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Abstract

The correct identification of metonymies

is not normally a problem for most peo-

ple. For computers, things are different,

however. In Natural Language Processing,

metonymy recognition is therefore usu-

ally addressed with complex algorithms

that rely on hundreds of labelled train-

ing examples. This paper investigates two

approaches to metonymy recognition that

dispense with this complexity, albeit in

different ways. The first, an unsuper-

vised approach to Word Sense Discrimi-

nation, does not require any labelled train-

ing instances. The second, Memory-Based

Learning, replaces the complexity of cur-

rent algorithms by a ‘lazy’ learning phase.

While the first approach is often able to

identify a metonymical and a literal clus-

ter in the data, it is the second in particular

that produces state-of-the-art results.

1 Introduction

In the last few years, metonymy has emerged as

an important focus of research in many areas of

linguistics. In Cognitive Linguistics, it is often de-

fined as “a cognitive process in which one con-

ceptual entity, the vehicle, provides mental access

to another conceptual entity, the target, within the

same domain, or idealized cognitive model (ICM)”

(Kövecses, 2002, p.145). In example (1), for in-

stance, China and Taiwan provide mental access

to the governments of the respective countries:

(1) China has always threatened to use force

if Taiwan declared independence. (BNC)

This paper is concerned with algorithms that au-

tomatically recognize such metonymical country

names. These are extremely relevant in Natural

Language Processing, since any system that auto-

matically builds semantic representations of utter-

ances needs to be able to recognize and interpret

metonymical words.

Early approaches to metonymy recognition,

such as Pustejovsky’s (1995), identified a word as

metonymical when it violated certain selectional

restrictions. Indeed, in example (1), China and

Taiwan both violate the restriction that threaten

and declare require an animate subject, and thus

have to be interpreted metonymically. This view

is present in the psycholinguistic literature, too.

Some authors argue that a figurative interpreta-

tion of a word typically comes about when all lit-

eral interpretations fail; see Gibbs (1994) for an

overview. This failure is often due to the violation

of selectional restrictions.

However, in psycholinguistics as well as in

computational linguistics, this approach has lost

much of its appeal. It has become clear to re-

searchers in both fields that many metonymies

do not violate any restrictions at all. In to like

Shakespeare, for instance, there is no explicit lin-

guistic trigger for the metonymical interpretation

of Shakespeare. Rather, it is our world knowl-

edge that pre-empts a literal reading of the au-

thor’s name. Examples like this one demonstrate

that metonymy recognition should not be based on

rigid rules, but rather, on information about the se-

mantic class of the target word and the semantic

and grammatical context in which it occurs. In

psycholinguistics, this insight (among others) has

given rise to theories claiming that a figurative in-

terpretation does not follow the failure of a literal

one, but that both processes occur in parallel (Fris-

son and Pickering, 1999). In computational lin-

guistics, it has led to the development of statisti-
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cal, corpus-based approaches to metonymy recog-

nition.

This view was first put into computational prac-

tice by Markert and Nissim (2002a). Their key

to success was the realization that metonymy

recognition is a sub-problem of Word Sense

Disambiguation (WSD). They found that most

metonymies in the same semantic class belong to

one of a limited number of metonymical patterns

that can be defined a priori. The task of metonymy

recognition thus consists of the automatic assign-

ment of one of these readings to a target word.

Since all words in the same semantic class may

undergo the same semantic shifts, there only has

to be one classifier per class (and not per word, as

in classic WSD).

In this paper I will be concerned with the

automatic identification of metonymical location

names. More particularly, I will test two new

approaches to metonymy recognition on the basis

of Markert and Nissim’s (2002b) corpora of 1,000

mixed country names and 1,000 instances of

the country name Hungary.1 The most impor-

tant metonymical patterns in these corpora are

place-for-people, place-for-event

and place-for-product. In addition, there

is a label mixed for examples that have two

readings, and othermet for examples that do

not belong to any of the pre-defined metonymical

patterns.

