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Abstract

We present a novel context pattern in-
duction method for information extrac-
tion, specifically named entity extraction.
Using this method, we extended several
classes of seed entity lists into much larger
high-precision lists. Using token member-
ship in these extended lists as additional
features, we improved the accuracy of a
conditional random field-based named en-
tity tagger. In contrast, features derived
from the seed lists decreased extractor ac-
curacy.

1 Introduction

Partial entity lists and massive amounts of unla-
beled data are becoming available with the growth
of the Web as well as the increased availability of
specialized corpora and entity lists. For example,
the primary public resource for biomedical research,
MEDLINE, contains over 13 million entries and is
growing at an accelerating rate. Combined with
these large corpora, the recent availability of entity
lists in those domains has opened up interesting op-
portunities and challenges. Such lists are never com-
plete and suffer from sampling biases, but we would
like to exploit them, in combination with large un-
labeled corpora, to speed up the creation of infor-
mation extraction systems for different domains and
languages. In this paper, we concentrate on explor-
ing utility of such resources for named entity extrac-
tion.

Currently available entity lists contain a small
fraction of named entities, but there are orders of
magnitude more present in the unlabeled data1. In
this paper, we test the following hypotheses:

i. Starting with a few seed entities, it is possible
to induce high-precision context patterns by ex-
ploiting entity context redundancy.

ii. New entity instances of the same category can
be extracted from unlabeled data with the in-
duced patterns to create high-precision exten-
sions of the seed lists.

iii. Features derived from token membership in the
extended lists improve the accuracy of learned
named-entity taggers.

Previous approaches to context pattern induc-
tion were described by Riloff and Jones (1999),
Agichtein and Gravano (2000), Thelen and Riloff
(2002), Lin et al. (2003), and Etzioni et al. (2005),
among others. The main advance in the present
method is the combination of grammatical induction
and statistical techniques to create high-precision
patterns.

The paper is organized as follows. Section 2 de-
scribes our pattern induction algorithm. Section 3
shows how to extend seed sets with entities extracted
by the patterns from unlabeled data. Section 4 gives
experimental results, and Section 5 compares our
method with previous work.

1For example, based on approximate matching, there is an
overlap of only 22 organizations between the 2403 organiza-
tions present in CoNLL-2003 shared task training data and the
Fortune-500 list.
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2 Context Pattern Induction

The overall method for inducing entity context pat-
terns and extending entity lists is as follows:

1. LetE = seed set,T = text corpus.

2. Find the contextsC of entities inE in the cor-
pusT (Section 2.1).

3. Selecttrigger wordsfrom C (Section 2.2).

4. For each trigger word, induce a pattern automa-
ton (Section 2.3).

5. Use induced patternsP to extract more entities
E′ (Section 3).

6. RankP andE′ (Section 3.1).

7. If needed, add high scoring entities inE′ to E

and return to step 2. Otherwise, terminate with
patternsP and extended entity listE ∪ E′ as
results.

2.1 Extracting Context

Starting with the seed list, we first find occurrences
of seed entities in the unlabeled data. For each such
occurrence, we extract a fixed numberW (context
window size) of tokens immediately preceding and
immediately following the matched entity. As we
are only interested in modeling the context here, we
replace all entity tokens by the single token-ENT-.
This token now represents aslot in which an entity
can occur. Examples of extracted entity contexts are
shown in Table 1. In the work presented in this pa-
pers, seeds are entity instances (e.g.Googleis a seed
for organization category).

increased expression of-ENT- in vad mice
the expression of-ENT- mrna was greater

expression of the-ENT- gene in mouse

Table 1: Extracted contexts of known genes with
W = 3.

The set of extracted contexts is denoted byC. The
next step is to automatically induce high-precision
patterns containing the token-ENT- from such ex-
tracted contexts.

