
Tree Kernel Engineering in Semantic Role Labeling Systems

Alessandro Moschitti and Daniele Pighin and Roberto Basili

University of Rome, Tor Vergata

{moschitti,basili}@info.uniroma2.it
daniele.pighin@gmail.com

Abstract

Recent work on the design of automatic

systems for semantic role labeling has

shown that feature engineering is a com-

plex task from a modeling and implemen-

tation point of view. Tree kernels alleviate

such complexity as kernel functions gener-

ate features automatically and require less

software development for data extraction.

In this paper, we study several tree kernel

approaches for both boundary detection

and argument classification. The compar-

ative experiments on Support Vector Ma-

chines with such kernels on the CoNLL

2005 dataset show that very simple tree

manipulations trigger automatic feature

engineering that highly improves accuracy

and efficiency in both phases. Moreover,

the use of different classifiers for internal

and pre-terminal nodes maintains the same

accuracy and highly improves efficiency.

1 Introduction

A lot of attention has been recently devoted to

the design of systems for the automatic label-

ing of semantic roles (SRL) as defined in two

important projects: FrameNet (Johnson and Fill-

more, 2000), inspired by Frame Semantics, and

PropBank (Kingsbury and Palmer, 2002) based

on Levin’s verb classes. In general, given a sen-

tence in natural language, the annotation of a pred-

icate’s semantic roles requires (1) the detection of

the target word that embodies the predicate and

(2) the detection and classification of the word se-

quences constituting the predicate’s arguments. In

particular, step (2) can be divided into two differ-

ent phases: (a) boundary detection, in which the

words of the sequence are detected and (b) argu-

ment classification, in which the type of the argu-

ment is selected.

Most machine learning models adopted for the

SRL task have shown that (shallow or deep) syn-

tactic information is necessary to achieve a good

labeling accuracy. This research brings a wide

empirical evidence in favor of the linking theories

between semantics and syntax, e.g. (Jackendoff,

1990). However, as no theory provides a sound

and complete treatment of such issue, the choice

and design of syntactic features for the automatic

learning of semantic structures requires remark-

able research efforts and intuition.

For example, the earlier studies concerning lin-

guistic features suitable for semantic role labeling

were carried out in (Gildea and Jurasfky, 2002).

Since then, researchers have proposed diverse syn-

tactic feature sets that only slightly enhance the

previous ones, e.g. (Xue and Palmer, 2004) or

(Carreras and Màrquez, 2005). A careful analy-

sis of such features reveals that most of them are

syntactic tree fragments of training sentences, thus

a natural way to represent them is the adoption of

tree kernels as described in (Moschitti, 2004). The

idea is to associate with each argument the mini-

mal subtree that includes the target predicate with

one of its arguments, and to use a tree kernel func-

tion to evaluate the number of common substruc-

tures between two such trees. Such approach is in

line with current research on the use of tree kernels

for natural language learning, e.g. syntactic pars-

ing re-ranking (Collins and Duffy, 2002), relation

extraction (Zelenko et al., 2003) and named entity

recognition (Cumby and Roth, 2003; Culotta and

Sorensen, 2004).

Regarding the use of tree kernels for SRL, in

(Moschitti, 2004) two main drawbacks have been

49

pointed out:

• Highly accurate boundary detection cannot

be carried out by a tree kernel model since

correct and incorrect arguments may share a

large portion of the encoding trees, i.e. they

may share many substructures.

• Manually derived features (extended with a

polynomial kernel) have been shown to be su-

perior to tree kernel approaches.

Nevertheless, we believe that modeling a com-

pletely kernelized SRL system is useful for the fol-

lowing reasons:

• We can implement it very quickly as the fea-

ture extractor module only requires the writ-

ing of the subtree extraction procedure. Tra-

ditional SRL systems are, in contrast, based

on the extraction of more than thirty features

(Pradhan et al., 2005), which require the writ-

ing of at least thirty different procedures.

• Combining it with a traditional attribute-

value SRL system allows us to obtain a more

accurate system. Usually the combination of

two traditional systems (based on the same

machine learning model) does not result in

an improvement as their features are more

or less equivalent as shown in (Carreras and

Màrquez, 2005).

