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Abstract

In this paper we approach word sense
disambiguation and information extrac-
tion as a unified tagging problem. The
task consists of annotating text with the
tagset defined by the 41 Wordnet super-
sense classes for nouns and verbs. Since
the tagset is directly related to Wordnet
synsets, the tagger returns partial word
sense disambiguation. Furthermore, since
the noun tags include the standard named
entity detection classes — person, location,
organization, time, etc. — the tagger, as
a by-product, returns extended named en-
tity information. We cast the problem of
supersense tagging as a sequential label-
ing task and investigate it empirically with
a discriminatively-trained Hidden Markov
Model. Experimental evaluation on the
main sense-annotated datasets available,
1.e., Semcor and Senseval, shows consid-
erable improvements over the best known
“first-sense” baseline.

1 Introduction

Named entity recognition (NER) is the most stud-
ied information extraction (IE) task. NER typi-
cally focuses on detecting instances of “person”,
“location”, “organization” names and optionally
instances of “miscellaneous” or “time” categories.
The scalability of statistical NER allowed re-
searchers to apply it successfully on large col-
lections of newswire text, in several languages,
and biomedical literature. Newswire NER per-
formance, in terms of F-score, is in the upper
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80s (Carreras et al., 2002; Florian et al., 2003),
while Bio-NER accuracy ranges between the low
70s and 80s, depending on the data-set used for
training/evaluation (Dingare et al., 2005). One
shortcoming of NER is its over-simplified onto-
logical model, leaving instances of other poten-
tially informative categories unidentified. Hence,
the utility of named entity information is limited.
In addition, instances to be detected are mainly re-
stricted to (sequences of) proper nouns.

Word sense disambiguation (WSD) is the task
of deciding the intended sense for ambiguous
words in context. With respect to NER, WSD
lies at the other end of the semantic tagging spec-
trum, since the dictionary defines tens of thou-
sand of very specific word senses, including NER
categories. Wordnet (Fellbaum, 1998)!, possibly
the most used resource for WSD, defines word
senses for verbs, common and proper nouns. Word
sense disambiguation, at this level of granularity,
is a complex task which resisted all attempts of
robust broad-coverage solutions. Many distinc-
tions are too subtle to be captured automatically,
and the magnitude of the class space — several
orders larger than NER’s — makes it hard to ap-
proach the problem with sophisticated, but scal-
able, machine learning methods. Lastly, even if
the methods would scale up, there are not enough
manually tagged data, at the word sense level, for
training a model. The performance of state of
the art WSD systems on realistic evaluations is
only comparable to the “first sense” baseline (cf.
Section 5.3). Notwithstanding much research, the
benefits of disambiguated lexical information for
language processing are still mostly speculative.

This paper presents a novel approach to broad-

"When referring to Wordnet, throughout the paper, we
mean Wordnet version 2.0.

594

Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLR2066)594—602,
Sydney, July 20062006 Association for Computational Linguistics



NOUNS
SUPERSENSE | NOUNS DENOTING SUPERSENSE | NOUNS DENOTING
act acts or actions object natural objects (not man-made)
animal animals quantity quantities and units of measure
artifact man-made objects phenomenon natural phenomena
attribute attributes of people and objects plant plants
body body parts possession possession and transfer of possession
cognition cognitive processes and contents process natural processes
communication | communicative processes and contents | person people
event natural events relation relations between people or things or ideas
feeling feelings and emotions shape two and three dimensional shapes
food foods and drinks state stable states of affairs
group groupings of people or objects substance substances
location spatial position time time and temporal relations
motive goals Tops abstract terms for unique beginners
VERBS
SUPERSENSE | VERBS OF SUPERSENSE | VERBS OF
body grooming, dressing and bodily care emotion feeling
change size, temperature change, intensifying | motion walking, flying, swimming
cognition thinking, judging, analyzing, doubting | perception seeing, hearing, feeling
communication | telling, asking, ordering, singing possession buying, selling, owning
competition fighting, athletic activities social political and social activities and events
consumption eating and drinking stative being, having, spatial relations
contact touching, hitting, tying, digging weather raining, snowing, thawing, thundering
creation sewing, baking, painting, performing