On the mixed country data, Nissim and Mark-

ert’s (2003) classifiers achieved an accuracy of

87%. This was the result of a combination of

both grammatical and semantic information. Their

grammatical information included the function of

a target word and its head. The semantic informa-

tion, in the form of Dekang Lin’s (1998) thesaurus

of semantically similar words, allowed the classi-

fier to search the training set for instances whose

head was similar, and not just identical, to that of

a test instance.

Markert and Nissim’s (2002a) and Nissim and

Markert’s (2003) study is the only one to approach

metonymy recognition from a data-driven, statisti-

cal perspective. However, it also has a number of

disadvantages. First, it requires the annotation of

a large number of training and test instances. This

compromises its possible application to a wide va-

riety of metonymical patterns across a large num-

1This data is publicly available and can be downloaded
from http://homepages.inf.ed.ac.uk/mnissim/mascara.

ber of semantic categories. Second, its algorithms

are rather complex. In the training phase, they

calculate smoothed probabilities on the basis of

a large annotated training corpus and in the test

phase, they iteratively search through a thesaurus

of semantically similar words. This leads to the

question if this complexity is indeed necessary in

metonymy recognition.

This paper investigates two approaches that

each tackle one of these problems. The unsuper-

vised algorithm in section 2 has the intuitive ap-

peal of not requiring any annotated training in-

stances. I will show that it is nevertheless often

able to distinguish between two data clusters that

correlate with the two target readings. In section 3,

I will again take recourse to a supervised learn-

ing method, but one that explicitly incorporates

a much simpler learning phase than its competi-

tors in the literature — Memory-Based Learning. I

will demonstrate that this algorithm of ‘lazy learn-

ing’ gives state-of-the-art results in metonymy

recognition. Moreover, although their psychologi-

cal validity is not a focus of the present investiga-

tion, the two studied algorithms have clear links to

models of human behaviour.

2 An unsupervised approach to

metonymy recognition

2.1 Background

Unsupervised machine learning algorithms do

not need any labelled training examples. In-

stead, the machine itself has to try and group

the training instances into a pre-defined number

of clusters, which ideally correspond to the im-

plicit target labels. The approach studied here

is Schütze’s (1998) Word Sense Discrimination,

which uses second-order co-occurrence in order to

identify clusters of senses.

Schütze’s (1998) algorithm first maps all words

in the training corpus onto word vectors, which

contain frequency information about the word’s

first-order co-occurrents. It then builds a vector

representation for each of the contexts of the target

by adding up the word vectors of the words in this

context. These second-order context vectors get

clustered (often after some form of dimensionality

reduction), and each of the clusters is assumed to

correspond to one of the senses of the target. The

classification of a test word, finally, proceeds by

assigning it to the cluster whose centroid lies near-

est to its context vector. Schütze showed that, with
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about 8,000 training instances on average, this al-

gorithm obtains very promising results.

This unsupervised algorithm is not just attrac-

tive from a computational point of view; it is also

related to human behaviour. First, it was inspired

by Miller and Charles’ (1991) observation that hu-

mans rely on contextual similarity in order to de-

termine semantic similarity. Schütze (1998) there-

fore hypothesized that there must be a correla-

tion between contextual similarity and word mean-

ing as well: “a sense is a group of contextually

similar occurrences of a word” (Schütze, 1998,

p.99). Second, this algorithm lies at the basis of

Latent Semantic Analysis (LSA). Although the

psycholinguistic merits of LSA are an object of

debate, its performance in several language tasks

compares well to that of humans (Landauer and

Dumais, 1997). Let us therefore investigate if it is

able to tackle metonymy recognition as well.

Schütze’s (1998) approach has been imple-

mented in the SenseClusters program (Purandare

and Pedersen, 2004)2, which also incorporates

some interesting variations on and extensions to

the original algorithm. First, Purandare and Ped-

ersen (2004) defend the use of bigram features in-

stead of simple word features. Bigrams are “or-

dered pairs of words that co-occur within five po-

sitions of each other” (Purandare and Pedersen,

2004, p.2) and will be used throughout this pa-

per. Second, they also found that the hybrid algo-

rithm of Repeated Bisections performs better than

Schütze’s (1998) clustering algorithm — at least

for sparse data — so I will use it here, too. Finally,

as with all word sense discrimination techniques,

evaluation proceeds indirectly: SenseClusters au-

tomatically finds the alignment of senses and clus-

ters that leads to the fewest misclassifications —

the confusion matrix that maximizes the diagonal

sum.