• The study of the effective structural features

can inspire the design of novel linear fea-

tures which can be used with a more efficient

model (i.e. linear SVMs).

In this paper, we carry out tree kernel engineer-

ing (Moschitti et al., 2005) to increase both ac-

curacy and speed of the boundary detection and

argument classification phases. The engineering

approach relates to marking the nodes of the en-

coding subtrees in order to generate substructures

more strictly correlated with a particular argu-

ment, boundary or predicate. For example, mark-

ing the node that exactly covers the target ar-

gument helps tree kernels to generate different

substructures for correct and incorrect argument

boundaries.

The other technique that we applied to engineer

different kernels is the subdivision of internal and

pre-terminal nodes. We show that designing dif-

ferent classifiers for these two different node types

slightly increases the accuracy and remarkably de-

creases the learning and classification time.

An extensive experimentation of our tree ker-

nels with Support Vector Machines on the CoNLL

2005 data set provides interesting insights on the

design of performant SRL systems entirely based

on tree kernels.

In the remainder of this paper, Section 2 intro-

duces basic notions on SRL systems and tree ker-

nels. Section 3 illustrates our new kernels for both

boundary and classification tasks. Section 4 shows

the experiments of SVMs with the above tree ker-

nel based classifiers.

2 Preliminary Concepts

In this section we briefly define the SRL model

that we intend to design and the kernel function

that we use to evaluate the similarity between sub-

trees.

2.1 Basic SRL approach

The SRL approach that we adopt is based on the

deep syntactic parse (Charniak, 2000) of the sen-

tence that we intend to annotate semantically. The

standard algorithm is to classify the tree node pair

〈p, a〉, where p and a are the nodes that exactly

cover the target predicate and a potential argu-

ment, respectively. If 〈p, a〉 is labeled with an ar-

gument, then the terminal nodes dominated by a

will be considered as the words constituting such

argument. The number of pairs for each sentence

can be hundreds, thus, if we consider training cor-

pora of thousands of sentences, we have to deal

with millions of training instances.

The usual solution to limit such complexity is to

divide the labeling task in two subtasks:

• Boundary detection, in which a single clas-

sifier is trained on many instances to detect

if a node is an argument or not, i.e. if the

sequence of words dominated by the target

node constitutes a correct boundary.

• Argument classification: only the set of

nodes corresponding to correct boundaries

are considered. These can be used to train a

multiclassifier that, for such nodes, only de-

cides the type of the argument. For example,

we can train n classifiers in the style One-vs-

All. At classification time, for each argument

node, we can select the argument type asso-

ciated with the maximum among the n scores

provided by the single classifiers.

50

We adopt this solution as it enables us to use

only one computationally expensive classifier, i.e.

the boundary detection one. This, as well as the

argument classifiers, requires a feature represen-

tation of the predicate-argument pair. Such fea-

tures are mainly extracted from the parse trees of

the target sentence, e.g. Phrase Type, Predicate

Word, Head Word, Governing Category, Position

and Voice proposed in (Gildea and Jurasfky, 2002).

As most of the features proposed in literature

are subsumed by tree fragments, tree-kernel func-

tions are a natural way to produce them automati-

cally.

2.2 Tree kernel functions

Tree-kernel functions simply evaluate the number

of substructures shared between two trees T1 and

T2. Such functions can be seen as a scalar product

in the huge vector space constituted by all possi-

ble substructures of the training set. Thus, kernel

functions implicitly define a large feature space.

Formally, given a tree fragment space

{f1, f2, ..} = F , we can define an indica-

tor function Ii(n), which is equal to 1 if the

target fi is rooted at node n and equal to

0 otherwise. Therefore, a tree-kernel func-

tion K over T1 and T2 can be defined as

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2),
where NT1

and NT2
are the sets of the

T1’s and T2’s nodes, respectively and

∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2). This latter

is equal to the number of common fragments

rooted at nodes n1 and n2 and, according to

(Collins and Duffy, 2002), it can be computed as

follows:

1. if the productions at n1 and n2 are different

then ∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the

same, and n1 and n2 have only leaf chil-

dren (i.e. they are pre-terminal symbols) then

∆(n1, n2) = λ;

3. if the productions at n1 and n2 are the same,

and n1 and n2 are not pre-terminal then

∆(n1, n2) = λ
∏nc(n1)

j=1 (1 + ∆(cj
n1

, cj
n2

)).

where λ is the decay factor to scale down the im-

pact of large structures, nc(n1) is the number of

the children of n1 and cj
n is the j-th child of the

node n. Note that, as the productions are the same,

nc(n1) = nc(n2). Additionally, to map similar-

ity scores in the [0,1] range, we applied a nor-

Figure 1: The PAF subtree associated with A1.