Table 1. Nouns and verbs supersense labels, and short description (from the Wordnet documentation).

coverage information extraction and word sense
disambiguation. Our goal is to simplify the disam-
biguation task, for both nouns and verbs, to a level
at which it can be approached as any other tagging
problem, and can be solved with state of the art
methods. As a by-product, this task includes and
extends NER. We define a tagset based on Word-
net’s lexicographers classes, or supersenses (Cia-
ramita and Johnson, 2003), cf. Table 1. The size
of the supersense tagset allows us to adopt a struc-
tured learning approach, which takes local depen-
dencies between labels into account. To this ex-
tent, we cast the supersense tagging problem as a
sequence labeling task and train a discriminative
Hidden Markov Model (HMM), based on that of
Collins (2002), on the manually annotated Semcor
corpus (Miller et al., 1993). In two experiments
we evaluate the accuracy of the tagger on the Sem-
cor corpus itself, and on the English “all words”
Senseval 3 shared task data (Snyder and Palmer,
2004). The model outperforms remarkably the
best known baseline, the first sense heuristic — to
the best of our knowledge, for the first time on the
most realistic “all words” evaluation setting.

The paper is organized as follows. Section 2
introduces the tagset, Section 3 discusses related
work and Section 4 the learning model. Section 5
reports on experimental settings and results. In
Section 6 we summarize our contribution and con-
sider directions for further research.

2 Supersense tagset

Wordnet (Fellbaum, 1998) is a broad-coverage
machine-readable dictionary which includes
11,306 verbs mapped to 13,508 word senses,
called synsets, and 114,648 common and proper
nouns mapped to 79,689 synsets. Each noun or
verb synset is associated with one of 41 broad
semantic categories, in order to organize the
lexicographer’s work of updating and managing
the lexicon (see Table 1). Since each lexicog-
rapher category groups together many synsets
they have been also called supersenses (Ciaramita
and Johnson, 2003). There are 26 supersenses
for nouns, 15 for verbs. This coarse-grained
ontology has a number of attractive features, for
the purpose of natural language processing. First,
the small size of the set makes it possible to build
a single tagger which has positive consequences
on robustness. Second, classes, although fairly
general, are easily recognizable and not too
abstract or vague. More importantly, similar word
senses tend to be merged together.

As an example, Table 2 summarizes all senses
of the noun “box”. The 10 synsets are mapped
to 6 supersenses: ‘“‘artifact”, “quantity”, “shape”,
“state”, “plant”, and “act”. Three similar senses
(2), (7) and (9), and the probably related (8), are
merged in the “artifact” supersense. This process

can help disambiguation because it removes sub-
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1. {box} (container) “he rummaged through a box of
spare parts” - n.artifact

2. {box, loge} (private area in a theater or grandstand
where a small group can watch the performance) “the
royal box was empty” - n.artifact

3. {box, boxful} (the quantity contained in a box) "he
gave her a box of chocolates” - n.quantity

4. {corner, box} (a predicament from which a skillful or
graceful escape is impossible) “his lying got him into a
tight corner” - n.state

5. {box} (arectangular drawing) "the flowchart contained
many boxes” - n.shape

6. {box, boxwood} (evergreen shrubs or small trees) -
n.plant

7. {box} (any one of several designated areas on a ball
field where the batter or catcher or coaches are posi-
tioned) “’the umpire warned the batter to stay in the bat-
ter’s box” - n.artifact

8. {box, box seat} (the driver’s seat on a coach) "an armed
guard sat in the box with the driver” - n.artifact

9. {box} (separate partitioned area in a public place for a
few people) “'the sentry stayed in his box to avoid the
cold” - n.artifact

10. {box} (a blow with the hand (usually on the ear)) "I
gave him a good box on the ear” - n.act

