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Abstract task has only 10 labeled training examples per sense
, o on average, which is in contrast to nearly 6K training
This paper presents a new application of o, 2 njes per name class (on average) used for the
the recently proposed machine learning  coN 2003 named entity chunking shared fask
method Alternating Structure Optimiza- One problem is that there are so many words and so
tion (ASO) to word sense disambiguation 5y senses that it is hard to make available a suf-
(WSD). Given a set of WSD problems  giiant number of labeled training examples for each
and their respective labeled examples, we of a large number of target words.
seek to |mpr0\{e overall performance on On the other hand, this indicates that the total
that s_et by using all the labeled exam- number of available labeled examples (irrespective
ple_s (wrespectlve 0 f targgt WorF’S) for the of target words) can be relatively large. A natural
ent|re_se_t n learning a dlsamblguator for guestion to ask is whether we can effectively alie
each |nd|y|dl_ng problem. Thus, in effect, the labeled examples (irrespective of target words)
on ea<_:h '”d'}{'d‘,{a' problem_ eg. dls_am— for learning on each individual WSD problem.
oo o Based on e chseatons, v s e
disambiguation of “bar”, “canal”, and so, application of Alternating Structure Optimization
- ' ’ . (ASO)(Ando and Zhang, 2005a; Ando and Zhang,
forth). We emplrlqally study t.h € effecnvg 2005b) to WSD. ASO is a recently proposed ma-
tjassekjngssgr:i)-rsﬂgserF\)/liJsrggSIEa:?nEES (r;)unl;:g chine_lear_ning me_thod for learning p_redictive struc-
urations. Our performance results rival ture (|.e: ’ mformgnqn useful for pre.dlc.thns) sha_lr_ed
or exceed those of the previous best sys- by ”.‘“'“p'? _prgdlgtlon problems via joint empiri-
tems on several Senseval lexical sample cal risk minimization. It has been S.h own that on
task data sets several tasks, per_formanc_e can be_3|g_n|f|cantly im-
' proved by a semi-supervised application of ASO,
which obtains useful information froranlabeled
data by learning automatically created prediction

Word sense disambiguation (WSD) is the task ofroblems. In addition to such semi-supervised learn-
assigning pre-defined senses to words occurring iRg, this paper explores AS@ulti-task learning
some context. An example is to disambiguate an o¥thich learns a number of WSD problems simul-
currence of “bank” between the “money bank” senstaneously to exploit the inherent predictive struc-
and the “river bank” sense. Previous studies e.gfyre shared by these WSD problems. Thus, in ef-
(Lee and Ng, 2002; Florian and Yarowsky, 2002)fect, each individual problem (e.g., disambiguation
have applied supervised learning techniques to WS®f “art”) benefits fromlabeled training examples for
with success. other problemge.g., disambiguation of “bar”, dis-
A practical issue that arises in supervised WS@mbiguation of “canal”, and so forth).

is the paucity of labeled examples (sense-annotatedThe notion of benefiting from training data for
data) available for training. For example, the trainother word senses is not new by itself. For instance,
ing set of the SensevakZnglish lexical sample

1 Introduction

been evaluated in the series of Senseval workshops.
http://www.cs.unt.edufada/senseval/. WSD systems have 2http://www.cnts.ua.ac.be/conll2003/ner/
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on the WSD task with respect to WordNet synsetggegularization) on the: labeled training examples
Kohomban and Lee (2005) trained classifiers for thg¢(X;, Y;) }:

top-level synsets of the WordNet semantic hierar- "

chy, consolidating labeled examples assomated Wlthf — arg min Z LX), Y) +r(f)] . @
the WordNet sub-trees. To disambiguate test in- o\

stances, these coarse-grained classifiers are first ap- ) - )
plied, and then fine-grained senses are determinéy 0SS functionZ(-) quantifies the difference be-

using a heuristic mapping. By contrast, our apteen the predictiorf(X;) and the true output;,
proach does not require pre-defined relations amof@'d” () is @ regularization term to control the model
senses such as the WordNet hierarchy. Rather, \f@MPIexity.