2.2 Trigger Word Selection

To induce patterns, we need to determine their starts.
It is reasonable to assume that some tokens are more
specific to particular entity classes than others. For
example, in the examples shown above,expression
can be one such word for gene names. Whenever
one comes across such a token in text, the proba-
bility of finding an entity (of the corresponding en-
tity class) in its vicinity is high. We call such start-
ing tokenstrigger words. Trigger words mark the
beginning of a pattern. It is important to note that
simply selecting the first token of extracted contexts
may not be a good way to select trigger words. In
such a scheme, we would have to varyW to search
for useful pattern starts. Instead of that brute-force
technique, we propose an automatic way of select-
ing trigger words. A good set of trigger words is
very important for the quality of induced patterns.
Ideally, we want a trigger word to satisfy the follow-
ing:

• It is frequent in the setC of extracted contexts.

• It is specific to entities of interest and thereby
to extracted contexts.

We use a term-weighting method to rank candi-
date trigger words from entity contexts. IDF (In-
verse Document Frequency) was used in our experi-
ments but any other suitable term-weighting scheme
may work comparably. The IDF weightfw for a
wordw occurring in a corpus is given by:

fw = log

(

N

nw

)

whereN is the total number of documents in the
corpus andnw is the total number of documents con-
tainingw. Now, for each context segmentc ∈ C, we
select adominating worddc given by

dc = arg max
w∈c

fw

There is exactly one dominating word for each
c ∈ C. All dominating words for contexts inC form
multisetM . Let mw be the multiplicity of the dom-
inating wordw in M . We sortM by decreasingmw

and select the topn tokens from this list as potential
trigger words.
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Selection criteria based on dominating word fre-
quency work better than criteria based on simple
term weight because high term weight words may
be rare in the extracted contexts, but would still be
misleadingly selected for pattern induction. This can
be avoided by using instead the frequency of domi-
nating words within contexts, as we did here.

2.3 Automata Induction

Rather than using individual contexts directly, we
summarize them into automata that contain the most
significant regularities of the contexts sharing a
given trigger word. This construction allows us to
determine the relative importance of different con-
text features using a variant of the forward-backward
algorithm from HMMs.

2.3.1 Initial Induction

For each trigger word, we list the contexts start-
ing with the word. For example, with“expression”
as the trigger word, the contexts in Table 1 are re-
duced to those in Table 2. Since“expression” is a
left-context trigger word, only one token to the right
of -ENT- is retained. Here, the predictive context
lies to the left of the slot-ENT- and a single to-
ken is retained on the right to mark the slot’s right
boundary. To model predictive right contexts, the to-
ken string can be reversed and the same techniques
as here applied on the reversed string.2

expression of-ENT- in
expression of-ENT- mrna

expression of the-ENT- gene

Table 2: Context segments corresponding to trigger
word “expression”.

Similar contexts are prepared for each trigger
word. The context set for each trigger word is then
summarized by a pattern automaton with transitions
that match the trigger word and also the wildcard
-ENT- . We expect such automata to model the po-
sition in context of the entity slot and help us extract
more entities of the same class with high precision.

2Experiments reported in this paper use predictive left con-
text only.
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Figure 1: Fragment of a 1-reversible automaton

We use a simple form of grammar induction to
learn the pattern automata. Grammar induction tech-
niques have been previously explored for informa-
tion extraction (IE) and related tasks. For instance,
Freitag (1997) used grammatical inference to im-
prove precision in IE tasks.

Context segments are short and typically do not
involve recursive structures. Therefore, we chose to
use 1-reversible automata to represent sets of con-
texts. An automatonA is k-reversibleiff (1) A is
deterministic and (2)Ar is deterministic withk to-
kens of lookahead, whereAr is the automaton ob-
tained by reversing the transitions ofA. Wrapper in-
duction usingk-reversiblegrammar is discussed by
Chidlovskii (2000).

In the 1-reversible automaton induced for each
trigger word, all transitions labeled by a given token
go to the same state, which is identified with that
token. Figure 1 shows a fragment of a 1-reversible
automaton. Solan et al. (2005) describe a similar au-
tomaton construction, but they allow multiple transi-
tions between states to distinguish among sentences.

