Vine Parsing and Minimum Risk Reranking for Speed and Precisiori

Markus Dreyer, David A. Smith, and Noah A. Smith
Department of Computer Science / Center for Language and Speech Processing
Johns Hopkins University, Baltimore, MD 21218 USA
{markus, {d,n }asmith }@cs.jhu.edu

Abstract the positive side, its decoding algorithms have guar-
anteedD(n) runtime, and training takes only a cou-

We describe our entry in the CoNLL-X shared taskple of hours. Having designed primarily fspeed
The system consists of three phases: a probabilisé¢idrobustness we sacrifice accuracy. Bettesti-
vine parser (Eisner and N. Smith, 2005) that promation, reranking on larger datasets, and more fine-
duces unlabeled dependency trees, a probabilisticained parsing constraints are expected to boost ac-
relation-labeling model, and a discriminative mini-curacy while maintaining speed.
mum risk reranker (D. Smith and Eisner, 2006). The .
system is designed for fast training and decoding ardl  Notation

for high precision. We describe sources of Cross-4; 5 sentence — (x1, %2, ..., zn), Where eachy; is
- ’ )y N/ 1

lingual error and ways to ameliorate them. We theq tuple containing a part-of-speech tagnd a word

provide a detailed error analysis of parses produc%ii, and possibly more informatiohz, is a special

for s_entgnces i_n_German (much training data) ar\ga” symbol, $, on the left. A dependency trge
Arabic (little training data). is defined by three functionst;.; andy i (both
{0,1,2,...,n} — 2{12--7}) that map each word to
1 Introduction its sets of left and right depe.ndents, respectivgly, and
Viabel : {1,2,...,n} — D, which labels the relation-
Standard state-of-the-art parsing systems (e.ghip between wordand its parent from label sél.
Charniak and Johnson, 2005) typically involve two In this work, the graph is constrained to bpra-
passes. First, parser produces a list of the most jectivetree rooted at $: each word except $ has a sin-
likely n parse trees under a generative, probabilistigle parent, and there are no cycles or crossing depen-
model (usually some flavor of PCFG). A discrim-dencies. Using a simple dynamic program to find the
inative reranker then chooses among trees in thisninimum-error projective parse, we find that assum-
list by using an extended feature set (Collins, 2000)ng projectivity need not harm accuracy very much
This paradigm has many advantages: PCFGs af®ab. 1, col. 3).
fast to train, can be very robust, and perform bet-
ter as more data is made available; and reranke®s Unlabeled Parsing

train quickly (compared to discriminative mOOIeIS)"I’he first component of our system is an unlabeled

:Lej?euslre few parameters, and permit arbitrary feaﬁarser that, given a sentence, finds thdest un-

We d i h depend labeled trees under a probabilistic model using a
€ describe such a system tependencypars- bottom-up dynamic programming algoritfimThe

ing. Our shared task entry is a preliminary Systerpnodel is a probabilistic head automaton grammar

Qevelgped in only 3 person-weeks, and its accurai)&lshawi, 1996) that assumes conditional indepen-
is typically one s.d. below the average across sy

tems and 10-20 points below the best system. On We used words and fine tags in our parser and labeler, with
coarse tags in one backoff model. Other features are used in

*This work was supported by NSF ITR grant 11S-0313193feranking; we never used the given morphological features or

an NSF fellowship to the second author, and a Fannie and Jokite “projective” annotations offered in the training data.

Hertz Foundation fellowship to the third author. The views ex- 2The execution model we use is best-first, exhaustive search,

pressed are not necessarily endorsed by the sponsors. We thaskdescribed in Eisner et al. (2004). All of our dynamic pro-