let the machine learning algorithm ASO automati- 5  j4int linear models for ASO

cally and implicitly find relations with respect to theC i dicti bl indexed
disambiguation problems (i.e., finding shared pre-lonSI erm prehlc !ohn pro erlns )'24 (;;(Ze ; b& <
dictive structure). Interestingly, in our experiments,{ )+-+m}, each withn, samples(X;, ¥7°) for i €

seemingly unrelated or only loosely related word({j,l’ "' ,@g},landdgs§ume that thehre eé('zts :mISow-
sense pairs help to improve performance. imensional predictive structure shared by these

This paper makes two contributions. First, Weoroblems. Ando and Zhang (2005a) extend the

present a new application of ASO to WSD. We emaPove traditional linear model to a joint Iinegr model
pirically study the effective use of ASO and show° that a predictor for problefis in the form:
that labeled examples of all the words can be effec- fi(©,x) =wix+vliex, 00T =1, 2)
tively exploited in learning each individual disam-

biguator. Second, we report performance results thethere I is the identity matrix. w, and v, are

rival or exceed the state-of-the-art systems on Sekeight vectors specific to each problem Predic-

seval lexical sample tasks. tive structure is parameterized by tsucture ma-
trix © shared by all then predictors. The goal of
2 Alternating structure optimization this model can also be regarded as learning a com-

mon good feature maPx used for all then prob-
This section gives a brief summary of ASO. We firsiems.
introduce a standard linear prediction model for a
single task and then extend it to a joint linear mode?-3  ASO algorithm
used by ASO. Analogous to (1), we comput® and predictors so

that they minimize the empirical risk summed over
all the problems:

2.1 Standard linear prediction models
In the standard formulation of su ised | iNgo, {f:}] = S (W L(fe(6,X0). YY) )
pervised learningp, {f,}] =argmin Y * [ Y~ ===l g (fy) |
we seek gpredictor that maps an input vector (or Olfe} =1 " 2
feature vectorx € X to the corresponding output 3

y € Y. For NLP tasks, binary features are often usett has been shown in (Ando and Zhang, 2005a) that

— for example, if the word to the left is “money”, setth€ optimization problem (3) has a simple solution
- . ' ~~"usingsingular value decomposition (SViadhen we
the corresponding entry afto 1; otherwise, setitto

A choose square regularization:(f,) = X|lwy||3

binary classification problems, regarding output  w, + ©”'v, . Then (3) becomes the minimization

i=1

+1 andy = —1 as “in-class” and “out-of-class”, of the joint empirical risk written as:
respectively. (P Y
Predictors based dimear prediction modelsake > (Z . eTvz||§> NG
(=1 i=1

the form: f(x) = w!x, wherew is called aweight
vector A common method to obtain a predictorThis minimization can be approximately solved by
f is regularizedempirical risk minimizationwhich  repeating the following alternating optimization pro-
minimizes an empirical loss of the predictor (withcedure until a convergence criterion is met:
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Nouns art, authority, bar, bum, chair, channel, child, church;ut, day, detention, dyke, facility, fatigue, feeling
grip, hearth, holiday, lady, material, mouth, nation, matyost, restraint, sense, spade, stress, yew
Verbs begin, call, carry, collaborate, develop, draw, dresst, dhive, face, ferret, find, keep, leave, live, match,
play, pull, replace, see, serve strike, train, treat, tuse, wander wash, work
Adjectives | blind, colourless, cool, faithful, fine, fit, free, gracefgteen, local, natural, oblique, simple, solemn, vita

Figure 1:Words to be disambiguated; Senseval-2 English lexical satapk.

i ; i word uni-grams in 5-word window,
= FI.X .(6.’ {ve}), (:.ln.d flndm. predlgtors{ug} that Local | word bi- and tri-grams ofw_»,w_1),
minimizes the joint empirical risk (4). context | (w1, wss), (wor1,wi),

