-sparseness conditions?

• Is the impact of quantization consistent across
different translation tasks?

Experiments were performed with our phrase-
based SMT system (Federico and Bertoldi, 2005) on
two large-vocabulary tasks: the translation of Euro-
pean Parliament Plenary Sessions from Spanish to
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English, and the translation of news agencies from
Chinese to English, according to the set up defined
by the 2005 NIST MT Evaluation Workshop.

The paper is organized as follows. Section 2 re-
views previous work addressing efficiency in speech
recognition and information retrieval. Section 3 in-
troduces the two quantization methods considered
in this paper, namely the Lloyd’s algorithm and the
Binning method. Section 4 briefly describes our
phrase-based SMT system. Sections 5 reports and
discusses experimental results addressing the ques-
tions in the introduction. Finally, Section 6 draws
some conclusions.

2 Previous work

Most related work can be found in the area of speech
recognition, where n-gram language models have
been used for a while.

Efforts targeting efficiency have been mainly fo-
cused on pruning techniques (Seymore and Rosen-
feld, 1996; Gao and Zhang, 2002), which permit
to significantly reduce the amount of n-grams to be
stored at a negligible cost in performance. More-
over, very compact data-structures for storing back-
off n-gram models have been recently proposed by
Raj and Whittaker (2003).

Whittaker and Raj (2001) discuss probability en-
coding as a means to reduce memory requirements
of an n-gram language model. Quantization of a
3-gram back-off model was performed by applying
the k-means Lloyd-Max algorithm at each n-gram
level. Experiments were performed on several large-
vocabulary speech recognition tasks by considering
different levels of compression. By encoded proba-
bilities in 4 bits, the increase in word-error-rate was
only around 2% relative with respect to a baseline
using 32-bit floating point probabilities.

Similar work was carried out in the field of in-
formation retrieval, where memory efficiency is in-
stead related to the indexing data structure, which
contains information about frequencies of terms in
all the individual documents. Franz and McCarley
(2002) investigated quantization of term frequencies
by applying a binning method. The impact on re-
trieval performance was analyzed against different
quantization levels. Results showed that 2 bits are
sufficient to encode term frequencies at the cost of a

negligible loss in performance.
In our work, we investigate both data compres-

sion methods, namely the Lloyd’s algorithm and the
binning method, in a SMT framework.

3 Quantization
Quantization provides an effective way of reducing
the number of bits needed to store floating point
variables. The quantization process consists in par-
titioning the real space into a finite set of k quantiza-
tion levels and identifying a center ci for each level,
i = 1, . . . , k. A function q(x) maps any real-valued
point x onto its unique center ci. Cost of quantiza-
tion is the approximation error between x and ci.

If k = 2h, h bits are enough to represent a floating
point variable; as a floating point is usually encoded
in 32 bits (4 byte), the compression ratio is equal
to 32/h1 . Hence, the compression ratio also gives
an upper bound for the relative reduction of mem-
ory use, because it assumes an optimal implemen-
tation of data structures without any memory waste.
Notice that memory consumption for storing the k-
entry codebook is negligible (k ∗ 32 bits).

As we will apply quantization on probabilistic
distribution, we can restrict the range of real val-
ues between 0 and 1. Most quantization algorithms
require a fixed (although huge) amount of points
in order to define the quantization levels and their
centers. Probabilistic models used in SMT satisfy
this requirement because the set of parameters larger
than 0 is always limited.

Quantization algorithms differ in the way parti-
tion of data points is computed and centers are iden-
tified. In this paper we investigate two different
quantization algorithms.

Lloyd’s Algorithm
Quantization of a finite set of real-valued data points
can be seen as a clustering problem. A large fam-
ily of clustering algorithms, called k-means algo-
rithms (Kanungo et al., 2002), look for optimal cen-
ters ci which minimize the mean squared distance
from each data point to its nearest center. The map
between points and centers is trivially derived.

1In the computation of the compression ratio we take into
account only the memory needed to store the probabilities of the
observations, and not the memory needed to store the observa-
tions themselves which depends on the adopted data structures.
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As no efficient exact solution to this problem
is known, either polynomial-time approximation or
heuristic algorithms have been proposed to tackle
the problem. In particular, Lloyd’s algorithm starts
from a feasible set of centers and iteratively moves
them until some convergence criterion is satisfied.
Finally, the algorithm finds a local optimal solution.
In this work we applied the version of the algorithm
available in the K-MEANS package2 .

Binning Method
The binning method partitions data points into uni-
formly populated intervals or bins. The center of
each bin corresponds to the mean value of all points
falling into it. If Ni is the number of points of the
i-th bin, and xi the smallest point in the i-th bin, a
partition [xi, xi+1] results such that Ni is constant
for each i = 0, . . . , k − 1, where xk = 1 by default.
The following map is thus defined:

q(x) = ci if xi <= x < xi+1.

Our implementation uses the following greedy
strategy: bins are build by uniformly partition all
different points of the data set.

4 Phrase-based Translation System
Given a string f in the source language, our SMT
system (Federico and Bertoldi, 2005; Cettolo et al.,
2005), looks for the target string e maximizing the
posterior probability Pr(e,a | f) over all possible
word alignments a. The conditional distribution is
computed with the log-linear model:

pλ(e,a | f) ∝ exp

{

R
∑

r=1

λrhr(e, f ,a)

}

,

where hr(e, f ,a), r = 1 . . . R are real valued feature
functions.

The log-linear model is used to score translation
hypotheses (e,a) built in terms of strings of phrases,
which are simple sequences of words. The transla-
tion process works as follows. At each step, a target
phrase is added to the translation whose correspond-
ing source phrase within f is identified through three
random quantities: the fertility which establishes its
length; the permutation which sets its first position;

2www.cs.umd.edu/∼mount/Projects/KMeans.

the tablet which tells its word string. Notice that tar-
get phrases might have fertility equal to zero, hence
they do not translate any source word. Moreover,
untranslated words in f are also modeled through
some random variables.

The choice of permutation and tablets can be
constrained in order to limit the search space un-
til performing a monotone phrase-based translation.
In any case, local word reordering is permitted by
phrases.

The above process is performed by a beam-search
decoder and is modeled with twelve feature func-
tions (Cettolo et al., 2005) which are either esti-
mated from data, e.g. the target n-gram language
models and the phrase-based translation model, or
empirically fixed, e.g. the permutation models.
While feature functions exploit statistics extracted
from monolingual or word-aligned texts from the
training data, the scaling factors λ of the log-linear
model are empirically estimated on development
data.

The two most memory consuming feature func-
tions are the phrase-based Translation Model (TM)
and the n-gram Language Model (LM).

Translation Model
The TM contains phrase-pairs statistics computed
on a parallel corpus provided with word-alignments
in both directions. Phrase-pairs up to length 8 are
extracted and singleton observations are pruned off.
For each extracted phrase-pair (f̃ , ẽ), four transla-
tion probabilities are estimated:
– a smoothed frequency of f̃ given ẽ
– a smoothed frequency of ẽ given f̃
– an IBM model 1 based probability of ẽ given f̃
– an IBM model 1 based probability of f̃ given ẽ

Hence, the number of parameters of the transla-
tion models corresponds to 4 times the number of
extracted phrase-pairs. From the point of view of
quantization, the four types of probabilities are con-
sidered separately and a specific codebook is gener-
ated for each type.

Language Model
The LM is a 4-gram back-off model estimated with
the modified Kneser-Ney smoothing method (Chen
and Goodman, 1998). Singleton pruning is applied
on 3-gram and 4-gram statistics. In terms of num-
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task parallel resources mono resources LM TM
src trg words 1-gram 2-gram 3-gram 4-gram phrase pairs

NIST 82,168 88,159 463,855 1,408 20,475 29,182 46,326 10,410
EPPS 34,460 32,951 3,2951 110 2,252 2,191 2,677 3,877
EPPS-800 23,611 22,520 22,520 90 1,778 1,586 1,834 2,499
EPPS-400 11,816 11,181 11,181 65 1,143 859 897 1,326
EPPS-200 5,954 5,639 5,639 47 738 464 439 712
EPPS-100 2,994 2,845 2,845 35 469 246 213 387

Table 1: Figures (in thousand) regarding the training data of each translation task.

ber of parameters, each n-gram, with n < 4, has
two probabilities associated with: the probability of
the n-gram itself, and the back-off probability of the
corresponding n + 1-gram extensions. Finally, 4-
grams have only one probability associated with.

For the sake of quantization, two separate code-
books are generated for each of the first three lev-
els, and one codebook is generated for the last level.
Hence, a total of 7 codebooks are generated. In all
discussed quantized LMs, unigram probabilities are
always encoded with 8 bits. The reason is that uni-
gram probabilities have indeed the largest variability
and do not contribute significantly to the total num-
ber of parameters.

5 Experiments
Data and Experimental Framework
We performed experiments on two large vocabulary
translation tasks: the translation of European Parlia-
mentary Plenary Sessions (EPPS) (Vilar et al., 2005)
from Spanish to English, and the translation of doc-
uments from Chinese to English as proposed by the
NIST MT Evaluation Workshops3 .

Translation of EPPS is performed on the so-called
final text editions, which are prepared by the trans-
lation office of the European Parliament. Both the
training and testing data were collected by the TC-
STAR4 project and were made freely available to
participants in the 2006 TC-STAR Evaluation Cam-
paign. In order to perform experiments under differ-
ent data sparseness conditions, four subsamples of
the training data with different sizes were generated,
too.

Training and test data used for the NIST task are
3www.nist.gov/speech/tests/mt/.
4www.tc-star.org

task sentences src words ref words
EPPS 840 22725 23066
NIST 919 25586 29155

Table 2: Statistics of test data for each task.

available through the Linguistic Data Consortium5.
Employed training data meet the requirements set
for the Chinese-English large-data track of the 2005
NIST MT Evaluation Workshop. For testing we
used instead the NIST 2003 test set.

Table 1 reports statistics about the training data of
each task and the models estimated on them. That
is, the number of running words of source and target
languages, the number of n-grams in the language
model and the number phrase-pairs in the transla-
tion model. Table 2 reports instead statistics about
the test sets, namely, the number of source sentences
and running words in the source part and in the gold
reference translations.

Translation performance was measured in terms
of BLEU score, NIST score, word-error rate (WER),
and position independent error rate (PER). Score
computation relied on two and four reference trans-
lations per sentence, respectively, for the EPPS
and NIST tasks. Scores were computed in case-
insensitive modality with punctuation. In general,
none of the above measures is alone sufficiently in-
formative about translation quality, however, in the
community there seems to be a preference toward
reporting results with BLEU. Here, to be on the safe
side and to better support our findings we will report
results with all measures, but will limit discussion
on performance to the BLEU score.

In order to just focus on the effect of quantiza-
5www.ldc.upenn.edu
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LM-h
32 8 6 5 4 3 2

32 54.78 54.75 54.73 54.65 54.49 54.24 53.82
8 54.78 54.69 54.69 54.79 54.55 54.18 53.65
6 54.57 54.49 54.76 54.57 54.63 54.26 53.60

TM-h 5 54.68 54.68 54.56 54.61 54.60 54.10 53.39
4 54.37 54.36 54.47 54.44 54.23 54.06 53.26
3 54.28 54.03 54.22 53.96 53.75 53.69 53.03
2 53.58 53.51 53.47 53.35 53.39 53.41 52.41

Table 3: BLEU scores in the EPPS task with different quantization levels of the LM and TM.

tion, all reported experiments were performed with
a plain configuration of the ITC-irst SMT system.
That is, we used a single decoding step, no phrase
re-ordering, and task-dependent weights of the log-
linear model.

Henceforth, LMs and TM quantized with h bits
are denoted with LM-h and TM-h, respectively.
Non quantized models are indicated with LM-32
and TM-32.
Impact of Quantization on LM and TM
A first set of experiments was performed on the
EPPS task by applying probability quantization ei-
ther on the LM or on the TMs. Figures 1 and 2
compare the two proposed quantization algorithms
(LLOYD and BINNING) against different levels of
quantization, namely 2, 3, 4, 5, 6, and 8 bits.
The scores achieved by the non quantized models
(LM-32 and TM-32) are reported as reference.

The following considerations can be drawn from
these results. The Binning method works slightly,
but not significantly, better than the Lloyd’s algo-
rithm, especially with the highest compression ra-
tios.

In general, the LM seems less affected by data
compression than the TM. By comparing quantiza-
tion with the binning method against no quantiza-
tion, the BLEU score with LM-4 is only 0.42% rel-
ative worse (54.78 vs 54.55). Degradation of BLEU
score by TM-4 is 0.77% (54.78 vs 54.36). For all the
models, encoding with 8 bits does not affect transla-
tion quality at all.

In following experiments, binning quantization
was applied to both LM and TM. Figure 3 plots
all scores against different levels of quantization.
As references, the curves corresponding to only

LM-h TM-h BLEU NIST WER PER
32 32 28.82 8.769 62.41 42.30
8 8 28.87 8.772 62.39 42.19
4 4 28.36 8.742 62.94 42.45
2 2 25.95 8.491 65.87 44.04

Table 4: Translation scores on the NIST task with
different quantization levels of the LM and TM.

LM quantization (LM-h) and only TM quantization
(TM-h) are shown. Independent levels of quantiza-
tion of the LM and TM were also considered. BLEU
scores related to several combinations are reported
in Table 3.

Results show that the joint impact of LM and TM
quantization is almost additive. Degradation with
4 bits quantization is only about 1% relative (from
54.78 to 54.23). Quantization with 2 bits is sur-
prisingly robust: the BLEU score just decreases by
4.33% relative (from 54.78 to 52.41).

Quantization vs. Data Sparseness
Quantization of LM and TM was evaluated with re-
spect to data-sparseness. Quantized and not quan-
tized models were trained on four subset of the EPPS
corpus with decreasing size. Statistics about these
sub-corpora are reported in Table 1. Quantization
was performed with the binning method using 2,
4, and 8 bit encodings. Results in terms of BLEU
score are plotted in Figure 4. It is evident that the
gap in BLEU score between the quantized and not
quantized models is almost constant under different
training conditions. This result suggests that perfor-
mance of quantized models is not affected by data
sparseness.

98



Consistency Across Different Tasks
A subset of quantization settings tested with the
EPPS tasks was also evaluated on the NIST task.
Results are reported in Table 4.

Quantization with 8 bits does not affect perfor-
mance, and gives even slightly better scores. Also
quantization with 4 bits produces scores very close
to those of non quantized models, with a loss in
BLEU score of only 1.60% relative. However, push-
ing quantization to 2 bits significantly deteriorates
performance, with a drop in BLEU score of 9.96%
relative.

In comparison to the EPPS task, performance
degradation due to quantization seems to be twice as
large. In conclusion, consistent behavior is observed
among different degrees of compression. Absolute
loss in performance, though quite different from the
EPPS task, remains nevertheless very reasonable.

Performance vs. Compression
From the results of single versus combined com-
pression, we can reasonably assume that perfor-
mance degradation due to quantization of LM and
TM probabilities is additive. Hence, as memory sav-
ings on the two models are also independent we can
look at the optimal trade-off between performance
and compression separately. Experiments on the
NIST and EPPS tasks seem to show that encoding
of LM and TM probabilities with 4 bits provides the
best trade-off, that is a compression ratio of 8 with a
relative loss in BLEU score of 1% and 1.6%. It can
be seen that score degradation below 4 bits grows
generally faster than the corresponding memory sav-
ings.

6 Conclusion
In this paper we investigated the application of data
compression methods to the probabilities stored by
a phrase-based translation model. In particular,
probability quantization was applied on the n-gram
language model and on the phrase-pair translation
model. Experimental results confirm previous find-
ings in speech recognition: language model proba-
bilities can be encoded in just 4 bits at the cost of
a very little loss in performance. The same resolu-
tion level seems to be a good compromise even for
the translation model. Remarkably, the impact of

quantization on the language model and translation
model seems to be additive with respect to perfor-
mance. Finally, quantization does not seems to be
affected by data sparseness and behaves similarly on
different translation tasks.
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Figure 1: EPPS task: translation scores vs. quantization level of LM. TM is not quantized.
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Figure 2: EPPS task: translation scores vs. quantization level of TM. LM is not quantized.
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Figure 3: EPPS task: translation scores vs. quantization level of LM and TM. Quantization was performed
with the Binning algorithm.
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Abstract

We evaluated machine translation perfor-
mance for six European language pairs
that participated in a shared task: translat-
ing French, German, Spanish texts to En-
glish and back. Evaluation was done auto-
matically using the BLEU score and man-
ually onfluencyandadequacy.

For the 2006 NAACL/HLT Workshop on Ma-
chine Translation, we organized a shared task to
evaluate machine translation performance. 14 teams
from 11 institutions participated, ranging from com-
mercial companies, industrial research labs to indi-
vidual graduate students.

The motivation for such a competition is to estab-
lish baseline performance numbers for defined train-
ing scenarios and test sets. We assembled various
forms of data and resources: a baseline MT system,
language models, prepared training and test sets,
resulting in actual machine translation output from
several state-of-the-art systems and manual evalua-
tions. All this is available at the workshop website1.

The shared task is a follow-up to the one we orga-
nized in the previous year, at a similar venue (Koehn
and Monz, 2005). As then, we concentrated on the
translation of European languages and the use of the
Europarl corpus for training. Again, most systems
that participated could be categorized as statistical
phrase-based systems. While there is now a num-
ber of competitions — DARPA/NIST (Li, 2005),
IWSLT (Eck and Hori, 2005), TC-Star — this one
focuses on text translation between various Euro-
pean languages.

This year’s shared task changed in some aspects
from last year’s:

• We carried out a manual evaluation in addition
to the automatic scoring. Manual evaluation

1http://www.statmt.org/wmt06/

was done by the participants. This revealed
interesting clues about the properties of auto-
matic and manual scoring.

• We evaluated translationfrom English, in ad-
dition to into English. English was again
paired with German, French, and Spanish.
We dropped, however, one of the languages,
Finnish, partly to keep the number of tracks
manageable, partly because we assumed that it
would be hard to find enough Finnish speakers
for the manual evaluation.

• We included an out-of-domain test set. This al-
lows us to compare machine translation perfor-
mance in-domain and out-of-domain.

1 Evaluation Framework

The evaluation framework for the shared task is sim-
ilar to the one used in last year’s shared task. Train-
ing and testing is based on the Europarl corpus. Fig-
ure 1 provides some statistics about this corpus.

1.1 Baseline system

To lower the barrier of entrance to the competition,
we provided a complete baseline MT system, along
with data resources. To summarize, we provided:

• sentence-aligned, tokenized training corpus

• a development and development test set

• trained language models for each language

• the phrase-based MT decoder Pharaoh

• a training script to build models for Pharaoh

The performance of the baseline system is simi-
lar to the best submissions in last year’s shared task.
We are currently working on a complete open source
implementation of a training and decoding system,
which should become available over the summer.
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Training corpus

Spanish↔ English French↔ English German↔ English
Sentences 730,740 688,031 751,088

Foreign words 15,676,710 15,323,737 15,256,793
English words 15,222,105 13,808,104 16,052,269

Distinct foreign words 102,886 80,349 195,291
Distinct English words 64,123 61,627 65,889

Language model data

English Spanish French German
Sentence 1,003,349 1,070,305 1,066,974 1,078,141
Words 27,493,499 29,129,720 31,604,879 26,562,167

In-domain test set

English Spanish French German
Sentences 2,000

Words 59,307 61,824 66,783 55,533
Unseen words 141 206 164 387

Ratio of unseen words 0.23% 0.40% 0.24% 0.70%
Distinct words 6,031 7,719 7,230 8,812

Distinct unseen words 139 203 163 385

Out-of-domain test set

English Spanish French German
Sentences 1,064

Words 25,919 29,826 31,937 26,818
Unseen words 464 368 839 913

Ratio of unseen words 1.79% 1.23% 2.62% 3.40%
Distinct words 5,166 5,689 5,728 6,594

Distinct unseen words 340 267 375 637

Figure 1: Properties of the training and test sets used in the shared task. The training data is the Europarl cor-
pus, from which also the in-domain test set is taken. There is twice as much language modelling data, since
training data for the machine translation system is filtered against sentences of length larger than 40 words.
Out-of-domain test data is from the Project Syndicate web site, a compendium of political commentary.
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ID Participant
cmu Carnegie Mellon University, USA (Zollmann and Venugopal, 2006)
lcc Language Computer Corporation, USA (Olteanu et al., 2006b)
ms Microsoft, USA (Menezes et al., 2006)
nrc National Research Council, Canada (Johnson et al., 2006)
ntt Nippon Telegraph and Telephone, Japan (Watanabe et al., 2006)
rali RALI, University of Montreal, Canada (Patry et al., 2006)

systran Systran, France
uedin-birch University of Edinburgh, UK — Alexandra Birch (Birch et al., 2006)
uedin-phi University of Edinburgh, UK — Philipp Koehn (Birch et al., 2006)

upc-jg University of Catalonia, Spain — Jesús Giḿenez (Giḿenez and M̀arquez, 2006)
upc-jmc University of Catalonia, Spain — Josep Maria Crego (Crego et al., 2006)
upc-mr University of Catalonia, Spain — Marta Ruiz Costa-jussà (Costa-juss̀a et al., 2006)

upv University of Valencia, Spain (Śanchez and Benedı́, 2006)
utd University of Texas at Dallas, USA (Olteanu et al., 2006a)

Figure 2: Participants in the shared task. Not all groups participated in all translation directions.

1.2 Test Data

The test data was again drawn from a segment of
the Europarl corpus from the fourth quarter of 2000,
which is excluded from the training data. Partici-
pants were also provided with two sets of 2,000 sen-
tences of parallel text to be used for system develop-
ment and tuning.

In addition to the Europarl test set, we also col-
lected 29 editorials from the Project Syndicate web-
site2, which are published in all the four languages
of the shared task. We aligned the texts at a sen-
tence level across all four languages, resulting in
1064 sentence per language. For statistics on this
test set, refer to Figure 1.

The out-of-domain test set differs from the Eu-
roparl data in various ways. The text type are edi-
torials instead of speech transcripts. The domain is
general politics, economics and science. However, it
is also mostly political content (even if not focused
on the internal workings of the European Union) and
opinion.

1.3 Participants

We received submissions from 14 groups from 11
institutions, as listed in Figure 2. Most of these
groups follow a phrase-based statistical approach to
machine translation. Microsoft’s approach uses de-

2http://www.project-syndicate.com/

pendency trees, others use hierarchical phrase mod-
els. Systran submitted their commercial rule-based
system that was not tuned to the Europarl corpus.

About half of the participants of last year’s shared
task participated again. The other half was replaced
by other participants, so we ended up with roughly
the same number. Compared to last year’s shared
task, the participants represent more long-term re-
search efforts. This may be the sign of a maturing
research environment.

While building a machine translation system is
a serious undertaking, in future we hope to attract
more newcomers to the field by keeping the barrier
of entry as low as possible.

For more on the participating systems, please re-
fer to the respective system description in the pro-
ceedings of the workshop.

2 Automatic Evaluation

For the automatic evaluation, we used BLEU, since it
is the most established metric in the field. The BLEU

metric, as all currently proposed automatic metrics,
is occasionally suspected to be biased towards sta-
tistical systems, especially the phrase-based systems
currently in use. It rewards matches of n-gram se-
quences, but measures only at most indirectly over-
all grammatical coherence.