2.2 Experiments

On the basis of Markert and Nissim’s location

corpora, I tested if unsupervised learning can be

applied to metonymy recognition. 60% of the

instances were used as training data, 40% as test

data, and the number of pre-defined clusters was

set to two. The experiments were designed with

five specific research questions in mind:

2This software package is freely available and can be
downloaded from http://senseclusters.sourceforge.net.

• Does unsupervised clustering work better

with one-word sets?

Since the unsupervised WSD approach stud-

ied here uses lexical features only, I antici-

pated it to work better with the Hungary data

than with the mixed country set. After all, we

can expect one word to have fewer typical co-

occurrences than an entire semantic class, so

its contexts may be easier to cluster.

• Should a stoplist be used?

Unsupervised clustering on the basis of co-

occurrences usually ignores a number of

words that are thought to be uninforma-

tive about the reading of the target. Exam-

ples of such words are prepositions and ex-

tremely frequent verbs (be, give, go, . . . ). In

metonymy recognition, however, these words

may be much more useful than in classic

WSD. If a location name occurs in a preposi-

tional phrase with in, for instance, it is prob-

ably used literally. Similarly, verbs such as

give and go determine the interpretation of a

possibly metonymical word in contexts like

give sth. to a country (metonymical) and go

to a country (literal). Stoplists may therefore

be less useful in metonymy recognition.

• Are smaller context windows better than

large ones?

Markert and Nissim (2002a) discovered that,

with co-occurrence features, the reduction of

window sizes from 10 to about 3 led to a rad-

ical improvement in precision (from 25% to

above 50%) and recall (from 4% to above

20%). Schütze’s (1998) original algorithm,

however, used context windows of 25 words

on either side of the target.

• Does Singular Value Decomposition result

in better performance?3

Schütze (1998) found that his algorithm per-

forms better with SVD than without. SVD is

said to abstract away from word dimensions,

and to discover topical dimensions instead.

This helps tackle vocabulary issues such as

synonymy and polysemy, and moreover ad-

dresses data sparseness. However, as Mark-

ert and Nissim (2002a) argue, the sense dis-

tinctions between the literal and metonymi-

cal meanings of a word are not of a topical

3With SVD, I set the number of dimensions to 300, as in
Purandare & Pedersen (2004).
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+LL, +SVD +LL, -SVD -LL, +SVD -LL, -SVD

context Acc F Acc F Acc F Acc F

20 62.70 37.84** 73.78 11.01 60.54 28.43 54.72 26.24
15 55.95 34.54* 51.08 34.18 55.68 30.51 56.49 27.15
12 58.92 38.71** 60.54 39.67** 65.14 18.87 66.22 18.30
10 55.68 36.92** 59.46 41.41** 61.35 20.99 65.95 20.25
7 54.32 35.25** 66.76 32.79** 59.73 26.60 65.14 25.43
5 66.76 38.81** 52.97 33.08 54.32 28.09 67.03 29.07
3 58.38 37.40** 70.54 14.17 61.62 37.17** 61.62 36.04**

Table 1: Results on the mixed country data of four algorithms with varying context sizes and without a

stoplist.

+LL : statistical feature selection

-LL : frequency-based feature selection

+SVD : dimensionality reduction with SVD

-SVD : no dimensionality reduction

** : F-score is significantly better than random assignment of data to clusters (p < 0.05)

* : difference between F-score and random assignment approaches significance (p < 0.10)

nature. Word dimensions may thus lead to

better performance.

• Should features be selected on the basis of

a statistical test?4

Purandare and Pedersen (2004) used a log-

likelihood test to select their features, prob-

ably because of the intuition that “candidate

words whose occurrence depends on whether

the ambiguous word occurs will be indica-

tive of one of the senses of the ambiguous

word and hence useful for disambiguation”

(Schütze, 1998, p.102). Schütze, in con-

trast, found that statistical selection is outper-

formed by frequency-based selection when

SVD is not used.