(UJ737 w-2, wfl)v (w+17 w42, w+3)'
2. Fixm predictors{u,}, and find(©, {v,}) that f(lllll—z,w—l,w+1), (w_l,w+1,w+zf). —
S ‘i i ; Syntactic | full parser output; see Section 3 for detajl.
minimizes the joint empirical risk (4). Global | all the words excluding stopwords.
POS uni-, bi-, and tri-grams in 5-word window{

The first step is equivalent to training predictors
independently. The second step, which couples dfigure 2: Features. w; stands for the word at position
the predictors, can be done by setting the rows 6?Iative to the word to be disambiguated. The 5-word win-
v . y g dow is[—2, +2]. Local context and POS features are position-
© to the most significanieft singular vectorsf the  sensitive. Global context features are position insers(t bag
predictor (weight) matrixU = [uy,...,u,,], and ofwords).
settingv, = Ouy. That is, the structure matri® is
cqmputed so that the projection of the predicf[or Ma- The goal of this section is to empirically study
trix U onto the subspace spanned@ rows gives e effective use of ASO for improving overall per-
the best approximation (in the least squares sensg}mance on these seemingly unrelated disambigua-
of U for the given row-dimension 0B Thus, in- tion problems. Below we first describe the task set-
tuitively, © captures the commonality of the pre-  (ing * features, and algorithms used in our imple-
dictors. ~ mentation, and then experiment with the Senseval-
ASO has been shown to be useful in #8mi- 5 Engjish lexical sample data set (with the offi-
supervised learningonfiguration, where the above cjg| training / test split) for the development of our
algorithm is applied to a number afixiliary prob-  methods. We will then evaluate the methods de-
lemsthat areautomatically createdrom_ the unla_l— veloped on the Senseval-2 data set by carrying out
beled data. By contrast, the focus of this paper is thge senseval-3 tasks, i.e., training on the Senseval-3
multi-task learningconfiguration, where the ASO training data and then evaluating the results on the

algorithm is applied to a number oéal problems  (ynseen) Senseval-3 test sets in Section 4.
with the goal of improving overall performance on

these problems. Task setting In this work, we focus on the Sense-
val lexical sample taskWe are given a set of target
3 Effective use of ASO on word sense words, each of which is associated with several pos-
disambiguation sible senses, and their labeled instances for training.

Each instance contains an occurrence of one of the

The essence of ASO is to learn information usefL{Iarget words and its surrounding words, typically a

for prediction (predictive structure) shared by mulse,, sentences. The task is to assign a sense to each
tiple tasks, assuming the existence of such sharegd instance.

structure. From this viewpoint, consider the target

words of the Senseval-2 lexical sample task, showReatures We adopt the feature design used by Lee
in Figure 1. Here we have multiple disambiguatiorand Ng (2002), which consists of the following
tasks; however, at a first glance, it is not entirelyfour types: (1)Local context n-grams of nearby
clear whether these tasks share predictive structuneords (position sensitive); (2plobal context all

(or are related to each other). There is no direct séhe words (excluding stopwords) in the given con-
mantic relationship (such as synonym or hyponyntext (position-insensitive; a bag of words); BPS
relations) among these words. parts-of-speechm-grams of nearby words; (8yn-
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tactic relations syntactic information obtained from the corresponding sub-matrix of the predictor ma-
parser output. To generate syntactic relation fedrix U, which is the gray region of Figure 3 (a). The
tures, we use the Slot Grammar-based full parsstructure matrice®; for j ¢ F' (associated with the
ESG (McCord, 1990). We use as features syntactighite regions in the figure) should be regarded as
relation types (e.g., subject-of, object-of, and noubeing fixed to the zero matrices. Similarly, it is pos-
modifier), participants of syntactic relations, and bisible to compute a structure matrix from a subset of
grams of syntactic relations / participants. Details ofhe predictors (such as noun disambiguators only),
the other three types are shown in Figure 2. as in Figure 3 (b). In this example, we apply the