Charles Schafer, Keith Hall, Jason Eisner, and Sanjeev Khudagramming algorithms are implemented concisely in the Dyna

pur for helpful conversations. language.
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Arabic 10 4| 998 90.7] 715 68.1 68.7] 50.7 52.0] 53.4 68.5 63.4 76.(
Bulgarian | 5 4| 996 90.7| 864 80.1 80.5/ 851 73.0| 748 82.0 743 86.3
Chinese 4 4] 100.0 931|899 794 777|886 726|716 77.6 614 80.8
Czech 6 4| 978 905|792 70.3 715/ 728 58.1| 60.5 70.7 64.8 75.7
Danish 5 4| 992 0914|846 77.7 78.6| 793 655/ 66.6 77.5 714 834
Dutch 6 5| 946 883|775 67.9 68.8| 736 59.4| 61.6 68.3 604 73.0
German 8 7| 988 909|834 755 76.2| 823 70.1| 71.0 77.0 70.2 829
Japanese | 4 1| 99.2 922|907 86.3 85.1/894 816|829 86.0 685 915
Portuguese 5 5| 988 915|859 814 825/ 837 734|753 824 76.2 87.0
Slovene 6 4| 985 917|805 72.0 73.3| 728 57.5|58.7 729 66.3 785
Spanish 5 61000 912|773 715 72.6| 749 66.2| 67.6 729 69.3 80.7
Swedish 4 5| 997 940|875 79.3 79.6/ 81.0 655|676 795 726 83.3
Turkish 6 1| 986 895|730 61.0 61.8| 644 44.9| 46.1 605 485 61.6
parser reranker labeler reranker
1 2 3 4 5 6 7 8 9 10 11 12 13

Table 1. Parameters and performance on test datand B, were chosen to retain 90% of dependencies

in training data. We show oracle, 1-best, and reranked performance on the test set at different stages of the
system. Boldface marks oracle performance that, given perfect downstream modules, would supercede the
best system. Italics mark the few cases where the reranker increased error rate. Columns 8-10 show labeled
accuracy; column 10 gives the final shared task evaluation scores.

dence between the left yield and the right yield othild and its parent, with the exception of nodes at-
a given head, given the head (Eisner, 1997)he taching to $. Bounds of this kind are intended to im-
best known parsing algorithm for such a model iprove precision of non-$ attachments, perhaps sac-
O(n?) (Eisner and Satta, 1999). Thébest list is rificing recall. Fixing bound3,, no left dependency
generated using Algorithm 3 of Huang and Chiangnay exist between child; and parent:; such that
(2005). j—i > By (similarly for right dependencies arig}.).

As aresult, edge-factored parsing runtime is reduced
3.1 Vine parsing (dependency length bounds)  from O(n?) to O(n(B2 + B2)). For each language,

Following Eisner and N. Smith (2005), we also im-we chooseB, (B;) to be the minimum value that

pose a bound on the string distance between evewjll allow recovery of 90% of the left (right) depen-
dencies in the training corpus (Tab. 1, cols. 1, 2, and

To empirically test this assumption across languages, w, i ;
measured the mutual information between different features cﬁ)' In order to match the training data to the parsing

Viert () andy gne (7), givena;. (Mutual information is a statis- Mmodel, we re-attach disallowed long dependencies
tic that equals zero iff conditional independence holds.) A deto $ during training.

tailed discussion, while interesting, is omitted for space, but we

highlight some of our findings. First, unsurprisingly, the split- . .

head assumption appears to be less valid for languages with2 Estimation

freer word order (Czech, Slovene, German) and more valid for . .

more fixed-order languages (Chinese, Turkish, Arabic) or corf he probability model predicts, for each parent word
pora (Japanese). The children of verbs and conjunctions are the, {f’%}z‘eyleﬂ, (j and {ffi}ieyﬁgh,,(j)- An advantage

most frequent violators. The mutual information between the]h d aut t is that. f .
sequence of dependency labels on the left and on the right, givel h€ad automaton grammars is that, for a given par-

the head's (coarse) tag, only once exceeded 1 bit (Slovene). ent noder;, the children on the same sidg,.s (),