Like Nissim and Markert (2003), I used four

measures to evaluate the experimental results: pre-

cision, recall and F-score for the metonymical cat-

egory, and overall accuracy. They are defined in

the following way:

• Overall accuracy is the total number of in-

stances that is classified correctly.

• Precision for the metonymical category is the

percentage of metonymical labels that the

classifier assigns correctly.

• Recall for the metonymical category is the

percentage of metonymies that the classifier

recognizes.

4I again followed Purandare & Pedersen (2004) by select-
ing bigrams with a log-likelihood score of 3.841 or more.

• F-score is the harmonic mean between preci-

sion and recall:

F =
2 × P × R

P + R
(2)

Let us use the confidence matrix below to illustrate

these measures:

LIT MET

LIT 208 86

MET 37 39

If the rows represent the correct labels and the

columns the labels returned by the classifier, we

get the following results:

Acc =
208 + 39

208 + 86 + 37 + 39
= 66.76%(3)

P =
39

39 + 86
= 31.20%(4)

R =
39

39 + 37
= 51.32%(5)

F =
2 × 31.20% × 51.32%

31.20% + 51.32%
= 38.81%(6)

In engineering terms, a WSD system is only use-

ful when its accuracy beats the so-called majority

baseline. This is the accuracy of a system that sim-

ply gives the same, most frequent, label to all test

instances. Such a classifier reaches an accuracy of

79.46% on the test corpus of mixed country names

and of 77.35% on the test corpus with instances of

Hungary.
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+LL, +SVD +LL, -SVD -LL, +SVD -LL, -SVD

context Acc F Acc F Acc F Acc F

20 58.52 35.06* 73.28 14.63 57.51 32.39 57.00 34.75
15 54.96 36.10* 60.05 33.19 54.20 34.31 57.25 35.38*
12 53.18 38.67** 54.71 32.06 57.76 34.65 54.96 36.10*
10 55.47 34.46 55.47 33.96 56.23 32.81 55.22 32.31
7 51.91 35.93 51.91 24.70 51.91 35.93 65.90 33.00**
5 54.20 21.74 67.18 36.45** 63.87 35.45** 63.36 28.71
3 65.14 33.82** 64.89 35.51** 57.00 35.25* 59.80 36.80**

Table 2: Results on the Hungary data of four algorithms with varying context sizes and without a stoplist.

+LL, +SVD +LL, -SVD -LL, +SVD -LL, -SVD

context Acc F Acc F Acc F Acc F

20 67.51 15.89 67.94 16.00 57.76 36.64** 61.07 35.98**
15 70.74 10.85 70.23 12.03 58.52 36.58** 64.89 34.91**
12 66.92 30.11* 72.01 11.29 64.89 35.51** 64.89 34.29**
10 63.87 29.00 61.83 27.88 63.87 29.00 63.87 29.00
7 67.18 27.93 62.60 27.59 64.38 29.29 64.38 29.29
5 67.18 29.51 67.43 29.67* 67.18 29.51 66.16 28.11
3 68.70 30.51** 68.70 30.51** 68.19 28.57 68.19 28.57

Table 3: Results on the Hungary data of four algorithms with varying context sizes and with a stoplist.

2.3 Experimental results

Compared to this majority baseline, the results of

the unsupervised approach fall below the mark.

None of the accuracy values in tables 1, 2 and 3

lies above this baseline. With baselines of almost

80%, however, this result comes as no surprise.

Moreover, the classifier’s failure to beat the ma-

jority baseline does not necessarily mean that it is

unable to identify a ‘metonymical’ and a ‘literal’

cluster in the data. This ability should be inves-

tigated with a χ2-test instead, which helps us de-

termine if there is a correlation between a test in-

stance’s cluster on the one hand and its label on

the other. If we compare the results with this χ2-

baseline, it emerges that in many cases, the iden-

tified clusters indeed significantly correlate with

the reading of the target words. The default (+LL

+SVD) algorithm, for instance, typically identifies

a metonymical and a literal cluster in the mixed

country data (table 1). It also becomes clear that

the best algorithms are not those with the highest

accuracy values. After all, an accuracy close to the

baseline often results from the identification of one

huge ‘literal’ cluster that covers most metonymies

as well.