Figure 2: Example of CMST.

malization in the kernel space, i.e. K ′(T1, T2) =
K(T1,T2)√

K(T1,T1)×K(T2,T2)
.

Once a kernel function is defined, we need to

characterize the predicate-argument pair with a

subtree. This allows kernel machines to generate a

large number of syntactic features related to such

pair. The approach proposed in (Moschitti, 2004)

selects the minimal subtree that includes a predi-

cate with its argument. We follow such approach

by studying and proposing novel, interesting solu-

tions.

3 Novel Kernels for SRL

The basic structure used to characterize the predi-

cate argument relation is the smallest subtree that

includes a predicate with one of its argument. For

example, in Figure 1, the dashed line encloses a

predicate argument feature (PAF) over the parse

tree of the sentence: ”Paul delivers a talk in for-

mal style”. This PAF is a subtree that characterizes

the predicate to deliver with its argument a talk.

In this section, we improve PAFs, propose dif-

ferent kernels for internal and pre-terminal nodes

and new kernels based on complete predicate ar-

51

Figure 3: Differences between PAF (a) and MPAF (b) structures.

gument structures.

3.1 Improving PAF

PAFs have shown to be very effective for argu-

ment classification but not for boundary detection.

The reason is that two nodes that encode correct

and incorrect boundaries may generate very sim-

ilar PAFs. For example, Figure 3.A shows two

PAFs corresponding to a correct (PAF+) and an

incorrect (PAF-) choice of the boundary for A1:

PAF+ from the NP vs. PAF- from the N nodes. The

number of their common substructures is high, i.e.

the four subtrees shown in Frame C. This prevents

the algorithm from making different decisions for

such cases.

To solve this problem, we specify which is the

node that exactly covers the argument (also called

argument node) by simply marking it with the la-

bel B denoting the boundary property. Figure 3.B

shows the two new marked PAFs (MPAFs). The

features generated from the two subtrees are now

very different so that there is only one substructure

in common (see Frame D). Note that, each markup

strategy impacts on the output of a kernel function

in terms of the number of structures common to

two trees. The same output can be obtained us-

ing unmarked trees and redefining consistently the

kernel function, e.g. the algorithm described in

Section 2.2.

An alternative way to partially solve the struc-

ture overlapping problem is the use of two differ-

ent classifiers, one for the internal nodes and one

for the pre-terminal nodes, and combining their

decisions. In this way, the negative example of

Figure 3 would not be used to train the same clas-

sifier that uses PAF+. Of course, similar structures

can both be rooted on internal nodes, therefore

they can belong to the training data of the same

classifier. However, the use of different classi-

fiers is motivated also by the fact that many ar-

gument types can be found mostly in pre-terminal

nodes, e.g. modifier or negation arguments, and

do not necessitate training data extracted from in-

ternal nodes. Consequently, it is more convenient

(at least from a computational point of view) to

use two different boundary classifiers, hereinafter

referred to as combined classifier.

3.2 Kernels on complete predicate argument

structures

The type of a target argument strongly depends on

the type and number of the predicate’s arguments1

(Punyakanok et al., 2005; Toutanova et al., 2005).

Consequently, to correctly label an argument, we

should extract features from the complete predi-

cate argument structure it belongs to. In contrast,

PAFs completely neglect the information (i.e. the

tree portions) related to non-target arguments.