) ) ) extension of ASO with" = {SR} to three sets of
Implementation  Our implementation  follows ,,pems (disambiguation of nouns, verbs, and ad-
Anqlo and Zhang (2005a). We use a moc_"f']ectives, respectively) separately.
cation of the Huber's robust loss for regression:

L = (max(0.1— 2 jf > —1;and—4 m predictors predictors predictors predictors
(p,y) = ( (0, PY)) by =2 Py Pk N for noups for yerbsfor adjectives

otherwise; with square regularization & 10~%), LC
and perform empirical risk minimization by
. . GC GC
stochastic gradient descent (SGBEe e.g., Zhang v Osr Osrag
(2004)). We perform one ASO iteration. SR SR ’
PO< POS, Osr verb
3.1 Exploring the multi-task learning Predictor matrixJ Oy 5, Predictor matriy
configuration (a) Partitioned by features: (b) Partitioned by = { SR }
F={SR} and problem types.

The goal is to effectively apply ASO to the set of
word disambiguation problems so that overall pe

ture splitandpartitioning of prediction problems  our WSD problems, consider the disambiguation of
“bank” and the disambiguation of “save”. Since a
“bank” as in “money bank” and a “save” as in “sav-
ing money” may occur in similar global contexts,

four feature groupslocal context L.C), global con- coain global context features effective for recog-
text (GC), syntactic relation§R), and POS features. nizing the “money bank” sense may be also effective

To exploit such a natural feature split, we explore th¢,, disambiguating “save”, and vice versa. However,

following extension of the joint linear model: with respect to the position-sensitive local context
T , features, these two disambiguation problems may
fe({0;},x) = wix + ZVE” ©,;x) | (5) not have much in common since, for instance, we
jer sometimes say “the bank announced”, but we rarely
_ ~ say “the save announced”. That is, whether prob-
where®;07 = Iforj € F, F is a set of dis- |ems share predictive structure may depend on fea-
joint feature groups, angd(’) (or véj >) is a portion ture types, and in that case, seeking predictive struc-
of the feature vectox (or the weight vector,) cor- ture for each feature group separately may be more
responding to the feature groviprespectively. This effective. Hence, we experiment with the configu-
is a slight modification of the extension presenterations with and without various feature splits using
in (Ando and Zhang, 2005a). Using this modelthe extension of ASO.
ASO computes the structure matfix for each fea- Our target words are nouns, verbs, and adjec-
ture group separately. That is, SVD is applied tdives. As in the above example of “bank” (noun)
the sub-matrix of the predictor (weight) matrix cor-and “save” (verb), the predictive structure of global
responding to each feature grogpwhich results context features may be shared by the problems ir-
in more focused dimension reduction of the predicrespective of the parts of speech of the target words.
tor matrix. For example, suppose that= {SR}. However, the other types of features may be more
Then, we compute the structure matfixgr from dependent on the target word part of speech. There-

Figure 3:Examples of feature split and problem partitioning.

3.1.1 Feature split and problem partitioning
Our features described above inherently consist
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fore, we explore two types of configuration. Oneion problems at once. It turned out that the con-
applies ASO to all the disambiguation problems afiguration ¥ = {POS} does not improve the per-
once. The other applies ASO separately to each &frmance over the baseline. Therefore, we exclude
the three sets of disambiguation problems (noun di®OS from the feature group sEtin the rest of our
ambiguation problems, verb disambiguation probexperiments. Comparison &f = {L.C+ SR+ GC}
lems, and adjective disambiguation problems) anflreating the features of these three types as one
uses the structure matré&; obtained from the noun group) andFF = {L.C, SR, GC} indicates that use
disambiguation problems only for disambiguatingof this feature split indeed improves performance.
nouns, and so forth. Among the configurations shown in Figure 4, the
Thus, we explore combinations of two paramebest performance (67.8%) is obtained by applying
ters. One is the set of feature groupsn the model ASO to the three sets of problems (corresponding
(5). The other is the partitioning of disambiguationto nouns, verbs, and adjectives) separately, with the
problems. feature splitF = {L.C, SR, GC}.
ASO has one parameter, the dimensionality of the