202



for example, can depend on each other (cf. McDorsystem, although the oracle is never on par with the
ald etal., 2005). Child nodes in our model are genebestunlabeledperformance.
ated outward, conditional on the parent and the most
recent same-side sibling (MRSSS). This increasef Labeling
our parser's theoretical runtime @(n (B} + B?)),
which we found was quite manageable. The second component of our system is a labeling
Letpar, : {1,2,...,n} — {0,1,...,n} map each model thatindependentigelects a label fror for
node to its parent iy. Letpred,, : {1,2,...,n} — each parent/child pair in a tree. Given thebest
{0,1,2,...,n} map each node to the MRSSSyinf  unlabeled trees for a sentence, the labeler produces
it exists and) otherwise. LetA; = |i — j| if jisi's the L bestlabeled trees for each unlabeled one.
parent. Our (probability-deficient) model defines  The computation involves aii(|D|n) dynamic pro-
gramming algorithm, the output of which is passed
n to Huang and Chiang’s (2005) algorithm to generate
piy)=1]] ( I »plas A xj,xpredy(i>,left)) the L-best list.
7T NI en () We separate the labeler from the parser for two
reasons: speed and candidate diversity. In prin-
ciple the vine parser could jointly predict depen-
x ( II p@iAila;,pred, (), right)) dency labels along with structures, but parsing run-
€Y right (3) . .
time would increase by at least a factor|®f|. The
Xp(STOP | zj, Tmax ) oo .
y two stage process also forces diversity in the candi-
Due to the familiar sparse data problem, a maxidate list (20 structures with 50 labelings each); the
mum likelihood estimate for thes in Eq. 1 performs 1,000-best list ofointly-decoded parses often con-
very badly (2-23% unlabeled accuracy). Good stdained many (bad) relabelings of the same tree.
tistical parsers smooth those distributions by mak- In retrospect, assuming independence among de-
ing conditional independence assumptionamong pendency labels damages performance substantially
variables, including backoff and factorization. Ar-for some languages (Turkish, Czech, Swedish, Dan-
guably the choice of assumptions made (or interpash, Slovene, and Arabic); note the often large drop
lated among) is central to the success of many exist oracle performance between Tab. 1, cols. 5 and
ing parsers. 8. This assumption is necessary in our framework,
Noting that (a) there are exponentially many suchecause th@®(|D|**1n) runtime of decoding with
options, and (b) the best-performing independenaan M th-order Markov model of labelds in general
assumptions will almost certainly vary by languageprohibitive—in some casd®| > 80. Pruning and
we use a mixture among 8 such models. The sansearch heuristics might ameliorate runtime.
mixture is used for all languages. The models were |f z; is a child ofz; in direction D, andx,,., is
not chosen with particular cafeand the mixture is the MRSSS (possiblf)), whereA; = |i — j|, we es-
not trained—the coefficients are fixed at uniform,timatep(g, Ty Tj, Tpred, Ai | D) by @ mixture (un-
with a unigram coarse-tag model for backoff. Intrained, as in the parser) of four backed-off, factored
principle, this mixture should be trained (e.g., tGestimates.
maximize likelihood or minimize error on a devel-  after parsing and labeling, we have for each sen-
opment dataset). tence a list of/ x L candidates. Both the oracle
The performance of our unlabeled model's togyerformance of the best candidate in tB8 x 50)-
choice and the top-20 oracle are shown in Tab. hest ist and the performance of the top candidate are
cols. 5-6. In 5 languages (boldface), perfect labekhown in Tab. 1, cols. 8-9. It should be clear from
ing and reranking at this stage would have resulted e drop in both oracle and 1-best accuracy that our
performance superior to the language’s best labelggheling model is a major source of error.
“Our infrastructure provides a concise, interpreted langua

for expressing the models to be mixed, so large-scale combina- *We tested first-order Markov models that conditioned on
tion and comparison are possible. parent or MRSSS dependency labels.

xp(STOP | z;, Tming, () > left)

right) Q)

right (3) 77
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5 Reranking Performance Accuracy of the top parses after
reranking is shown in Tab. 1, cols. 10-11. Reranking

We train a log-linear model combining many feature .
almost always gave some improvement over 1-best

scores (see below), including the log-probabilities _ .~ g . .
. . arsing® Because of the vine assumption and the
from the parser and labeler. Training m|n|m|ze§3

reprocessing step that re-attaches all distant chil-
the expected error under the model; we use deté? P g step