Table 2. The noun “box” in Wordnet: each line lists one
synset, the set of synonyms, a definition, an optional
example sentence, and the supersense label.

tle distinctions, which are hard to discriminate and
increase the size of the class space. One possi-
ble drawback is that senses which one might want
to keep separate, e.g., the most common sense
box/container (1), can be collapsed with others.
One might argue that all “artifact” senses share
semantic properties which differentiate them from
the other senses and can support useful semantic
inferences. Unfortunately, there are no general so-
lutions to the problem of sense granularity. How-
ever, major senses identified by Wordnet are main-
tained at the supersense level. Hence, supersense-
disambiguated words are also, at least partially,
synset-disambiguated.

Since Wordnet includes both proper and com-
mon nouns, the new tagset suggests an extended
notion of named entity. As well as the usual
NER categories, “person”, “group”, “location”,
and “time”?, supersenses include categories such
as artifacts, which can be fairly frequent, but usu-
ally neglected. To a greater extent than in stan-
dard NER, research in Bio-NER has focused on
the adoption of richer ontologies for information
extraction. Genia (Ohta et al., 2002), for exam-
ple, is an ontology of 46 classes — with annotated

The supersense category “group” is rather a superordi-
nate of “organization” and has wider scope.

corpus — designed for supporting information ex-
traction in the molecular biology domain. In addi-
tion, there is growing interest for extracting rela-
tions between entities, as a more useful type of IE
(cf. (Rosario and Hearst, 2004)).

Supersense tagging is inspired by similar con-
siderations, but in a domain-independent setting;
e.g., verb supersenses can label semantic interac-
tions between nominal concepts. The following
sentence (Example 1), extracted from the data —
further described in Section 5.1 — shows the infor-
mation captured by the supersense tagset:

(1) Clara  Harrisp person, one of the
guestsy person 1N the boxy, qriifact, stood
UpPy.motion and demanded, communication

watery, substance-

As Example 1 shows there is more information
that can be extracted from a sentence than just
the names; e.g. the fact that “Clara Harris” and
the following “guests” are both tagged as “person”
might suggest some sort of co-referentiality, while
the coordination of verbs of motion and commu-
nication, as in “stood up and demanded”, might be
useful for language modeling purposes. In such a
setting, structured learning methods, e.g., sequen-
tial, can help tagging by taking the senses of the
neighboring words into account.

3 Related Work

Sequential models are common in NER, POS tag-
ging, shallow parsing, etc.. Most of the work in
WSD, instead, has focused on labeling each word
individually, possibly revising the assignments of
senses at the document level; e.g., following the
“one sense per discourse” hypothesis (Gale et al.,
1992). Although it seems reasonable to assume
that occurrences of word senses in a sentence can
be correlated, hence that structured learning meth-
ods could be successful, there has not been much
work on sequential WSD. Segond et al. (1997) are
possibly the first to have applied an HMM tag-
ger to semantic disambiguation. Interestingly, to
make the method more tractable, they also used
the supersense tagset and estimated the model on
Semcor. By cross-validation they show a marked
improvement over the first sense baseline. How-
ever, in (Segond et al., 1997) the tagset is used dif-
ferently, by defining equivalence classes of words
with the same set of senses. From a similar per-
spective, de Loupy et al. (de Loupy et al., 1998)
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also investigated the potential advantages of using
HMMs for disambiguation. More recently, vari-
ants of the generative HMM have been applied to
WSD (Molina et al., 2002; Molina et al., 2004)
and evaluated also on Senseval data, showing per-
formance comparable to the first sense baseline.