The BLEU score has been shown to correlate
well with human judgement, when statistical ma-
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chine translation systems are compared (Dodding-
ton, 2002; Przybocki, 2004; Li, 2005). However, a
recent study (Callison-Burch et al., 2006), pointed
out that this correlation may not always be strong.
They demonstrated this with the comparison of sta-
tistical systems against (a) manually post-edited MT
output, and (b) a rule-based commercial system.

The development of automatic scoring methods is
an open field of research. It was our hope that this
competition, which included the manual and auto-
matic evaluation of statistical systems and one rule-
based commercial system, will give further insight
into the relation between automatic and manual eval-
uation. At the very least, we are creating a data re-
source (the manual annotations) that may the basis
of future research in evaluation metrics.

2.1 ComputingBLEU Scores

We computed BLEU scores for each submission with
a single reference translation. For each sentence,
we counted how many n-grams in the system output
also occurred in the reference translation. By taking
the ratio of matching n-grams to the total number of
n-grams in the system output, we obtain the preci-
sion pn for each n-gram ordern. These values for
n-gram precision are combined into a BLEU score:

BLEU = BP · exp(
4∑

n=1

log pn) (1)

BP = min(1, e1−r/c) (2)

The formula for the BLEU metric also includes a
brevity penalty for too short output, which is based
on the total number of words in the system outputc
and in the referencer.

BLEU is sensitive to tokenization. Because of
this, we retokenized and lowercased submitted out-
put with our own tokenizer, which was also used to
prepare the training and test data.

2.2 Statistical Significance

Confidence Interval: Since BLEU scores are not
computed on the sentence level, traditional methods
to compute statistical significance and confidence
intervals do not apply. Hence, we use the bootstrap
resampling method described by Koehn (2004).

Following this method, we repeatedly — say,
1000 times — sample sets of sentences from the out-

put of each system, measure their BLEU score, and
use these 1000 BLEU scores as basis for estimating
a confidence interval. When dropping the top and
bottom 2.5% the remaining BLEU scores define the
range of the confidence interval.

Pairwise comparison:We can use the same method
to assess the statistical significance of one system
outperforming another. If two systems’ scores are
close, this may simply be a random effect in the test
data. To check for this, we do pairwise bootstrap re-
sampling: Again, we repeatedly sample sets of sen-
tences, this time from both systems, and compare
their BLEU scores on these sets. If one system is bet-
ter in 95% of the sample sets, we conclude that its
higher BLEU score is statistically significantly bet-
ter.

The bootstrap method has been critized by Riezler
and Maxwell (2005) and Collins et al. (2005), as be-
ing too optimistic in deciding for statistical signifi-
cant difference between systems. We are therefore
applying a different method, which has been used at
the 2005 DARPA/NIST evaluation.

We divide up each test set into blocks of 20 sen-
tences (100 blocks for the in-domain test set, 53
blocks for the out-of-domain test set), check for each
block, if one system has a higher BLEU score than
the other, and then use the sign test.

The sign test checks, how likely a sample of better
and worse BLEU scores would have been generated
by two systems of equal performance.

Let say, if we find one system doing better on 20
of the blocks, and worse on 80 of the blocks, is it
significantly worse? We check, how likely only up
to k = 20 better scores out ofn = 100 would have
been generated by two equal systems, using the bi-
nomial distribution:

p(0..k;n, p) =
k∑

i=0

(
i

n

)
pipn−i

= 0.5n
k∑

i=0

(
i

n

) (3)

If p(0..k;n, p) < 0.05, or p(0..k;n, p) > 0.95
then we have a statistically significant difference be-
tween the systems.
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Figure 3: Annotation tool for manual judgement ofadequacyandfluencyof the system output. Translations
from 5 randomly selected systems for a randomly selected sentence is presented. No additional information
beyond the instructions on this page are given to the judges. The tool tracks and reports annotation speed.

3 Manual Evaluation

While automatic measures are an invaluable tool
for the day-to-day development of machine trans-
lation systems, they are only a imperfect substitute
for human assessment of translation quality, or as
the acronym BLEU puts it, a bil ingual evaluation
understudy.

Many human evaluation metrics have been pro-
posed. Also, the argument has been made that ma-
chine translation performance should be evaluated
via task-based evaluation metrics, i.e. how much it
assists performing a useful task, such as supporting
human translators or aiding the analysis of texts.

The main disadvantage of manual evaluation is
that it is time-consuming and thus too expensive to
do frequently. In this shared task, we were also con-
fronted with this problem, and since we had no fund-
ing for paying human judgements, we asked partic-
ipants in the evaluation to share the burden. Par-
ticipants and other volunteers contributed about 180
hours of labor in the manual evaluation.

3.1 Collecting Human Judgements

We asked participants to each judge 200–300 sen-
tences in terms of fluency and adequacy, the most
commonly used manual evaluation metrics. We set-
tled on contrastive evaluations of 5 system outputs
for a single test sentence. See Figure 3 for a screen-
shot of the evaluation tool.

Presenting the output of several system allows
the human judge to make more informed judge-
ments, contrasting the quality of the different sys-
tems. The judgements tend to be done more in form
of a ranking of the different systems. We assumed
that such a contrastive assessment would be benefi-
cial for an evaluation that essentially pits different
systems against each other.

While we had up to 11 submissions for a trans-
lation direction, we did decide against presenting
all 11 system outputs to the human judge. Our ini-
tial experimentation with the evaluation tool showed
that this is often too overwhelming.

Making the ten judgements (2 types for 5 sys-
tems) takes on average 2 minutes. Typically, judges
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initially spent about 3 minutes per sentence, but then
accelerate with experience. Judges where excluded
from assessing the quality of MT systems that were
submitted by their institution. Sentences and sys-
tems were randomly selected and randomly shuffled
for presentation.

We collected around 300–400 judgements per
judgement type (adequacy or fluency), per system,
per language pair. This is less than the 694 judge-
ments 2004 DARPA/NIST evaluation, or the 532
judgements in the 2005 DARPA/NIST evaluation.
This decreases the statistical significance of our re-
sults compared to those studies. The number of
judgements is additionally fragmented by our break-
up of sentences into in-domain and out-of-domain.

3.2 Normalizing the judgements

The human judges were presented with the follow-
ing definition ofadequacyandfluency, but no addi-
tional instructions:

Adequacy Fluency
5 All Meaning Flawless English
4 Most Meaning Good English
3 Much Meaning Non-native English
2 Little Meaning Disfluent English
1 None Incomprehensible

Judges varied in the average score they handed
out. The average fluency judgement per judge
ranged from 2.33 to 3.67, the average adequacy
judgement ranged from 2.56 to 4.13. Since different
judges judged different systems (recall that judges
were excluded to judge system output from their
own institution), we normalized the scores.

Thenormalized judgement per judgeis the raw
judgement plus (3 minus average raw judgement for
this judge). In words, the judgements are normal-
ized, so that the averagenormalized judgement per
judgeis 3.

Another way to view the judgements is that they
are less quality judgements of machine translation
systems per se, but rankings of machine translation
systems. In fact, it is very difficult to maintain con-
sistent standards, on what (say) an adequacy judge-
ment of 3 means even for a specific language pair.

The way judgements are collected, human judges
tend to use the scores to rank systems against each
other. If one system is perfect, another has slight

flaws and the third more flaws, a judge is inclined
to hand out judgements of 5, 4, and 3. On the other
hand, when all systems produce muddled output, but
one is better, and one is worse, but not completely
wrong, a judge is inclined to hand out judgements of
4, 3, and 2. The judgement of 4 in the first case will
go to a vastly better system output than in the second
case.

We therefore also normalized judgements on a
per-sentence basis. Thenormalized judgement per
sentenceis the raw judgement plus (0 minus average
raw judgement for this judge on this sentence).

Systems that generally do better than others will
receive a positive averagenormalized judgement per
sentence. Systems that generally do worse than oth-
ers will receive a negative one.

One may argue with these efforts on normaliza-
tion, and ultimately their value should be assessed
by assessing their impact on inter-annotator agree-
ment. Given the limited number of judgements we
received, we did not try to evaluate this.

3.3 Statistical Significance

Confidence Interval: To estimate confidence inter-
vals for the average mean scores for the systems, we
use standard significance testing.

Given a set ofn sentences, we can compute the
sample mean̄x and sample variances2 of the indi-
vidual sentence judgementsxi:

x̄ =
1
n

n∑
i=1

xi (4)

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (5)

The extend of the confidence interval[x̄−d, x̄+d]
can be computed by

d = 1.96 · s√
n

(6)

Pairwise Comparison: As for the automatic evalu-
ation metric, we want to be able to rank different sys-
tems against each other, for which we need assess-
ments of statistical significance on the differences
between a pair of systems.

Unfortunately, we have much less data to work
with than with the automatic scores. The way we
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Basis Diff. Ratio
Sign test on BLEU 331 75%
Bootstrap on BLEU 348 78%
Sign test on Fluency 224 50%
Sign test on Adequacy 225 51%

Figure 4: Number and ratio of statistically signifi-
cant distinction between system performance. Au-
tomatic scores are computed on a larger tested than
manual scores (3064 sentences vs. 300–400 sen-
tences).

collected manual judgements, we do not necessar-
ily have the same sentence judged for both systems
(judges evaluate 5 systems out of the 8–10 partici-
pating systems).

Still, for about good number of sentences, we do
have this direct comparison, which allows us to ap-
ply the sign test, as described in Section 2.2.

4 Results and Analysis

The results of the manual and automatic evaluation
of the participating system translations is detailed in
the figures at the end of this paper. The scores and
confidence intervals are detailed first in the Figures
7–10 in table form (including ranks), and then in
graphical form in Figures 11–16. In the graphs, sys-
tem scores are indicated by a point, the confidence
intervals by shaded areas around the point.

In all figures, we present the per-sentence normal-
ized judgements. The normalization on a per-judge
basis gave very similar ranking, only slightly less
consistent with the ranking from the pairwise com-
parisons.

The confidence intervals are computed by boot-
strap resampling for BLEU, and by standard signif-
icance testing for the manual scores, as described
earlier in the paper.

Pairwise comparison is done using the sign test.
Often, two systems can not be distinguished with
a confidence of over 95%, so there are ranked the
same. This actually happens quite frequently (more
below), so that the rankings are broad estimates. For
instance: if 10 systems participate, and one system
does better than 3 others, worse then 2, and is not
significant different from the remaining 4, its rank is
in the interval 3–7.

Domain BLEU Fluency Adequacy
in-domain 26.63 3.17 3.58
out-of-domain 20.37 2.74 3.08

Figure 5: Evaluation scores for in-domain and out-
of-domain test sets, averaged over all systems

4.1 Close results

At first glance, we quickly recognize that many sys-
tems are scored very similar, both in terms of man-
ual judgement and BLEU. There may be occasion-
ally a system clearly at the top or at the bottom, but
most systems are so close that it is hard to distin-
guish them.

In Figure 4, we displayed the number of system
comparisons, for which we concluded statistical sig-
nificance. For the automatic scoring method BLEU,
we can distinguish three quarters of the systems.
While the Bootstrap method is slightly more sensi-
tive, it is very much in line with the sign test on text
blocks.

For the manual scoring, we can distinguish only
half of the systems, both in terms of fluency and ad-
equacy. More judgements would have enabled us
to make better distinctions, but it is not clear what
the upper limit is. We can check, what the conse-
quences of less manual annotation of results would
have been: With half the number of manual judge-
ments, we can distinguish about 40% of the systems,
10% less.

4.2 In-domain vs. out-of-domain

The test set included 2000 sentences from the
Europarl corpus, but also 1064 sentences out-of-
domain test data. Since the inclusion of out-of-
domain test data was a very late decision, the par-
ticipants were not informed of this. So, this was a
surprise element due to practical reasons, not mal-
ice.

All systems (except for Systran, which was not
tuned to Europarl) did considerably worse on out-
of-domain training data. This is demonstrated by
average scores over all systems, in terms of BLEU,
fluencyandadequacy, as displayed in Figure 5.

The manual scores are averages over the raw un-
normalized scores.
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Language Pair BLEU Fluency Adequacy
French-English 26.09 3.25 3.61
Spanish-English 28.18 3.19 3.71
German-English 21.17 2.87 3.10
English-French 28.33 2.86 3.16
English-Spanish 27.49 2.86 3.34
English-German 14.01 3.15 3.65

Figure 6: Average scores for different language
pairs. Manual scoring is done by different judges,
resulting in a not very meaningful comparison.

4.3 Language pairs

It is well know that language pairs such as English-
German pose more challenges to machine transla-
tion systems than language pairs such as French-
English. Different sentence structure and rich target
language morphology are two reasons for this.

Again, we can compute average scores for all sys-
tems for the different language pairs (Figure 6). The
differences in difficulty are better reflected in the
BLEU scores than in the raw un-normalized man-
ual judgements. The easiest language pair according
to BLEU (English-French: 28.33) received worse
manual scores than the hardest (English-German:
14.01). This is because different judges focused on
different language pairs. Hence, the different av-
erages of manual scores for the different language
pairs reflect the behaviour of the judges, not the
quality of the systems on different language pairs.

4.4 Manual judgement vs.BLEU

Given the closeness of most systems and the wide
over-lapping confidence intervals it is hard to make
strong statements about the correlation between hu-
man judgements and automatic scoring methods
such as BLEU.

We confirm the finding by Callison-Burch et al.
(2006) that the rule-based system of Systran is not
adequately appreciated by BLEU. In-domain Sys-
tran scores on this metric are lower than all statistical
systems, even the ones that have much worse human
scores. Surprisingly, this effect is much less obvious
for out-of-domain test data. For instance, for out-of-
domain English-French, Systran has the best BLEU

and manual scores.
Our suspicion is that BLEU is very sensitive to

jargon, to selecting exactly the right words, and
not synonyms that human judges may appreciate
as equally good. This is can not be the only ex-
planation, since the discrepancy still holds, for in-
stance, for out-of-domain French-English, where
Systran receives among the best adequacy and flu-
ency scores, but a worse BLEU score than all but
one statistical system.

This data set of manual judgements should pro-
vide a fruitful resource for research on better auto-
matic scoring methods.

4.5 Best systems

So, who won the competition? The best answer
to this is: many research labs have very competi-
tive systems whose performance is hard to tell apart.
This is not completely surprising, since all systems
use very similar technology.

For some language pairs (such as German-
English) system performance is more divergent than
for others (such as English-French), at least as mea-
sured by BLEU.

The statistical systems seem to still lag be-
hind the commercial rule-based competition when
translating into morphological rich languages, as
demonstrated by the results for English-German and
English-French.

The predominate focus of building systems that
translate into English has ignored so far the difficult
issues of generating rich morphology which may not
be determined solely by local context.

4.6 Comments on Manual Evaluation

This is the first time that we organized a large-scale
manual evaluation. While we used the standard met-
rics of the community, the we way presented trans-
lations and prompted for assessment differed from
other evaluation campaigns. For instance, in the
recent IWSLT evaluation, first fluency annotations
were solicited (while withholding the source sen-
tence), and then adequacy annotations.

Almost all annotators reported difficulties in
maintaining a consistent standard for fluency and ad-
equacy judgements, but nevertheless most did not
explicitly move towards a ranking-based evaluation.
Almost all annotators expressed their preference to
move to a ranking-based evaluation in the future. A
few pointed out that adequacy should be broken up
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into two criteria: (a) are all source words covered?
(b) does the translation have the same meaning, in-
cluding connotations?

Annotators suggested that long sentences are al-
most impossible to judge. Since all long sen-
tence translation are somewhatmuddled, even a con-
trastive evaluation between systems was difficult. A
few annotators suggested to break up long sentences
into clauses and evaluate these separately.

Not every annotator was fluent in both the source
and the target language. While it is essential to be
fluent in the target language, it is not strictly nec-
essary to know the source language, if a reference
translation was given. However, ince we extracted
the test corpus automatically from web sources, the
reference translation was not always accurate — due
to sentence alignment errors, or because translators
did not adhere to a strict sentence-by-sentence trans-
lation (say, using pronouns when referring to enti-
ties mentioned in the previous sentence). Lack of
correct reference translations was pointed out as a
short-coming of our evaluation. One annotator sug-
gested that this was the case for as much as 10% of
our test sentences. Annotators argued for the impor-
tance of having correct and even multiple references.

It was also proposed to allow annotators to skip
sentences that they are unable to judge.

5 Conclusions

We carried out an extensive manual and automatic
evaluation of machine translation performance on
European language pairs. While many systems had
similar performance, the results offer interesting in-
sights, especially about the relative performance of
statistical and rule-based systems.

Due to many similarly performing systems, we
are not able to draw strong conclusions on the ques-
tion of correlation of manual and automatic evalua-
tion metrics. The bias of automatic methods in favor
of statistical systems seems to be less pronounced on
out-of-domain test data.

The manual evaluation of scoring translation on
a graded scale from 1–5 seems to be very hard to
perform. Replacing this with an ranked evalua-
tion seems to be more suitable. Human judges also
pointed out difficulties with the evaluation of long
sentences.
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French-English (In Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
upc-jmc +0.19±0.08 (1-7) +0.09±0.08 (1-8) 30.42±0.86 (1-6)

lcc +0.14±0.07 (1-6) +0.13±0.06 (1-7) 30.81±0.85 (1-4)
utd +0.13±0.08 (1-7) +0.14±0.07 (1-6) 30.53±0.87 (2-7)

upc-mr +0.13±0.08 (1-8) +0.13±0.07 (1-6) 30.33±0.88 (1-7)
nrc +0.12±0.10 (1-7) +0.06±0.11 (2-6) 29.62±0.84 (8)
ntt +0.11±0.08 (1-8) +0.14±0.08 (2-8) 30.72±0.87 (1-7)

cmu +0.10±0.08 (3-7) +0.05±0.07 (4-8) 30.18±0.80 (2-7)
rali -0.02±0.08 (5-8) +0.00±0.08 (3-9) 30.39±0.91 (3-7)

systran -0.08±0.09 (9) -0.17±0.09 (8-9) 21.44±0.65 (10)
upv -0.76±0.09 (10) -0.52±0.09 (10) 24.10±0.89 (9)

Spanish-English (In Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
upc-jmc +0.15±0.08 (1-7) +0.18±0.08 (1-6) 31.01±0.97 (1-5)

ntt +0.10±0.08 (1-7) +0.10±0.08 (1-8) 31.29±0.88 (1-5)
lcc +0.08±0.07 (1-8) +0.04±0.06 (2-8) 31.46±0.87 (1-4)
utd +0.08±0.06 (1-8) +0.08±0.07 (2-7) 31.10±0.89 (1-5)
nrc +0.06±0.10 (2-8) +0.08±0.07 (1-9) 30.04±0.79 (6)

upc-mr +0.06±0.07 (1-8) +0.08±0.07 (1-6) 29.43±0.83 (7)
uedin-birch +0.03±0.11 (1-8) -0.07±0.15 (2-10) 29.01±0.81 (8)

rali +0.00±0.07 (3-9) -0.02±0.07 (3-9) 30.80±0.87 (2-5)
upc-jg -0.10±0.07 (7-9) -0.11±0.07 (6-9) 28.03±0.83 (9)
upv -0.45±0.10 (10) -0.41±0.10 (9-10) 23.91±0.83 (10)

German-English (In Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
uedin-phi +0.30±0.09 (1-2) +0.33±0.08 (1) 27.30±0.86 (1)

lcc +0.15±0.07 (2-7) +0.12±0.07 (2-7) 25.97±0.81 (2)
nrc +0.12±0.07 (2-7) +0.14±0.07 (2-6) 24.54±0.80 (5-7)
utd +0.08±0.07 (3-7) +0.01±0.08 (2-8) 25.44±0.85 (3-4)
ntt +0.07±0.08 (2-9) +0.06±0.09 (2-8) 25.64±0.83 (3-4)

upc-mr +0.00±0.09 (3-9) -0.21±0.09 (6-9) 23.68±0.79 (8)
rali -0.01±0.06 (4-9) +0.00±0.07 (3-9) 24.60±0.80 (5-7)

upc-jmc -0.02±0.09 (2-9) -0.04±0.09 (3-9) 24.43±0.86 (5-7)
systran -0.05±0.10 (3-9) -0.05±0.09 (3-9) 15.86±0.59 (10)

upv -0.55±0.09 (10) -0.38±0.08 (10) 18.08±0.77 (9)

Figure 7: Evaluation of translation to English on in-domain test data
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English-French (In Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
nrc +0.08±0.09 (1-5) +0.09±0.09 (1-5) 31.75±0.83 (1-6)

upc-mr +0.08±0.08 (1-4) +0.04±0.07 (1-5) 31.50±0.76 (1-6)
upc-jmc +0.03±0.09 (1-6) +0.02±0.08 (1-6) 31.75±0.78 (1-5)
systran -0.01±0.12 (2-7) +0.06±0.12 (1-6) 25.07±0.71 (7)

utd -0.03±0.07 (3-7) -0.05±0.07 (3-7) 31.42±0.85 (3-6)
rali -0.08±0.09 (1-7) -0.09±0.09 (2-7) 31.79±0.85 (1-6)
ntt -0.09±0.09 (4-7) -0.06±0.08 (4-7) 31.92±0.84 (1-5)

English-Spanish (In Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
ms +0.23±0.09 (1-5) +0.13±0.09 (1-7) 29.76±0.82 (7-8)

upc-mr +0.20±0.09 (1-4) +0.17±0.09 (1-5) 31.06±0.86 (1-4)
utd +0.18±0.08 (1-5) +0.15±0.08 (1-6) 30.73±0.90 (1-4)
nrc +0.12±0.09 (2-7) +0.17±0.08 (1-6) 29.97±0.86 (5-6)
ntt +0.10±0.09 (3-7) +0.14±0.08 (1-6) 30.93±0.85 (1-4)

upc-jmc +0.04±0.10 (2-7) +0.01±0.08 (2-7) 30.44±0.86 (1-4)
rali -0.05±0.08 (5-8) -0.03±0.08 (6-8) 29.38±0.85 (5-6)

uedin-birch -0.18±0.14 (6-9) -0.17±0.13 (6-10) 28.49±0.87 (7-8)
upc-jg -0.32±0.11 (9) -0.37±0.09 (8-10) 27.46±0.78 (9)
upv -0.83±0.15 (9-10) -0.59±0.15 (8-10) 23.17±0.73 (10)

English-German (In Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
upc-mr +0.28±0.08 (1-3) +0.14±0.08 (1-5) 17.24±0.81 (3-5)

ntt +0.19±0.08 (1-5) +0.09±0.06 (2-6) 18.15±0.89 (1-3)
upc-jmc +0.17±0.08 (1-5) +0.13±0.08 (1-4) 17.73±0.81 (1-3)

nrc +0.17±0.08 (2-4) +0.11±0.08 (1-5) 17.52±0.78 (4-5)
rali +0.08±0.10 (3-6) +0.03±0.09 (2-6) 17.93±0.85 (1-4)

systran -0.08±0.11 (5-6) +0.00±0.10 (3-6) 9.84±0.52 (7)
upv -0.84±0.12 (7) -0.51±0.10 (7) 13.37±0.78 (6)