. . g'ren to $, our parser learns to over-attach to $, treat-
ministic annealing to smooth the error surface an
avoid local minima (Rose, 1998; D. Smith and Eis-

Ing $-attachment as a default/agnostic choice. For

many applications a local, incomplete parse may be

ner, 2006). ufficiently useful, so we also measured non-$ unla-
We reserved 200 sentences in each language fS ’

. . Seled precision and recall (Tab. 1, cols. 12—-13); our
training the reranker, plus 200 for choosing amon .
. . ... _parser has> 80% precision on 8 of the languages.
rerankers trained on different feature sets and diffe{ . . .
ent(U x L)-best lists® e also applied reranking (with unlabeled features)
' to the 20-best unlabeled parse lists (col. 7).
Features Our reranking features predict tags, la-

bels, lemmata, suffixes and other information give® Error Analysis: German

all or some of the following non-local conditioning The plurality of errors (38%) in German were er-

context: bigrams and trigrams of tags or dependenc%neous $ attachments. For ROOT dependency la-

labels; parent and grandparent dependency labeLSéIs we have a high recall (92.7%), but low pre-
subcategorization frames (in terms of tags or depen: .’ : '

) 0 .
dency labels); the occurrence of certain tags betwe Gision (72.4%), due most likely to the dependency

n
head and child; surface features like the lemarad ?ength bounds. Among the most frequent tags, our

. . system has most trouble finding the correct heads of
the 3-character suffix. In some cases the children § . o .
) . repositions (APPR), adverbs (ADV), finite auxil-
a node are considered all together, and in other cases X .
. 1lary verbs (VAFIN), and conjunctions (KON), and
left and right are separated.

The highest-ranked features during training, fandmg the correct_ d_epend_e_ncy labels for preposi-
|ons, nouns, and finite auxiliary verbs.

all languages, are the parser and labeler probabi . . : .
guag P P The German conjunctioand is the single word

ities, followed byp(A; | ¢ , p(directi _
YP(A; | tparent), pldirection | with the most frequent head attachment errors. In
tparent), P(label | labelyreq, label gyee, subcat), and
many of these cases, our system does not learn

p(coarse(t) | D,coarse(tparent), Betw), where ) .
Betw is TRUE iff an instance of the coarse tag tyloethe subtle difference between enumerations that are

with the highest mutual information between its Ie@eaded byAin A und B with two childrenund and

and right children (usually verb) is between the chil on th? right, an_d those headedBywith undand
and its head. A as children on its left.

Unlike in some languages, our labeled oracle ac-

Feature and Model Selection For training speed curacy is nearly as good as our unlabeled oracle ac-
and to avoid overfitting, only a subset of the aboveuracy (Tab. 1, cols. 8, 5). Among the ten most fre-
features are used in reranking. Subsets of diffegquent dependency labels, our system has the most
ent sizes (10, 20, and 40, plus “all) are identifieddifficulty with accusative objects (OA), genitive at-
for each language using two'iva feature-selection tributes (AG), and postnominal modifiers (MNR).
heuristics based on independent performance of feaecusative objects are often mistagged as subject
tures. The feature subset with the highest accura¢gB), noun kernel modifiers (NK), or AG. About
on the 200 heldout sentences is selected. 32% of the postnominal modifier relatioreirf Platz

§In training our system, we made a serious mistake in trainln der Geschichte‘a place in history’) are labeled
ing the reranker on only 200 sentences. As a result, our preis modifiersif die Stadt fliegenfly into the city’).

testing estimates of performance (on data reserved for mo . : :
selection) were very bad. The reranker, depending on conditigg,em“ve attributes are often tagged as NK since both

had only 2—20 times as many examples as it had parametersate frequently realized as nouns.
estimate, with overfitting as the result. -

"The first 4 characters of a word are used where the lemma ®The exception is Chinese, where the training set for rerank-
is not available. ing is especially small (see fn. 6).
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7 Error Analysis: Arabic reranking models. As it stands, our system performs
poorly, largely because the estimation is not state-