Previous work on prediction at the supersense
level (Ciaramita and Johnson, 2003; Curran, 2005)
has focused on lexical acquisition (nouns exclu-
sively), thus aiming at word type classification
rather than tagging. As far as applications are con-
cerned, it has been shown that supersense infor-
mation can support supervised WSD, by provid-
ing a partial disambiguation step (Ciaramita et al.,
2003). In syntactic parse re-ranking supersenses
have been used to build useful latent semantic fea-
tures (Koo and Collins, 2005). We believe that
supersense tagging has the potential to be useful,
in combination with other sources of information
such as part of speech, domain-specific NER mod-
els, chunking or shallow parsing, in tasks such
as question answering and information extraction
and retrieval, where large amounts of text need
to be processed. It is also possible that this kind
of shallow semantic information can help build-
ing more sophisticated linguistic analysis as in full
syntactic parsing and semantic role labeling.

4 Sequence Tagging

We take a sequence labeling approach to learn-
ing a model for supersense tagging. Our goal is
to learn a function from input vectors, the obser-
vations from labeled data, to response variables,
the supersense labels. POS tagging, shallow pars-
ing, NP-chunking and NER are all examples of
sequence labeling tasks in which performance can
be significantly improved by optimizing the choice
of labeling over whole sequences of words, rather
than individual words. The limitations of the gen-
erative approach to sequence tagging, i. e. Hidden
Markov Models, have been overcome by discrim-
inative approaches proposed in recent years (Mc-
Callum et al., 2000; Lafferty et al., 2001; Collins,
2002; Altun et al., 2003). In this paper we apply
perceptron trained HMMs originally proposed in
(Collins, 2002).

4.1 Perceptron-trained HMM

HMMs define a probabilistic model for observa-
tion/label sequences. The joint model of an obser-

vation/label sequence (x,y), is defined as:

P(y,x) = Hp(yi\yi—l)P(ﬂfi\yz‘)), )

where 7; is the i*" label in the sequence and z; is
the it word. In the NLP literature, a common ap-
proach is to model the conditional distribution of
label sequences given the label sequences. These
models have several advantages over generative
models, such as not requiring questionable inde-
pendence assumptions, optimizing the conditional
likelihood directly and employing richer feature
representations. This task can be represented as
learning a discriminant function F' : X x Y — IR,
on a training data of observation/label sequences,
where F'is linear in a feature representation ® de-
fined over the joint input/output space

F(va;w) = <W’(I)(X7Y)>' (3)

® is a global feature representation, mapping each
(x,y) pair to a vector of feature counts ®(x,y) €
IRd, where d is the total number of features. This
vector is given by

d |yl

(x,y) =) > Gilyj-1,5,%). )

i=1 j=1

Each individual feature ¢; typically represents a
morphological, contextual, or syntactic property,
or also the inter-dependence of consecutive la-
bels. These features are described in detail in Sec-
tion 4.2. Given an observation sequence x, we
make a prediction by maximizing F' over the re-
sponse variables:

fw(x) = argmax F(x,y; w). 5)
yey
This involves computing the Viterbi decoding with
respect to the parameter vector w € IR?. The
complexity of the Viterbi algorithm scales linearly
with the length of the sequence.

There are different ways of estimating w for the
described model. We use the perceptron algorithm
for sequence tagging (Collins, 2002). The per-
ceptron algorithm focuses on minimizing the error
rate, without involving any normalization factors.
This property makes it very efficient which is a de-
sirable feature in a task dealing with a large tagset
such as ours. Additionally, the performance of
perceptron-trained HMMs is very competitive on
a number of tasks; e.g., in shallow parsing, where
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Algorithm 1 Hidden Markov average perceptron
algorithm.

1: Initialize wg = 0
2: fort=1....,7T do
3:  Choose x*

4. Compute § = arg maxyey F(x',y; w)
5. ify’ # y then

6: w1 — wy + (x4 y) — d(x%,y)
7:  end if

g w=4>,wW

9: end for

10: return w

the perceptron performance is comparable to that
of Conditional Random Field models (Sha and
Pereira, 2003), The tendency to overfit of the per-
ceptron can be mitigated in a number of ways in-
cluding regularization and voting. Here we apply
averaging and straightforwardly extended Collins
algorithm, summarized in Algorithm 1.