One way to use this further information with

tree kernels is to use the minimum subtree that

spans all the predicate’s arguments. The whole

parse tree in Figure 1 is an example of such Min-

imum Spanning Tree (MST) as it includes all and

only the argument structures of the predicate ”to

deliver”. However, MSTs pose some problems:

• We cannot use them for the boundary detec-

tion task since we do not know the predi-

cate’s argument structure yet. However, we

can derive the MST (its approximation) from

the nodes selected by a boundary classifier,

i.e. the nodes that correspond to potential ar-

guments. Such approximated MSTs can be

easily used in the argument type classifica-

tion phase. They can also be used to re-rank

the most probable m sequences of arguments

for both labeling phases.

• Obviously, an MST is the same for all the

arguments it includes, thus we need a way

to differentiate it for each target argument.

1This is true at least for core arguments.

52

Again, we can mark the node that exactly

covers the target argument as shown in the

previous section. We refer to this subtree as

marked MST (MMST). However, for large

arguments (i.e. spread on a large part of the

sentence tree) the substructures’ likelihood of

being part of other arguments is quite high.

To address this latter problem, we can mark all

nodes that descend from the target argument node.

Figure 2 shows a MST in which the subtree as-

sociated with the target argument (AM) has the

nodes marked. We refer to this structure as a

completely marked MST (CMST). CMSTs may

be seen as PAFs enriched with new information

coming from the other arguments (i.e. the non-

marked subtrees). Note that if we consider only

the PAF subtree from a CMST we obtain a differ-

ently marked subtree which we refer to as CPAF.

In the next section we study the impact of the

proposed kernels on the boundary detection and

argument classification performance.

4 Experiments

In these experiments we evaluate the impact of our

proposed kernels in terms of accuracy and effi-

ciency. The accuracy improvement confirms that

the node marking approach enables the automatic

engineering of effective SRL features. The effi-

ciency improvement depends on (a) the less train-

ing data used when applying two distinct type clas-

sifiers for internal and pre-terminal nodes and (b) a

more adequate feature space which allows SVMs

to converge faster to a model containing a smaller

number of support vectors, i.e. faster training and

classification.

4.1 Experimental set up

The empirical evaluations were carried out within

the setting defined in the CoNLL-2005 Shared

Task (Carreras and Màrquez, 2005). We

used as a target dataset the PropBank corpus

available at www.cis.upenn.edu/∼ace, along

with the Penn TreeBank 2 for the gold trees

(www.cis.upenn.edu/∼treebank) (Marcus et al.,

1993), which includes about 53,700 sentences.

Since the aim of this study was to design a real

SRL system we adopted the Charniak parse trees

from the CoNLL 2005 Shared Task data (available

at www.lsi.upc.edu/∼srlconll/).

We used Section 02, 03 and 24 from the Penn

TreeBank in most of the experiments. Their char-

acteristics are shown in Table 1. Pos and Neg in-

dicate the number of nodes corresponding or not

to a correct argument boundary. Rows 3 and 4 re-

port such number for the internal and pre-terminal

nodes separately. We note that the latter are much

fewer than the former; this results in a very fast

pre-terminal classifier.

As the automatic parse trees contain errors,

some arguments cannot be associated with any

covering node. This prevents us to extract a tree

representation for them. Consequently, we do not

consider them in our evaluation. In sections 2, 3

and 24 there are 454, 347 and 731 such cases, re-

spectively.

The experiments were carried out with

the SVM-light-TK software available at

http://ai-nlp.info.uniroma2.it/moschitti/

which encodes fast tree kernel evaluation (Mos-

chitti, 2006) in the SVM-light software (Joachims,

1999). We used a regularization parameter (option

-c) equal to 1 and λ = 0.4 (see (Moschitti,

2004)).

4.2 Boundary Detection Results

In these experiments, we used Section 02 for train-

ing and Section 24 for testing. The results using

the PAF and the MPAF based kernels are reported

in Table 2 in rows 2 and 3, respectively. Columns

3 and 4 show the CPU testing time (in seconds)

and the F1 of the monolithic boundary classifier.

The next 3 columns show the CPU time for the in-

ternal (Int) and pre-terminal (Pre) node classifiers,

as well as their total (All). The F1 measures are

reported in the 3 rightmost columns. In particular,

the third column refers to the F1 of the combined

classifier. This has been computed by summing

correct, incorrect and not retrieved examples of the

two distinct classifiers.

