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1 Introduction 

Parsing natural language is an essential step in 

several applications that involve document 

analysis, e.g. knowledge extraction, question 

answering, summarization, filtering. The best 

performing systems at the TREC Question 

Answering track employ parsing for analyzing 

sentences in order to identify the query focus, to 

extract relations and to disambiguate meanings of 

words. 

These are often demanding applications, which 

need to handle large collections and to provide 

results in a fraction of a second. Dependency 

parsers are promising for these applications since a 

dependency tree provides predicate-argument 

relations which are convenient for use in the later 

stages. Recently statistical dependency parsing 

techniques have been proposed which are 

deterministic and/or linear (Yamada and 

Matsumoto, 2003; Nivre and Scholz, 2004). These 

parsers are based on learning the correct sequence 

of Shift/Reduce actions used to construct the 

dependency tree. Learning is based on techniques 

like SVM (Vapnik 1998) or Memory Based 

Learning (Daelemans 2003), which provide high 

accuracy but are often computationally expensive. 

Kudo and Matsumoto (2002) report a two week 

learning time on a Japanese corpus of about 8000 

sentences with SVM. Using Maximum Entropy 

(Berger, et al. 1996) classifiers I built a parser that 

achieves a throughput of over 200 sentences per 

second, with a small loss in accuracy of about 2-

3 %. 

The efficiency of Maximum Entropy classifiers 

seems to leave a large margin that can be exploited 

to regain accuracy by other means. I performed a 

series of experiments to determine whether 

increasing the number of features or combining 

several classifiers could allow regaining the best 

accuracy. An experiment cycle in our setting 

requires less than 15 minutes for a treebank of 

moderate size like the Portuguese treebank 

(Afonso et al., 2002) and this allows evaluating the 

effectiveness of adding/removing features that 

hopefully might apply also when using other 

learning techniques. 

I extended the Yamada-Matsumoto parser to 

handle labeled dependencies: I tried two 

approaches: using a single classifier to predict 

pairs of actions and labels and using two separate 

classifiers, one for actions and one for labels. 

Finally, I extended the repertoire of actions used 

by the parser, in order to handle non-projective 

relations. Tests on the PDT (Böhmovà et al., 2003) 

show that the added actions are sufficient to handle 

all cases of non-projectivity. However, since the 

cases of non-projectivity are quite rare in the 

corpus, the general learner is not supplied enough 

of them to learn how to classify them accurately, 

hence it may be worthwhile to exploit a second 

classifier trained specifically in handling non-

projective situations. 

1. Summary of the approach 

The overall parsing algorithm is an inductive 

statistical parser, which extends the approach by 

Yamada and Matsumoto (2003), by adding six new 

reduce actions for handling non-projective 

relations and also performs dependency labeling. 

Parsing is deterministic and proceeds bottom-up. 

Labeling is integrated within a single processing 

step. 
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The parser is modular: it can use several 

learning algorithms: Maximum Entropy, SVM, 

Winnow, Voted Perceptron, Memory Based 

Learning, as well as combinations thereof. The 

submitted runs used Maximum Entropy and I 

present accuracy and performance comparisons 

with other learning algorithms. 

No additional resources are used. 

No pre-processing or post-processing is used, 

except stemming for Danish, German and Swedish. 

2 Features 

Columns from input data were used as follows. 

LEMMA was used in features whenever 

available, otherwise the FORM was used. For 

Danish, German and Swedish the Snowball 

stemmer (Porter 2001) was used to generate a 

value for LEMMA. This use of stemming slightly 

improved both accuracy and performance. 

Only CPOSTAG were used. PHEAD/PDEPREL 

were not used. 

FEATS were used to extract a single token 

combining gender, number, person and case, 

through a language specific algorithm. 

The selection of features to be used in the parser 

is controlled by a number of parameters. For ex-

ample, the parameter PosFeatures determines 

for which tokens the POS tag will be included in 

the context, PosLeftChildren determines how 

many left outermost children of a token to con-

sider, PastActions tells how many previous ac-

tions to include as features. 

The settings used in the submitted runs are listed 

below and configure the parser for not using any 

word forms. Positive numbers refer to input to-

kens, negative ones to token on the stack. 