3.1.2 Empirical results structure matrix®; (i.e., the number of left singular

68 vectors to compute). The performance shown in Fig-
675 Problem partitioning ure 4 is the ceiling performance obtained at the best
67 Ao-feature— Oall problems at dimensionality (in{10, 25,50, 100,150,---}). In
665 once Figure 5, we show the performance dependency on
66 S i ) : )
655 Enouns, verbs, ©,’s dimensionality when ASO is applied to all the
65 adjectves, problems at once (Figure 5 left), and when ASO is
64 separael applied to the set of the noun disambiguation prob-
Baseline {LC} (GC) {SRHPOS) (LC.SRGC) pplied | , ambig pr
Feature group set F {LC+SR+GC} lems (Figure 5 right). In the left figure, the config-

Figure 4: F-measure on Senseval-2 English test set. MulgHration £ = {GC} (QIObaI_ConteXt) p!’OdUC?S be_t'
task configurations varying feature group $etand problem ter performance at a relatively low dimensionality.
partitioning. Performance at the best dimensionalitPof(in | the other configurations shown in these two fig-
{10, 25, 50, 100, - - - }) is shown. . .

ures, performance is relatively stable as long as the

In Figure 4, we compare performance on th‘g|men3|onallty Is not 100 low.

Senseval-2 test set produced by training on tl 45 7
Senseval-2 training set using the various configur 67
tions discussed above. As the evaluation metric, \ 65
use the F-measure (micro-average@}urned by the 6:?
official Senseval scorer. Our baseline is the stande ¢ " 70
single-taskconfiguration using the same loss func 645 69

tion (modified Huber) and the same training algc 0 100 200 300 400 500 0 100 200 300

. dimensionality dimensionality
fithm (SGD). Fi 5: Left: Appl Il th bl
P ; ; igure 9: Left: Applying ASO to all the WSD problems at
The results are in I.In(.a with our expectation. T once. Right: Applying ASO to noun disambiguation problems
learn the shared predictive structure of local conte only and testing on the noun disambiguation problems arty.

(LC) and syntactic relations (SR), it is more advant: axis: dimensionality 0B;.
geous to apply ASO to each of the three sets of prc
lems (disambiguation of nouns, verbs, and adje
tives, respectively), separately. By contrast, glob
context features (GC) can be more effectively e
ploited when ASO is applied to all the disambigue

73
72
71

3.2 Multi-task learning procedure for WSD

Based on the above results on the Senseval-2 test set,
we develop the following procedure using the fea-
- ture split and problem partitioning shown in Figure
*Our precision and recall are always the same since ours g | et A/ V, and.A be sets of disambiguation prob-
tems assign exactly one sense to each instance. That is, | h’ t t d b d ad
F-measure is the same as ‘micro-averaged recall’ or ‘acgura ems whose target words are nouns, verbs, and ad-

used in some of previous studies we will compare with. jectives, respectively. We writ® ; , for the struc-
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predictors predictors predictors ASO multi-task learning (optimum config.)68.1
for no@r_vgbf&)/radjectlves classifier combination [FY02] 66.5
polynomial KPCA [WSC04] 65.8

LC We compute seven structure SVM [LNOZ2] 65.4

GC matriceso; ;each fr_om the Our single-task baseline 65.3

SR seven shaded regions of the Senseval-2 (2001) best participant 64.2

POS predictor matrixJ.