4.2 Features

We used the following combination of
spelling/morphological and contextual fea-
tures. For each observed word z; in the data ¢
extracts the following features:

1. Words: Tiy Ti—1, Ti—2, Ti4+1, Ti4+2;

2. First sense: supersense baseline prediction
for x;, fs(x;), cf. Section 5.3;

3. Combined (1) and (2): x; + fs(x;);

4. Pos: pos; (the POS of z;), posj_1, pos;_»,
POSi+1, POS; 12, posi[0], posi_1[0], pos;_2[0],
posi+1[0], posiy2[0], pos_comm; if z;’s POS
tags is “NN” or “NNS” (common nouns), and
pos_prop; if x;’s POS is “NNP” or “NNPS”
(proper nouns);

5. Word shape: sh(z;), sh(xz;—1), sh(z;_2),
sh(zi+1), sh(x;12), where sh(x;) is as
described below. In addition sh; = low
if the first character of x; is lowercase,
sh; = cap_brk if the first character of x; is up-
percase and z;_; is a full stop, question or
exclamation mark, or x; is the first word of
the sentence, sh; = cap_nobrk otherwise;

6. Previous label: supersense label y;_1.

Word features (1) are morphologically simplified
using the morphological functions of the Word-
net library. The first sense feature (2) is the label
predicted for x; by the baseline model, cf. Sec-
tion 5.3. POS labels (4) were generated using
Brants’ TnT tagger (Brants, 2002). POS features
of the form pos;[0] extract the first character from
the POS label, thus providing a simplified repre-
sentation of the POS tag. Finally, word shape fea-
tures (5) are regular expression-like transforma-
tion in which each character c of a string s is sub-
stituted with X if c is uppercase, if lowercase, ¢
is substituted with z, if c is a digit it is substituted
with d and left as it is otherwise. In addition each
sequence of two or more identical characters c is
substituted with cx. For example, for s = “Merrill
Lynch& Co.”, sh(s) = Xx x Xx % &Xx..

Exploratory experiments with richer feature
sets, including syntactic information, affixes, and
topic labels associated with words, did not result
in improvements in terms of performance. While
more experiments are needed to investigate the
usefulness of other sources of information, the fea-
ture set described above, while basic, offers good
generalization properties.

S Experiments

5.1 Data

We experimented with the following data-sets’.
The Semcor corpus (Miller et al., 1993), a frac-
tion of the Brown corpus (Kucera and Francis,
1967) which has been manually annotated with
Wordnet synset labels. Named entities of the cat-
egories “person”, “location” and “group” are also
annotated. The original annotation with Wordnet
1.6 synset IDs has been converted to the most re-
cent version 2.0 of Wordnet. Semcor is divided
in three parts: “brownl” and “brown2”, here re-
ferred to as “SEM”, in which nouns, verbs, adjec-
tives and adverbs are annotated. In addition, the
section “brownv”, “SEMvV” here, contains annota-
tions only for verbs. We also experimented with
the Senseval-3 English all-words tasks data (Sny-
der and Palmer, 2004), here called “SE3”. The
Senseval all-words task evaluates the performance
of WSD systems on all open class words in com-
plete documents. The Senseval-3 data consists of
two Wall Street Journal Articles, “wsj_1778” and

3These datasets are available in a con-
sistent format and can be downloaded from
http://www.cs.unt.edu/ rada/downloads.html
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Dataset
Counts SE3 SEM SEMv
Sentences 300 20,138 17,038
Tokens 5,630 434,774 385,546
Supersenses 1,617 135,135 40911
Verbs 725 47,710 400911
Nouns 892 87,425 0
Avg-poly-N-WS | 4.66 441 4.33
Avg-poly-N-SS 2.86 2.75 2.66
Avg-poly-V-WS | 11.17 10.87 11.05
Avg-poly-V-SS 4.20 4.11 4.16

Table 3. Statistics of the datasets. The row “Super-
senses” lists the number of instances of supersense
labels, partitioned, in the following two rows, between
verb and noun supersense labels. The lowest four rows
summarize average polysemy figures at the synset and
supersense level for both nouns and verbs.