LemmaFeatures         -2 -1 0 1 2 3 
PosFeatures           -2 -1 0 1 2 3 
MorphoFeatures        -1 0 1 2 
DepFeatures           -1 0 
PosLeftChildren       2 
PosLeftChild          -1 0 
DepLeftChild          -1 0 
PosRightChildren      2 
PosRightChild         -1 0 
DepRightChild         -1 
PastActions           1 

The context for POS tags consisted of 1 token left 

and 3 tokens to the right of the focus words, except 

for Czech and Chinese were 2 tokens to the left 

and 4 tokens to the right were used. These values 

were chosen by performing experiments on the 

training data, using 10% of the sentences as held-

out data for development. 

3 Inductive Deterministic Parsing 

The parser constructs dependency trees employing 

a deterministic bottom-up algorithm which per-

forms Shift/Reduce actions while analyzing input 

sentences in left-to-right order. 

Using a notation similar to (Nivre and Scholz, 

2003), the state of the parser is represented by a 

quadruple 〈S, I, T, A〉, where S is the stack, I is the 

list of (remaining) input tokens, T is a stack of 

temporary tokens and A is the arc relation for the 

dependency graph. 

Given an input string W, the parser is initialized 

to 〈(), W, (), ()〉, and terminates when it reaches a 

configuration 〈S, (), (), A〉. 

The parser by Yamada and Matsumoto (2003) 

used the following actions: 

Shift in a configuration 〈S, n|I, T, A〉, pushes 

n to the stack, producing the configura-

tion 〈n|S, I, T, A〉. 

Right1 in a configuration 〈s1|S, n|I, T, A〉, adds 

an arc from s1 to n and pops s1 from the 

stack, producing the configuration 〈S, 

n|I, T, A∪{(s1, r, n)}〉. 

Left in a configuration 〈s1|S, n|I, T, A〉, adds 

an arc from n to s1, pops n from input, 

pops s1 from the stack and moves it 

back to I, producing the configuration 

〈S, s1|I, T, A∪{(n, r, s1)}〉. 

At each step the parser uses classifiers trained on 

treebank data in order to predict which action to 

perform and which dependency label to assign 

given the current configuration. 

4 Non-Projective Relations 

For handling non-projective relations, Nivre and 

Nilsson (2005) suggested applying a pre-

processing step to a dependency parser, which con-

sists in lifting non-projective arcs to their head re-

peatedly, until the tree becomes pseudo-projective. 

A post-processing step is then required to restore 

the arcs to the proper heads. 

                                                           
1 Nivre and Scholz reverse the direction, while I follow here 

the terminology in Yamada and Matsumoto (2003). 
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I adopted a novel approach, which consists in 

adding six new parsing actions: 

Right2 in a configuration 〈s1|s2|S, n|I, T, A〉, 

adds an arc from s2 to n and removes s2 

from the stack, producing the configu-

ration 〈s1|S, n|I, T, A∪{(s2, r, n)}〉. 

Left2 in a configuration 〈s1|s2|S, n|I, T, A〉, 

adds an arc from n to s2, pops n from 

input, pops s1 from the stack and moves 

it back to I, producing the configuration 

〈s2|S, s1|I, T, A∪{(n, r, s2)}〉. 

Right3 in a configuration 〈s1|s2|s3|S, n|I, T, A〉, 

adds an arc from s3 to n and removes s3 

from the stack, producing the configu-

ration 〈s1|s2|S, n|I, T, A∪{(s3, r, n)}〉. 

Left3 in a configuration 〈s1|s2|s3|S, n|I, T, A〉, 

adds an arc from n to s3, pops n from 

input, pops s1 from the stack and moves 

it back to I, producing the configuration 

〈s2|s3|S, s1|I, T, A∪{(n, r, s3)}〉. 

Extract in a configuration 〈s1|s2|S, n|I, T, A〉, 

move s2 from the stack to the temporary 

stack, then Shift, producing the con-

figuration 〈n|s1|S, I, s2|T, A〉. 

Insert in a configuration 〈S, I, s1|T, A〉, pops s1 

from T and pushes it to the stack, pro-

ducing the configuration 〈s1|S, I, T, A〉. 

The actions Right2 and Left2 are sufficient to 

handle almost all cases of non-projectivity: for in-

stance the training data for Czech contain 28081 

non-projective relations, of which 26346 can be 

handled by Left2/Right2, 1683 by 

Left3/Right3 and just 52 require Ex-

tract/Insert. 