Let us now evaluate the algorithms with respect

to the five research questions I mentioned above.

First, a comparison between the results on the

mixed country data in table 1 and the Hungary

data in table 2 shows that the former are more con-

sistent than the latter. The (+LL +SVD) algorithm

in particular is very successful on the country data.

There is thus no sign of the anticipated difficulty

with sets of mixed target words.

Second, when the algorithm is applied to the set

of mixed country names, it should not use a sto-

plist. Not a single time did the resulting clusters

correlate significantly with the target labels — the

results were therefore not included here. A possi-

ble reason may be that the useful co-occurrences

in this data tend to be words on the stoplist, but it

should be studied more carefully if this is indeed

the case.

On the Hungary data, the use of a stoplist has a

different effect. Overall success rate remains more

or less the same (although F-scores with a stoplist

are slightly lower on average), but the results dis-

play a different pattern. Broadly speaking, a sto-

plist is most beneficial when feature selection pro-

ceeds on the basis of frequency and when large

contexts are used. Smaller contexts are more suc-

cessful without a stoplist. There is a logic to this:

as I observed above, stoplist words may be infor-

mative about the reading of a possibly metonymi-

cal word, but their usefulness increases when they

are closer to the target. If go occurs within three

words of a country name, it may point towards

a literal reading; if it occurs within a context of

twenty words, it is less likely to do so. This ex-

plains why stoplists work best in combination with

bigger contexts.

Overall, the influence of context is hard to de-

termine. Small windows of three words on either
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side of the target are generally most successful, but

the context size that should be chosen depends on

other characteristics of the algorithm. The same

is true for dimensionality reduction and statisti-

cal feature selection. In general, the anticipated

negative effects of dimensionality reduction were

not observed, and frequency-based feature selec-

tion clearly benefited algorithms with a stoplist on

the Hungary data. However, the algorithms should

be applied to more data sets in order to investigate

the precise effect of these factors.

In short, although the investigated unsupervised

algorithms never beat the majority baseline for

Markert and Nissim’s (2002b) data, they are often

able to identify two clusters of data that correlate

with the two possible readings. This is true for

the set with one target word as well as for the set

with mixed country names. In general, the algo-

rithms that incorporate both statistical feature se-

lection and Singular Value Decomposition lead to

the best results, except for the Hungary data when

no stoplist is used. In this last case, statistical fea-

ture selection is best dropped and a large context

window should be chosen.

3 Memory-based metonymy recognition

3.1 Background

Memory-Based Learning (MBL), which is imple-

mented in the TiMBL classifier (Daelemans et al.,

2004)5 rests on the hypothesis that people inter-

pret new examples of a phenomenon by comparing

them to “stored representations of earlier experi-

ences” (Daelemans et al., 2004, p.19). It is thus

related to Case-Based reasoning, which holds that

“[r]eference to previous similar situations is often

necessary to deal with the complexities of novel

situations” (Kolodner, 1993, p.5). As a result of

this learning hypothesis, an MBL classifier such as

TiMBL eschews the formulation of complex rules

or the computation of probabilities during its train-

ing phase. Instead it remembers all training vec-

tors and gives a test vector the most frequent label

of the most similar training vectors.

TiMBL implements a number of MBL algo-

rithms. In my experiments, the so-called IB1-IG

algorithm (Daelemans and Van den Bosch, 1992)

proved most successful. It computes the distance

between two vectors X and Y by adding up the

5This software package is freely available and can be
downloaded from http://ilk.uvt.nl/software.html.

weighted distances δ between their corresponding

feature values, as in equation (7):

∆(X, Y ) =
n∑

i=1

wiδ(xi, yi)(7)

By default, TiMBL determines the weights for each

feature on the basis of the feature’s Information

Gain (the increase in information that the knowl-

edge of that feature’s value brings with it) and the

number of values that the feature can have. The

precise equations are discussed in Daelemans et

al. (2004) and need not concern us any further

here.