Figure 8: Evaluation of translation from English on in-domain test data
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French-English (Out of Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
upc-jmc +0.23±0.09 (1-5) +0.13±0.11 (1-8) 21.79±0.92 (1-4)

cmu +0.22±0.11 (1-8) +0.13±0.09 (1-9) 21.15±0.86 (4-7)
systran +0.19±0.15 (1-8) +0.15±0.14 (1-7) 19.42±0.82 (9)

lcc +0.13±0.12 (1-9) +0.11±0.11 (1-9) 21.77±0.88 (1-5)
upc-mr +0.12±0.12 (2-8) +0.11±0.10 (1-7) 21.95±0.94 (1-3)

utd +0.04±0.10 (1-9) +0.01±0.10 (1-8) 21.39±0.94 (3-7)
ntt -0.02±0.12 (3-9) +0.08±0.11 (1-9) 21.34±0.85 (3-7)
nrc -0.03±0.14 (3-8) +0.00±0.11 (3-9) 21.15±0.86 (3-7)
rali -0.09±0.12 (4-9) -0.10±0.11 (5-9) 20.17±0.85 (8)
upv -0.76±0.16 (10) -0.58±0.14 (10) 15.55±0.79 (10)

Spanish-English (Out of Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
upc-jmc +0.28±0.10 (1-2) +0.17±0.10 (1-6) 27.92±0.94 (1-3)

uedin-birch +0.25±0.16 (1-7) +0.18±0.19 (1-6) 25.20±0.91 (5-8)
nrc +0.18±0.16 (2-8) +0.09±0.09 (1-8) 25.40±0.94 (5-7)
ntt +0.11±0.10 (2-7) +0.17±0.10 (2-6) 26.85±0.89 (3-4)

upc-mr +0.08±0.11 (2-8) +0.10±0.10 (1-7) 25.62±0.87 (5-8)
lcc +0.04±0.10 (4-9) +0.07±0.11 (3-7) 27.18±0.92 (1-4)
utd +0.03±0.11 (2-9) +0.03±0.10 (2-8) 27.41±0.96 (1-3)

upc-jg -0.09±0.11 (4-9) -0.09±0.09 (7-9) 23.42±0.87 (9)
rali -0.09±0.11 (4-9) -0.15±0.11 (6-9) 25.03±0.91 (6-8)
upv -0.63±0.14 (10) -0.47±0.11 (10) 19.17±0.78 (10)

German-English (Out of Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
systran +0.30±0.12 (1-4) +0.21±0.12 (1-4) 15.56±0.71 (7-9)

uedin-phi +0.22±0.09 (1-6) +0.21±0.10 (1-7) 18.87±0.84 (1)
lcc +0.18±0.10 (1-6) +0.20±0.10 (1-7) 17.96±0.79 (2-3)
utd +0.08±0.09 (2-7) +0.07±0.08 (2-6) 16.97±0.76 (4-6)
ntt +0.07±0.12 (1-9) +0.21±0.13 (1-7) 17.37±0.76 (3-5)
nrc +0.04±0.10 (3-8) +0.04±0.09 (2-8) 15.93±0.76 (7-8)

upc-mr +0.02±0.10 (4-8) -0.11±0.09 (6-8) 16.89±0.79 (4-6)
upc-jmc -0.01±0.10 (4-8) -0.04±0.11 (3-9) 17.57±0.80 (2-5)

rali -0.14±0.08 (8-9) -0.14±0.08 (8-9) 15.22±0.69 (8-9)
upv -0.64±0.11 (10) -0.54±0.09 (10) 11.78±0.71 (10)

Figure 9: Evaluation of translation to English on out-of-domain test data
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English-French (Out of Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
systran +0.50±0.20 (1) +0.41±0.18 (1) 25.31±0.88 (1)
upc-jmc +0.09±0.11 (2-5) +0.09±0.11 (2-4) 23.30±0.75 (2-6)
upc-mr +0.09±0.11 (2-4) +0.04±0.09 (2-4) 23.21±0.75 (2-6)

utd -0.02±0.11 (2-6) -0.05±0.09 (2-6) 22.79±0.86 (7)
rali -0.12±0.12 (4-7) -0.17±0.12 (5-7) 23.34±0.89 (2-6)
nrc -0.13±0.13 (4-7) -0.16±0.10 (4-7) 23.66±0.91 (2-5)
ntt -0.23±0.12 (4-7) -0.06±0.10 (4-7) 22.99±0.96 (3-6)

English-Spanish (Out of Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
upc-mr +0.35±0.11 (1-3) +0.19±0.10 (1-6) 26.62±0.92 (1-2)

ms +0.33±0.16 (1-7) +0.15±0.13 (1-8) 26.15±0.88 (6-7)
utd +0.21±0.13 (2-6) +0.13±0.11 (1-7) 25.26±0.78 (3-5)
nrc +0.18±0.12 (1-6) +0.07±0.11 (2-7) 25.58±0.85 (3-5)

upc-jmc +0.17±0.15 (2-7) +0.24±0.12 (1-6) 25.59±0.95 (3-5)
ntt +0.12±0.13 (2-7) +0.12±0.13 (1-7) 26.52±0.90 (1-2)
rali -0.17±0.16 (6-8) -0.05±0.13 (4-8) 24.03±0.83 (6-8)

uedin-birch -0.36±0.24 (6-10) -0.16±0.16 (5-9) 23.18±0.88 (7-8)
upc-jg -0.45±0.13 (8-9) -0.42±0.10 (9-10) 22.04±0.84 (9)
upv -1.09±0.21 (9) -0.64±0.19 (8-9) 16.83±0.72 (10)

English-German (Out of Domain)

Adequacy (rank) Fluency (rank) BLEU (rank)
systran +0.47±0.15 (1) +0.39±0.15 (1-2) 10.78±0.69 (1-6)
upc-mr +0.31±0.13 (2-3) +0.21±0.11 (1-3) 10.96±0.70 (1-5)
upc-jmc +0.22±0.14 (2-3) +0.01±0.10 (3-6) 10.64±0.66 (1-6)

rali +0.13±0.12 (4-6) -0.06±0.10 (4-6) 10.57±0.65 (1-6)
nrc +0.00±0.11 (4-6) +0.05±0.09 (2-6) 10.64±0.65 (2-6)
ntt -0.03±0.12 (4-6) +0.08±0.11 (3-5) 10.51±0.64 (1-6)
upv -0.94±0.13 (7) -0.57±0.10 (7) 6.55±0.53 (7)

Figure 10: Evaluation of translation from English on out-of-domain test data
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Figure 11: Correlation between manual and automatic scores for French-English
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Spanish-English

In Domain Out of Domain
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Figure 12: Correlation between manual and automatic scores for Spanish-English
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German-English

In Domain Out of Domain
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Figure 13: Correlation between manual and automatic scores for German-English
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English-French

In Domain Out of Domain
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Figure 14: Correlation between manual and automatic scores for English-French
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English-Spanish

In Domain Out of Domain
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Figure 15: Correlation between manual and automatic scores for English-Spanish
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English-German

In Domain Out of Domain
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Figure 16: Correlation between manual and automatic scores for English-German
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Abstract

We present two translation systems ex-
perimented for the shared-task of “Work-
shop on Statistical Machine Translation,”
a phrase-based model and a hierarchical
phrase-based model. The former uses a
phrasal unit for translation, whereas the
latter is conceptualized as a synchronous-
CFG in which phrases are hierarchically
combined using non-terminals. Experi-
ments showed that the hierarchical phrase-
based model performed very comparable
to the phrase-based model. We also report
a phrase/rule extraction technique differ-
entiating tokenization of corpora.

1 Introduction

We contrasted two translation methods for the
Workshop on Statistical Machine Translation
(WMT2006) shared-task. One is a phrase-based
translation in which a phrasal unit is employed
for translation (Koehn et al., 2003). The other is
a hierarchical phrase-based translation in which
translation is realized as a set of paired production
rules (Chiang, 2005). Section 2 discusses those two
models and details extraction algorithms, decoding
algorithms and feature functions.

We also explored three types of corpus pre-
processing in Section 3. As expected, different
tokenization would lead to different word align-
ments which, in turn, resulted in the divergence
of the extracted phrase/rule size. In our method,

phrase/rule translation pairs extracted from three
distinctly word-aligned corpora are aggregated into
one large phrase/rule translation table. The experi-
ments and the final translation results are presented
in Section 4.

2 Translation Models

We used a log-linear approach (Och and Ney,
2002) in which a foreign language sentencef J

1 =

f1, f2, ... fJ is translated into another language, i.e.
English, eI

1 = e1, e2, ..., eI by seeking a maximum
likelihood solution of

êI
1 = argmax

eI
1

Pr(eI
1| f

J
1 ) (1)

= argmax
eI

1

exp
(

∑M
m=1 λmhm(eI

1, f J
1 )
)

∑

e′ I
′

1
exp
(

∑M
m=1 λmhm(e′ I

′

1 , f J
1 )
)(2)

In this framework, the posterior probability
Pr(eI

1| f
J
1 ) is directly maximized using a log-linear

combination of feature functionshm(eI
1, f J

1 ), such
as a ngram language model or a translation model.
When decoding, the denominator is dropped since it
depends only onf J

1 . Feature function scaling factors
λm are optimized based on a maximum likelihood
approach (Och and Ney, 2002) or on a direct error
minimization approach (Och, 2003). This modeling
allows the integration of various feature functions
depending on the scenario of how a translation is
constituted.

In a phrase-based statistical translation (Koehn
et al., 2003), a bilingual text is decomposed asK
phrase translation pairs (¯e1, f̄ā1), (ē2, f̄ā2), ...: The in-
put foreign sentence is segmented into phrasesf̄ K

1 ,
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mapped into corresponding English ¯eK
1 , then, re-

ordered to form the output English sentence accord-
ing to a phrase alignment index mapping ¯a.

In a hierarchical phrase-based translation (Chi-
ang, 2005), translation is modeled after a weighted
synchronous-CFG consisting of production rules
whose right-hand side is paired (Aho and Ullman,
1969):

X → 〈γ, α,∼〉
whereX is a non-terminal,γ andα are strings of ter-
minals and non-terminals.∼ is a one-to-one corre-
spondence for the non-terminals appeared inγ and
α. Starting from an initial non-terminal, each rule
rewrites non-terminals inγ andα that are associated
with ∼.

2.1 Phrase/Rule Extraction

The phrase extraction algorithm is based on those
presented by Koehn et al. (2003). First, many-
to-many word alignments are induced by running
a one-to-many word alignment model, such as
GIZA++ (Och and Ney, 2003), in both directions
and by combining the results based on a heuristic
(Och and Ney, 2004). Second, phrase translation
pairs are extracted from the word aligned corpus
(Koehn et al., 2003). The method exhaustively ex-
tracts phrase pairs (f j+m

j , ei+n
i ) from a sentence pair

( f J
1 , e

I
1) that do not violate the word alignment con-

straintsa.
In the hierarchical phrase-based model, produc-

tion rules are accumulated by computing “holes” for
extracted contiguous phrases (Chiang, 2005):

1. A phrase pair (̄f , ē) constitutes a rule:

X →
〈

f̄ , ē
〉

2. A rule X → 〈γ, α〉 and a phrase pair (̄f , ē) s.t.
γ = γ′ f̄γ′′ andα = α′ēα′′ constitutes a rule:

X →
〈

γ′ X k γ
′′, α′ X k α

′′
〉

2.2 Decoding

The decoder for the phrase-based model is a left-to-
right generation decoder with a beam search strategy
synchronized with the cardinality of already trans-
lated foreign words. The decoding process is very
similar to those described in (Koehn et al., 2003):
It starts from an initial empty hypothesis. From an

existing hypothesis, new hypothesis is generated by
consuming a phrase translation pair that covers un-
translated foreign word positions. The score for the
newly generated hypothesis is updated by combin-
ing the scores of feature functions described in Sec-
tion 2.3. The English side of the phrase is simply
concatenated to form a new prefix of English sen-
tence.

In the hierarchical phrase-based model, decoding
is realized as an Earley-style top-down parser on the
foreign language side with a beam search strategy
synchronized with the cardinality of already trans-
lated foreign words (Watanabe et al., 2006). The ma-
jor difference to the phrase-based model’s decoder is
the handling of non-terminals, or holes, in each rule.

2.3 Feature Functions

Our phrase-based model uses a standard pharaoh
feature functions listed as follows (Koehn et al.,
2003):

• Relative-count based phrase translation proba-
bilities in both directions.

• Lexically weighted feature functions in both di-
rections.

• The supplied trigram language model.

• Distortion model that counts the number of
words skipped.

• The number of words in English-side and the
number of phrases that constitute translation.

For details, please refer to Koehn et al. (2003).
In addition, we added three feature functions to

restrict reorderings and to represent globalized in-
sertion/deletion of words:

• Lexicalized reordering feature function scores
whether a phrase translation pair is monotoni-
cally translated or not (Och et al., 2004):

hlex(ā
K
1 | f̄

K
1 , ē

K
1 ) = log

K
∏

k=1

pr(δk | f̄āk , ēk) (3)

whereδk = 1 iff āk− āk−1 = 1 otherwiseδk = 0.

• Deletion feature function penalizes words that
do not constitute a translation according to a
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Table 1: Number of word alignment by different preprocessings.
de-en es-en fr-en en-de en-es en-fr

lower 17,660,187 17,221,890 16,176,07517,596,764 17,237,723 16,220,520
stem 17,110,890 16,601,306 15,635,90017,052,808 16,597,274 15,658,940
prefix4 16,975,398 16,540,767 15,610,31916,936,710 16,530,810 15,613,755
intersection 12,203,979 12,677,192 11,645,40412,218,997 12,688,773 11,653,242
union 23,186,379 21,709,212 20,760,53923,066,052 21,698,267 20,789,570

Table 2: Number of phrases extracted from differently preprocessed corpora.
de-en es-en fr-en en-de en-es en-fr

lower 37,711,217 61,161,868 56,025,91838,142,663 60,619,435 55,198,497
stem 46,550,101 75,610,696 68,210,96846,749,195 75,473,313 67,733,045
prefix4 53,429,522 78,193,818 70,514,37753,647,033 78,223,236 70,378,947
merged 80,260,191 111,153,303 103,523,20680,666,414 110,787,982 102,940,840

lexicon modelt( f |e) (Bender et al., 2004):

hdel(e
I
1, f J

1 ) =
J
∑

j=1

[

max
0≤i≤I

t( f j|ei) < τdel

]

(4)

The deletion model simply counts the number
of words whose lexicon model probability is
lower than a thresholdτdel. Likewise, we also
added an insertion modelhins(eI

1, f J
1 ) that pe-

nalizes the spuriously inserted English words
using a lexicon modelt(e| f ).

For the hierarchical phrase-based model, we em-
ployed the same feature set except for the distortion
model and the lexicalized reordering model.

3 Phrase Extraction from Different Word
Alignment

We prepared three kinds of corpora differentiated
by tokenization methods. First, the simplest pre-
processing is lower-casing (lower). Second, corpora
were transformed by a Porter’s algorithm based mul-
tilingual stemmer (stem)1. Third, mixed-cased cor-
pora were truncated to the prefix of four letters of
each word (prefix4). For each differently tokenized
corpus, we computed word alignments by a HMM
translation model (Och and Ney, 2003) and by a
word alignment refinement heuristic of “grow-diag-
final” (Koehn et al., 2003). Different preprocessing
yields quite divergent alignment points as illustrated
in Table 1. The table also shows the numbers for
the intersection and union of three alignment anno-
tations.

The (hierarchical) phrase translation pairs are ex-
tracted from three distinctly word aligned corpora.

1We used the Snowball stemmer fromhttp://snowball.
tartarus.org

In this process, each word is recovered into its lower-
cased form. The associated counts are aggregated
to constitute relative count-based feature functions.
Table 2 summarizes the size of phrase tables in-
duced from the corpora. The number of rules ex-
tracted for the hierarchical phrase-based model was
roughly twice as large as those for the phrase-based
model. Fewer word alignments resulted in larger
phrase translation table size as observed in the “pre-
fix4” corpus. The size is further increased by our
aggregation step (merged).

Different induction/refinement algorithms or pre-
processings of a corpus bias word alignment. We
found that some word alignments were consistent
even with different preprocessings, though we could
not justify whether such alignments would match
against human intuition. If we could trust such
consistently aligned words, reliable (hierarchical)
phrase translation pairs would be extracted, which,
in turn, would result in better estimates for relative
count-based feature functions. At the same time, dif-
ferently biased word alignment annotations suggest
alternative phrase translation pairs that is useful for
increasing the coverage of translations.

4 Results

Table 3 shows the open test translation results on
2005 and 2006 test set (the development-test set and
the final test set)2. We used the merged (hierar-
chical) phrase tables for decoding. Feature function
scaling factors were optimized on BLEU score us-
ing the supplied development set that is identical to
the 2005’s development set. We observed that our

2We did not differetiated in-domain or out-of-domain for
2006 test set.
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Table 3: Open test on the 2005/2006 test sets (BLEU [%]).
de-en es-en fr-en en-de en-es en-fr

test2005 Phrase 25.72 30.97 30.97 18.08 30.48 32.14
Rule 25.14 30.11 30.31 17.96 27.96 31.04
2005’s best 24.77 30.95 30.27

test2006 Phrase 23.16 29.90 27.89 15.79 29.54 29.19
Rule 22.74 28.80 27.28 15.99 26.56 27.86

results are very comparable to the last year’s best re-
sults in test2005. Also found that our hierarchical
phrase-based translation (Rule) performed slightly
inferior to the phrase-based translation (Phrase) in
both test sets. The hierarchically combined phrases
seem to be too flexible to represent the relationship
of similar language pairs. Note that our hierarchical
phrase-based model performed better in the English-
to-German translation task. Those language pair re-
quires rather distorted reordering, which could be
represented by hierarchically combined phrases.

We also conducted additional studies on how
differently aligned corpora might affect the trans-
lation quality on Spanish-to-English task for the
2005 test set. Using our phrase-based model,
the BLEU scores for lower/stem/prefix4 were
30.90/30.89/30.76, respectively. The differences of
translation qualities were statistically significant at
the 95% confidence level. Our phrase translation
pairs aggregated from all the differently prepro-
cessed corpora improved the translation quality.

5 Conclusion

We presented two translation models, a phrase-
based model and a hierarchical phrase-based model.
The former performed as well as the last year’s best
system, whereas the latter performed comparable to
our phrase-based model. We are going to experi-
ment new feature functions to restrict the too flexible
reordering represented by our hierarchical phrase-
based model.

We also investigated different word alignment an-
notations, first using lower-cased corpus, second
performing stemming, and third retaining only 4-
letter prefix. Differently preprocessed corpora re-
sulted in quite divergent word alignment. Large
phrase/rule translation tables were accumulated
from three distinctly aligned corpora, which in turn,
increased the translation quality.
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Abstract

We present here the translation system we
used in this year’s WMT shared task. The
main objective of our participation was
to test RAMSES, an open source phrase-
based decoder. For that purpose, we used
the baseline system made available by the
organizers of the shared task1 to build the
necessary models. We then carried out a
pair-to-pair comparison of RAMSES with
PHARAOH on the six different translation
directions that we were asked to perform.
We present this comparison in this paper.

1 Introduction

Phrase-based (PB) machine translation (MT) is now
a popular paradigm, partly because of the relative
ease with which we can automatically create an ac-
ceptable translation engine from a bitext. As a mat-
ter of fact, deriving such an engine from a bitext con-
sists in (more or less) gluing together dedicated soft-
ware modules, often freely available. Word-based
models, or the so-called IBM models, can be trained
using the GIZA or GIZA ++ toolkits (Och and Ney,
2000). One can then train phrase-based models us-
ing the THOT toolkit (Ortiz-Mart́ınez et al., 2005).
For their part, language models currently in use in
SMT systems can be trained using packages such as
SRILM (Stolcke, 2002) and the CMU-SLM toolkit
(Clarkson and Rosenfeld, 1997).

1www.statmt.org/wmt06/shared-task/
baseline.html

Once all the models are built, one can choose
to use PHARAOH (Koehn, 2004), an efficient full-
fledged phrase-based decoder. We only know of
one major drawback when using PHARAOH: its
licensing policy. Indeed, it is available for non-
commercial use in its binary form only. This
severely limits its use, both commercially and sci-
entifically (Walker, 2005).

For this reason, we undertook the design of a
generic architecture calledMOOD (Modular Object-
Oriented Decoder), especially suited for instantiat-
ing SMT decoders. Two major goals directed our
design of this package: offering open source, state-
of-the-art decoders and providing an architecture to
easily build these decoders. This effort is described
in (Patry et al., 2006).

As a proof of concept that our framework (MOOD)
is viable, we attempted to use its functionalities to
implement a clone of PHARAOH, based on the com-
prehensive user manual of the latter. This clone,
called RAMSES, is now part of theMOOD distribu-
tion, which can be downloaded freely from the page
http://smtmood.sourceforge.net .

We conducted a pair-to-pair comparison between
the two engines that we describe in this paper. We
provide an overview of theMOOD architecture in
Section 2. Then we describe briefly RAMSES in Sec-
tion 3. The comparison between the two decoders in
terms of automatic metrics is analyzed in Section 4.
We confirm this comparison by presenting a man-
ual evaluation we conducted on an random sample
of the translations produced by both decoders. This
is reported in Section 5. We conclude in Section 6.
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2 The MOOD Framework

A decoder must implement a specific combination of
two elements: a model representation and a search
space exploration strategy.MOOD is a framework
designed precisely to allow such a combination, by
clearly separating its two elements. The design of
the framework is described in (Patry et al., 2006).

MOOD is implemented with the C++ program-
ming language and is licensed under the Gnu Gen-
eral Public License (GPL)2. This license grants the
right to anybody to use, modify and distribute the
program and its source code, provided that any mod-
ified version be licensed under the GPL as well.
As explained in (Walker, 2005), this kind of license
stimulates new ideas and research.

3 MOOD at work: R AMSES

As we said above, in order to test our design, we
reproduced the most popular phrase-based decoder,
PHARAOH (Koehn, 2004), by following as faithfully
as possible its detailed user manual. The command-
line syntax RAMSES recognizes is compatible with
that of PHARAOH. The output produced by both
decoders are compatible as well and RAMSES can
also output itsn-best lists in the same format as
PHARAOH does, i.e. in a format that theCARMEL

toolkit can parse (Knight and Al-Onaizan, 1999).
Switching decoders is therefore straightforward.

4 RAMSES versus PHARAOH

To compare the translation performances of both
decoders in a meaningful manner, RAMSES and
PHARAOH were given the exact same language
model and translation table for each translation ex-
periment. Both models were produced with the
scripts provided by the organizers. This means in
practice that the language model was trained using
the SRILM toolkit (Stolcke, 2002). The word align-
ment required to build the phrase table was pro-
duced with the GIZA ++ package. A Viterbi align-
ment computed from an IBM model 4 (Brown et al.,
1993) was computed for each translation direction.
Both alignments were then combined in a heuristic
way (Koehn et al., ). Each pair of phrases in the

2http://www.gnu.org/copyleft/gpl.html

model is given 5 scores, described in the PHARAOH

training manual.3

To tune the coefficients of the log-linear
combination that both PHARAOH and RAMSES

use when decoding, we used the organizers’
minimum-error-rate-training.perl
script. This tuning step was performed on the
first 500 sentences of the dedicated development
corpora. Inevitably, RAMSES differs slightly
from PHARAOH, because of some undocumented
embedded heuristics. Thus, we found appropriate
to tune each decoder separately (although with
the same material). In effect, each decoder does
slightly better (withBLEU) when it uses its own best
parameters obtained from tuning, than when it uses
the parameters of its counterpart.

Eight coefficents were adjusted this way: five for
the translation table (one for each score associated
to each pair of phrases), and one for each of the fol-
lowing models: the language model, the so-called
word penalty model and the distortion model (word
reordering model). Each parameter is given a start-
ing value and a range within which it is allowed to
vary. For instance, the language model coefficient’s
starting value is 1.0 and the coefficient is in the range
[0.5–1.5]. Eventually, we obtained two optimal con-
figurations (one for each decoder) with which we
translated theTEST material.