Here is an example of non-projectivity that can 

be handled with Right2 (nejen → ale) and Left3 

(fax → Většinu): 

Většinu těchto přístrojů lze take používat nejen jako fax, 

ale současně … 

 

The remaining cases are handled with the last two 

actions: Extract is used to postpone the creation 

of a link, by saving the token in a temporary stack; 

Insert restores the token from the temporary 

stack and resumes normal processing. 

 
This fragment in Dutch is dealt by performing an 

Extract in configuration 〈moeten|gemaakt|zou, 

worden|in, A〉 followed immediately by an In-

sert, leading to the following configuration, 

which can be handled by normal Shift/Reduce 

actions: 

 
Another linguistic phenomenon is the anticipation 

of pronouns, like in this Portuguese fragment: 

Tudo é possivel encontrar em o IX 
Salão de Antiguidades, desde objectos 

de ouro e prata, moedas, … 

The problem here is due to the pronoun Tudo 

(Anything), which is the object of encontrar 

(find), but which is also the head of desde (from) 

and its preceding comma. In order to be able to 

properly link desde to Tudo, it is necessary to 

postpone its processing; hence it is saved with Ex-

tract to the temporary stack and put back later in 

front of the comma with Insert. In fact the pair 

Extract/Insert behaves like a generalized 

Rightn/Leftn, when n is not known. As in the 

example, except for the case where n=2, it is diffi-

cult to predict the value of n, since there can be an 

arbitrary long sequence of tokens before reaching 

the position where the link can be inserted. 

5 Performance 

I used my own C++ implementation of Maximum 

Entropy, which is very fast both in learning and 

classification. On a 2.8 MHz Pentium Xeon PC, 

the learning time is about 15 minutes for Portu-

guese and 4 hours for Czech. Parsing is also very 

fast, with an average throughput of 200 sentences 

per second: Table 1 reports parse time for parsing 

each whole test set. Using Memory Based Learn-

ing increases considerably the parsing time, while 

as expected learning time is quite shorter. On the 

other hand MBL achieves an improvement up to 

5% in accuracy, as shown in detail in Table 1. 

zou moeten worden gemaakt in 

zou gemaakt moeten worden in 

Většinu těchto přístrojů lze take používat nejen jako fax  ,  ale 
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Language 
Maximum Entropy MBL 

LAS 

% 

Cor-

rected 

LAS 

UAS 

% 

LA 

% 

Train 

time 

sec 

Parse 

time 

sec 

LAS 

% 

UAS 

% 

LA 

% 

Train 

time 

sec 

Parse 

time 

sec 

Arabic 53.81 54.15 69.50 72.97 181 2.6 59.70 74.69 75.49 24 950 

Bulgarian 72.89 72.90 85.24 77.68 452 1.5 79.17 85.92 83.22 88 353 

Chinese 54.89 70.00 81.33 58.75 1156 1.8 72.17 83.08 75.55 540 478 

Czech 59.76 62.10 73.44 69.84 13800 12.8 69.20 80.22 77.72 496 13500 

Danish 66.35 71.72 78.84 74.65 386 3.2 76.13 83.65 82.06 52 627 

Dutch 58.24 63.71 68.93 66.47 679 3.3 68.97 74.73 75.93 132 923 

German 69.77 75.88 80.25 78.39 9315 4.3 79.79 84.31 86.88 1399 3756 

Japanese 65.38 78.01 82.05 73.68 129 0.8 83.39 86.73 89.95 44 97 

Portuguese 75.36 79.40 85.03 80.79 1044 4.9 80.97 86.78 85.27 160 670 

Slovene 57.19 60.63 72.14 69.36 98 3.0 62.67 76.60 72.72 16 547 

Spanish 67.44 70.33 74.25 82.19 204 2.4 74.37 79.70 85.23 54 769 

Swedish 68.77 75.20 83.03 72.42 1424 2.9 74.85 83.73 77.81 96 1177 

Turkish 37.80 48.83 65.25 49.81 177 2.3 47.58 65.25 59.65 43 727 

Table 1. Results for the CoNLL-X Shared task (official values in italics). 

For details on the CoNLL-X shared task and the 

measurements see (Buchholz, et al. 2006). 

6 Experiments 

I performed several experiments to tune the parser. 

I also tried alternative machine learning algo-

rithms, including SVM, Winnow, Voted Percep-

tron. 