We note that: first, the monolithic classifier ap-

plied to MPAF improves both the efficiency, i.e.

about 3,131 seconds vs. 5,179, of PAF and the

F1, i.e. 82.07 vs. 75.24. This suggests that mark-

ing the argument node simplifies the generaliza-

tion process.

Second, by dividing the boundary classifica-

tion in two tasks, internal and pre-terminal nodes,

we furthermore improve the classification time for

both PAF and MPAF kernels, i.e. 5,179 vs. 1,851

(PAF) and 3,131 vs. 1,471 (MPAF). The sepa-

rated classifiers are much faster, especially the pre-

terminal one (about 61 seconds to classify 81,075

nodes).

53

Section 2 Section 3 Section 24

Nodes pos neg tot pos neg tot pos neg tot

Internal 11,847 71,126 82,973 6,403 53,591 59,994 7,525 50,123 57,648

Pre-terminal 894 114,052 114,946 620 86,232 86,852 709 80,366 81,075

Both 12,741 185,178 197,919 7,023 139,823 146,846 8,234 130,489 138,723

Table 1: Tree nodes of the sentences from sections 2, 3 and 24 of the PropBank. pos and neg are the

nodes that exactly cover arguments and all the other nodes, respectively.

Monolithic Combined

Tagging strategy CPUtime F1
CPUtime F1

Int Pre All Int Pre All

PAF 5,179.18 75.24 1,794.92 56.72 1,851.64 79.93 79.39 79.89

MPAF 3,131.56 82.07 1,410.10 60.99 1,471.09 82.20 79.14 81.96

Table 2: F1 comparison between PAF and MPAF based kernels using different classification strategies.

Int, Pre and ALL are the internal, pre-terminal and combined classifiers. The CPU time refers to the

classification time in seconds of all Section 24.

Figure 4: Learning curve comparison between the

PAF and MPAF F1 measures using the combined

classifier.

Third, the combined classifier approach seems

quite feasible as its F1 is almost equal to the mono-

lithic one (81.96 vs. 82.07) in case of MPAF and

even superior when using PAF (79.89 vs. 75.34).

This result confirms the observation given in Sec-

tion 3.1 about the importance of reducing the num-

ber of substructures common to PAFs associated

with correct and incorrect boundaries.

Finally, we trained the combined boundary clas-

sifiers with sets of increasing size to derive the

learning curves of the PAF and MPAF models.

To have more significant results, we increased the

training set by using also sections from 03 to 07.

Figure 4 shows that the MPAF approach is con-

stantly over the PAF. Consider also that the mark-

ing strategy has a lesser impact on the combined

classifier.

4.3 Argument Classification Results

In these experiments we tested different kernels

on the argument classification task. As some ar-

guments have a very small number of training in-

stances in a single section, we also used Section

03 for training and we continued to test on only

Section 24.

The results of the multiclassifiers on 59 argu-

ment types2 (e.g. constituted by 59 binary clas-

sifiers in the monolithic approach) are reported in

Table 3. The rows from 3 to 5 report the accuracy

when using the PAF, MPAF and CPAF whereas the

rows from 6 to 8 show the accuracy for the com-

plete argument structure approaches, i.e. MST,

MMST and CMST.

More in detail, Column 2 shows the accuracy of

the monolithic multi-argument classifiers whereas

Columns 3, 4 and 5 report the accuracy of the in-

ternal, pre-terminal and combined multi-argument

classifiers, respectively.

We note that:

First, the two classifier approach does not im-

prove the monolithic approach accuracy. Indeed,

the subtrees describing different argument types

are quite different and this property holds also for

the pre-terminal nodes. However, we still mea-

sured a remarkable improvement in efficiency.

Second, MPAF is the best kernel. This con-

firms the outcome on boundary detection ex-

periments. The fact that it is more accu-

rate than CPAF reveals that we need to distin-

27 for the core arguments (A0...AA), 13 for the adjunct
arguments (AM-*), 19 for the argument references (R-*) and
20 for the continuations (C-*).