We evaluated the translations produced by both
decoders with the organizers’multi-bleu.perl
script, which computes aBLEU score (and displays
then-gram precisions and brevity penalty used). We
report the scores we gathered on the test corpus of
2000 pairs of sentences in Table 1. Overall, both
decoders offer similar performances, down to the
n-gram precisions. To assess the statistical signifi-
cance of the observed differences inBLEU, we used
the bootstrapping technique described in (Zhang
and Vogel, 2004), randomly selecting 500 sentences
from each test set, 1000 times. Using a 95% con-
fidence interval, we determined that the small dif-
ferences between the two decoders are not statis-
tically significant, except for two tests. For the
direction English to French, RAMSES outperforms
PHARAOH, while in the German to English direc-

3http://www.statmt.org/wmt06/
shared-task/training-release-1.3.tgz
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tion, PHARAOH is better. Whenever a decoder is
better than the other, Table 1 shows that it is at-
tributable to highern-gram precisions; not to the
brevity penalty.

We further investigated these two cases by calcu-
lating BLEU for subsets of the test corpus sharing
similar sentence lengths (Table 2). We see that both
decoders have similar performances on short sen-
tences, but can differ by as much as 1% inBLEU on
longer ones. In contrast, on the Spanish-to-English
translation direction, where the two decoders offer
similar performances, the difference betweenBLEU

scores never exceeds 0.23%.
Expectedly, Spanish and French are much easier

to translate than German. This is because, in this
study, we did not apply any pre-processing strat-
egy that we know can improve performances, such
as clause reordering or compound-word splitting
(Collins et al., 2005; Langlais et al., 2005).

Table 2 shows that it does not seem much more
difficult to translate into English than from English.
This is surprising: translating into a morphologically
richer language should be more challenging. The
opposite is true for German here: without doing any-
thing specific for this language, it is much easier to
translate from German to English than the other way
around. This may be attributed in part to the lan-
guage model: for the test corpus, the perplexity of
the language models provided is 105.5 for German,
compared to 59.7 for English.

5 Human Evaluation

In an effort to correlate the objective metrics with
human reviews, we undertook the blind evaluation
of a sample of 100 pairwise translations for the three
Foreign language-to-English translation tasks. The
pairs were randomly selected from the 3064 trans-
lations produced by each engine. They had to be
different for each decoder and be no more than 25
words long.

Each evaluator was presented with a source sen-
tence, its reference translation and the translation
produced by each decoder. The last two were in ran-
dom order, so the evaluator did not know which en-
gine produced the translation. The evaluator’s task
was two-fold. (1) He decided whether one transla-
tion was better than the other. (2) If he replied ’yes’

D BLEU p1 p2 p3 p4 BP
es→ en

P 30.65 64.10 36.52 23.70 15.91 1.00
R 30.48 64.08 36.30 23.52 15.76 1.00

fr → en
P 30.42 64.28 36.45 23.39 15.64 1.00
R 30.43 64.58 36.59 23.54 15.73 0.99

de→ en
P 25.15 61.19 31.32 18.53 11.61 0.99
R 24.49 61.06 30.75 17.73 10.81 1.00

en→ es
P 29.40 61.86 35.32 22.77 15.02 1.00
R 28.75 62.23 35.03 22.32 14.58 0.99

en→ fr
P 30.96 61.10 36.56 24.49 16.80 1.00
R 31.79 61.57 37.38 25.30 17.53 1.00

en→ de
P 18.03 52.77 22.70 12.45 7.25 0.99
R 18.14 53.38 23.15 12.75 7.47 0.98

Table 1: Performance of RAMSES and PHARAOH

on the provided test set of 2000 pairs of sentences
per language pair.P stands for PHARAOH, R for
RAMSES. All scores are percentages.pn is then-
gram precision and BP is the brevity penalty used
when computingBLEU.

in test (1), he stated whether the best translation was
satisfactory while the other was not. Two evalua-
tors went through the3 × 100 sentence pairs. None
of them understands German; subject B understands
Spanish, and both understand French and English.
The results of this informal, yet informative exercise
are reported in Table 3.

Overall, in many cases (64% and 48% for subject
A and B respectively), the evaluators did not pre-
fer one translation over the other. On the Spanish-
and French-to-English tasks, both subjects slightly
preferred the translations produced by RAMSES. In
about one fourth of the cases where one translation
was preferred did the evaluators actually flag the se-
lected translation as significantly better.

6 Discussion

We presented a pairwise comparison of two de-
coders, RAMSES and PHARAOH. Although RAM -
SESis roughly twice as slow as PHARAOH, both de-
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Test set [0,15] [16,25] [26,∞[
en→ fr (P) 33.52 30.65 30.39
en→ fr (R) 33.78 31.19 31.35
de→ en (P) 29.74 24.30 24.76
de→ en (R) 29.85 23.92 23.78
es→ en (P) 34.23 28.32 30.60
es→ en (R) 34.46 28.39 30.40

Table 2: BLEU scores on subsets of the test corpus
filtered by sentence length ([min words, max words]
intervals), forPharaoh andRamses.

Preferred Improved
P R No P R

es→ en
subject A 13 16 71 6 1
subject B 23 31 46 3 8

fr → en
subject A 18 19 63 5 3
subject B 20 21 59 8 8

de→ en
subject A 24 18 58 5 9
subject B 30 31 39 3 3
Total 128 136 336 30 32

Table 3: Human evaluation figures. The column
Preferred indicates the preference of the subject
(Pharaoh,Ramses orNo preference). The column
Improved shows when a subject did prefer a trans-
lation and also said that the preferred translation was
correct while the other one was not.

coders offer comparable performances, according to
automatic and informal human evaluations.

Moreover, RAMSES is the product of clean frame-
work: MOOD, a solid tool for research projects. Its
code is open source and the architecture is modular,
making it easier for researchers to experiment with
SMT. We hope that the availability of the source
code and the clean design ofMOOD will make it a
useful platform to implement new decoders.
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Abstract

An important problem that is related to
phrase-based statistical translation mod-
els is the obtaining of word phrases from
an aligned bilingual training corpus. In
this work, we propose obtaining word
phrases by means of a Stochastic Inver-
sion Translation Grammar. Experiments
on the shared task proposed in this work-
shop with the Europarl corpus have been
carried out and good results have been ob-
tained.

1 Introduction

Phrase-based statistical translation systems are cur-
rently providing excellent results in real machine
translation tasks (Zens et al., 2002; Och and Ney,
2003; Koehn, 2004). In phrase-based statistical
translation systems, the basic translation units are
word phrases.

An important problem that is related to phrase-
based statistical translation is to automatically ob-
tain bilingual word phrases from parallel corpora.
Several methods have been defined for dealing with
this problem (Och and Ney, 2003). In this work, we
study a method for obtaining word phrases that is
based on Stochastic Inversion Transduction Gram-
mars that was proposed in (Wu, 1997).

Stochastic Inversion Transduction Grammars
(SITG) can be viewed as a restricted Stochas-
tic Context-Free Syntax-Directed Transduction
Scheme. SITGs can be used to carry out a simulta-
neous parsing of both the input string and the output

string. In this work, we apply this idea to obtain
aligned word phrases to be used in phrase-based
translation systems (Sánchez and Benedí, 2006).

In Section 2, we review the phrase-based machine
translation approach. SITGs are reviewed in Sec-
tion 3. In Section 4, we present experiments on the
shared task proposed in this workshop with the Eu-
roparl corpus.

2 Phrase-based Statistical Machine
Transduction

The translation units in a phrase-based statistical
translation system are bilingual phrases rather than
simple paired words. Several systems that fol-
low this approach have been presented in recent
works (Zens et al., 2002; Koehn, 2004). These sys-
tems have demonstrated excellent translation perfor-
mance in real tasks.

The basic idea of a phrase-based statistical ma-
chine translation system consists of the following
steps (Zens et al., 2002): first, the source sentence is
segmented into phrases; second, each source phrase
is translated into a target phrase; and third, the target
phrases are reordered in order to compose the target
sentence.

Bilingual translation phrases are an important
component of a phrase-based system. Different
methods have been defined to obtain bilingual trans-
lations phrases, mainly from word-based alignments
and from syntax-based models (Yamada and Knight,
2001).

In this work, we focus on learning bilingual word
phrases by using Stochastic Inversion Transduction
Grammars (SITGs) (Wu, 1997). This formalism al-
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lows us to obtain bilingual word phrases in a natu-
ral way from the bilingual parsing of two sentences.
In addition, the SITGs allow us to easily incorpo-
rate many desirable characteristics to word phrases
such as length restrictions, selection according to the
word alignment probability, bracketing information,
etc. We review this formalism in the following sec-
tion.

3 Stochastic Inversion Transduction
Grammars

Stochastic Inversion Transduction Grammars
(SITGs) (Wu, 1997) can be viewed as a restricted
subset of Stochastic Syntax-Directed Transduction
Grammars. They can be used to simultaneously
parse two strings, both the source and the target
sentences. SITGs are closely related to Stochastic
Context-Free Grammars.

Formally, a SITG in Chomsky Normal Form1��� can be defined as a tuple
�����	�
�	�
���	�������������

,
where:

�
is a finite set of non-terminal symbols;�����

is the axiom of the SITG;
�
�

is a finite set
of terminal symbols of language 1; and

� �
is a finite

set of terminal symbols of language 2.
�

is a finite
set of: lexical rules of the type �������� , �!�� "�$# ,
�%� ���$# ; direct syntactic rules that are noted as
� � & ')(+* ; and inverse syntactic rules that are
noted as �,�.-�'/(10 , where � � ' � ( �2� , � ��� � ,
# �!�3� , and  is the empty string. When a direct
syntactic rule is used in a parsing, both strings are
parsed with the syntactic rule �4�5'/( . When an
inverse rule is used in a parsing, one string is parsed
with the syntactic rule � � ')( , and the other
string is parsed with the syntactic rule �%� (6' .
Term

�
of the tuple is a function that attaches a prob-

ability to each rule.
An efficient Viterbi-like parsing algorithm that is

based on a Dynamic Programing Scheme is pro-
posed in (Wu, 1997). The proposed algorithm has
a time complexity of 7 ��8 � 8:9;8 # 8 9;8 �<8:� . It is important
to note that this time complexity restricts the use of
the algorithm to real tasks with short strings.

If a bracketed corpus is available, then a modi-
fied version of the parsing algorithm can be defined
to take into account the bracketing of the strings.

1A Normal Form for SITGs can be defined (Wu, 1997) by
analogy to the Chomsky Normal Form for Stochastic Context-
Free Grammars.

The modifications are similar to those proposed in
(Pereira and Schabes, 1992) for the inside algorithm.
Following the notation that is presented in (Pereira
and Schabes, 1992), we can define a partially brack-
eted corpus as a set of sentence pairs that are an-
notated with parentheses that mark constituent fron-
tiers. More precisely, a bracketed corpus = is a set of
tuples

� � � '?> � # � '?@ � , where � and # are strings, '6>
is the bracketing of � , and '6@ is the bracketing of # .
Let A >B@ be a parsing of � and # with the SITG � � . If
the SITG does not have useless symbols, then each
non-terminal that appears in each sentential form
of the derivation AC>B@ generates a pair of substrings
�EDGFBFBF��IH of � , JLKNM1K,O�K 8 � 8 , and #;PQFBFBF�#SR of # ,
J/K!TUK,VWK 8 # 8 , and defines a span

� M � O � of � and
a span

� T � V � of # . A derivation of � and # is com-
patible with ' > and ' @ if all the spans defined by
it are compatible with '6> and '?@ . This compatibil-
ity can be easily defined by the function X � M � O � T � V � ,
which takes a value of J if

� M � O � does not overlap anyY � 'Z> and, if
� T � V � does not overlap any

Y � '[@ ;
otherwise it takes a value of \ . This function filters
those derivations (or partial derivations) whose pars-
ing is not compatible with the bracketing defined in
the sample (Sánchez and Benedí, 2006).

The algorithm can be implemented to compute
only those subproblems in the Dynamic Program-
ing Scheme that are compatible with the bracket-
ing. Thus, the time complexity is 7 ��8 � 8]9;8 # 8 9;8 �<8:� for
an unbracketed string, while the time complexity is
7 ��8 � 8^8 # 8^8 �<8:� for a fully bracketed string. It is impor-
tant to note that the last time complexity allows us to
work with real tasks with longer strings.

Moreover, the parse tree can be efficiently ob-
tained. Each node in the tree relates two word
phrases of the strings being parsed. The related word
phrases can be considered to be the translation of
each other. These word phrases can be used to com-
pute the translation table of a phrase-based machine
statistical translation system.

4 Experiments

The experiments in this section were carried out for
the shared task proposed in this workshop. This
consisted of building a probabilistic phrase transla-
tion table for phrase-based statistical machine trans-
lation. Evaluation was translation quality on an un-
seen test set. The experiments were carried out using
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the Europarl corpus (Koehn, 2005). Table 1 shows
the language pairs and some figures of the training
corpora. The test set had � � \���� sentences.

Languages Sentences # words (input/output)
De-En 751,088 15,257,871 / 16,052,702
Es-En 730,740 15,725,136 / 15,222,505
Fr-En 688,031 15,599,184 / 13,808,505

Table 1: Figures of the training corpora. The lan-
guages are English (En), French (Fr), German (De)
and Spanish (Es)

A common framework was provided to all the par-
ticipants so that the results could be compared. The
material provided comprised of: a training set, a lan-
guage model, a baseline translation system (Koehn,
2004), and a word alignment. The participants could
augment these items by using: their own training
corpus, their own sentence alignment, their own lan-
guage model, or their own decoder. We only used
the provided material for the experiments reported
in this work. The BLEU score was used to measure
the results.

A SITG was obtained for every language pair in
this section as described below. The SITG was used
to parse paired sentences in the training sample by
using the parsing algorithm described in Section 3.
All pairs of word phrases that were derived from
each internal node in the parse tree, except the root
node, were considered for the phrase-based machine
translation system. A translation table was obtained
from paired word phrases by placing them in the ad-
equate order and counting the number of times that
each pair appeared in the phrases. These values were
then appropriately normalized (Sánchez and Benedí,
2006).

4.1 Obtaining a SITG from an aligned corpus

For this experiment, a SITG was constructed for ev-
ery language pair as follows. The alignment was
used to compose lexical rules of the form � �� ��� . The probability of each rule was obtained by
counting. Then, two additional rules of the form
� � & �?� * and � � -��?�+0 were added. It is im-
portant to point out that the constructed SITG did
not parse all the training sentences. Therefore, the
model was smoothed by adding all the rules of the

form � � � �� and � �  "��� with low probabil-
ity, so that all the training sentences could be parsed.
The rules were then adequately normalized.

This SITG was used to obtain word phrases from
the training corpus. Then, these word phrases were
used by the Pharaoh system (Koehn, 2004) to trans-
late the test set. We used word phrases up to a given
length. In these experiments several lengths were
tested and the best values ranged from 6 to 10. Ta-
ble shows 2 the obtained results and the size of the
translation table.

Lang. BLEU Lang. BLEU
De-En 15.91 (8.7) En-De 11.20 (9.7)
Es-En 22.85 (6.5) En-Es 21.18 (8.6)
Fr-En 21.30 (7.3) En-Fr 20.12 (8.1)

Table 2: Obtained results for different pairs and di-
rections. The value in parentheses is the number of
word phrases in the translation table (in millions).

Note that better results were obtained when En-
glish was the target language.

4.2 Using bracketing information in the
parsing

As Section 3 describes, the parsing algorithm for
SITGs can be adequately modified in order to take
bracketed sentences into account. If the bracket-
ing respects linguistically motivated structures, then
aligned phrases with linguistic information can be
used. Note that this approach requires having qual-
ity parsed corpora available. This problem can be
reduced by using automatically learned parsers.

This experiment was carried out to determine the
performance of the translation when some kind of
structural information was incorporated in the pars-
ing algorithm described in Section 3. We bracketed
the English sentences of the Europarl corpus with
an automatically learned parser. This automatically
learned parser was trained with bracketed strings ob-
tained from the UPenn Treebank corpus. We then
obtained word phrases according to the bracketing
by using the same SITG that was described in the
previous section. The obtained phrases were used
with the Pharaoh system. Table 3 shows the results
obtained in this experiment.

Note that the results decreased slightly in all
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Lang. BLEU Lang. BLEU
De-En 15.13 (7.1) En-De 10.40 (9.2)
Es-En 21.61 (6.6) En-Es 19.86 (9.6)
Fr-En 20.57 (6.3) En-Fr 18.95 (8.3)

Table 3: Obtained results for different pairs and di-
rections when word phrases were obtained from a
parsed corpus.The value in parentheses is the num-
ber of word phrases in the translation table (in mil-
lions).

cases. This may be due to the fact that the bracket-
ing incorporated hard restrictions to the paired word
phrases and some of them were too forced. In ad-
dition, many sentences could not be parsed (up to
5% on average) due to the bracketing. However, it
is important to point out that incorporating bracket-
ing information to the English sentences notably ac-
celerated the parsing algorithm, thereby accelerating
the process of obtaining word phrases, which is an
important detail given the magnitude of this corpus.

4.3 Combining word phrases

Finally, we considered the combination of both
kinds of segments. The results can be seen in Ta-
ble 4. This table shows that the results improved the
results of Table 2 when English was the target lan-
guage. However, the results did not improve when
English was the source language. The reason for this
could be that both kinds of segments were different
in nature, and, therefore, the number of word phrases
increased notably, specially in the English part.

Lang. BLEU Lang. BLEU
De-En 16.39 (17.1) En-De 11.02 (15.3)
Es-En 22.96 (11.7) En-Es 20.86 (14.1)
Fr-En 21.73 (17.0) En-Fr 19.93 (14.9)

Table 4: Obtained results for different pairs and di-
rections when word phrases were obtained from a
non-parsed corpus and a parsed corpus.The value in
parentheses is the number of word phrases in the
translation table (in millions).

5 Conclusions

In this work, we have explored the problem of
obtaining word phrases for phrase-based machine

translation systems from SITGs. We have described
how the parsing algorithms for this formalism can
be modified in order to take into account a brack-
eted corpus. If bracketed corpora are used the time
complexity can decrease notably and large tasks can
be considered. Experiments were reported for the
Europarl corpus, and the results obtained were com-
petitive.

For future work, we propose to work along dif-
ferent lines: first, to incorporate new linguistic in-
formation in both the parsing algorithm and in the
aligned corpus; second, to obtain better SITGs from
aligned bilingual corpora; an third, to improve the
SITG by estimating the syntactic rules. We also in-
tend to address other machine translation tasks.
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Abstract

Improvements to Portage and its partici-
pation in the shared task of NAACL 2006
Workshop on Statistical Machine Trans-
lation are described. Promising ideas in
phrase table smoothing and global dis-
tortion using feature-rich models are dis-
cussed as well as numerous improvements
in the software base.

1 Introduction

The statistical machine translation system Portage is
participating in the NAACL 2006 Workshop on Sta-
tistical Machine Translation. This is a good opportu-
nity to do benchmarking against a publicly available
data set and explore the benefits of a number of re-
cently added features.

Section 2 describes the changes that have been
made to Portage in the past year that affect the par-
ticipation in the 2006 shared task. Section 3 outlines
the methods employed for this task and extensions
of it. In Section 4 the results are summarized in tab-
ular form. Following these, there is a conclusions
section that highlights what can be gleaned of value
from these results.

2 Portage

Because this is the second participation of Portage in
such a shared task, a description of the base system
can be found elsewhere (Sadat et al, 2005). Briefly,
Portage is a research vehicle and development pro-
totype system exploiting the state-of-the-art in sta-
tistical machine translation (SMT). It uses a custom

built decoder followed by a rescoring module that
adjusts weights based on a number of features de-
fined on the source sentence. We will devote space
to discussing changes made since the 2005 shared
task.

2.1 Phrase-Table Smoothing

Phrase-based SMT relies on conditional distribu-
tions p(s|t) and p(t|s) that are derived from the joint
frequencies c(s, t) of source/target phrase pairs ob-
served in an aligned parallel corpus. Traditionally,
relative-frequency estimation is used to derive con-
ditional distributions, ie p(s|t) = c(s, t)/

∑
s c(s, t).

However, relative-frequency estimation has the
well-known problem of favouring rare events. For
instance, any phrase pair whose constituents occur
only once in the corpus will be assigned a probabil-
ity of 1, almost certainly higher than the probabili-
ties of pairs for which much more evidence exists.
During translation, rare pairs can directly compete
with overlapping frequent pairs, so overestimating
their probabilities can significantly degrade perfor-
mance.

To address this problem, we implemented two
simple smoothing strategies. The first is based on
the Good-Turing technique as described in (Church
and Gale, 1991). This replaces each observed joint
frequency c with cg = (c + 1)nc+1/nc, where nc

is the number of distinct pairs with frequency c
(smoothed for large c). It also assigns a total count
mass of n1 to unseen pairs, which we distributed
in proportion to the frequency of each conditioning
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phrase. The resulting estimates are:

pg(s|t) =
cg(s, t)∑

s cg(s, t) + p(t)n1
,

where p(t) = c(t)/
∑

t c(t). The estimates for
pg(t|s) are analogous.

The second strategy is Kneser-Ney smoothing
(Kneser and Ney, 1995), using the interpolated vari-
ant described in (Chen and Goodman., 1998):1

pk(s|t) =
c(s, t) − D + D n1+(∗, t) pk(s)∑

s c(s, t)

where D = n1/(n1 + 2n2), n1+(∗, t) is the num-
ber of distinct phrases s with which t co-occurs, and
pk(s) = n1+(s, ∗)/

∑
s n1+(s, ∗), with n1+(s, ∗)

analogous to n1+(∗, t).
Our approach to phrase-table smoothing contrasts

to previous work (Zens and Ney, 2004) in which
smoothed phrase probabilities are constructed from
word-pair probabilities and combined in a log-linear
model with an unsmoothed phrase-table. We believe
the two approaches are complementary, so a combi-
nation of both would be worth exploring in future
work.

2.2 Feature-Rich DT-based distortion

In a recent paper (Kuhn et al, 2006), we presented a
new class of probabilistic ”Segment Choice Models”
(SCMs) for distortion in phrase-based systems. In
some situations, SCMs will assign a better distortion
score to a drastic reordering of the source sentence
than to no reordering; in this, SCMs differ from the
conventional penalty-based distortion, which always
favours less rather than more distortion.

We developed a particular kind of SCM based on
decision trees (DTs) containing both questions of a
positional type (e.g., questions about the distance
of a given phrase from the beginning of the source
sentence or from the previously translated phrase)
and word-based questions (e.g., questions about the
presence or absence of given words in a specified
phrase).

The DTs are grown on a corpus consisting of
segment-aligned bilingual sentence pairs. This

1As for Good-Turing smoothing, this formula applies only
to pairs s, t for which c(s, t) > 0, since these are the only ones
considered by the decoder.

segment-aligned corpus is obtained by training a
phrase translation model on a large bilingual cor-
pus and then using it (in conjunction with a distor-
tion penalty) to carry out alignments between the
phrases in the source-language sentence and those
in the corresponding target-language sentence in a
second bilingual corpus. Typically, the first corpus
(on which the phrase translation model is trained) is
the same as the second corpus (on which alignment
is carried out). To avoid overfitting, the alignment
algorithm is leave-one-out: statistics derived from
a particular sentence pair are not used to align that
sentence pair.