The use of SVM turned out quite impractical 

since the technique does not scale to the size of 

training data involved: training an SVM with such 

a large number of features was impossible for any 

of the larger corpora. For smaller ones, e.g. Portu-

guese, training required over 4 days but produced a 

bad model which could not be used (I tried both 

the TinySVM (Kudo 2002) and the LIBSVM 

(Chang and Lin 2001) implementations). 

Given the speed of the Maximum Entropy clas-

sifier, I explored whether increasing the number of 

features could improve accuracy. I experimented 

adding various features controlled by the parame-

ters above: none appeared to be effective, except 

the addition of the previous action. 

The classifier returns both the action and the la-

bel to be assigned. Some experiments were carried 

out splitting the task among several specialized 

classifiers. I experimented with: 

1. three classifiers: one to decide between 

Shift/Reduce, one to decide which Reduce 

action and a third one to choose the depend-

ency in case of Left/Right action 

2. two classifiers: one to decide which action to 

perform and a second one to choose the de-
pendency in case of Left/Right action 

None of these variants produced improvements in 

precision. Only a small improvement in labeled 

attachment score was noticed using the full, non-

specialized classifier to decide the action but dis-

carding its suggestion for label and using a special-

ized classifier for labeling. However this was 

combined with a slight decrease in unlabeled at-

tachment score, hence it was not considered worth 

the effort. 

7 Error Analysis 

The parser does not attempt to assign a dependency 

relation to the root. A simple correction of assign-

ing a default value for each language gave an im-

provement in the LAS as shown in Table 1. 

7.1 Portuguese 

Out of the 45 dependency relations that the parser 

had to assign to a sentence, the largest number of 
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errors occurred assigning N<PRED (62), ACC (46), 

PIV (43), CJT (40), N< (34), P< (30). 

The highest number of head error occurred at 

the CPOS tags PRP with 193 and V with 176. In 

particular just four prepositions (em, de, a, para) 

accounted for 120 head errors. 

Most of the errors occur near punctuations. Of-

ten this is due to the fact that commas introduce 

relative phrases or parenthetical phrases (e.g. “o 

suspeito, de 38 anos, que trabalha”), 

that produce diversions in the flow. Since the 

parser makes decisions analyzing only a window 

of tokens of a limited size, it gets confused in cre-

ating attachments. I tried to add some global con-

text features, to be able to distinguish these cases, 

in particular, a count of the number of punctuation 

marks seen so far, whether punctuation is present 

between the focus words. None of them helped 

improving precision and were not used in the sub-

mitted runs. 

7.2 Czech 

Most current parsers for Czech do not perform well 

on Apos (apposition), Coord (coordination) and 

ExD (ellipses), but they are not very frequent. The 

largest number of errors occur on Obj (166), Adv 

(155), Sb (113), Atr (98). There is also often con-

fusion among these: 33 times Obj instead of Adv, 

32 Sb instead of Obj, 28 Atr instead of Adv. 

The high error rate of J (adjective) is expected, 

mainly due to coordination problems. The error of 

R (preposition) is also relatively high. Prepositions 

are problematic, but their error rate is higher than 

expected since they are, in terms of surface order, 

rather regular and close to the noun. It could be 

that the decision by the PDT to hang them as heads 

instead of children, causes a problem in attaching 

them. It seems that a post-processing may correct a 

significant portion of these errors. 

The labels ending with _Co, _Ap or _Pa are 

nodes who are members of the Coordination, Ap-

position or the Parenthetical relation, so it may be 

worth while omitting these suffixes in learning and 

restore them by post-processing. 

An experiment using as training corpus a subset 

consisting of just sentences which include non-

projective relations achieved a LAS of 65.28 % 

and UAS of 76.20 %, using MBL. 

Acknowledgments. Kiril Ribarov provided in-

sightful comments on the results for Czech.  

The following treebanks were used for training the 

parser: (Afonso et al., 2002; Atalay et al., 2003; 

Böhmovà et al., 2003; Brants et al., 2002; Chen et 

al., 2003; Civit Torruella and Martì Antonìn, 2002; 

Džeroski et al., 2006; Hajiç et al., 2004; Kawata 

and Bartels, 2000; Kromann, 2003; Nilsson et al., 

2005; Oflazer et al., 2003; Simov et al., 2005; van 

der Beek et al., 2002). 
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