“wsj_1695”, and a fiction excerpt, “cl 23”, from
the unannotated portion of the Brown corpus. Ta-
ble 3 summarizes a few statistics about the compo-
sition of the datasets. The four lower rows report
the average polysemy of nouns (“N”) and verbs
(“V”), in each dataset, both at the synset level
(“WS”) and supersense (“SS”) level. The average
number of senses decreases significantly when the
more general sense inventory is considered.

We substituted the corresponding supersense to
each noun and verb synset in all three data-sets:
SEM, SEMv and SE3. All other tokens were
labeled “0”. The supersense label “noun.Tops”
refers to 45 synsets which lie at the very top
of the Wordnet noun hierarchy. Some of these
synsets are expressed by very general nouns such
as “biont”, “benthos”, “whole”, and ‘“nothing”.
However, others undoubtedly refer to other super-
senses, for which they provide the label, such as
“food”, “person”, “plant” or “animal”. Since these
nouns tend to be fairly frequent, it is confusing
and inconsistent to label them “noun.Tops”; e.g.,
nouns such as “chowder” and “Swedish meatball”
would be tagged as “noun.food”, but the noun
“food” would be tagged as “noun.Tops”. For this
reason, in all obvious cases, we substituted the
“noun.Tops” label with the more specific super-
sense label for the noun*.

The SEMyv dataset only includes supersense la-
bels for verbs. In order to avoid unwanted false
negatives, that is, thousands of nouns labeled “0”,

“The nouns which are left with the “noun.Top” label are:
entity, thing, anything, something, nothing, object, living
thing, organism, benthos, heterotroph, life, and biont.

we applied the following procedure. Rather than
using the full sentences from the SEMv dataset,
from each sentence we generated the fragments in-
cluding a verb but no common or proper nouns;
e.g., from a sentence such as “Karns’ ruling per-
tained yery. stative to €ight of the 10 cases.” only the
fragment “pertained, e p stative t0 €ight of the 10”
is extracted and used for training.

Sometimes more than one label is assigned to
a word, in all data-sets. In these cases we adopted
the heuristic of only using the first label in the data
as the correct synset/supersense. We leave the ex-
tension of the tagger to the multilabel case for fu-
ture research. As for now, we can expect that this
solution will simply lower, somewhat, both the
baseline and the tagger performance. Finally, we
adopted a beginning (B) and continuation of entity
(D plus no label (0), encoding; i.e., the actual class
space defines 83 labels.

5.2 Setup

The supersense tagger was trained on the Semcor
datasets SEM and SEMv. The only free parame-
ter to set in evaluation is the number of iterations
to perform 7' (cf. Algorithm 1). We evaluated the
model’s accuracy on Semcor by splitting the SEM
data randomly in training, development and evalu-
ation. In a 5-fold cross-validation setup the tagger
was trained on 4/5 of the SEM data, the remain-
ing data was split in two halves, one used to fix T’
the other for evaluating performance on test. The
full SEMv data was always added to the training
portion of SEM. We also evaluated the model on
the Senseval-3 data, using the same value for 7" set
by cross-validation on the SEM data®. The order-
ing of the training instances is randomized across
different runs, therefore the algorithm outputs dif-
ferent results after each run, even if the evaluation
set is fixed, as is the case for the Senseval evalu-
ation. The variance in the results on the SE3 data
was measured in this way.