Note that the experiments reported in (Kuhn et
al, 2006) focused on translation of Chinese into En-
glish. The interest of the experiments reported here
on WMT data was to see if the feature-rich DT-based
distortion model could be useful for MT between
other language pairs.

3 Application to the Shared Task: Methods

3.1 Restricted Resource Exercise

The first exercise that was done is to replicate the
conditions of 2005 as closely as possible to see the
effects of one year of research and development.
The second exercise was to replicate all three of
these translation exercises using the 2006 language
model, and to do the three exercises of translat-
ing out of English into French, Spanish, and Ger-
man. This was our baseline for other studies. A
third exercise involved modifying the generation
of the phrase-table to incorporate our Good-Turing
smoothing. All six language pairs were re-processed
with these phrase-tables. The improvement in the
results on the devtest set were compelling. This be-
came the baseline for further work. A fourth ex-
ercise involved replacing penalty-based distortion
modelling with the feature-rich decision-tree based
distortion modelling described above. A fifth ex-
ercise involved the use of a Kneser-Ney phrase-
table smoothing algorithm as an alternative to Good-
Turing.

For all of these exercises, 1-best results after de-
coding were calculated as well as rescoring on 1000-
best lists of results using 12 feature functions (13
in the case of decision-tree based distortion mod-
elling). The results submitted for the shared task
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were the results of the third and fourth exercises
where rescoring had been applied.

3.2 Open Resource Exercise

Our goal in this exercise was to conduct a com-
parative study using additional training data for the
French-English shared task. Results of WPT 2005
showed an improvement of at least 0.3 BLEU point
when exploiting different resources for the French-
English pair of languages. In addition to the training
resources used in WPT 2005 for the French-English
task, i.e. Europarl and Hansard, we used a bilingual
dictionary, Le Grand Dictionnaire Terminologique
(GDT) 2 to train translation models and the English
side of the UN parallel corpus (LDC2004E13) to
train an English language model. Integrating termi-
nological lexicons into a statistical machine transla-
tion engine is not a straightforward operation, since
we cannot expect them to come with attached prob-
abilities. The approach we took consists on view-
ing all translation candidates of each source term or
phrase as equiprobable (Sadat et al, 2006).

In total, the data used in this second part of our
contribution to WMT 2006 is described as follows:
(1) A set of 688,031 sentences in French and En-
glish extracted from the Europarl parallel corpus (2)
A set of 6,056,014 sentences in French and English
extracted from the Hansard parallel corpus, the offi-
cial record of Canada’s parliamentary debates. (3) A
set of 701,709 sentences in French and English ex-
tracted from the bilingual dictionary GDT. (4) Lan-
guage models were trained on the French and En-
glish parts of the Europarl and Hansard. We used
the provided Europarl corpus while omitting data
from Q4/2000 (October-December), since it is re-
served for development and test data. (5) An addi-
tional English language model was trained on 128
million words of the UN Parallel corpus.

For the supplied Europarl corpora, we relied on
the existing segmentation and tokenization, except
for French, which we manipulated slightly to bring
into line with our existing conventions (e.g., convert-
ing l ’ an into l’ an, aujourd ’ hui into aujourd’hui).

For the Hansard corpus used to supplement our
French-English resources, we used our own align-
ment based on Moore’s algorithm, segmentation,

2http://www.granddictionnaire.com/

and tokenization procedures. English preprocessing
simply included lower-casing, separating punctua-
tion from words and splitting off ’s.

4 Results

The results are shown in Table 1. The numbers
shown are BLEU scores. The MC rows correspond
to the multi-corpora results described in the open re-
source exercise section above. All other rows are
from the restricted resource exercise.

The devtest results are the scores computed be-
fore the shared-task submission and were used to
drive the choice of direction of the research. The
test results were computed after the shared-task sub-
mission and serve for validation of the conclusions.

We believe that our use of multiple training cor-
pora as well as our re-tokenization for French and
an enhanced language model resulted in our overall
success in the English-French translation track. The
results for the in-domain test data puts our group at
the top of the ranking table drawn by the organizers
(first on Adequacy and fluency and third on BLEU
scores).

5 Conclusion

Benchmarking with same language model and pa-
rameters as WPT05 reproduces the results with a
tiny improvement. The larger language model used
in 2006 for English yields about half a BLEU. Good-
Turing phrase table smoothing yields roughly half
a BLEU point. Kneser-Ney phrase table smooth-
ing yields between a third and half a BLEU point
more than Good-Turing. Decision tree based distor-
tion yields a small improvement for the devtest set
when rescoring was not used but failed to show im-
provement on the test set.

In summary, the results from phrase-table
smoothing are extremely encouraging. On the other
hand, the feature-rich decision tree distortion mod-
elling requires additional work before it provides a
good pay-back. Fortunately we have some encour-
aging avenues under investigation. Clearly there is
more work needed for both of these areas.
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Table 1: Restricted and open resource results

fr −→ en es −→ en de −→ en en −→ fr en −→ es en −→ de

devtest: with rescoring
WPT05 29.32 29.08 23.21
LM-2005 29.30 29.21 23.41
LM-2006 29.88 29.54 23.94 30.43 28.81 17.33
GT-PTS 30.35 29.84 24.60 30.89 29.54 17.62
GT-PTS+DT-dist 30.09 29.44 24.62 31.06 29.46 17.84
KN-PTS 30.55 30.12 24.66 31.28 29.90 17.78

MC WPT05 29.63
MC 30.09 31.30
MC+GT-PTS 30.75 31.37

devtest: 1-best after decoding
LM-2006 28.59 28.45 23.22 29.22 28.30 16.94
GT-PTS 29.23 28.91 23.67 30.07 28.86 17.32
GT-PTS+DT-dist 29.48 29.07 23.50 30.22 29.46 17.42
KN-PTS 29.77 29.76 23.27 30.73 29.62 17.78
MC WPT05 28.71
MC 29.63 31.01
MC+GT-PTS 29.90 31.22

test: with rescoring
LM-2006 26.64 28.43 21.33 28.06 28.01 15.19
GT-PTS 27.19 28.95 21.91 28.60 28.83 15.38
GT-PTS+DT-dist 26.84 28.56 21.84 28.56 28.59 15.45
KN-PTS 27.40 29.07 21.98 28.96 29.06 15.64
MC 26.95 29.12
MC+GT-PTS 27.10 29.46

test: 1-best after decoding
LM-2006 25.35 27.25 20.46 27.20 27.18 14.60
GT-PTS 25.95 28.07 21.06 27.85 27.96 15.05
GT-PTS+DT-dist 25.86 28.04 20.74 27.85 27.97 14.92
KN-PTS 26.83 28.66 21.36 28.62 28.71 15.42
MC 26.70 28.74
MC+GT-PTS 26.81 29.03

and the OQLF (Office Québécois de la Langue
Française) for permission to use the GDT.
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Abstract

We present translation results on the
shared task ”Exploiting Parallel Texts for
Statistical Machine Translation” gener-
ated by a chart parsing decoder operating
on phrase tables augmented and general-
ized with target language syntactic cate-
gories. We use a target language parser
to generate parse trees for each sentence
on the target side of the bilingual train-
ing corpus, matching them with phrase
table lattices built for the corresponding
source sentence. Considering phrases that
correspond to syntactic categories in the
parse trees we develop techniques to aug-
ment (declare a syntactically motivated
category for a phrase pair) and general-
ize (form mixed terminal and nonterminal
phrases) the phrase table into a synchro-
nous bilingual grammar. We present re-
sults on the French-to-English task for this
workshop, representing significant im-
provements over the workshop’s baseline
system. Our translation system is avail-
able open-source under the GNU General
Public License.

1 Introduction

Recent work in machine translation has evolved
from the traditional word (Brown et al., 1993) and
phrase based (Koehn et al., 2003a) models to in-
clude hierarchical phrase models (Chiang, 2005) and
bilingual synchronous grammars (Melamed, 2004).
These advances are motivated by the desire to in-

tegrate richer knowledge sources within the transla-
tion process with the explicit goal of producing more
fluent translations in the target language. The hi-
erarchical translation operations introduced in these
methods call for extensions to the traditional beam
decoder (Koehn et al., 2003a). In this work we
introduce techniques to generate syntactically mo-
tivated generalized phrases and discuss issues in
chart parser based decoding in the statistical ma-
chine translation environment.

(Chiang, 2005) generates synchronous context-
free grammar (SynCFG) rules from an existing
phrase translation table. These rules can be viewed
as phrase pairs with mixed lexical and non-terminal
entries, where non-terminal entries (occurring as
pairs in the source and target side) represent place-
holders for inserting additional phrases pairs (which
again may contain nonterminals) at decoding time.
While (Chiang, 2005) uses only two nonterminal
symbols in his grammar, we introduce multiple syn-
tactic categories, taking advantage of a target lan-
guage parser for this information. While (Yamada
and Knight, 2002) represent syntactical information
in the decoding process through a series of transfor-
mation operations, we operate directly at the phrase
level. In addition to the benefits that come from
a more structured hierarchical rule set, we believe
that these restrictions serve as a syntax driven lan-
guage model that can guide the decoding process,
as n-gram context based language models do in tra-
ditional decoding. In the following sections, we
describe our phrase annotation and generalization
process followed by the design and pruning deci-
sions in our chart parser. We give results on the
French-English Europarl data and conclude with
prospects for future work.
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2 Rule Generation

We start with phrase translations on the parallel
training data using the techniques and implementa-
tion described in (Koehn et al., 2003a). This phrase
table provides the purely lexical entries in the final
hierarchical rule set that will be used in decoding.
We then use Charniak’s parser (Charniak, 2000) to
generate the most likely parse tree for each Eng-
lish target sentence in the training corpus. Next,
we determine all phrase pairs in the phrase table
whose source and target side occur in each respec-
tive source and target sentence pair defining the
scope of the initial rules in our SynCFG.

Annotation If the target side of any of these ini-
tial rules correspond to a syntactic categoryC of the
target side parse tree, we label the phrase pair with
that syntactic category. This label corresponds to the
left-hand side of our synchronous grammar. Phrase
pairs that do not correspond to a span in the parse
tree are given a default category ”X”, and can still
play a role in the decoding process. In work done af-
ter submission to the 2006 data track, we assign such
phrases an extended category of the formC1 + C2,
C1/C2, or C2\C1, indicating that the phrase pair’s
target side spans two adjacent syntactic categories
(e.g., she went: NP+V), a partial syntactic cate-
gory C1 missing aC2 to the right (e.g.,the great:
NP/NN), or a partialC1 missing aC2 to the left (e.g.,
great wall: DT\NP), respectively.

Generalization In order to mitigate the effects
of sparse data when working with phrase and n-
gram models we would like to generate generalized
phrases, which include non-terminal symbols that
can be filled with other phrases. Therefore, after
annotating the initial rules from the current train-
ing sentence pair, we adhere to (Chiang, 2005) to
recursively generalize each existing rule; however,
we abstract on a per-sentence basis. The grammar
extracted from this evaluation’s training data con-
tains 75 nonterminals in our standard system, and
4000 nonterminals in the extended-category system.
Figure 1 illustrates the annotation and generalization
process.

NP->@DT session/DT session

S -> reprise de @NP/resumption of @NP

NP->la session/the session

X -> reprise de/resumption of

N->session/sessionDT->la/theIN->de/ofN->reprise/resumption

reprise de la session

S -> [NP (N resumption) ]  [PP (IN of)] [NP [ (DT the) (N session) ]

Figure 1: Selected annotated and generalized (dotted arc)

rules for the first sentence of Europarl.

3 Scoring

We employ a log-linear model to assign costs to the
SynCFG. Given a source sentencef , the preferred
translation output is determined by computing the
lowest-cost derivation (combination of hierarchical
and glue rules) yieldingf as its source side, where
the cost of a derivationR1 ◦ · · · ◦Rn with respective
feature vectorsv1, . . . , vn ∈ Rm is given by

m∑
i=1

λi

n∑
j=1

(vj)i .

Here, λ1, . . . , λm are the parameters of the log-
linear model, which we optimize on a held-out por-
tion of the training set (2005 development data) us-
ing minimum-error-rate training (Och, 2003). We
use the following features for our rules:

• source- and target-conditioned neg-log lexical
weights as described in (Koehn et al., 2003b)

• neg-log relative frequencies: left-hand-
side-conditioned, target-phrase-conditioned,
source-phrase-conditioned

• Counters: n.o. rule applications, n.o. target
words

• Flags: IsPurelyLexical (i.e., contains only ter-
minals), IsPurelyAbstract (i.e., contains only
nonterminals), IsXRule (i.e., non-syntactical
span), IsGlueRule
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• Penalties: rareness penaltyexp(1 −
RuleFrequency); unbalancedness penalty
|MeanTargetSourceRatio∗ ‘n.o. source words’−
‘n.o. target words’|

4 Parsing

Our SynCFG rules are equivalent to a probabilistic
context-free grammar and decoding is therefore an
application of chart parsing. Instead of the common
method of converting the CFG grammar into Chom-
sky Normal Form and applying a CKY algorithm
to produce the most likely parse for a given source
sentence, we avoided the explosion of the rule set
caused by the introduction of new non-terminals in
the conversion process and implemented a variant
of the CKY+ algorithm as described in (J.Earley,
1970).

Each cell of the parsing process in (J.Earley,
1970) contains a set of hypergraph nodes (Huang
and Chiang, 2005). A hypergraph node is an equiv-
alence class of complete hypotheses (derivations)
with identical production results (left-hand sides of
the corresponding applied rules). Complete hy-
potheses point directly to nodes in their backwards
star, and the cost of the complete hypothesis is cal-
culated with respect to each back pointer node’s best
cost.

This structure affords efficient parsing with mini-
mal pruning (we use a single parameter to restrict the
number of hierarchical rules applied), but sacrifices
effective management of unique language model
states contributing to significant search errors dur-
ing parsing. At initial submission time we simply
re-scored a K-Best list extracted after first best pars-
ing using the lazy retrieval process in (Huang and
Chiang, 2005).

Post-submission After our workshop submission,
we modified the K-Best list extraction process to in-
tegrate an n-gram language model during K-Best ex-
traction. Instead of expanding each derivation (com-
plete hypothesis) in a breadth-first fashion, we ex-
pand only a single back pointer, and score this new
derivation with its translation model scores and a
language model cost estimate, consisting of an ac-
curate component, based on the words translated so
far, and an estimate based on each remaining (not
expanded) back pointer’s top scoring hypothesis.

To improve the diversity of the final K-Best list,
we keep track of partially expanded hypotheses that
have generated identical target words and refer to the
same hypergraph nodes. Any arising twin hypothe-
sis is immediately removed from the K-Best extrac-
tion beam during the expansion process.

5 Results

We present results that compare our system against
the baseline Pharaoh implementation (Koehn et al.,
2003a) and MER training scripts provided for this
workshop. Our results represent work done before
the submission due date as well as after with the fol-
lowing generalized phrase systems.

• Baseline - Pharaoh with phrases extracted from
IBM Model 4 training with maximum phrase
length 7 and extraction method ‘diag-growth-
final’ (Koehn et al., 2003a)

• Lex - Phrase-decoder simulation: using only
the initial lexical rules from the phrase table,
all with LHS X, the Glue rule, and a binary
reordering rule with its own reordering-feature

• XCat - All nonterminals merged into a single
X nonterminal: simulation of the system Hiero
(Chiang, 2005).

• Syn - Syntactic extraction using the Penn Tree-
bank parse categories as nonterminals; rules
containing up to 4 nonterminal abstraction
sites.

• SynExt - Syntactic extraction using the
extended-category scheme, but with rules only
containing up to 2 nonterminal abstraction
sites.

We also explored the impact of longer initial
phrases by training another phrase table with phrases
up to length 12. Our results are presented in Ta-
ble 1. While our submission time system (Syn using
LM for rescoring only) shows no improvement over
the baseline, we clearly see the impact of integrating
the language model into the K-Best list extraction
process. Our final system shows at statistically sig-
nificant improvement over the baseline (0.78 BLEU
points is the 95 confidence level). We also see a
trend towards improving translation quality as we
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System Dev: w/o LM Dev: LM-rescoring Test: LM-r. Dev: integrated LM Test: int. LM
Baseline - max. phr. length 7 – – – 31.11 30.61
Lex - max. phrase length 7 27.94 29.39 29.95 28.96 29.12
XCat - max. phrase length 7 27.56 30.27 29.81 30.89 31.01
Syn - max. phrase length 7 29.20 30.95 30.58 31.52 31.31
SynExt - max. phrase length 7 – – – 31.73 31.41
Baseline - max. phr. length 12 – – – 31.16 30.90
Lex - max. phr. length 12 – – – 29.30 29.51
XCat - max. phr. length 12 – – – 30.79 30.59
SynExt - max. phr. length 12 – – – 31.07 31.76

Table 1: Translation results (IBM BLEU) for each system on the Fr-En ’06 Shared Task ‘Development Set’ (used for MER
parameter tuning) and ’06 ‘Development Test Set’ (identical to last year’s Shared Task’s test set). The system submitted for
evaluation is highlighted in bold.

employ richer extraction techniques. The relatively
poor performance of Lex with LM in K-Best com-
pared to the baseline shows that we are still making
search errors during parsing despite tighter integra-
tion of the language model.

We also ran an experiment with CMU’s phrase-
based decoder (Vogel et al., 2003) using the length-
7 phrase table. While its development-set score was
only 31.01, the decoder achieved 31.42 on the test
set, placing it at the same level as our extended-
category system for that phrase table.

6 Conclusions

In this work we applied syntax based resources
(the target language parser) to annotate and gener-
alize phrase translation tables extracted via exist-
ing phrase extraction techniques. Our work reaf-
firms the feasibility of parsing approaches to ma-
chine translation in a large data setting, and il-
lustrates the impact of adding syntactic categories
to drive and constrain the structured search space.
While no improvements were available at submis-
sion time, our subsequent performance highlights
the importance of tight integration of n-gram lan-
guage modeling within the syntax driven parsing en-
vironment. Our translation system is available open-
source under the GNU General Public License at:
www.cs.cmu.edu/˜zollmann/samt
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Abstract

This paper reports translation results for
the “Exploiting Parallel Texts for Statis-
tical Machine Translation” (HLT-NAACL
Workshop on Parallel Texts 2006). We
have studied different techniques to im-
prove the standard Phrase-Based transla-
tion system. Mainly we introduce two re-
ordering approaches and add morphologi-
cal information.

1 Introduction

Nowadays most Statistical Machine Translation
(SMT) systems use phrases as translation units. In
addition, the decision rule is commonly modelled
through a log-linear maximum entropy framework
which is based on several feature functions (in-
cluding the translation model), hm. Each feature
function models the probability that a sentence e in
the target language is a translation of a given sen-
tence f in the source language. The weights, λi,
of each feature function are typically optimized to
maximize a scoring function. It has the advantage
that additional features functions can be easily in-
tegrated in the overall system.

This paper describes a Phrase-Based system
whose baseline is similar to the system in Costa-
jussà and Fonollosa (2005). Here we introduce
two reordering approaches and add morphological
information. Translation results for all six trans-
lation directions proposed in the shared task are
presented and discussed. More specifically, four
different languages are considered: English (en),
Spanish (es), French (fr) and German (de); and
both translation directions are considered for the
pairs: EnEs, EnFr, and EnDe. The paper is orga-
nized as follows: Section 2 describes the system;

0This work has been supported by the European Union
under grant FP6-506738 (TC-STAR project) and the TALP
Research Center (under a TALP-UPC-Recerca grant).

Section 3 presents the shared task results; and, fi-
nally, in Section 4, we conclude.

2 System Description

This section describes the system procedure fol-
lowed for the data provided.

2.1 Alignment
Given a bilingual corpus, we use GIZA++ (Och,
2003) as word alignment core algorithm. During
word alignment, we use 50 classes per language
estimated by ’mkcls’, a freely-available tool along
with GIZA++. Before aligning we work with low-
ercase text (which leads to an Alignment Error
Rate reduction) and we recover truecase after the
alignment is done.

In addition, the alignment (in specific pairs of
languages) was improved using two strategies:

Full verb forms The morphology of the verbs
usually differs in each language. Therefore, it is
interesting to classify the verbs in order to address
the rich variety of verbal forms. Each verb is re-
duced into its base form and reduced POS tag as
explained in (de Gispert, 2005). This transforma-
tion is only done for the alignment, and its goal
is to simplify the work of the word alignment im-
proving its quality.

Block reordering (br) The difference in word
order between two languages is one of the most
significant sources of error in SMT. Related works
either deal with reordering in general as (Kanthak
et al., 2005) or deal with local reordering as (Till-
mann and Ney, 2003). We report a local reorder-
ing technique, which is implemented as a pre-
processing stage, with two applications: (1) to im-
prove only alignment quality, and (2) to improve
alignment quality and to infer reordering in trans-
lation. Here, we present a short explanation of the
algorithm, for further details see Costa-jussà and
Fonollosa (2006).
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Figure 1: Example of an Alignment Block, i.e. a
pair of consecutive blocks whose target translation
is swapped

This reordering strategy is intended to infer the
most probable reordering for sequences of words,
which are referred to as blocks, in order to mono-
tonize current data alignments and generalize re-
ordering for unseen pairs of blocks.

Given a word alignment, we identify those pairs
of consecutive source blocks whose translation is
swapped, i.e. those blocks which, if swapped,
generate a correct monotone translation. Figure 1
shows an example of these pairs (hereinafter called
Alignment Blocks).

Then, the list of Alignment Blocks (LAB) is
processed in order to decide whether two consec-
utive blocks have to be reordered or not. By using
the classification algorithm, see the Appendix, we
divide the LAB in groups (Gn, n = 1 . . . N ). In-
side the same group, we allow new internal com-
bination in order to generalize the reordering to
unseen pairs of blocks (i.e. new Alignment Blocks
are created). Based on this information, the source
side of the bilingual corpora are reordered.

In case of applying the reordering technique for
purpose (1), we modify only the source training
corpora to realign and then we recover the origi-
nal order of the training corpora. In case of using
Block Reordering for purpose (2), we modify all
the source corpora (both training and test), and we
use the new training corpora to realign and build
the final translation system.

2.2 Phrase Extraction

Given a sentence pair and a corresponding word
alignment, phrases are extracted following the cri-
terion in Och and Ney (2004). A phrase (or
bilingual phrase) is any pair of m source words
and n target words that satisfies two basic con-
straints: words are consecutive along both sides

of the bilingual phrase, and no word on either side
of the phrase is aligned to a word out of the phrase.
We limit the maximum size of any given phrase to
7. The huge increase in computational and storage
cost of including longer phrases does not provide
a significant improvement in quality (Koehn et al.,
2003) as the probability of reappearance of larger
phrases decreases.

2.3 Feature functions

Conditional and posterior probability (cp, pp)
Given the collected phrase pairs, we estimate the
phrase translation probability distribution by rela-
tive frequency in both directions.

The target language model (lm) consists of an
n-gram model, in which the probability of a trans-
lation hypothesis is approximated by the product
of word n-gram probabilities. As default language
model feature, we use a standard word-based 5-
gram language model generated with Kneser-Ney
smoothing and interpolation of higher and lower
order n-grams (Stolcke, 2002).

The POS target language model (tpos) con-
sists of an N-gram language model estimated over
the same target-side of the training corpus but us-
ing POS tags instead of raw words.

The forward and backwards lexicon mod-
els (ibm1, ibm1−1) provide lexicon translation
probabilities for each phrase based on the word
IBM model 1 probabilities. For computing the
forward lexicon model, IBM model 1 probabili-
ties from GIZA++ source-to-target alignments are
used. In the case of the backwards lexicon model,
target-to-source alignments are used instead.