Each transitione = (v,w) in a 1-reversible au-
tomatonA corresponds to a bigramvw in the con-
texts used to createA. We thus assign each transition
the probability

P (w|v) =
C(v,w)

Σw′C(v,w′)

whereC(v,w) is the number of occurrences of the
bigramvw in contexts forW . With this construc-
tion, we ensure words will be credited in proportion
to their frequency in contexts. The automaton may
overgenerate, but that potentially helps generaliza-
tion.
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2.3.2 Pruning

The initially induced automata need to be pruned
to remove transitions with weak evidence so as to
increase match precision.

The simplest pruning method is to set a count
thresholdc below which transitions are removed.
However, this is a poor method. Consider state 10 in
the automaton of Figure 2, withc = 20. Transitions
(10, 11) and(10, 12) will be pruned.C(10, 12) � c

but C(10, 11) just falls short ofc. However, from
the transition counts, it looks like the sequence“the
-ENT-” is very common. In such a case, it is not
desirable to prune(10, 11). Using a local threshold
may lead to overpruning.

We would like instead to keep transitions that are
used in relatively many probable paths through the
automaton. The probability of pathp is P (p) =
∏

(v,w)∈p P (w|v). Then the posterior probability of
edge(v,w) is

P (v,w) =

∑

(v,w)∈p P (p)
∑

p P (p)
,

which can be efficiently computed by the forward-
backward algorithm (Rabiner, 1989). We can now
remove transitions leaving statev whose posterior
probability is lower thanpv = k(maxw P (v,w)),
where0 < k ≤ 1 controls the degree of pruning,
with higherk forcing more pruning. All induced and
pruned automata are trimmed to remove unreachable
states.
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Figure 2: Automaton to be pruned at state10. Tran-
sition counts are shown in parenthesis.

3 Automata as Extractor

Each automaton induced using the method described
in Sections 2.3-2.3.2 represents high-precision pat-
terns that start with a given trigger word. By scan-

ning unlabeled data using these patterns, we can ex-
tract text segments which can be substituted for the
slot token-ENT-. For example, assume that the in-
duced pattern is“analyst at -ENT- and” and that
the scanned text is“He is an analyst at the Univer-
sity of California and ...”. By scanning this text us-
ing the pattern mentioned above, we can figure out
that the text“the University of California” can sub-
stitute for “-ENT-”. This extracted segment is a
candidate extracted entity. We now need to decide
whether we should retain all tokens inside a candi-
date extraction or purge some tokens, such as“the”
in the example.

One way to handle this problem is to build a
language model of content tokens and retain only
the maximum likelihood token sequence. However,
in the current work, the following heuristic which
worked well in practice is used. Each token in the
extracted text segment is labeled eitherkeep(K) or
droppable(D). By default, a token is labeledK. A
token is labeledD if it satisfies one of the droppable
criteria. In the experiments reported in this paper,
droppable criteria were whether the token is present
in a stopword list, whether it is non-capitalized, or
whether it is a number.

Once tokens in a candidate extraction are labeled
using the above heuristic, the longest token sequence
corresponding to the regular expressionK[D K]∗K is
retained and is considered a final extraction. If there
is only oneK token, that token is retained as the fi-
nal extraction. In the example above, the tokens are
labeled“the/D University/K of/D California/K” , and
the extracted entity will be“University of Califor-
nia” .

To handle run-away extractions, we can set a
domain-dependent hard limit on the number of to-
kens which can be matched with “-ENT-”. This
stems from the intuition that useful extractions are
not very long. For example, it is rare that a person
name longer than five tokens.

3.1 Ranking Patterns and Entities

Using the method described above, patterns and
the entities extracted by them from unlabeled data
are paired. But both patterns and extractions vary
in quality, so we need a method for ranking both.
Hence, we need to rank both patterns and entities.
This is difficult given that there we have no nega-
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tive labeled data. Seed entities are the only positive
instances that are available.

Related previous work tried to address this prob-
lem. Agichtein and Gravano (2000) seek to extract
relations, so their pattern evaluation strategy consid-
ers one of the attributes of an extracted tuple as a
key. They judge the tuple as a positive or a negative
match for the pattern depending on whether there are
other extracted values associated with the same key.
Unfortunately, this method is not applicable to entity
extraction.