54

Monolithic
Combined

Tagging strategy Internal nodes Pre-terminals Overall

PAF 75.06 74.16 85.61 75.15

MPAF 77.17 76.25 85.76 77.07

CPAF 76.79 75.68 85.76 76.54

MST 34.80 36.52 78.14 40.10

MMST 72.55 71.59 86.32 72.86

CMST 73.21 71.93 86.32 73.17

Table 3: Accuracy produced by different tree kernels on argument classification. We trained on sections

02 and 03 and tested on Section 24.

guish the argument node from the other nodes.

To explain this, suppose that two argument

nodes, NP1 and NP2, dominate the follow-

ing structures: [NP1 [NP [DT NN]][PP]]

and [NP2 [DT NN]]. If we mark only the

argument node we obtain [NP-B [NP [DT

NN]][PP]] and [NP-B [DT NN]] which

have no structure in common. In contrast, if

we mark them completely, i.e. [NP-B [NP-B

[DT-B NN-B]][PP-B]] and [NP-B [DT-B

NN-B]], they will share the subtree [NP-B

[DT-B NN-B]]. Thus, although it may seem

counterintuitive, by marking only one node, we

obtain more specific substructures. Of course, if

we use different labels for the argument nodes and

their descendants, we obtain the same specializa-

tion effect.

Finally, if we do not mark the target argument

in the MSTs, we obtain a very low result (i.e.

40.10%) as expected. When we mark the cover-

ing node or the complete argument subtree we ob-

tain an acceptable accuracy. Unfortunately, such

accuracy is lower than the one produced by PAFs,

e.g. 73.17% vs. 77.07%, thus it may seem that

the additional information provided by the whole

argument structure is not effective. A more care-

ful analysis can be carried out by considering a

CMST as composed by a PAF and the rest of the

argument structure. We observe that some pieces

of information provided by a PAF are not deriv-

able by a CMST (or a MMST). For example, Fig-

ure 1 shows that the PAF contains the subtree [VP

[V NP]] while the associated CMST (see Figure

2) contains [VP [V NP PP]]. The latter struc-

ture is larger and more sparse and consequently,

the learning machine applied to CMSTs (or MM-

STs) performs a more difficult generalization task.

This problem is emphasized by our use of the ad-

juncts in the design of MSTs. As adjuncts tend to

be the same for many predicates they do not pro-

vide a very discriminative information.

5 Discussions and Conclusions

The design of automatic systems for the labeling

of semantic roles requires the solution of complex

problems. Among others, feature engineering is

made difficult by the structural nature of the data,

i.e. features should represent information con-

tained in automatic parse trees. This raises two

problems: (1) the modeling of effective features,

partially solved in the literature work and (2) the

implementation of the software for the extraction

of a large number of such features.

A system completely based on tree kernels al-

leviate both problems as (1) kernel functions au-

tomatically generate features and (2) only a pro-

cedure for subtree extraction is needed. Although

some of the manual designed features seem to be

superior to those derived with tree kernels, their

combination seems still worth applying.

In this paper, we have improved tree kernels

by studying different strategies: MPAF and the

combined classifier (for internal and pre-terminal

nodes) highly improve efficiency and accuracy in

both the boundary detection and argument classi-

fication tasks. In particular, MPAF improves the

old PAF-based tree kernel of about 8 absolute per-

cent points in the boundary classification task, and

when used along the combined classifier approach

the speed of the model increases of 3.5 times. In

case of argument classification the improvement is

less evident but still consistent, about 2%.

We have also studied tree representations based

on complete argument structures (MSTs). Our

preliminary results seem to suggest that additional

information extracted from other arguments is not

effective. However, such findings are affected by

two main problems: (1) We used adjuncts in the

tree representation. They are likely to add more

noise than useful information for the recognition

of the argument type. (2) The traditional PAF

contains subtrees that cannot be derived by the

55

MMSTs, thus we should combine these structures

rather than substituting one with the other.

In the future, we plan to extend this study as

follows:

First, our results are computed individually for

boundary and classification tasks. Moreover, in

our experiments, we removed arguments whose

PAF or MST could not be extracted due to errors

in parse trees. Thus, we provided only indicative

accuracy to compare the different tree kernels. A

final evaluation of the most promising structures

using the CoNLL 2005 evaluator should be carried

out to obtain a sound evaluation.