3.2 Experiments

I again applied this IB1-IG algorithm to Mark-

ert and Nissim’s (2002b) location corpora. In or-

der to make my results as comparable as possi-

ble to Markert and Nissim’s (2002a) and Nissim

and Markert’s (2003), I made two changes in the

evaluation process. First, evaluation was now per-

formed with 10-fold cross-validation. Second, in

the calculation of accuracy, I made a distinction

between the several metonymical labels, so that a

misclassification within the metonymical category

was penalized as well.

I conducted two rounds of experiments. The

first used only grammatical features: the grammat-

ical function of the word (subj, obj, iobj, pp, gen,

premod, passive subj, other), its head, the pres-

ence of a second head, and the second head (if

present). Such features can be expected to iden-

tify metonymies with a high precision, but since

metonymies may have a wide variety of heads,

performance will likely suffer from data sparse-

ness (Nissim and Markert, 2003). I therefore con-

ducted a second round of experiments, in which I

added semantic information to the feature sets, in

the form of the WordNet hypernym synsets of the

head’s first sense.

WordNet is a machine-readable lexical database

that, among other things, structures English verbs,

nouns and adjectives in a hierarchy of so-called

“synonym sets” or synsets (Fellbaum, 1998). Each

word belongs to such a group of synonyms, and

each synset “is related to its immediately more

general and more specific synsets via direct hyper-

nym and hyponym relations” (Jurafsky and Mar-

tin, 2000, p.605). Fear, for instance, belongs to

the synset fear, fearfulness, fright, which has emo-

tion as its most immediate, and psychological fea-
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Acc P R F

TiMBL 86.6% 80.2% 49.5% 61.2%
N&M 87.0% 81.4% 51.0% 62.7%

Table 4: Results for the mixed country data.

TiMBL: TiMBL’s results

N&M: Nissim and Markert’s (2003) results

ture as its highest hypernym. This tree structure

of synsets thus corresponds to a hierarchy of se-

mantic classes that can be used to add semantic

knowledge to a metonymy recognition system.

My experiments investigated a few constella-

tions of semantic features. The simplest of these

used the highest hypernym synset of the head’s

first sense as an extra feature. A second approach

added to the feature vector the head’s highest hy-

pernym synsets, with a maximum of ten. If the

head did not have 10 hypernyms, its own synset

would fill the remaining features. The result of

this last approach is that the MBL classifier first

looks for heads within the same synset as the test

head. If it does not find a word that shares all hy-

pernyms with the test instance, it gradually climbs

the synset hierarchy until it finds the training in-

stances that share as many hypernyms as possi-

ble. Obviously, this approach is able to make more

fine-grained semantic distinctions than the previ-

ous one.

3.3 Experimental results

The experiments with grammatical information

showed that TiMBL is able to replicate Nissim and

Markert’s (2003) results. The obtained accuracy

and F-scores for the mixed country names in ta-

ble 4 are almost identical to Nissim and Mark-

ert’s figures. The results for the Hungary data in

table 5 lie slightly lower, but again mirror Nis-

sim and Markert’s figures closely (Katja Markert,

personal communication). This is all the more

promising since my results were reached without

any semantic information. Remember that Nis-

sim and Markert’s algorithm, in contrast, used

Dekang Lin’s (1998) clusters of semantically sim-

ilar words in order to deal with data sparseness.

Memory-Based Learning does not appear to need

this semantic information to arrive at state-of-the-

art performance. Instead, it tackles possible data

sparseness by its automatic back-off to the gram-

matical role if the target’s head is not found among

the training data.

Acc P R F

84.7% 80.4% 51.9% 63.1%

Table 5: Results for the Hungary data.