5.3 Baseline tagger

The first sense baseline is the supersense of the
most frequent synset for a word, according to
Wordnet’s sense ranking. This baseline is very
competitive in WSD tasks, and it is extremely hard
to improve upon even slightly. In fact, the baseline
has been proposed as a good alternative to WSD

30n average T is equal to 12 times the size of the training
data.
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Semcor Senseval-3
Method Recall Precision F-score [o] | Recall Precision F-score [o]
Rand 4299  38.17 40.44 42.09 35.84 38.70
Baseline 69.25 63.90 66.47 68.65 60.10 64.09
Supersense-Tagger | 77.71  76.65 77.180.45 | 73.74  67.60 70.54 0.21

Table 4. Summary of results for random and first sense baselines and supersense tagger, o is the standard error

computed on the five trials results.

altogether (cf. (McCarthy et al., 2004)). For this
reason we include the first sense prediction as one
of the features of our tagging model.

We apply the heuristic as follows. First, in each
sentence, we identify the longest sequence which
has an entry in Wordnet as either noun or verb.
We carry out this step using the Wordnet’s library
functions, which perform also morphological sim-
plification. Hence, in Example 1 the entry “stand
up” is detected, although also “stand” has an en-
try in Wordnet. Then, each word identified in
this way is assigned its most frequent sense — the
only one available if the word is unambiguous. To
reduce the number of candidate supersenses we
distinguish between common and proper nouns;
e.g. “Savannah” (city/river) is distinguished from
“savannah” (grassland). This method improves
slightly the accuracy of the baseline which does
not distinguish between different types of nouns.

5.4 Results

Table 4 summarizes overall performance®. The
first line shows the accuracy of a baseline which
assigns possible supersenses of identified words at
random. The second line shows the performance
of the first sense baseline (cf. Section 5.3), the
marked difference between the two is a measure of
the robustness of the first sense heuristic. On the
Semcor data the tagger improves over the base-
line by 10.71%, 31.19% error reduction, while
on Senseval-3 the tagger improves over the base-
line by 6.45%, 17.96% error reduction. We can
put these results in context, although indirectly,
by comparison with the results of the Senseval-
3 all words task systems. There, with a base-
line of 62.40%, only 4 out of 26 systems per-
formed above the baseline, with the two best sys-
tems (Mihalcea and Faruque, 2004; Decadt et al.,
2004) achieving an F-score of 65.2% (2.8% im-
provement, 7.45% error reduction). The system
based on the HMM tagger (Molina et al., 2004),

8Scoring was performed with a re-implementation of the
“conlleval” script .

achieved an F-score of 60.9%. The supersense
tagger improves mostly on precision, while also
improving on recall. Overall the tagger achieves
F-scores between 70.5 and 77.2%. If we compare
these figures with the accuracy of NER taggers
the results are very encouraging. Given the con-
siderably larger — one order of magnitude — class
space some loss has to be expected. Experiments
with augmented tagsets in the biomedical domain
also show performance loss with respect to smaller
tagsets; e.g., Kazama et al. (2002) report an F-
score of 56.2% on a tagset of 25 Genia classes,
compared to the 75.9% achieved on the simplest
binary case. The sequence fragments from SEMv
contribute about 1% F-score improvement.

Table 5 focuses on subsets of the evaluation.
The upper part summarizes the results on Sem-
cor for the classes comparable to standard NER’s:
“person”, “group”, “location” and “time”. How-
ever, these categories here are composed of com-
mon nouns as well as proper names/named enti-
ties. On this four tags the tagger achieves an aver-
age 82.46% F-score, not too far from NER results.
The lower portion of Table 5 summarizes the re-
sults on the five most frequent noun and verb su-
persense labels on the Senseval-3 data, providing
more specific evidence for the supersense tagger’s
disambiguation accuracy. The tagger outperforms
the first sense baseline on all categories, with the
exception of “verb.cognition” and “noun.person”.
The latter case has a straightforward explanation,
named entities (e.g., “Phil Haney”, “Chevron” or
“Marina District”) are not annotated in the Sense-
val data, while they are in Semcor. Hence the tag-
ger learns a different model for nouns than the one
used to annotate the Senseval data. Because of this
discrepancy the tagger tends to return false posi-
tives for some categories. In fact, the other noun
categories on which the tagger performs poorly in
SE3 are “group” and “location” (baseline 52.10
tagger 44.72 and baseline 47.62% tagger 47.54%
F-score). Naturally, the lower performance on
Senseval is also explained by the fact that the eval-