The word bonus model (wb) introduces a sen-
tence length bonus in order to compensate the sys-
tem preference for short output sentences.

The phrase bonus model (pb) introduces a con-
stant bonus per produced phrase.

2.4 Decoding

The search engine for this translation system is de-
scribed in Crego et al. (2005) which takes into ac-
count the features described above.

Using reordering in the decoder (rgraph) A
highly constrained reordered search is performed
by means of a set of reordering patterns (linguisti-
cally motivated rewrite patterns) which are used to
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extend the monotone search graph with additional
arcs. See the details in Crego et al. (2006).

2.5 Optimization

It is based on a simplex method (Nelder and
Mead, 1965). This algorithm adjusts the log-
linear weights in order to maximize a non-linear
combination of translation BLEU and NIST: 10 ∗
log10((BLEU ∗ 100) + 1) + NIST. The max-
imization is done over the provided development
set for each of the six translation directions under
consideration. We have experimented an improve-
ment in the coherence between all the automatic
figures by integrating two of these figures in the
optimization function.

3 Shared Task Results

3.1 Data

The data provided for this shared task corresponds
to a subset of the official transcriptions of the
European Parliament Plenary Sessions, and it
is available through the shared task website at:
http://www.statmt.org/wmt06/shared-task/.
The development set used to tune the system
consists of a subset (500 first sentences) of the
official development set made available for the
Shared Task.

We carried out a morphological analysis of the
data. The English POS-tagging has been carried
out using freely available TNT tagger (Brants,
2000). In the Spanish case, we have used the
Freeling (Carreras et al., 2004) analysis tool
which generates the POS-tagging for each input
word.

3.2 Systems configurations

The baseline system is the same for all tasks and
includes the following features functions: cp, pp,
lm, ibm1, ibm1−1, wb, pb. The POStag target
language model has been used in those tasks for
which the tagger was available. Table 1 shows the
reordering configuration used for each task.

The Block Reordering (application 2) has been
used when the source language belongs to the Ro-
manic family. The length of the block is lim-
ited to 1 (i.e. it allows the swapping of single
words). The main reason is that specific errors are
solved in the tasks from a Romanic language to
a Germanic language (as the common reorder of
Noun + Adjective that turns into Adjective +
Noun). Although the Block Reordering approach

Task Reordering Configuration
Es2En br2
En2Es br1 + rgraph
Fr2En br2
En2Fr br1 + rgraph
De2En -
En2De -

Table 1: Additional reordering models for each
task: br1 (br2) stands for Block Reordering ap-
plication 1 (application 2); and rgraph refers to
the reordering integrated in the decoder

does not depend on the task, we have not done
the corresponding experiments to observe its ef-
ficiency in all the pairs used in this evaluation.

The rgraph has been applied in those cases
where: we do not use br2 (there is no sense in
applying them simultaneously); and we have the
tagger for the source language model available.

In the case of the pair GeEn, we have not exper-
imented any reordering, we left the application of
both reordering approaches as future work.

3.3 Discussion

Table 2 presents the BLEU scores evaluated on the
test set (using TRUECASE) for each configuration.
The official results were slightly better because a
lowercase evaluation was used, see (Koehn and
Monz, 2006).

For both, Es2En and Fr2En tasks, br helps
slightly. The improvement of the approach de-
pends on the quality of the alignment. The better
alignments allow to extract higher quality Align-
ment Blocks (Costa-jussà and Fonollosa, 2006).

The En2Es task is improved when adding both
br1 and rgraph. Similarly, the En2Fr task seems to
perform fairly well when using the rgraph. In this
case, the improvement of the approach depends on
the quality of the alignment patterns (Crego et al.,
2006). However, it has the advantage of delay-
ing the final decision of reordering to the overall
search, where all models are used to take a fully
informed decision.

Finally, the tpos does not help much when trans-
lating to English. It is not surprising because it was
used in order to improve the gender and number
agreement, and in English there is no need. How-
ever, in the direction to Spanish, the tpos added
to the corresponding reordering helps more as the
Spanish language has gender and number agree-
ment.
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Task Baseline +tpos +rc +tpos+rc
Es2En 29.08 29.08 29.89 29.98
En2Es 27.73 27.66 28.79 28.99
Fr2En 27.05 27.06 27.43 27.23
En2Fr 26.16 - 27.80 -
De2En 21.59 21.33 - -
En2De 15.20 - - -

Table 2: Results evaluated using TRUECASE on
the test set for each configuration: rc stands for
Reordering Configuration and refers to Table 1.
The bold results were the configurations submit-
ted.

4 Conclusions

Reordering is important when using a Phrase-
Based system. Although local reordering is sup-
posed to be included in the phrase structure, per-
forming local reordering improves the translation
quality. In fact, local reordering, provided by the
reordering approaches, allows for those general-
izations which phrases could not achieve. Re-
ordering in the DeEn task is left as further work.
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A Appendix

Here we describe the classification algorithm used
in Section 1.

1. Initialization: set n← 1 and LAB ′ ← LAB.
2. Main part: while LAB ′ is not empty do

• Gn = {(αk, βk)} where (αk, βk) is any
element of LAB ′, i.e. αk is the first
block and βk is the second block of the
Alignment Block k of the LAB ′.
• Recursively, move elements (αi, βi)

from LAB′ to Gn if there is an element
(αj , βj) ∈ Gn such that αi = αj or
βi = βj

• Increase n (i.e. n← n + 1)

3. Ending: For each Gn, construct the two sets
An and Bn which consists on the first and
second element of the pairs in Gn, respec-
tively.
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Abstract

This paper describes the open-source
Phrase-Based Statistical Machine Transla-
tion Decoder -Phramer. The paper also
presents the UTD (HLTRI) system build
for the WMT06 shared task. Our goal was
to improve the translation quality by en-
hancing the translation table and by pre-
processing the source language text

1 Introduction

Despite the fact that the research in Statistical
Machine Translation (SMT) is very active, there
isn’t an abundance of open-source tools available
to the community. In this paper, we present
Phramer, an open-source system that embeds a
phrase-based decoder, a minimum error rate train-
ing (Och, 2003) module and various tools related
to Machine Translation (MT). The software is re-
leased under BSD license and it is available at
http://www.phramer.org/.

We also describe ourPhramer-based system
that we build for the WMT06 shared task.

2 Phramer

Phramer is a phrase-based SMT system written in
Java. It includes:

• A decoder that is compatible withPharaoh
(Koehn, 2004),

• A minimum error rate training (MERT) mod-
ule, compatible withPhramer’s decoder, with

Pharaoh and easily adaptable to other SMT
or non-SMT tasks and

• various tools.

The decoder is fully compatible withPharaoh
1.2 in the algorithms that are implemented, input
files (configuration file, translation table, language
models) and command line. Some of the advantages
of Phramer over Pharaoh are: (1) source code
availability and its permissive license; (2) it is very
fast (1.5–3 times faster for most of the configura-
tions); (3) it can work with various storage layers for
the translation table (TT) and the language models
(LMs): memory, remote (access through TCP/IP),
disk (using SQLite databases1). Extensions for other
storage layers can be very easily implemented; (4) it
is more configurable; (5) it accepts compressed data
files (TTs and LMs); (6) it is very easy to extend; an
example is provided in the package – part-of-speech
decoding on either source language, target language
or both; support for POS-based language models;
(7) it can internally generate n-best lists. Thus no
external tools are required.

The MERT module is a highly modular, efficient
and customizable implementation of the algorithm
described in (Och, 2003). The release has imple-
mentations for BLEU (Papineni et al., 2002), WER
and PER error criteria and it has decoding interfaces
for Phramer and Pharaoh. It can be used to
search parameters over more than one million vari-
ables. It offers features as resume search, reuse hy-
potheses from previous runs and various strategies
to search for optimalλ weight vectors.

1http://www.sqlite.org/
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The package contains a set of tools that include:

• Distributed decoding (compatible with both
Phramer and Pharaoh) – it automatically
splits decoding jobs and distributes them to
workers and assembles the results. It is compat-
ible with lattice generation, therefore it can also
be used during weights search (using MERT).

• Tools to process translation tables – filter the
TT based on the input file, flip TT to reuse it
for English-to-Foreign translation, filter the TT
by phrase length, convert the TT to a database.

3 WMT06 Shared Task

We have assembled a system for participation in the
WMT 2006 shared task based onPhramer and
other tools. We participated in 5 subtasks: DE→EN,
FR→EN, ES→EN, EN→FR and EN→ES.

3.1 Baseline system

3.1.1 Translation table generation

To generate a translation table for each pair of lan-
guages starting from a sentence-aligned parallel cor-
pus, we used a modified version of thePharaoh
training software2. The software also required
GIZA++ word alignment tool(Och and Ney, 2003).

We generated for each phrase pair in the trans-
lation table 5 features: phrase translation probabil-
ity (both directions), lexical weighting (Koehn et al.,
2003) (both directions) and phrase penalty (constant
value).

3.1.2 Decoder

ThePhramer decoder was used to translate the
devtest2006 and test2006 files. We accelerated the
decoding process by using thedistributed decoding
tool.

3.1.3 Minimum Error Rate Training

We determined the weights to combine the mod-
els using the MERT component inPhramer. Be-
cause of the time constrains for the shared task sub-
mission3, we usedPharaoh + Carmel4 as the de-

2http://www.iccs.inf.ed.ac.uk/∼pkoehn/training.tgz
3After the shared task submission, we optimized a lot our

decoder. Before the optimizations (LM optimizations, fixing
bugs that affected performance),Phramer was 5 to 15 times
slower thanPharaoh.

4http://www.isi.edu/licensed-sw/carmel/

coder for the MERT algorithm.

3.1.4 Preprocessing

We removed from the source text the words that
don’t appear either in the source side of the train-
ing corpus (thus we know that the translation table
will not be able to translate them) or in the lan-
guage model for the target language (and we esti-
mate that there is a low chance that the untranslated
word might actually be part of the reference transla-
tion). The purpose of this procedure is to minimize
the risk of inserting words into the automatic trans-
lation that are not in the reference translation.

We applied this preprocessing step only when the
target language was English.

3.2 Enhancements to the baseline systems

Our goal was to improve the translation quality by
enhancing the the translation table.

The following enhancements were implemented:

• reduce the vocabulary size perceived by the
GIZA++ and preset alignment for certain
words

• “normalize” distortion between pairs of lan-
guages by reordering noun-adjective construc-
tions

The first enhancement identifies pairs of tokens in
the parallel sentences that, with a very high proba-
bility, align together and they don’t align with other
tokens in the sentence. These tokens are replaced
with a special identifier, chosen so that GIZA++ will
learn the alignment between them easier than before
replacement. The targeted token types are proper
nouns (detected when the same upper-cased token
were present in both the foreign sentence and the
English sentence) and numbers, also taking into ac-
count the differences between number representa-
tion in different languages (i.e.: 399.99 vs. 399,99).
Each distinct proper noun to be replaced in the sen-
tence was replaced with a specific identifier, distinct
from other replacement identifiers already used in
the sentence. The same procedure was applied also
for numbers. The specific identifiers were reused in
other sentences. This has the effect of reducing the
vocabulary, thus it provides a large number of in-
stances for the special token forms. The change in
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Figure 1: NN-ADJ reordering

Corpus Before After
DE 195,290 184,754
FR 80,348 70,623
ES 102,885 92,827

Table 1: Vocabulary size change due to forced align-
ment

the vocabulary size is shown in Table 1. To simplify
the process, we limited the replacement of tokens
to one-to-one (one real token to one special token),
so that the word alignment file can be directly used
together with the original parallel corpus to extract
phrases required for the generation of the translation
table. Table 2 shows an example of the output.

The second enhancement tries to improve the
quality of the translation by rearranging the words in
the source sentence to better match the correct word
order in the target language (Collins et al., 2005).
We focused on a very specific pattern – based on the
part-of-speech tags, changing the order of NN-ADJ
phrases in the non-English sentences. This process
was also applied to the input dev/test files, when the
target language was English. Figure 1 shows the re-
ordering process and its effect on the alignment.

The expected benefits are:

• Better word alignment due to an alignment

closer to the expected alignment (monotone).

• More phrases extracted from the word aligned
corpus. Monotone alignment tends to generate
more phrases than a random alignment.

• Higher mixture weight for the monotone dis-
tortion model because of fewer reordering con-
straints during MERT, thus the value of the
monotone distortion model increases, “tighten-
ing” the translation.

3.3 Experimental Setup

We implemented the first enhancement on ES→EN
subtask by part-of-speech tagging the Spanish text
usingTreeTagger5 followed by a NN-ADJ inver-
sion heuristic.

The language models provided for the task was
used.

We used the 1,000 out of the 2,000 sentences
in each of the dev2006 datasets to determine
weights for the 8 models used during decoding (one
monotone distortion mode, one language model,
five translation models, one sentence length model)
through MERT. The weights were determined in-
dividually for each pair of source-target languages.

5http://www.ims.uni-stuttgart.de/projekte/corplex/
TreeTagger/DecisionTreeTagger.html
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There are145 settlements in the West Bank ,16 in Gaza , 9 in East Jerusalem ;400,000 people live in them .
Existen145 asentamientos en Cisjordania ,16 enGaza y 9 en Jerusaln Este ; en ellos viven400.000 personas .
There are[x1] settlements in the West Bank ,[x2] in [y1] , [x3] in East Jerusalem ;[x4] people live in them .
Existen[x1] asentamientos en Cisjordania ,[x2] en[y1] y [x3] en Jerusaln Este ; en ellos viven[x4] personas .

Table 2: Forced alignment example

OOV forced NN-ADJ BLEU
Subtask filtering alignment inversion score
DE→EN

√
— — 25.45√ √

— 25.53
FR→EN

√
— — 30.70√ √

— 30.70
ES→EN

√
— — 30.77√ √

— 30.84√ √ √
30.92

EN→FR — — — 31.67
—

√
— 31.79

EN→ES — — — 30.17
—

√
— 30.11

Table 3: Results on thedevtest2006 files

Subtask BLEU 1/2/3/4-gram precision (bp)
DE→EN 22.96 58.8/28.8/16.5/9.9 (1.000)
FR→EN 27.78 61.8/33.6/21.0/13.7 (1.000)
ES→EN 29.93 63.5/36.0/23.0/15.2 (1.000)
EN→FR 28.87 60.0/34.7/22.7/15.2 (0.991)
EN→ES 29.00 62.9/35.8/23.0/15.1 (0.975)

Table 4: Results on thetest2006 files

Using these weights, we measured the BLEU score
on the devtest2006 datasets. Based on the model
chosen, we decoded thetest2006 datasets using the
same weights as fordevtest2006.

3.4 Results

Table 3 presents the results on thedevtest2006 files
using different settings. Bold values represent the
result for the settings that were also chosen for the
final test. Table 4 shows the results on the submitted
files (test2006).

3.5 Conclusions

The enhancements that we proposed provide small
improvements on thedevtest2006 files. As expected,
when we used the NN-ADJ inversion the ratioλD

λLM

increased from 0.545 to 0.675. The LM is the only
model that opposes the tendency of the distortion
model towards monotone phrase order.
Phramer delivers a very good baseline system.

Using only the baseline system, we obtain +0.68 on

DE→EN, +0.43 on FR→EN and -0.18 on ES→EN
difference in BLEU score compared to WPT05’s
best system (Koehn and Monz, 2005). This fact is
caused by the MERT module. This module is capa-
ble of estimating parameters over a large develop-
ment corpus in a reasonable time, thus it is able to
generate highly relevant parameters.
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Abstract

Complex Language Models cannot be eas-
ily integrated in the first pass decoding of
a Statistical Machine Translation system –
the decoder queries the LM a very large
number of times; the search process in the
decoding builds the hypotheses incremen-
tally and cannot make use of LMs that
analyze the whole sentence. We present
in this paper the Language Computer’s
system for WMT06 that employs LM-
powered reranking on hypotheses gener-
ated by phrase-based SMT systems

1 Introduction

Statistical machine translation (SMT) systems com-
bine a number of translation models with one or
more language models. Adding complex language
models in the incremental process of decoding is a
very challenging task. Some language models can
only score sentences as a whole. Also, SMT de-
coders generate during the search process a very
large number of partial hypotheses and query the
language model/models1.

The solution to these problems is either to use
multiple iterations for decoding, to make use of the
complex LMs only for complete hypotheses in the
search space or to generate n-best lists and to rescore
the hypotheses using also the additional LMs. For

1During the translation of the first 10 sentences of thede-
vtest2006.de dataset using Phramer and the configuration de-
scribed in Section 3, the 3-gram LM was queried 27 million
times (3 million distinct queries).

the WMT 2006 shared task we opted for the rerank-
ing solution. This paper describes our solution and
results.

2 System Description

We developed for the WMT 2006 shared task a sys-
tem that is trained on a (a) word-aligned bilingual
corpus, (b) a large monolingual (English) corpus and
(c) an English treebank and it is capable of translat-
ing from a source language (German, Spanish and
French) into English.

Our system embedsPhramer2 (used for mini-
mum error rate training, decoding, decoding tools),
Pharaoh (Koehn, 2004) (decoding),Carmel 3

(helper forPharaoh in n-best generation), Char-
niak’s parser (Charniak, 2001) (language model) and
SRILM4 (n-gram LM construction).

2.1 Translation table construction

We developed a component that builds a translation
table from a word-aligned parallel corpus. The com-
ponent generates the translation table according to
the process described in the Pharaoh training man-
ual5. It generates a vector of 5 numeric values for
each phrase pair:

• phrase translation probability:

φ(f̄ |ē) =
count(f̄ , ē)

count(ē)
, φ(ē|f̄) =

count(f̄ , ē)

count(f̄)

2http://www.phramer.org/ – Java-based open-source phrase
based SMT system

3http://www.isi.edu/licensed-sw/carmel/
4http://www.speech.sri.com/projects/srilm/
5http://www.iccs.inf.ed.ac.uk/∼pkoehn/training.tgz
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• lexical weighting (Koehn et al., 2003):

lex(f̄ |ē, a) =

n∏

i=1

1

|{j|(i, j) ∈ a}|

∑

∀(i,j)∈a

w(fi|ej)

lex(ē|f̄ , a) =

m∏

j=1

1

|{i|(i, j) ∈ a}|

∑

∀(i,j)∈a

w(ej |fi)

• phrase penalty:τ(f̄ |ē) = e; log(τ(f̄ |ē)) = 1

2.2 Decoding

We used thePharaoh decoder for both the Min-
imum Error Rate Training (Och, 2003) and test
dataset decoding. AlthoughPhramer provides de-
coding functionality equivalent toPharaoh’s, we
preferred to usePharaoh for this task because it
is much faster thanPhramer – between 2 and 15
times faster, depending on the configuration – and
preliminary tests showed that there is no noticeable
difference between the output of these two in terms
of BLEU (Papineni et al., 2002) score.

The log-linear model uses 8 features: one distor-
tion feature, one basic LM feature, 5 features from
the translation table and one sentence length feature.

2.3 Minimum Error Rate Training

To determine the best coefficients of the log-linear
model (λ) for both the initial stage decoding and
the second stage reranking, we used theunsmoothed
Minimum Error Rate Training (MERT) component
present in thePhramer package. The MERT com-
ponent is highly efficient; the time required to search
a set of 200,000 hypotheses is less than 30 seconds
per iteration (search from a previous/randomλ to
a local maximum) on a 3GHz P4 machine. We
also used thedistributed decoding component from
Phramer to speed up the search process.

We generated the n-best lists required for MERT
using theCarmel toolkit. Pharaoh outputs a lat-
tice for each input sentence, from whichCarmel
extracts a specific number of hypotheses. We used
the europarl.en.srilm language model for decoding
the n-best lists.

The weighting vector is calculated individually
for each subtask (pair of source and target lan-
guages).

No. of sentences 96.7 M
No. of tokens 2.3 B
Vocabulary size 1.6 M
Distinct grams 1 B

Table 1: English Gigaword LM statistics

2.4 Language Models for reranking

We employed both syntactic language models and
n-gram based language models extracted from very
large corpora for improving the quality of the trans-
lation through reranking of the n-best list. These lan-
guage models add a total of 13 new features to the
log-linear model.

2.4.1 English Gigaword

We created large-scale n-gram language models
using English Gigaword Second Edition6 (EGW).

We split the corpus into sentences, tokenized the
corpus, lower-cased the sentences, replaced every
digit with “9” to cluster different numbers into the
same unigram entry, filtered noisy sentences and we
collected n-gram counts (up to 4-grams). Table 1
presents the statistics related to this process.

We pruned the unigrams that appeared less than
15 times in the corpus and all the n-grams that con-
tain the pruned unigrams. We also pruned 3-grams
and 4-grams that appear only once in the corpus.
Based on these counts, we calculated 4 features for
each sentence: the logarithm of the probability of
the sentence based on unigrams, on bigrams, on 3-
grams and on 4-grams. The probabilities of each
word in the analyzed translation hypotheses were
bounded by10−5 (to avoid overall zero probability
of a sentence caused by zero-counts).

Based on the unpruned counts, we calculated 8
additional features: how many of the n-grams in the
the hypothesis appear in the EGW corpus and also
how many of the n-grams in the hypotheses don’t
appear in the Gigaword corpus (n = 1..4). The
two types of counts will have different behavior only
when they are used to discriminate between two hy-
potheses with different length.

The number of n-grams in each of the two cases
is presented in Table 2.

6http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2005T12
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sentence probability n-gram hit/miss
model model

1-grams 310 K 310 K
2-grams 45 M 45 M
3-grams 123 M 283 M
4-grams 235 M 675 M

Table 2: Number of n-gram entries in the EGW LM

2.4.2 Charniak parsing

We used Charniak’s parser as an additional LM
(Charniak, 2001) in reranking. The parser pro-
vides one feature for our model – the log-grammar-
probability of the sentence.

We retrained the parser on lowercased Penn Tree-
bank II (Marcus et al., 1993), to match the lower-
cased output of the MT decoder.

Considering the huge number of hypotheses that
needed to be parsed for this task, we set it to parse
very fast (using the command-line parameter-T107).

2.5 Reranking and voting

A λ weights vector trained over the 8 basic features
(λ1) is used to decode a n-best list. Then, aλ vector
trained over all 21 features (λ2) is used to rerank
the n-best list, potentially generating a new first-best
hypothesis.

To improve the results, we generated during train-
ing a set of distinctλ2 weight vectors (4-10 different
weight vectors). Eachλ2 picks a preferred hypoth-
esis. The final hypothesis is chosen using a voting
mechanism. The computational cost of the voting
process is very low - each of theλ2 is applied on the
same set of hypotheses - generated by a singleλ1.

2.6 Preprocessing

The vocabulary of languages like English, French
and Spanish is relatively small. Most of the new
words that appear in a text and didn’t appear in a pre-
defined large text (i.e.: translation table) are abbre-
viations and proper nouns, that usually don’t change
their form when they are translated into another lan-
guage. ThusPharaoh and Phramer deal with
out-of-vocabulary (OOV) words – words that don’t
appear in the translation table – by copying them
into the output translation. German is a compound-
ing language, thus the German vocabulary is virtu-

7Time factor. Higher is better. Default: 210

ally infinite. In order to avoid OOV issues for new
text, we applied a heuristic to improve the probabil-
ity of properly translating compound words that are
not present in the translation table. We extracted the
German vocabulary from the translation table. Then,
for each word in a text to be translated (development
set or test set), we checked if it is present in the trans-
lation dictionary. If it was not present, we checked
if it can be obtained by concatenating two words in
the dictionary. If we found at least one variant of
splitting the unknown word, we altered the text by
dividing the word into the corresponding pieces. If
there are multiple ways of splitting, we randomly
took one. The minimum length for the generated
word is 3 letters.