The pattern evaluation mechanism used here is
similar in spirit to those of Etzioni et al. (2005) and
Lin et al. (2003). With seeds for multiple classes
available, we consider seed instances of one class
as negative instances for the other classes. A pat-
tern is penalized if it extracts entities which belong
to the seed lists of the other classes. Letpos(p) and
neg(p) be respectively the number of distinct pos-
itive and negative seeds extracted by patternp. In
contrast to previous work mentioned above, we do
not combinepos(p) andneg(p) to calculate a single
accuracy value. Instead, we discard all patternsp

with positiveneg(p) value, as well as patterns whose
total positive seed (distinct) extraction count is less
than certain thresholdηpattern. This scoring is very
conservative. There are several motivations for such
a conservative scoring. First, we are more interested
in precision than recall. We believe that with mas-
sive corpora, large number of entity instances can
be extracted anyway. High accuracy extractions al-
low us to reliably (without any human evaluation)
use extracted entities in subsequent tasks success-
fully (see Section 4.3). Second, in the absence of
sophisticated pattern evaluation schemes (which we
are investigating — Section 6), we feel it is best to
heavily penalize any pattern that extracts even a sin-
gle negative instance.

Let G be the set of patterns which are retained
by the filtering scheme described above. Also, let
I(e, p) be an indicator function which takes value 1
when entitye is extracted by patternp and 0 other-
wise. The score ofe, S(e), is given by

S(e) = Σp∈GI(e, p)

This whole process can be iterated by includ-
ing extracted entities whose score is greater than or
equal to a certain thresholdηentity to the seed list.

4 Experimental Results

For the experiments described below, we used 18
billion tokens (31 million documents) of news data
as the source of unlabeled data. We experimented
with 500 and 1000 trigger words. The results pre-
sented were obtained after a single iteration of the
Context Pattern Induction algorithm (Section 2).

4.1 English LOC, ORG and PER

For this experiment, we used as seed sets subsets of
the entity lists provided with CoNLL-2003 shared
task data.3 Only multi-token entries were included
in the seed lists of respective categories (location
(LOC), person (PER) & organization (ORG) in this
case). This was done to partially avoid incorrect
context extraction. For example, if the seed entity is
“California” , then the same string present in“Uni-
versity of California” can be incorrectly considered
as an instance of LOC. A stoplist was used for drop-
ping tokens from candidate extractions, as described
in Section 3. Examples of top ranking induced pat-
terns and extracted entities are shown in Table 9.
Seed list sizes and experimental results are shown
in Table 3. The precision numbers shown in Table 3
were obtained by manually evaluating 100 randomly
selected instances from each of the extended lists.

Category Seed
Size

Patterns
Used

Extended
Size

Precision

LOC 379 29 3001 70%
ORG 1597 276 33369 85%
PER 3616 265 86265 88%

Table 3: Results of LOC, ORG & PER entity list ex-
tension experiment withηpattern = 10 set manually.

The overlap4 between the induced ORG list and
the Fortune-500 list has 357 organization names,
which is significantly higher than the seed list over-
lap of 22 (see Section 1). This shows that we have
been able to improve coverage considerably.

4.2 Watch Brand Name

A total of 17 watch brand names were used as
seeds. In addition to the pattern scoring scheme

3A few locally available entities in each category were also
added. These seeds are available upon request from the authors.

4Using same matching criteria as in Section 1.
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of Section 3.1, only patterns containing sequence
“watch” were finally retained. Entities extracted
with ηentity = 2 are shown in Table 5. Extraction
precision is 85.7%.

Corum, Longines, Lorus, Movado, Accutron, Au-
demars Piguet, Cartier, Chopard, Franck Muller,
IWC, Jaeger-LeCoultre, A. Lange & Sohne, Patek
Philippe, Rolex, Ulysse, Nardin, Vacheron Con-
stantin

Table 4: Watch brand name seeds.