Of course, the grammatical role of a target

word is often not sufficient for determining its lit-

eral or metonymical status. Therefore my second

round of experiments investigated if performance

can still be improved by the addition of seman-

tic information. This does not appear to be the

case. Although F-scores for the metonymical cat-

egory tended to increase slightly (as a result of

higher recall values), the system’s accuracy hardly

changed. In order to check if this was due to

the automatic selection of the head’s first Word-

Net sense, I manually disambiguated all heads in

the data. This showed that the first WordNet sense

was indeed often incorrect, but the selection of the

correct sense did not improve performance. The

reason for the failure of WordNet information to

give higher results must thus be found elsewhere.

A first possible explanation is the mismatch be-

tween WordNet’s synsets and our semantic labels.

Many synsets cover such a wide variety of words

that they allow for several readings of the target,

while others are too specific to make generaliza-

tion possible. A second possible explanation is the

predominance of prepositional heads in the data,

for which extra semantic information is useless.

In short, the experiments above demonstrate

convincingly that Memory-Based Learning is a

simple but robust approach to metonymy recog-

nition. This simplicity is a major asset, and is

in stark contrast to the competing approaches to

metonymy recognition in the literature. It should

be studied, however, if there are other features that

can further increase the classifier’s performance.

Attachment information is one such source of in-

formation that certainly deserves further attention.

4 Conclusions

This paper has investigated two computational ap-

proaches to metonymy recognition that both in

their own way are less complex than their com-

petitors in the literature. The unsupervised algo-

rithm in section 2 does not need any labelled train-

ing data; the supervised algorithm of Memory-

Based Learning incorporates an extremely simple

learning phase. Both approaches moreover have

a clear relation to models of human behaviour.
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Schütze’s (1998) approach is related to LSA, a

model whose output correlates with human perfor-

mance on a number of language tasks. Memory-

Based Learning is akin to Case-Based Reasoning,

which holds that people approach a problem by

comparing it to similar instances in their memory.

Rather than presenting a psycholinguistic cri-

tique of these approaches, this paper has investi-

gated their ability to recognize metonymical loca-

tion names. Not surprisingly, it was shown that

the unsupervised approach is not yet a good basis

for a robust metonymy recognition system. Nev-

ertheless, it was often able to distinguish two clus-

ters in the data that correlate with the literal and

metonymical readings. It is striking that this is

also the case for a set of mixed target words from

the same category — a type of data set that, to

my knowledge, this algorithm had not yet been ap-

plied to. Memory-Based Learning, finally, proved

to be a reliable way of recognizing metonymi-

cal words. Although this approach is much sim-

pler than many competing algorithms, it produced

state-of-the-art results, even without semantic in-

formation.

Acknowledgements

I would like to thank Mirella Lapata, Dirk Geer-

aerts and Dirk Speelman for their feedback on this

project. I am also very grateful to Katja Markert

and Malvina Nissim for their helpful information

about their research.

References

W. Daelemans and A. Van den Bosch. 1992. Generali-
sation performance of backpropagation learning on a
syllabification task. In M. F. J. Drossaers and A. Nij-
holt, editors, Proceedings of TWLT3: Connection-
ism and Natural Language Processing, pages 27–37,
Enschede, The Netherlands.

W. Daelemans, J. Zavrel, K. Van der Sloot, and
A. Van den Bosch. 2004. TiMBL: Tilburg Memory-
Based Learner. Technical report, Induction of
Linguistic Knowledge, Computational Linguistics,
Tilburg University.

C. Fellbaum, editor. 1998. WordNet: An Electronic
Lexical Database. Cambridge, MA: MIT Press.

S. Frisson and M. J. Pickering. 1999. The processing
of metonymy: Evidence from eye movements. Jour-
nal of Experimental Psychology: Learning, Memory
and Cognition, 25:1366–1383.

R. W. Jr. Gibbs. 1994. The Poetics of Mind. Figura-
tive Thought, Language and Understanding. Cam-
bridge: Cambridge University Press.

D. Jurafsky and J. H. Martin. 2000. Speech and Lan-
guage Processing. Upper Saddle River, NJ: Prentice
Hall.

J. Kolodner. 1993. Case-Based Reasoning. San Ma-
teo, CA: Morgan Kaufmann Publishers.
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