Second, as PAFs and MSTs should be com-

bined to generate more information, we are go-

ing to carry out a set of experiments that com-

bine different kernels associated with different

subtrees. Moreover, as shown in (Basili and Mos-

chitti, 2005; Moschitti, 2006), there are other tree

kernel functions that generate different fragment

types. The combination of such functions with the

marking strategies may provide more general and

effective kernels.

Third, once the final set of the most promising

kernels is established, we would like to use all the

available CoNLL 2005 data. This would allow us

to study the potentiality of our approach by exactly

comparing with literature work.

Next, our fast tree kernel function along with

the combined classification approach and the im-

proved tree representation make the learning and

classification much faster so that the overall run-

ning time is comparable with polynomial kernels.

However, when these latter are used with SVMs

the running time is prohibitive when very large

datasets (e.g. millions of instances) are targeted.

Exploiting tree kernel derived features in a more

efficient way is thus an interesting line of future

research.

Finally, as CoNLL 2005 has shown that the

most important contribution relates on re-ranking

predicate argument structures based on one single

tree (Toutanova et al., 2005) or several trees (Pun-

yakanok et al., 2005), we would like to use tree

kernels for the re-ranking task.

Acknowledgments

This research is partially supported by the Euro-

pean project, PrestoSpace (FP6-IST-507336).

References

Roberto Basili and Alessandro Moschitti. 2005. Automatic
Text Categorization: from Information Retrieval to Sup-
port Vector Learning. Aracne Press, Rome, Italy.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to
the CoNLL-2005 shared task: Semantic role labeling. In
Proceedings of CoNLL’05.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the NACL’00.

Michael Collins and Nigel Duffy. 2002. New ranking al-
gorithms for parsing and tagging: Kernels over discrete
structures, and the voted perceptron. In ACL’02.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency tree
kernels for relation extraction. In Proceedings of ACL’04.

Chad Cumby and Dan Roth. 2003. Kernel methods for rela-
tional learning. In Proceedings of ICML’03.

Daniel Gildea and Daniel Jurasfky. 2002. Automatic
labeling of semantic roles. Computational Linguistic,
28(3):496–530.

R. Jackendoff. 1990. Semantic Structures, Current Studies in
Linguistics series. Cambridge, Massachusetts: The MIT
Press.

T. Joachims. 1999. Making large-scale SVM learning prac-
tical. In B. Schölkopf, C. Burges, and A. Smola, editors,
Advances in Kernel Methods - Support Vector Learning.

Christopher R. Johnson and Charles J. Fillmore. 2000. The
framenet tagset for frame-semantic and syntactic coding
of predicate-argument structure. In In the Proceedings
ANLP-NAACL.

Paul Kingsbury and Martha Palmer. 2002. From Treebank to
PropBank. In Proceedings of LREC’02.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a large annotated corpus of english: The Penn
Treebank. Computational Linguistics, 19:313–330.

Alessandro Moschitti. 2004. A study on convolution kernels
for shallow semantic parsing. In Proceedings of ACL’04,
Barcelona, Spain.

Alessandro Moschitti, Bonaventura Coppola, Daniele Pighin,
and Roberto Basili. 2005. Engineering of syntactic fea-
tures for shallow semantic parsing. In of the ACL05 Work-
shop on Feature Engineering for Machine Learning in
Natural Language Processing, USA.

Alessandro Moschitti. 2006. Making tree kernels practical
for natural language learning. In Proceedings of EACL’06,
Trento, Italy.

Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne
Ward, James H. Martin, and Daniel Jurafsky. 2005. Sup-
port vector learning for semantic argument classification.
Machine Learning Journal.

V. Punyakanok, D. Roth, and W. Yih. 2005. The necessity of
syntactic parsing for semantic role labeling. In Proceed-
ings of IJCAI’05.

Kristina Toutanova, Aria Haghighi, and Christopher Man-
ning. 2005. Joint learning improves semantic role label-
ing. In Proceedings of ACL’05.

Nianwen Xue and Martha Palmer. 2004. Calibrating features
for semantic role labeling. In Proceedings of EMNLP
2004.

D. Zelenko, C. Aone, and A. Richardella. 2003. Ker-

nel methods for relation extraction. Journal of Machine

Learning Research.

56