Rolex Fossil Swatch
Cartier Tag Heuer Super Bowl
Swiss Chanel SPOT

Movado Tiffany Sekonda
Seiko TechnoMarine Rolexes
Gucci Franck Muller Harry Winston

Patek Philippe Versace Hampton Spirit
Piaget Raymond Weil Girard Perregaux
Omega Guess Frank Mueller
Citizen Croton David Yurman
Armani Audemars Piguet Chopard
DVD DVDs Chinese

Breitling Montres Rolex Armitron
Tourneau CD NFL

Table 5: Extended list of watch brand names after
single iteration of pattern induction algorithm.

This experiment is interesting for several reasons.
First, it shows that the method presented in this pa-
per is effective even with small number of seed in-
stances. From this we conclude that the unambigu-
ous nature of seed instances is much more important
than the size of the seed list. Second, no negative
information was used during pattern ranking in this
experiment. This suggests that for relatively unam-
biguous categories, it is possible to successfully rank
patterns using positive instances only.

4.3 Extended Lists as Features in a Tagger

Supervised models normally outperform unsuper-
vised models in extraction tasks. The downside of
supervised learning is expensive training data. On
the other hand, massive amounts of unlabeled data
are readily available. The goal of semi-supervised
learning to combine the best of both worlds. Recent
research have shown that improvements in super-
vised taggers are possible by including features de-
rived from unlabeled data (Miller et al., 2004; Liang,
2005; Ando and Zhang, 2005). Similarly, automati-
cally generated entity lists can be used as additional

features in a supervised tagger.

System F1 (Precision, Recall)
Florian et al. (2003),
best single, no list

89.94 (91.37, 88.56)

Zhang and Johnson
(2003), no list

90.26 (91.00, 89.53)

CRF baseline, no list 89.52 (90.39, 88.66)

Table 6: Baseline comparison on 4 categories (LOC,
ORG, PER, MISC) on Test-a dataset.

For this experiment, we started with a conditional
random field (CRF) (Lafferty et al., 2001) tagger
with a competitive baseline (Table 6). The base-
line tagger was trained5 on the full CoNLL-2003
shared task data. We experimented with the LOC,
ORG and PER lists that were automatically gener-
ated in Section 4.1. In Table 7, we show the accuracy
of the tagger for the entity types for which we had
induced lists. The test conditions are just baseline
features with no list membership, baseline plus seed
list membership features, and baseline plus induced
list membership features. For completeness, we also
show in Table 8 accuracy on the full CoNLL task
(four entity types) without lists, with seed list only,
and with the three induced lists. The seed lists (Sec-
tion 4.1) were prepared from training data itself and
hence with increasing training data size, the model
overfitted as it became completely reliant on these
seed lists. From Tables 7 & 8 we see that incor-
poration of token membership in the extended lists
as additional membership features led to improve-
ments across categories and at all sizes of training
data. This also shows that the extended lists are of
good quality, since the tagger is able to extract useful
evidence from them.

Relatively small sizes of training data pose inter-
esting learning situation and is the case with practi-
cal applications. It is encouraging to observe that the
list features lead to significant improvements in such
cases. Also, as can be seen from Table 7 & 8, these
lists are effective even with mature taggers trained
on large amounts of labeled data.

5Standard orthographic information, such as character n-
grams, capitalization, tokens in immediate context, chunktags,
and POS were used as features.

146



Training Data Test-a Test-b
(Tokens) No List Seed List Unsup. List No List Seed List Unsup. List

9268 68.16 70.91 72.82 60.30 63.83 65.56
23385 78.36 79.21 81.36 71.44 72.16 75.32
46816 82.08 80.79 83.84 76.44 75.36 79.64
92921 85.34 83.03 87.18 81.32 78.56 83.05
203621 89.71 84.50 91.01 84.03 78.07 85.70

Table 7: CRF tagger F-measure on LOC, ORG, PER extraction.

Training Data Test-a Test-b
(Tokens) No List Seed List Unsup. List No List Seed List Unsup. List

9229 68.27 70.93 72.26 61.03 64.52 65.60
204657 89.52 84.30 90.48 83.17 77.20 84.52

Table 8: CRF tagger F-measure on LOC, ORG, PER and MISC extraction.