Figure 7: Performance comparison with previous best sys-

Figure 6:Effective feature split and problem partitioning.  tems on Senseval-2 English lexical sample test set. FYG£ (Fl
rian and Yarowsky, 2002), WSCO04 (Wu et al., 2004), LNO2 (Lee
and Ng, 2002)

ture matrix associated with the feature grgupnd
computed from a problem set That is, we replace

i ; the unseenSenseval-3 test sets.) Nevertheless, it i
©; in (5) with @(j’g). uns Sevi st sets.) v SS, IU1IS

worth noting that our potential performance (68.1%)

e Apply ASO to the three sets of disambigua-exceeds those of the previous best systems.
tion problems (corresponding to nouns, verbs, Our single-task baseline performance is almost

and adjectives), separately, using the extenddhe same as LNO2 (Lee and Ng, 2002), which
model (5) withF = {LC,SR}. As a result, uses SVM. This is consistent with the fact that we

we obtain®, ,, for every(j, s) € {LC,SR} x  adopted LNOZ2's feature design. FY02 (Florian and
(4:5) > ’ : - :
{N,V, A}. Yarowsky, 2002) combines classifiers by linear av-
erage stacking. The best system of the Senseval-2
e Apply ASO to all the disambiguation problemscompetition was an early version of FY02. WSC04
at once using the extended model (5) with=  used a polynomial kernel via the kernel Principal
{GC} to obtain® (qc auvua)- Component Analysis (KPCA) method (Scholkopf et

al., 1998) with nearest neighbor classifiers.
e For a problen¥ € P € {N,V, A}, our final ) g

predictor is based on the model: 4 Evaluation on Senseval-3 tasks

. T .
fex) =wix+ > vl O j.x") In this section, we evaluate the methods developed
(4,8)€T on the Senseval-2 data set above on the standard

Senseval-3 lexical sample tasks.
whereT = {(LC, P), (SR, P), (GC,N UV U

A)}. We obtain predictoff, by minimizing the 4.1  Qur methods in multi-task and

andv,. . : : . :
In addition to the multi-task configuration described

We fix the dimension of the structure matrix cor-in Section 3.2, we test the following semi-supervised
responding to global context features to 50. The diapplication of ASO. We first create auxiliary prob-
mensions of the other structure matrices are set t@ms following Ando and Zhang (2005a)’s partially-
0.9 times the maximum possible rank to ensure relgupervised strategy (Figure 8) with distinct fea-
tively high dimensionality. This procedure producegure maps¥; and ¥, each of which uses one of
68.1% on the Senseval-2 English lexical sample testL.C, GC, SR}. Then, we apply ASO to these auxil-
set. iary problems using the feature split and the problem
partitioning described in Section 3.2.

Note that the difference between the multi-task
Figure 7 compares our performance with those aind semi-supervised configurations is the source of
previous best systems on the Senseval-2 English leixformation. The multi-task configuration utilizes
ical sample test set. Since we used this test set for thiee label informationof the training examples that
development of our method above, our performancare labeled for the rest of the multiple tasks, and
should be understood as tphetential performance the semi-supervised learning configuration exploits
(In Section 4, we will present evaluation results ora large amount ofinlabeled data

3.3 Previous systems on Senseval-2 data set
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1. Train a classifie€; only using feature mag¥; on the #words | #train | avg #sense avg #train
labeled data for the target task. perword | per sense
2. Auxiliary problems are to predict the labels assigned by | English 73 8611 10.7 10.0
C, to the unlabeled data, using the other feature Map Senseval-3 data sets
3. Apply ASO to the auxiliary problems to obtain English 57 7860 6.5 21.3
4. Using the joint linear model (2), train the final Catalan 27 4469 3.1 53.2
predictor by minimizing the empirical risk for fixe@ Italian 45 5145 6.2 18.4
on the labeled data for the target task. Spanish 46 8430 3.3 556.5

Figu.re 8: Ando and Zhang (2005a)'s ASO semi-supervisedrigure 9:Data statistics of Senseval-2 English lexical sample
learning method using partially-supervised procedurefeat-  data set (first row) and Senseval-3 data sets. On each data set
ing relevant auxiliary problems. of test instances is about one half of that of training instan

4.2 Data and evaluation metric single-task baseline on all the data sets. The best

We conduct evaluations on four Senseval-3 lexicglerformance is achieved when we combine multi-
sample tasks (English, Catalan, Italian, and Spanistgsk learning and semi-supervised learning by using
using the official training / test splits. Data statis-all the corresponding structure matrig@s; ;) pro-

tics are shown in Figure 9. On the Spanish, Cataluced by both multi-task and semi-supervised learn-
lan, and Italian data sets, we use part-of-speech iimg, in the final predictors. This combined configu-
formation (as features) and unlabeled examples (feation outperforms the single-task supervised base-
semi-supervised learning) provided by the organizeline by up to 5.7%.