In order to minimize the risk of inserting words
that are not in the reference translation into the out-
put translation, we applied a OOV pruning algorithm
(Koehn et al., 2005) – we removed every word in the
text to be translated that we know we cannot trans-
late (doesn’t appear either in the foreign part of the
parallel corpus used for training) or in what we ex-
pect to be present in an English text (doesn’t appear
in the English Gigaword corpus). This method was
applied to all the input text that was automatically
translated – development and test; German, French
and Spanish.

For the German-to-English translation, the com-
pound word splitting algorithm was applied before
the unknown word removal process.

3 Experimental Setup

We generated the translation tables for each pair
of languages using the alignment provided for this
shared task.

We split thedev2006 files into two halves. The
first half was used to determineλ1. Using λ1, we
created a 500-best list for each sentence in the sec-
ond half. We calculated the value of the enhanced
features (EGW and Charniak) for each of these hy-
potheses. Over this set of almost 500 K hypothe-
ses, we computed 10 differentλ2 using MERT. The
search process was seeded usingλ1 padded with 0
for the new 13 features. We sorted theλ2s by the
BLEU score estimated by the MERT algorithm. We
pruned manually theλ2s that diverge too much from
the overall set ofλ2s (based on the observation that
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500-best best voting WPT05
oracle λ1 λ2 λ2 best

DE-EN
– no split 25.70
– split 33.63 25.81 26.29 26.28 24.77
FR-EN 37.33 30.90 31.21 31.21 30.27
ES-EN 38.06 31.13 31.15 31.22 30.95

Table 3: BLEU scores on thedevtest2006 datasets.
Comparison with WPT05 results

500-best oracle λ1 votingλ2

DE-EN (split) 30.93 23.03 23.55
FR-EN 34.71 27.83 28.00
ES-EN 37.68 29.97 30.12

Table 4: BLEU scores on thetest2006 datasets. Sub-
mitted results are bolded.

these weights are overfitting). We picked from the
remaining set the bestλ2 and a preferred subset of
λ2s to be used in voting.

Theλ1 was also used to decode a 500-best list for
each sentence in thedevtest2006 and test2006 sets.
After computing value of the enhanced features for
each of these hypotheses, we applied the reranking
algorithm to pick a new first-best hypothesis – the
output of our system.

We used the following parameters for decoding:
-dl 5 -b 0.0001 -ttable-limit 30 -s 200 for French and
Spanish and-dl 9 -b 0.00001 -ttable-limit 30 -s 200
for German.

4 Results

Table 3 presents the detailed results of our system on
thedevtest2006 datasets and comparison with WMT
2006 best results8. The final results, on the test set
of the shared task, are reported in Table 4.

5 Conclusions

By analyzing the results, we observe that a very
powerful component of our system is the MERT
component ofPhramer. It provided a very high
baseline for thedevtest2006 sets (WPT05 test sets).

The additional language models seem to consis-
tently improve the results, although the increase is
not very significant on FR-EN and ES-EN subtasks.
The cause might be the specifics of the data involved

8http://www.statmt.org/wpt05/mt-shared-task/

in this shared task – mostly European Parliament
proceedings, which is different than the domain of
both Treebank and English Gigaword – newswire.
The enhanced LMs compete with the default LM
(which is also part of the model) that is trained on
European Parliament data.

The word splitting heuristics offers also a small
improvement for the performance on DE-EN sub-
task.

Voting seems to slightly improve the results in
some cases (ES-EN subtask). We believe that the
voting implementation reducesλ weights overfit-
ting, by combining the output of multiple local max-
ima of the development set. The size of the de-
velopment set used to generateλ1 and λ2 (1000
sentences) compensates the tendency of the un-
smoothed MERT algorithm to overfit (Och, 2003)
by providing a high ratio between number of vari-
ables and number of parameters to be estimated.
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Abstract
The joint probability model proposed by
Marcu and Wong (2002) provides a strong
probabilistic framework for phrase-based
statistical machine translation (SMT). The
model’s usefulness is, however, limited by
the computational complexity of estimat-
ing parameters at the phrase level. We
present the first model to use word align-
ments for constraining the space of phrasal
alignments searched during Expectation
Maximization (EM) training. Constrain-
ing the joint model improves performance,
showing results that are very close to state-
of-the-art phrase-based models. It also al-
lows it to scale up to larger corpora and
therefore be more widely applicable.

1 Introduction

Machine translation is a hard problem because of
the highly complex, irregular and diverse nature
of natural languages. It is impossible to accurately
model all the linguistic rules that shape the trans-
lation process, and therefore a principled approach
uses statistical methods to make optimal decisions
given incomplete data.

The original IBM Models (Brown et al., 1993)
learn word-to-word alignment probabilities which
makes it computationally feasible to estimate
model parameters from large amounts of train-
ing data. Phrase-based SMT models, such as the
alignment template model (Och, 2003), improve
on word-based models because phrases provide
local context which leads to better lexical choice
and more reliable local reordering. However, most
phrase-based models extract their phrase pairs
from previously word-aligned corpora using ad-
hoc heuristics. These models perform no search

for optimal phrasal alignments. Even though this
is an efficient strategy, it is a departure from the
rigorous statistical framework of the IBM Models.

Marcu and Wong (2002) proposed the joint
probability model which directly estimates the
phrase translation probabilities from the corpus in
a theoretically governed way. This model neither
relies on potentially sub-optimal word alignments
nor on heuristics for phrase extraction. Instead, it
searches the phrasal alignment space, simultane-
ously learning translation lexicons for both words
and phrases. The joint model has been shown to
outperform standard models on restricted data sets
such as the small data track for Chinese-English in
the 2004 NIST MT Evaluation (Przybocki, 2004).

However, considering all possible phrases and
all their possible alignments vastly increases the
computational complexity of the joint model when
compared to its word-based counterpart. In this
paper, we propose a method of constraining the
search space of the joint model to areas where
most of the unpromising phrasal alignments are
eliminated and yet as many potentially useful
alignments as possible are still explored. The
joint model is constrained to phrasal alignments
which do not contradict a set high confidence word
alignments for each sentence. These high con-
fidence alignments could incorporate information
from both statistical and linguistic sources. In this
paper we use the points of high confidence from
the intersection of the bi-directional Viterbi word
alignments to constrain the model, increasing per-
formance and decreasing complexity.
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2 Translation Models

2.1 Standard Phrase-based Model
Most phrase-based translation models (Och, 2003;
Koehn et al., 2003; Vogel et al., 2003) rely on
a pre-existing set of word-based alignments from
which they induce their parameters. In this project
we use the model described by Koehn et al. (2003)
which extracts its phrase alignments from a corpus
that has been word aligned. From now on we re-
fer to this phrase-based translation model as the
standard model. The standard model decomposes
the foreign input sentence F into a sequence of
I phrases f1, . . . , f I . Each foreign phrase fi is
translated to an English phrase ei using the prob-
ability distribution θ(f i|ei). English phrases may
be reordered using a relative distortion probability.

This model performs no search for optimal
phrase pairs. Instead, it extracts phrase pairs
(f i, ei) in the following manner. First, it uses the
IBM Models to learn the most likely word-level
Viterbi alignments for English to Foreign and For-
eign to English. It then uses a heuristic to recon-
cile the two alignments, starting from the points
of high confidence in the intersection of the two
Viterbi alignments and growing towards the points
in the union. Points from the union are selected if
they are adjacent to points from the intersection
and their words are previously unaligned.

Phrases are then extracted by selecting phrase
pairs which are ‘consistent’ with the symmetrized
alignment, which means that all words within the
source language phrase are only aligned to the
words of the target language phrase and vice versa.
Finally the phrase translation probability distribu-
tion is estimated using the relative frequencies of
the extracted phrase pairs.

This approach to phrase extraction means that
phrasal alignments are locked into the sym-
metrized alignment. This is problematic because
the symmetrization process will grow an align-
ment based on arbitrary decisions about adjacent
words and because word alignments inadequately
represent the real dependencies between transla-
tions.

2.2 Joint Probability Model
The joint model (Marcu and Wong, 2002), does
not rely on a pre-existing set of word-level align-
ments. Like the IBM Models, it uses EM to align
and estimate the probabilities for sub-sentential
units in a parallel corpus. Unlike the IBM Mod-

els, it does not constrain the alignments to being
single words.

The joint model creates phrases from words and
commonly occurring sequences of words. A con-
cept, ci, is defined as a pair of aligned phrases
< ei, f i >. A set of concepts which completely
covers the sentence pair is denoted by C. Phrases
are restricted to being sequences of words which
occur above a certain frequency in the corpus.
Commonly occurring phrases are more likely to
lead to the creation of useful phrase pairs, and
without this restriction the search space would be
much larger.

The probability of a sentence and its translation
is the sum of all possible alignments C, each of
which is defined as the product of the probability
of all individual concepts:

p(F,E) =
∑
C∈C

∏
<ei,f i>∈C

p(< ei, f i >) (1)

The model is trained by initializing the trans-
lation table using Stirling numbers of the second
kind to efficiently estimate p(< ei, f i >) by cal-
culating the proportion of alignments which con-
tain p(< ei, f i >) compared to the total number
of alignments in the sentence (Marcu and Wong,
2002). EM is then performed by first discovering
an initial phrasal alignments using a greedy algo-
rithm similar to the competitive linking algorithm
(Melamed, 1997). The highest probability phrase
pairs are iteratively selected until all phrases are
are linked. Then hill-climbing is performed by
searching once for each iteration for all merges,
splits, moves and swaps that improve the proba-
bility of the initial phrasal alignment. Fractional
counts are collected for all alignments visited.

Training the IBM models is computationally
challenging, but the joint model is much more de-
manding. Considering all possible segmentations
of phrases and all their possible alignments vastly
increases the number of possible alignments that
can be formed between two sentences. This num-
ber is exponential with relation to the length of the
shorter sentence.

3 Constraining the Joint Model

The joint model requires a strategy for restricting
the search for phrasal alignments to areas of the
alignment space which contain most of the proba-
bility mass. We propose a method which examines
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phrase pairs that are consistent with a set of high
confidence word alignments defined for the sen-
tence. The set of alignments are taken from the in-
tersection of the bi-directional Viterbi alignments.

This strategy for extracting phrase pairs is simi-
lar to that of the standard phrase-based model and
the definition of ‘consistent’ is the same. How-
ever, the constrained joint model does not lock
the search into a heuristically derived symmetrized
alignment. Joint model phrases must also occur
above a certain frequency in the corpus to be con-
sidered.

The constraints on the model are binding during
the initialization phase of training. During EM,
inconsistent phrase pairs are given a small, non-
zero probability and are thus not considered un-
less unaligned words remain after linking together
high probability phrase pairs. All words must be
aligned, there is no NULL alignment like in the
IBM models.

By using the IBM Models to constrain the joint
model, we are searching areas in the phrasal align-
ment space where both models overlap. We com-
bine the advantage of prior knowledge about likely
word alignments with the ability to perform a
probabilistic search around them.

4 Experiments

All data and software used was from the NAACL
2006 Statistical Machine Translation workshop
unless otherwise indicated.

4.1 Constraints

The unconstrained joint model becomes in-
tractable with very small amounts of training data.
On a machine with 2 Gb of memory, we were
only able to train 10,000 sentences of the German-
English Europarl corpora. Beyond this, pruning is
required to keep the model in memory during EM.
Table 1 shows that the application of the word con-
straints considerably reduces the size of the space
of phrasal alignments that is searched. It also im-
proves the BLEU score of the model, by guiding it
to explore the more promising areas of the search
space.

4.2 Scalability

Even though the constrained joint model reduces
complexity, pruning is still needed in order to scale
up to larger corpora. After the initialization phase
of the training, all phrase pairs with counts less

Unconstrained Constrained
No. Concepts 6,178k 1,457k
BLEU 19.93 22.13
Time(min) 299 169

Table 1. The impact of constraining the joint model
trained on 10,000 sentences of the German-English
Europarl corpora and tested with the Europarl test set
used in Koehn et al. (2003)

than 10 million times that of the phrase pair with
the highest count, are pruned from the phrase ta-
ble. The model is also parallelized in order to
speed up training.

The translation models are included within a
log-linear model (Och and Ney, 2002) which al-
lows a weighted combination of features func-
tions. For the comparison of the basic systems
in Table 2 only three features were used for both
the joint and the standard model: p(e|f), p(f |e)
and the language model, and they were given equal
weights.

The results in Table 2 show that the joint model
is capable of training on large data sets, with a
reasonable performance compared to the standard
model. However, here it seems that the standard
model has a slight advantage. This is almost cer-
tainly related to the fact that the joint model results
in a much smaller phrase table. Pruning eliminates
many phrase pairs, but further investigations indi-
cate that this has little impact on BLEU scores.

BLEU Size
Joint Model 25.49 2.28
Standard Model 26.15 19.04

Table 2. Basic system comparisons: BLEU scores
and model size in millions of phrase pairs for Spanish-
English

The results in Table 3 compare the joint and the
standard model with more features. Apart from
including all Pharaoh’s default features, we use
two new features for both the standard and joint
models: a 5-gram language model and a lexical-
ized reordering model as described in Koehn et al.
(2005). The weights of the feature functions, or
model components, are set by minimum error rate
training provided by David Chiang from the Uni-
versity of Maryland.

On smaller data sets (Koehn et al., 2003) the
joint model shows performance comparable to the
standard model, however the joint model does
not reach the level of performance of the stan-
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EN-ES ES-EN
Joint
3-gram, dl4 20.51 26.64
5-gram, dl6 26.34 27.17
+ lex. reordering 26.82 27.80
Standard Model
5-gram, dl6
+ lex. reordering 31.18 31.86

Table 3. Bleu scores for the joint model and the stan-
dard model showing the effect of the 5-gram language
model, distortion length of 6 (dl) and the addition of
lexical reordering for the English-Spanish and Spanish-
English tasks.

dard model for this larger data set. This could
be due to the fact that the joint model results in
a much smaller phrase table. During EM only
phrase pairs that occur in an alignment visited dur-
ing hill-climbing are retained. Only a very small
proportion of the alignment space can be searched
and this reduces the chances of finding optimum
parameters. The small number of alignments vis-
ited would lead to data sparseness and over-fitting.
Another factor could be efficiency trade-offs like
the fast but not optimal competitive linking search
for phrasal alignments.

4.3 German-English submission

We also submitted a German-English system using
the standard approach to phrase extraction. The
purpose of this submission was to validate the syn-
tactic reordering method that we previously pro-
posed (Collins et al., 2005). We parse the Ger-
man training and test corpus and reorder it accord-
ing to a set of manually devised rules. Then, we
use our phrase-based system with standard phrase-
extraction, lexicalized reordering, lexical scoring,
5-gram LM, and the Pharaoh decoder.

On the development test set, the syntactic re-
ordering improved performance from 26.86 to
27.70. The best submission in last year’s shared
task achieved a score of 24.77 on this set.

5 Conclusion

We presented the first attempt at creating a system-
atic framework which uses word alignment con-
straints to guide phrase-based EM training. This
shows competitive results, to within 0.66 BLEU
points for the basic systems, suggesting that a
rigorous probabilistic framework is preferable to
heuristics for extracting phrase pairs and their

probabilities.
By introducing constraints to the alignment

space we can reduce the complexity of the joint
model and increase its performance, allowing it to
train on larger corpora and making the model more
widely applicable.

For the future, the joint model would benefit
from lexical weighting like that used in the stan-
dard model (Koehn et al., 2003). Using IBM
Model 1 to extract a lexical alignment weight for
each phrase pair would decrease the impact of data
sparseness, and other kinds smoothing techniques
will be investigated. Better search algorithms for
Viterbi phrasal alignments during EM would in-
crease the number and quality of model parame-
ters.

This work was supported in part under the
GALE program of the Defense Advanced Re-
search Projects Agency, Contract No. HR0011-
06-C-0022.
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Abstract

The  Microsoft  Research  translation  system  is  a
syntactically  informed  phrasal  SMT  system  that
uses  a  phrase  translation  model  based  on
dependency treelets and a global reordering model
based  on  the  source  dependency  tree.  These
models  are  combined  with  several  other
knowledge  sources  in  a  log-linear  manner.  The
weights of the individual components in the log-
linear model  are set  by an automatic  parameter-
tuning method.  We give a brief  overview of the
components  of  the  system  and  discuss  our
experience with the Europarl data translating from
English to Spanish.

1. Introduction

The  dependency  treelet  translation  system
developed at MSR is a statistical MT system that
takes  advantage  of  linguistic  tools,  namely  a
source language dependency parser,  as well as a
word alignment component. [1]

To  train  a  translation  system,  we  require  a
sentence-aligned parallel  corpus.  First  the source
side is parsed to obtain dependency trees. Next the
corpus  is  word-aligned,  and  the  source
dependencies  are  projected  onto  the  target
sentences  using  the  word  alignments.  From  the
aligned dependency corpus we extract  all  treelet
translation pairs,  and train an order model and a
bi-lexical dependency model.

To translate, we parse the input sentence, and
employ  a  decoder  to  find  a  combination  and
ordering of treelet translation pairs that cover the
source tree and are optimal according to a set of
models.  In  a  now-common generalization  of  the
classic  noisy-channel  framework,  we  use  a  log-
linear combination of models [2], as in below:

translationS , F ,Λ =argmax
T {∑f ∈F

λ
f

f S ,T }
Such an approach toward translation scoring has
proven  very  effective  in  practice,  as  it  allows  a
translation system to incorporate information from
a  variety  of  probabilistic  or  non-probabilistic
sources.  The weights  Λ = {  λf } are selected by
discriminatively training against held out data.

2. System Details

A brief word on notation: s and t represent source
and target lexical nodes; S and T represent source
and target trees; s and t represent source and target
treelets  (connected  subgraphs  of  the  dependency
tree).  The  expression  ∀t∈ T refers  to  all  the
lexical items in the target language tree T and |T|
refers to the count of lexical items in  T. We use
subscripts to indicate selected words: Tn represents
the n

th
 lexical item in an in-order traversal of T.

2.1. Training

We  use  the  broad  coverage  dependency  parser
NLPWIN  [3]  to  obtain  source  language
dependency  trees,  and  we  use  GIZA++  [4]  to
produce  word  alignments.  The  GIZA++ training
regimen  and  parameters  are  tuned  to  optimize
BLEU [5] scores on held-out data. Using the word
alignments,  we  follow a  set  of  dependency  tree
projection  heuristics  [1]  to  construct  target
dependency  trees,  producing  a  word-aligned
parallel  dependency  tree  corpus.  Treelet
translation pairs are extracted by enumerating all
source treelets (to a maximum size) aligned to a
target treelet.

2.2. Decoding

We use a tree-based decoder, inspired by dynamic
programming. It searches for an approximation of
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the n-best translations of each subtree of the input
dependency  tree.  Translation  candidates  are
composed from treelet  translation pairs  extracted
from the training corpus. This process is described
in more detail in [1].

2.3. Models

2.3.1. Channel models

We  employ  several  channel  models:  a  direct
maximum likelihood estimate of the probability of
target  given  source,  as  well  as  an  estimate  of
source given target and target given source using
the word-based IBM Model 1 [6]. For MLE, we
use  absolute  discounting  to  smooth  the
probabilities:

PMLE  t∣s =
c  s , t −λ

c  s ,* 

Here,  c represents  the  count  of  instances  of  the
treelet pair  〈s, t〉 in the training corpus, and  λ is
determined empirically.

For Model 1 probabilities we compute the sum
over all possible alignments of the treelet without
normalizing for length. The calculation of source
given  target  is  presented  below;  target  given
source is calculated symmetrically.

PM1 t∣s =∏
t∈t
∑
s∈s

P  t∣s 

2.3.2. Bilingual n-gram channel models

Traditional  phrasal  SMT systems  are  beset  by a
number of theoretical problems, such as the ad hoc
estimation  of  phrasal  probability,  the  failure  to
model  the  partition  probability,  and  the  tenuous
connection  between  the  phrases  and  the
underlying  word-based  alignment  model.  In
string-based  SMT  systems,  these  problems  are
outweighed by the key role played by phrases in
capturing  “local”  order.  In  the  absence  of  good
global  ordering  models,  this  has  led  to  an

inexorable  push  towards  longer  and  longer
phrases, resulting in serious practical problems of
scale, without, in the end, obviating the need for a
real global ordering story.

In [13] we discuss these issues in greater detail
and  also  present  our  approach  to  this  problem.
Briefly,  we  take  as  our  basic  unit  the  Minimal
Translation Unit (MTU) which we define as a set
of source and target word pairs such that there are
no word alignment links between distinct MTUs,
and  no  smaller  MTUs  can  be  extracted  without
violating the previous constraint.  In other words,
these are the minimal non-compositional phrases.
We then build models based on n-grams of MTUs
in  source  string,  target  string  and  source
dependency  tree  order.  These  bilingual  n-gram
models  in  combination  with  our  global  ordering
model allow us to use shorter phrases without any
loss  in  quality,  or  alternately  to  improve  quality
while keeping phrase size constant.

As an example,  consider the aligned sentence
pair in Figure 1. There are seven MTUs:

m1 = <we should / hemos>
m2 = <NULL / de>
m3 = <follow / cumplir>
m4 = <the / el>
m5 = <Rio / Rio>
m6 = <agenda / programa>
m7 = <NULL / de>

We can then predict the probability of each MTU
in the context of (a) the previous MTUs in source
order,  (b) the previous MTUs in target order,  or
(c) the ancestor MTUs in the tree. We consider all
of these traversal orders, each acting as a separate
feature function in the log linear combination. For
source and target traversal order we use a trigram
model, and a bigram model for tree order.

2.3.3. Target language models

We  use  both  a  surface  level  trigram  language
model  and a dependency-based bigram language
model  [7],  similar  to  the  bilexical  dependency
modes  used  in  some  English  Treebank  parsers
(e.g. [8]).

Psurf T =∏
i=1

∣T∣

Ptrisurf T i∣T i−2 ,T i−1 

Pbilex T =∏
i=1

∣T∣

Pbidep T i∣parent T i 

Ptrisurf is a Kneser-Ney smoothed trigram language
model  trained  on  the  target  side  of  the  training
corpus,  and  Pbilex is  a  Kneser-Ney  smoothed

we ­2 should ­1 follow the ­2 Rio ­1 agenda +1

hemos ­1 de +1 cumplir el ­1 programa +1 de ­1 Río +1

Figure 1: Aligned dependency tree pair, annotated with head-
relative positions
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bigram language model trained on target language
dependencies  extracted  from the aligned  parallel
dependency tree corpus.

2.3.4. Order model

The  order  model  assigns  a  probability  to  the
position  (pos)  of  each target  node relative  to its
head based on information in both the source and
target trees:

P
order

order T ∣S ,T =∏
t∈T

P  pos  t , parent  t ∣S ,T 

Here, position is modeled in terms of closeness to
the head in the dependency tree. The closest pre-
modifier  of  a  given  head  has  position  -1;  the
closest  post-modifier  has  a  position  1.  Figure  1
shows an example dependency tree pair annotated
with head-relative positions.