5 Related Work

The method presented in this paper is similar in
many respects to some of the previous work on
context pattern induction (Riloff and Jones, 1999;
Agichtein and Gravano, 2000; Lin et al., 2003; Et-
zioni et al., 2005), but there are important differ-
ences. Agichtein and Gravano (2000) focus on rela-
tion extraction while we are interested in entity ex-
traction. Moreover, Agichtein and Gravano (2000)
depend on an entity tagger to initially tag unlabeled
data whereas we do not have such requirement. The
pattern learning methods of Riloff and Jones (1999)
and the generic extraction patterns of Etzioni et al.
(2005) use language-specific information (for exam-
ple, chunks). In contrast, the method presented here
is language independent. For instance, the English
pattern induction system presented here was applied
on German data without any change. Also, in the
current method, induced automata compactly repre-
sent all induced patterns. The patterns induced by
Riloff and Jones (1999) extract NPs and that deter-
mines the number of tokens to include in a single
extraction. We avoid using such language dependent
chunk information as the patterns in our case include
right6 boundary tokens thus explicitly specifying the
slot in which an entity can occur. Another interest-
ing deviation here from previous work on context
pattern induction is the fact that on top of extending

6In case of predictive left context.

seed lists at high precision, we have successfully in-
cluded membership in these automatically generated
lexicons as features in a high quality named entity
tagger improving its performance.

6 Conclusion

We have presented a novel language-independent
context pattern induction method. Starting with a
few seed examples, the method induces in an unsu-
pervised way context patterns and extends the seed
list by extracting more instances of the same cat-
egory at fairly high precision from unlabeled data.
We were able to improve a CRF-based high quality
named entity tagger by using membership in these
automatically generated lists as additional features.

Pattern and entity ranking methods need further
investigation. Thorough comparison with previ-
ously proposed methods also needs to be carried out.
Also, it will be interesting to see whether the fea-
tures generated in this paper complement some of
the other methods (Miller et al., 2004; Liang, 2005;
Ando and Zhang, 2005) that also generate features
from unlabeled data.

7 Acknowledgements

We thank the three anonymous reviewers as well as
Wojciech Skut, Vrishali Wagle, Louis Monier, and
Peter Norvig for valuable suggestions. This work is
supported in part by NSF grant EIA-0205448.

147



Induced LOC Patterns
troops in-ENT-to
Cup qualifier against-ENT-in
southern-ENT-town
war - torn-ENT-.
countries including-ENT-.
Bangladesh and-ENT-,
England in-ENT-in
west of-ENT-and
plane crashed in-ENT-.
Cup qualifier against-ENT-,

Extracted LOC Entities
US
United States
Japan
South Africa
China
Pakistan
France
Mexico
Israel
Pacific

Induced PER Patterns
compatriot-ENT-.
compatriot-ENT-in
Rep.-ENT-,
Actor -ENT-is
Sir-ENT-,
Actor -ENT-,
Tiger Woods ,-ENT-and
movie starring-ENT-.
compatriot-ENT-and
movie starring-ENT-and

Extracted PER Entities
Tiger Woods
Andre Agassi
Lleyton Hewitt
Ernie Els
Serena Williams
Andy Roddick
Retief Goosen
Vijay Singh
Jennifer Capriati
Roger Federer

Induced ORG Patterns
analyst at-ENT-.
companies such as-ENT-.
analyst with-ENT-in
series against the-ENT-tonight
Today ’s Schaeffer ’s Option Activity Watch features-ENT-(
Cardinals and-ENT-,
sweep of the-ENT-with
joint venture with-ENT-(
rivals-ENT-Inc.
Friday night ’s game against-ENT-.

Extracted ORG Entities
Boston Red Sox
St. Louis Cardinals
Chicago Cubs
Florida Marlins
Montreal Expos
San Francisco Giants
Red Sox
Cleveland Indians
Chicago White Sox
Atlanta Braves

Table 9: Top ranking LOC, PER, ORG induced pattern and extracted entity examples.
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