Since the English data set was not provided with performance improvements over the supervised
these additional resources, we use an in-house P(B&se“ne are re|ative|y small on Eng“sh and Span-
tagger trained with the PennTree Bank corpus, angh. We conjecture that this is because the supervised
extract 100K unlabeled examples from the Reuter%’erformance is a|ready close to the h|ghest perfor-
RCV1 corpus. On each language, the number of Upnance that automatic methods could achieve. On
labeled examples is 5—15times Iarger than that of thﬁese two |anguage5, our (and previous) systems out-
labeled training examples. We use syntactic relatiogerform inter-human agreement, which is unusual

features only for English data set. As in Section 3yt can be regarded as an indication that these tasks
we report micro-averaged F measure. are difficult.

The performance of the output-based method

» ] . (baseline) is relatively low. This indicates that out-
In addition to the standard single-task superwsegut values or proposed labels are not expressive

configuration as in Section 3, we test the followingy g1 to integrate information from other predic-
method as an additional baseline. tors effectively on this task. We conjecture that for

Output-based method The goal of our multi-task this method to be effective, the problems are re-
learning configuration is to benefit from having theduired to be more closely related to each other as
labeled training examples of a number of words. A Florian et al. (2003)'s named entity experiments.
alternative to ASO for this purpose is to use directly A practical advantage of ASO multi-task learning
as features the output values of classifiers traineaver ASO semi-supervised learning is that shorter
for disambiguating the other words, which we calcomputation time is required to produce similar
‘output-based method’ (cf. Florian et al. (2003)).performance. On this English data set, training
We explore several variations similarly to Sectiorfor multi-task learning and semi-supervised learning
3.1 and report the ceiling performance. takes 15 minutes and 92 minutes, respectively, using
a Pentium-4 3.20GHz computer. The computation
time mostly depends on the amount of the data on
Figure 10 shows F-measure results on the fowrhich auxiliary predictors are learned. Since our ex-
Senseval-3 data sets using the official training / tepteriments use unlabeled data 5-15 times larger than
splits. Both ASO multi-task learning and semi-labeled training data, semi-supervised learning takes
supervised learning improve performance over thienger, accordingly.

4.3 Baseline methods

4.4 Evaluation results
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methods English Catalan Italian Spanish
multi-task learning 73.8(+0.8) | 89.5 (+1.5)| 63.2 (+4.9)| 89.0 (+1.0)
ASO semi-supervised learning 73.5(+0.5) | 88.6 (+0.6)| 62.4 (+4.1)| 88.9 (+0.9)
multi-task+semi-supervised 74.1 (+1.1) | 89.9 (+1.9)| 64.0 (+5.7)| 89.5 (+1.5)
baselines| output-based 73.0(0.0) | 88.3(+0.3)| 58.0(-0.3) | 88.2 (+0.2)
single-task supervised learning 73.0 88.0 58.3 88.0
previous | SVM with LSA kernel [GGS05]| 73.3 89.0 61.3 88.2
systems | Senseval-3 (2004) best systemis 72.9[co4] 85.2(s6G04] | 53.1[sGGo4] | 84.2[sGGo4]
| | inter-annotator agreement [ 67.3 [ 931 [ 89.0 [ 853 |

Figure 10: Performance results on the Senseval-3 lexical sampledtst Mumbers in the parentheses are performance gains
compared with the single-task supervised baseline (izalit). [G04] Grozea (2004); [SGGO04] Strapparava et al. 4200

GGSO05 combined various kernels, which includefeferences
the LSA kernel that exploits unlabeled data withrije Kubota Ando and Tong Zhang. 2005a. A framework
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