As with German, the greatest portion of Arabic CTof-the-art, but also in part due to dependency length

rors (40%) involved attachments to 3. Prepositiongounds’ which are rather coarse at present. Better re-

are consistently attached too low and accounted f%'ijlts are achievable by picking different bounds for

220/:: of errors. ngr tixanl:e' '_f a form 'nhconStrucécdifferent head tags (Eisner and N. Smith, 2005). Ac-
(idafa) governed both a following noun phrase an uracy should not be difficult to improve using bet-

a prepositional phrase, the preposition usually afér learning methods, especially given our models’
taches to the lower noun phrase. Similarly, ’

" PrePYinear-time inference and decoding.
sitions usually attach to nearby noun phrases when

they should attach to verbs farther to the left. References

We see a more serious casualty of the dependenc . .
length bounds with conjunctions. In ground trutht- Alshawi. 1996. Head automata and bilingual
test data, 23 conjunctions are attached to $ and 141 tiling: Translation with minimal representations.
to non-$ to using the GORD relation, whereas 100 _ 1N Proc. of ACL _
conjunctions are attached to $ and 67 to non-$ uds- Charmniak and M. Johnson. 2005. Coarse-to-fine
ing the AUXY relation. Our system overgeneralizes 7"PeSt parsing and maxent discriminative rerank-
and attaches 84% of @RD and 71% of AJXY ing. InProc. of ACL _
relations to $. Overall, conjunctions account forM. Collins. 2000. Dlsprlmlnatlve reranking for nat-
15% of our errors. The BXY relation is defined _ Urallanguage parsing. faroc. of ICML

as “auxiliary (in compound expressions of various’- Eisner and G. Satta. 1999. Efficient parsing
kinds)”; in the data, it seems to be often used for for bilexical context-free grammars and head au-

waw-consecutive or paratactic chaining of narrative tomaton grammars. IRroc. of ACL
clauses. If the conjunctiowa (‘and’) begins a sen- J. Eisner and N. A. Smith. 2005. Parsing with soft

tence, then that conjunction is tagged in ground truth @nd hard constraints on dependency length. In
as attaching to $; if the conjunction appears in the Proc. of IWPT _
middle of the sentence, it may or may not be atd- Eisner, E. Goldlust, and N. A. Smith. 2004.

tached to $. Dyna: A declarative language for implementing
Noun attachments exhibit a more subtle problem. dylnaml)c programs. Iroc. of ACL(companion
volume).

The direction of system attachments is biased more '~ o _
strongly to the left than is the case for the true data+ EiSner. 1997. Bilexical grammars and a cubic-
In canonical order, Arabic nouns do generally attach time probabilistic parser. IRroc. of IWPT

on the right: subjects and objects follow the verb; i Huang and D. Chiang. 2005. Bettebest pars-

construct, the governed noun follows its governor, Ng- INProc. of IWPT

When the data deviate from this canonical order—R- McDonald, F. Pereira, K. Ribarov, and J. Kaji
2005. Non-projective dependency parsing us-

when, e.g, a subject precedes its verb—the system* - )
prefers to find some other attachment point to the "9 SElinn'”g tree algorithms.  FAroc. of HLT-

left. Similarly, a noun to the left of a conjunction o )
often erroneously attaches to its left. SuchrAre- K. Rose. 1998. Deterministic annealing for cluster-
ing, compression, classification, regression, and

lations account for 35% of noun-attachment errors. At
related optimization problem®roc. of the IEEE

8 Conclusion 86(11):2210-2239.

. D. A. Smith and J. Eisner. 2006. Minimum risk an-
The tradeoff between speed and accuracy is famil- heging for training log-linear models. To appear
iar to any parsing researcher. Rather than starting i, proc. of COLING-ACL

with an accurate system and then applying corpus-
specific speedups, we start by imposing carefully-
chosen constraints (projectivity and length bounds)
for speed, leaving accuracy to the parsing and
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