600



NER supersenses in Semcor
Supersense-Tagger Baseline
Supersense # Supersenses R P F R P F
n.person 1526 | 92.04 87.94 | 89.94 | 56.29 77.35 | 65.16
n.group 665 | 75.38 79.56 | 77.40 | 62.42 66.81 | 64.54
n.location 459 | 77.21 75.37 | 76.25 | 67.88 63.33 | 65.53
n.time 412 | 88.36 84.30 | 86.27 | 78.26 83.88 | 80.98
5 most frequent verb supersenses in Senseval-3
Supersense # Supersenses R P F R P F
v.stative 184 | 80.33 81.30 | 80.81 | 72,83 63.81 | 68.02
v.communication 88 | 77.53 83.36 | 80.33 | 7191 74.42 | 73.14
v.motion 81 | 69.63 64.54 | 66.98 | 58.02 60.26 | 59.12
v.cognition 61 | 73.44 6791 | 70.56 | 7541 71.87 | 73.60
v.change 60 | 68.33 67.47 | 67.89 | 56.67 57.63 | 57.14
5 most frequent noun supersenses in Senseval-3
Supersense # Supersenses R P F R P F
n.person 148 | 92.24 60.49 | 73.06 | 89.12 79.39 | 83.97
n.artifact 131 | 8091 77.73 | 79.29 | 74.24 75.97 | 75.10
n.act 96 | 61.46 7237 | 66.45 | 58.33 65.12 | 61.54
n.cognition 67 | 45.80 52.87 | 49.06 | 49.28 46.58 | 47.89
n.event 60 | 70.33 89.83 | 78.87 | 71.67 75.44 | 73.50

Table 5. Summary of results of baseline and tagger on selected subsets of labels: NER categories evaluated on
Semcor (upper section), and 5 most frequent verb (middle) and noun (bottom) categories evaluated on Senseval.

uation comes from different sources than training.

6 Conclusions

In this paper we presented a novel approach to
broad-coverage word sense disambiguation and
information extraction. We defined a tagset based
on Wordnet supersenses, a much simpler and gen-
eral semantic model than Wordnet which, how-
ever, preserves significant polysemy information
and includes standard named entity recognition
categories. We showed that in this framework it is
possible to perform accurate broad-coverage tag-
ging with state of the art sequence learning meth-
ods. The tagger considerably outperformed the
most competitive baseline on both Semcor and
Senseval data. To the best of our knowledge the re-
sults on Senseval data provide the first convincing
evidence of the possibility of improving by con-
siderable amounts over the first sense baseline.
We believe both the tagset and the structured
learning approach contribute to these results. The
simplified representation obviously helps by re-
ducing the number of possible senses for each
word (cf. Table 3). Interestingly, the relative im-
provement in performance is not as large as the
relative reduction in polysemy. This indicates that

sense granularity is only one of the problems in
WSD. More needs to be understood concerning
sources of information, and processes, that affect
word sense selection in context. As far as the tag-
ger is concerned, we applied the simplest feature
representation, more sophisticated features can be
used, e.g., based on kernels, which might con-
tribute significantly by allowing complex feature
combinations. These results also suggest new di-
rections of research within this model. In partic-
ular, the labels occurring in each sequence tend
to coincide with predicates (verbs) and arguments
(nouns and named entities). A sequential depen-
dency model might not be the most accurate at
capturing the grammatical dependencies between
these elements. Other conditional models, e.g.,
designed on head to head, or similar, dependen-
cies could prove more appropriate.

Another interesting issue is the granularity of
the tagset. Supersenses seem more practical then
synsets for investigating the impact of broad-
coverage semantic tagging, but they define a very
simplistic ontological model. A natural evolution
of this kind of approach might be one which starts
by defining a semantic model at an intermediate
level of abstraction (cf. (Ciaramita et al., 2005)).
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