We use a small set of features reflecting local
information in the dependency tree to model P(pos
(t,parent(t)) | S, T):
• Lexical items of t and parent(t), the parent of t

in the dependency tree.
• Lexical items of the source nodes aligned to t

and head(t).
• Part-of-speech  ("cat")  of  the  source  nodes

aligned to the head and modifier.
• Head-relative  position  of  the  source  node

aligned to the source modifier. 
These  features  along  with  the  target  feature  are
gathered  from  the  word-aligned  parallel
dependency  tree  corpus  and  used  to  train  a
statistical  model.  In  previous  versions  of  the
system,  we trained a decision tree model  [9].  In
the  current  version,  we  explored  log-linear
models. In addition to providing a different way of
combining  information  from  multiple  features,
log-linear models allow us to model the similarity
among different classes (target positions), which is
advantageous for our task.

 We  implemented  a  method  for  automatic
selection  of  features  and  feature  conjunctions  in
the log-linear model. The method greedily selects
feature  conjunction  templates  that  maximize  the
accuracy  on  a  development  set.  Our  feature
selection  study  showed  that  the  part-of-speech
labels of the source nodes aligned to the head and
the modifier and the head-relative position of the
source  node  corresponding  to  the  modifier  were
the  most  important  features.  It  was  useful  to
concatenate the part-of-speech of the source head
with  every  feature.  This  effectively  achieves
learning  of  separate  movement  models  for  each

source head category. Lexical information on the
pairs  of  head  and  dependent  in  the  source  and
target was also very useful.

To model the similarity among different target
classes  and  to  achieve  pooling  of  data  across
similar classes, we added multiple features of the
target position. These features let our model know,
for  example,  that  position  -5  looks  more  like
position  -6  than  like  position  3.  We  added  a
feature  “positive”/“negative”  which  is  shared  by
all  positive/negative  positions.  We  also  added  a
feature looking at the displacement of a position in
the target from the corresponding position in the
source  and  features  which  group  the  target
positions  into  bins.  These  features  of  the  target
position are combined with features of the input.

This  model  was  trained  on  the  provided
parallel  corpus.  As  described  in  Section  2.1  we
parsed the source sentences,  and projected target
dependencies.  Each  head-modifier  pair  in  the
resulting target trees constituted a training instance
for the order model.

The  score  computed  by  the  log-linear  order
model is used as a single feature in the overall log-
linear  combination  of  models  (see  Section  1),
whose  parameters  were  optimized  using
MaxBLEU  [2].  This  order  model  replaced  the
decision tree-based model described in [1]. 

We compared  the  decision  tree  model  to  the
log-linear  model  on  predicting  the  position  of  a
modifier  using  reference  parallel  sentences,
independent of the full MT system. The decision
tree  achieved  per  decision  accuracy  of  69%
whereas  the  log-linear  model  achieved  per
decision accuracy of 79%.

1
 In the context of the

full  MT system,  however,  the  new order  model
provided  a  more  modest  improvement  in  the
BLEU score of 0.39%.

2.3.5. Other models

We include two pseudo-models that help balance
certain biases inherent in our other models.

• Treelet  count.  This  feature  is  a  count  of
treelets  used  to  construct  the  candidate.  It
acts as a bias toward translations that use a
smaller  number  of  treelets;  hence  toward
larger  sized  treelets  incorporating  more
context.

• Word count. We also include a count of the
words  in  the  target  sentence.  This  feature

1 The per-decision accuracy numbers were obtained on
different (random) splits of training and test data.
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helps  to  offset  the  bias  of  the  target
language model toward shorter sentences.

3. Discussion

We participated in  the English to  Spanish  track,
using  the  supplied  bilingual  data  only.  We used
only the target side of the bilingual corpus for the
target  language  model,  rather  than  the  larger
supplied  language  model.  We  did  find  that
increasing the target language order from 3 to 4
had a noticeable impact on translation quality. It is
likely that a larger target language corpus would
have an impact, but we did not explore this.

BLEU
Baseline treelet system 27.60
Add bilingual MTU models 28.42
Replace DT order model with log-linear model 28.81

Table 1: Results on development set

We found  that  the  addition of  bilingual  n-gram
based  models  had  a  substantial  impact  on
translation  quality.  Adding  these  models  raised
BLEU scores about 0.8%, but anecdotal evidence
suggests  that  human-evaluated  quality  rose  by
much more than the BLEU score difference would
suggest. In general, we felt that in this corpus, due
to the great diversity in translations for the same
source language words and phrases, and given just
one reference translation, BLEU score correlated
rather  poorly  with  human  judgments.  This  was
borne out in the human evaluation of the final test
results.  Humans  ranked  our  system  first  and
second,  in-domain  and  out-of-domain
respectively, even though it was in the middle of a
field of ten systems by BLEU score. Furthermore,
n-gram  channel  models  may  provide  greater
robustness. While our BLEU score dropped 3.61%
on out-of-domain data, the average BLEU score of
the other nine competing systems dropped 5.11%.
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José B. Mariño
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Abstract

This work presents translation results for
the three data sets made available in the
shared task “Exploiting Parallel Texts for
Statistical Machine Translation” of the
HLT-NAACL 2006 Workshop on Statisti-
cal Machine Translation. All results pre-
sented were generated by using the N-
gram-based statistical machine translation
system which has been enhanced from the
last year’s evaluation with a tagged target
language model (using Part-Of-Speech
tags). For both Spanish-English transla-
tion directions and the English-to-French
translation task, the baseline system al-
lows for linguistically motivated source-
side reorderings.

1 Introduction

The statistical machine translation approach used
in this work implements a log-linear combination
of feature functions along with a translation model
which is based on bilingual n-grams (de Gispert and
Mariño, 2002).

This translation model differs from the well
known phrase-based translation approach (Koehn
et al., 2003) in two basic issues: first, training data
is monotonously segmented into bilingual units; and
second, the model considers n-gram probabilities in-
stead of relative frequencies. This translation ap-
proach is described in detail in (Mariño et al., 2005).

For those translation tasks with Spanish or En-
glish as target language, an additional tagged (us-

ing POS information) target language model is used.
Additionally a reordering strategy that includes POS
information is described and evaluated.

Translation results for all six translation directions
proposed in the shared task are presented and dis-
cussed. Both translation directions are considered
for the pairs: English-Spanish, English-French,
and English-German.

The paper is structured as follows: Section 2
briefly outlines the baseline system. Section 3 de-
scribes in detail the implemented POS-based re-
ordering strategy. Section 4 presents and discusses
the shared task results and, finally, section 5 presents
some conclusions and further work.

2 Baseline N-gram-based SMT System

As already mentioned, the translation model used
here is based on bilingual n-grams. It actually con-
stitutes a language model of bilingual units, referred
to as tuples, which approximates the joint probabil-
ity between source and target languages by using
bilingual n-grams (de Gispert and Mariño, 2002).

Tuples are extracted from a word-to-word aligned
corpus according to the following two constraints:
first, tuple extraction should produce a monotonic
segmentation of bilingual sentence pairs; and sec-
ond, no smaller tuples can be extracted without vi-
olating the previous constraint. See (Crego et al.,
2004) for further details.

For all experiments presented here, the translation
model consisted of a 4-gram language model of tu-
ples. In addition to this bilingual n-gram translation
model, the baseline system implements a log linear
combination of five feature functions.
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These five additional models are:

• A target language model. 5-gram of the target
side of the bilingual corpus.

• A word bonus. Based on the number of tar-
get words in the partial-translation hypothesis,
to compensate the LM preference for short sen-
tences.

• A Source-to-target lexicon model. Based on
IBM Model 1 lexical parameters(Brown et al.,
1993), providing a complementary probability
for each tuple in the translation table. These
parameters are obtained from source-to-target
alignments.

• A Target-to-source lexicon model. Analo-
gous to the previous feature, but obtained from
target-to-source alignments.

• A Tagged (POS) target language model. This
feature implements a 5-gram language model
of target POS-tags. In this case, each trans-
lation unit carried the information of its target
side POS-tags, though this is not used for trans-
lation model estimation (only in order to eval-
uate the target POS language model at decod-
ing time). Due to the non-availability of POS-
taggers for French and German, it was not pos-
sible to incorporate this feature in all transla-
tion tasks considered, being only used for those
translation tasks with Spanish and English as
target languages.

The search engine for this translation system is
described in (Crego et al., 2005) and implements
a beam-search strategy based on dynamic program-
ming, taking into account all feature functions de-
scribed above, along with the bilingual n-gram trans-
lation model. Monotone search is performed, in-
cluding histogram and threshold pruning and hy-
pothesis recombination.

An optimization tool, which is based on a down-
hill simplex method was developed and used for
computing log-linear weights for each of the feature
functions. This algorithm adjusts the weights so that
a non-linear combination of BLEU and NIST scores
is maximized over the development set for each of
the six translation directions considered.

This baseline system is actually very similar to
the system used for last year’s shared task “Exploit-
ing Parallel Texts for Statistical Machine Transla-
tion” of ACL’05 Workshop on Building and Us-
ing Parallel Texts: Data-Driven Machine Translation
and Beyond (Banchs et al., 2005), whose results
are available at: http://www.statmt.org/wpt05/

mt-shared-task/. A more detailed description of
the system can be found in (2005).

The tools used for POS-tagging were Freel-
ing (Carreras et al., 2004) for Spanish and
TnT (Brants, 2000) for English. All language mod-
els were estimated using the SRI language mod-
eling toolkit. Word-to-word alignments were ex-
tracted with GIZA++. Improvements in word-to-
word alignments were achieved through verb group
classification as described in (de Gispert, 2005).

3 Reordering Framework

In this section we outline the reordering framework
used for the experiments (Crego and Mariño, 2006).
A highly constrained reordered search is performed
by means of a set of reordering patterns (linguisti-
cally motivated rewrite patterns) which are used to
extend the monotone search graph with additional
arcs.

To extract patterns, we use the word-to-word
alignments (the union of both alignment directions)
and source-side POS tags. The main procedure con-
sists of identifying all crossings produced in the

Figure 1: Reordering patterns are extracted using
word-to-word alignments. The generalization power
is achieved through the POS tags. Three instances of
different patterns are extracted using the sentences
in the example.
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word-to-word alignments. Once a crossing has been
detected, its source POS tags and alignments are
used to account for a new instance of pattern. The
target side of a pattern (source-side positions after
reordering), is computed using the original order
of the target words to which the source words are
aligned. See figure 1 for a clarifying example of
pattern extraction.

The monotone search graph is extended with re-
orderings following the patterns found in training.
The procedure identifies first the sequences of words
in the input sentence that match any available pat-
tern. Then, each of the matchings implies the ad-
dition of an arc into the search graph (encoding the
reordering learnt in the pattern). However, this ad-
dition of a new arc is not performed if a translation
unit with the same source-side words already exists
in the training. Figure 2 shows an example of the
procedure.

Figure 2: Three additional arcs have been added
to the original monotone graph (bold arcs) given
the reordering patterns found matching any of the
source POS tags sequence.

Once the search graph is built, the decoder tra-
verses the graph looking for the best translation.
Hence, the winner hypothesis is computed using
all the available information (the whole SMT mod-
els). The reordering strategy is additionally sup-
ported by a 5-gram language model of reordered
source POS-tags. In training, POS-tags are re-
ordered according with the extracted reordering pat-
terns and word-to-word links. The resulting se-
quence of source POS-tags are used to train the n-

gram LM.
Notice that this reordering framework has only

been used for some translation tasks (Spanish-
to-English, English-to-Spanish and English-to-
French). The reason is double: first, because we
did not have available a French POS-tagger. Second,
because the technique used to learn reorderings (de-
tailed below) does not seem to apply for language
pairs like German-English, because the agglutina-
tive characteristic of German (words are formed by
joining morphemes together).

Table 1: BLEU, NIST and mWER scores (com-
puted using two reference translations) obtained for
both translation directions (Spanish-to-English and
English-to-Spanish).

Conf BLEU NIST mWER
Spanish-to-English
base 55.23 10.69 34.40

+rgraph 55.59 10.70 34.23

+pos 56.39 10.75 33.75

English-to-Spanish
base 48.03 9.84 41.18

+rgraph 48.53 9.81 41.15

+pos 48.91 9.91 40.29

Table 1 shows the improvement of the original
baseline system described in section 2 (base), en-
hanced using reordering graphs (+rgraph) and pro-
vided the tagged-source language model (+pos).
The experiments in table 1 were not carried out over
the official corpus of this shared task. The Spanish-
English corpus of the TC-Star 2005 Evaluation was
used. Due to the high similarities between both cor-
pus (this shared task corpus consists of a subset of
the whole corpus used in the TC-Star 2005 Evalua-
tion), it makes sense to think that comparable results
would be obtained.

It is worth mentioning that the official corpus of
the shared task (HLT-NAACL 2006) was used when
building and tuning the present shared task system.

4 Shared Task Results

The data provided for this shared task corresponds
to a subset of the official transcriptions of the Euro-
pean Parliament Plenary Sessions. The development
set used to tune the system consists of a subset (500
first sentences) of the official development set made
available for the Shared Task.
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Table 2 presents the BLEU, NIST and mWER
scores obtained for the development-test data set.
The last column shows whether the target POS lan-
guage model feature was used or not. Computed
scores are case sensitive and compare to one refer-
ence translation. Tasks in bold were conducted al-
lowing for the reordering framework. For French-
to-English task, block reordering strategy was used,
which is described in (Costa-jussà et al., 2006). As it
can be seen, for the English-to-German task we did
not use any of the previous enhancements.

Table 2: Translation results
Task BLEU NIST mWER tPOS

en → es 29.50 7.32 58.95 yes
es → en 30.29 7.51 57.72 yes
en → fr 30.23 7.40 59.76 no
fr → en 30.21 7.61 56.97 yes
en → de 17.40 5.61 71.18 no
de → en 23.78 6.70 65.83 yes

Important differences can be observed between
the German-English and the rest of translation tasks.
They result from the greater differences in word
order present in this language pair (the German-
English results are obtained under monotone decod-
ing conditions). Also because the greater vocabulary
of words of German, which increases sparseness in
any task where German is envolved. As expected,
differences in translation accuracy between Spanish-
English and French-English are smaller.

5 Conclusions and Further Work

As it can be concluded from the presented results,
although in principle some language pairs (Spanish-
English-French) seem to have very little need for re-
orderings (due to their similar word order), the use
of linguistically-based reorderings proves to be use-
ful to improve translation accuracy.

Additional work is to be conducted to allow for
reorderings when translating from/to German.
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Abstract

We describe theLDV-COMBO system pre-
sented at the Shared Task. Our approach
explores the possibility of working with
alignments at different levels of abstrac-
tion using different degrees of linguis-
tic analysis from the lexical to the shal-
low syntactic level. Translation mod-
els are built on top of combinations of
these alignments. We present results
for the Spanish-to-English and English-to-
Spanish tasks. We show that liniguistic in-
formation may be helpful, specially when
the target language has a rich morphology.

1 Introduction

The main motivation behind our work is to introduce
linguistic information, other than lexical units, to the
process of building word and phrase alignments. In
the last years, many efforts have been devoted to this
matter (Yamada and Knight, 2001; Gildea, 2003).

Following our previous work (Giménez and
Màrquez, 2005), we use shallow syntactic informa-
tion to generate more precise alignments. Far from
full syntactic complexity, we suggest going back to
the simpler alignment methods first described by
IBM (1993). Our approach exploits the possibil-
ity of working with alignments at two different lev-
els of granularity, lexical (words) and shallow pars-
ing (chunks). Apart from redefining the scope of
the alignment unit, we may use different linguistic
data views. We enrich tokens with features further

than lexical such aspart-of-speech (PoS), lemma,
andchunk IOB label.

For instance, suppose the case illustrated in Fig-
ure 1 where the lexical item‘plays’ is seen acting as
a verb and as a noun. Considering these two words,
with the same lexical realization, as a single token
adds noise to the word alignment process. Repre-
senting this information, by means of linguistic data
views, as‘playsV BZ ’ and‘playsNNS ’ would allow us
to distinguish between the two cases. Ideally, one
would wish to have still deeper information, moving
through syntax onto semantics, such asword senses.
Therefore, it would be possible to distinguish for
instance between two realizations of‘plays’ with
different meanings:‘heP RP playsV BG guitarNN ’ and
‘heP RP playsV BG footballNN ’ . Of course, there is a
natural trade-off between the use of linguistic data
views and data sparsity. Fortunately, we hava data
enough so that statistical parameter estimation re-
mains reliable.

The approach which is closest to ours is that by
Schafer and Yarowsky (2003) who suggested a com-
bination of models based on shallow syntactic anal-
ysis (part-of-speech tagging and phrase chunking).
They followed a backoff strategy in the application
of their models. Decoding was based on Finite State
Automata. Although no significant improvement in
MT quality was reported, results were promising
taking into account the short time spent in the de-
velopment of the linguistic tools utilized.

Our system is further described in Section 2. Re-
sults are reported in Section 3. Conclusions and fur-
ther work are briefly outlined in Section 4.
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Figure 1: A case of word alignment possibilities on top of lexical units (a) and linguistic data views (b).

2 System Description

TheLDV-COMBO system follows the SMT architec-
ture suggested by the workshop organizers. We use
thePharaohbeam-search decoder (Koehn, 2004).

First, training data are linguistically annotated. In
order to achieve robustness the same tools have been
used to linguistically annotate both languages. The
SVMTool1 has been used for PoS-tagging (Giménez
and Màrquez, 2004). TheFreeling2 package (Car-
reras et al., 2004) has been used for lemmatizing.
Finally, thePhrecosoftware (Carreras et al., 2005)
has been used for shallow parsing. In this paper we
focus on data views at the word level. 6 different
data views have been built: (W) word, (L) lemma,
(WP) word and PoS, (WC) word and chunk IOB la-
bel, (WPC) word, PoS and chunk IOB label, (LC)
lemma and chunk IOB label.

Then, runningGIZA++ (Och and Ney, 2003), we
obtain token alignments for each of the data views.
Combined phrase-based translation models are built
on top of the Viterbi alignments output byGIZA++.
Phrase extraction is performed following the phrase-
extract algorithm depicted by Och (2002). We do
not apply any heuristic refinement. We work with
phrases up to 5 tokens. Phrase pairs appearing only
once have been discarded. Scoring is performed by
relative frequency. No smoothing is applied.

In this paper we focus on the global phrase ex-
traction (GPHEX) method described by Giménez

1The SVMTool may be freely downloaded at
http://www.lsi.upc.es/˜nlp/SVMTool/ .

2Freeling Suite of Language Analyzers may be downloaded
at http://www.lsi.upc.es/˜nlp/freeling/

and Màrquez (2005). We build a single translation
model from the union of alignments from the 6 data
views described above. This model must match the
input format. For instance, if the input is annotated
with word and PoS (WP), so must be the translation
model. Therefore either the input must be enriched
with linguistic annotation or translation models must
be post-processed in order to remove the additional
linguistic annotation. We did not observe significant
differences in either alternative. Therefore, we sim-
ply adapted translations models to work under the
assumption of unannotated inputs (W).

3 Experimental Work

3.1 Setting

We have used only the data sets and language model
provided by the organization. For evaluation we
have selected a set of 8 metric variants correspond-
ing to seven different families:BLEU (n = 4) (Pa-
pineni et al., 2001),NIST (n = 5) (Lin and Hovy,
2002),GTM F1-measure (e = 1, 2) (Melamed et al.,
2003), 1-WER (Nießen et al., 2000), 1-PER (Leusch
et al., 2003),ROUGE (ROUGE-S*) (Lin and Och,
2004) andMETEOR3 (Banerjee and Lavie, 2005).
Optimization of the decoding parameters (λtm, λlm,
λw) is performed by means of theDownhill Simplex
Method in Multidimensions(William H. Press and
Flannery, 2002) over theBLEU metric.

3For Spanish-to-English we applied all available modules:
exact + stemming + WordNet stemming + WordNet synonymy
lookup. However, for English-to-Spanish we were forced to use
the exact module alone.
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Spanish-to-English
System 1-PER 1-WER BLEU-4 GTM-1 GTM-2 METEOR NIST-5 ROUGE-S*

Baseline 0.5514 0.3741 0.2709 0.6159 0.2579 0.5836 7.2958 0.3643
LDV -COMBO 0.5478 0.3657 0.2708 0.6202 0.2585 0.5928 7.2433 0.3671

English-to-Spanish
System 1-PER 1-WER BLEU-4 GTM-1 GTM-2 METEOR NIST-5 ROUGE-S*

Baseline 0.5158 0.3776 0.2272 0.5673 0.2418 0.4954 6.6835 0.3028
LDV -COMBO 0.5382 0.3560 0.2611 0.5910 0.2462 0.5400 7.1054 0.3240

Table 1: MT results comparing theLDV-COMBO system to a baseline system, for the test set both on the
Spanish-to-English and English-to-Spanish tasks.

English Reference: considergermany , where some leaders [...]
Spanish Reference: pensemosen alemania , donde algunos dirigentes [...]

English-to-Spanish Baseline estimanque alemania , donde algunos dirigentes [...]
LDV -COMBO pensemosen alemania , donde algunos dirigentes [...]

Table 2: A case of error analysis.

3.2 Results

Table 1 presents MT results for the test set both
for the Spanish-to-English and English-to-Spanish
tasks. The variant of theLDV-COMBO system de-
scribed in Section 2 is compared to a baseline vari-
ant based only on lexical items. In the case of
Spanish-to-English performance varies from metric
to metric. Therefore, an open issue is which metric
should be trusted. In any case, the differences are
minor. However, in the case of English-to-Spanish
all metrics but ‘1-WER’ agree to indicate that the
LDV-COMBO system significantly outperforms the
baseline. We suspect this may be due to the richer
morphology of Spanish. In order to test this hy-
pothesis we performed an error analysys at the sen-
tence level based on the GTM F-measure. We found
many cases where theLDV-COMBO system outper-
forms the baseline system by choosing a more ac-
curate translation. For instance, in Table 2 we may
see a fragment of the case of sentence 2176 in the
test set. A better translation for “consider” is pro-
vided, “pensemos”, which corresponds to the right
verb and verbal form (instead of “estiman”). By in-
specting translation models we confirmed the better
adjustment of probabilities.

Interestingly,LDV-COMBO translation models are

between 30% and 40% smaller than the models
based on lexical items alone. The reason is that we
are working with the union of alignments from dif-
ferent data views, thus adding more constraints into
the phrase extraction step. Fewer phrase pairs are
extracted, and as a consequence we are also effec-
tively eliminating noise from translation models.

4 Conclusions and Further Work

Many researchers remain sceptical about the use-
fulness of linguistic information in SMT, because,
except in a couple of cases (Charniak et al., 2003;
Collins et al., 2005), little success has been reported.
In this work we have shown that liniguistic informa-
tion may be helpful, specially when the target lan-
guage has a rich morphology (e.g. Spanish).

Moreover, it has often been argued that linguistic
information does not yield significant improvements
in MT quality, because (i) linguistic processors in-
troduce many errors and (ii) theBLEU score is not
specially sensitive to the grammaticality of MT out-
put. We have minimized the impact of the first ar-
gument by using highly accurate tools for both lan-
guages. In order to solve the second problem more
sophisticated metrics are required. Current MT eval-
uation metrics fail to capture many aspects of MT
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quality that characterize human translations with re-
spect to those produced by MT systems. We are de-
voting most of our efforts to the deployment of a new
MT evaluation framework which allows to combine
several similarity metrics into a single measure of
quality (Giménez and Amigó, 2006).

We also leave for further work the experimenta-
tion of new data views such as word senses and se-
mantic roles, as well as their natural porting from the
alignment step to phrase extraction and decoding.
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Fonollosa, José A. R., 142, 162
Foster, George, 134
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