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Abstract

We propose a general method for reranker
construction which targets choosing the
candidate with the least expected loss,
rather than the most probable candidate.
Different approaches to expected loss ap-
proximation are considered, including es-
timating from the probabilistic model used
to generate the candidates, estimating
from a discriminative model trained to
rerank the candidates, and learning to ap-
proximate the expected loss. The pro-
posed methods are applied to the parse
reranking task, with various baseline mod-
els, achieving significant improvement
both over the probabilistic models and the
discriminative rerankers. When a neural
network parser is used as the probabilistic
model and the Voted Perceptron algorithm
with data-defined kernels as the learning
algorithm, the loss minimization model
achieves 90.0% labeled constituents F1

score on the standard WSJ parsing task.

1 Introduction

The reranking approach is widely used in pars-
ing (Collins and Koo, 2005; Koo and Collins,
2005; Henderson and Titov, 2005; Shen and Joshi,
2003) as well as in other structured classifica-
tion problems. For structured classification tasks,
where labels are complex and have an internal
structure of interdependency, the 0-1 loss consid-
ered in classical formulation of classification al-
gorithms is not a natural choice and different loss
functions are normally employed. To tackle this
problem, several approaches have been proposed
to accommodate loss functions in learning algo-
rithms (Tsochantaridis et al., 2004; Taskar et al.,

2004; Henderson and Titov, 2005). A very differ-
ent use of loss functions was considered in the ar-
eas of signal processing and machine translation,
where direct minimization of expected loss (Min-
imum Bayes Risk decoding) on word sequences
was considered (Kumar and Byrne, 2004; Stol-
cke et al., 1997). The only attempt to use Mini-
mum Bayes Risk (MBR) decoding in parsing was
made in (Goodman, 1996), where a parsing al-
gorithm for constituent recall minimization was
constructed. However, their approach is limited
to binarized PCFG models and, consequently, is
not applicable to state-of-the-art parsing meth-
ods (Charniak and Johnson, 2005; Henderson,
2004; Collins, 2000). In this paper we consider
several approaches to loss approximation on the
basis of a candidate list provided by a baseline
probabilistic model.

The intuitive motivation for expected loss mini-
mization can be seen from the following example.
Consider the situation where there are a group of
several very similar candidates and one very dif-
ferent candidate whose probability is just slightly
larger than the probability of any individual candi-
date in the group, but much smaller than their total
probability. A method which chooses the maxi-
mum probability candidate will choose this outlier
candidate, which is correct if you are only inter-
ested in getting the label exactly correct (i.e. 0-1
loss), and you think the estimates are accurate. But
if you are interested in a loss function where the
loss is small when you choose a candidate which
is similar to the correct candidate, then it is better
to choose one of the candidates in the group. With
this choice the loss will only be large if the outlier
turns out to be correct, while if the outlier is cho-
sen then the loss will be large if any of the group
are correct. In other words, the expected loss of
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choosing a member of the group will be smaller
than that for the outlier.

More formally, the Bayes risk of a model y =
h(x) is defined as

R(h) = Ex,y∆(y, h(x)), (1)

where the expectation is taken over all the possi-
ble inputs x and labels y and ∆(y, y′) denotes a
loss incurred by assigning x to y′ when the correct
label is y. We assume that the loss function pos-
sesses values within the range from 0 to 1, which
is equivalent to the requirement that the loss func-
tion is bounded in (Tsochantaridis et al., 2004). It
follows that an optimal reranker h? is one which
chooses the label y that minimizes the expected
loss:

h?(x) = arg min
y′∈G(x)

∑

y

P (y|x)∆(y, y′), (2)

where G(x) denotes a candidate list provided by
a baseline probabilistic model for the input x.
In this paper we propose different approaches to
loss approximation. We apply them to the parse
reranking problem where the baseline probabilis-
tic model is a neural network parser (Henderson,
2003), and to parse reranking of candidates pro-
vided by the (Collins, 1999) model. The result-
ing reranking method achieves very significant im-
provement in the considered loss function and im-
provement in most other standard measures of ac-
curacy.

In the following three sections we will discuss
three approaches to learning such a classifier. The
first two derive a classification criteria for use with
a predefined probability model (the first genera-
tive, the second discriminative). The third de-
fines a kernel for use with a classification method
for minimizing loss. All use previously proposed
learning algorithms and optimization criteria.

2 Loss Approximation with a
Probabilistic Model

In this section we discuss approximating the ex-
pected loss using probability estimates given by
a baseline probabilistic model. Use of probabil-
ity estimates is not a serious limitation of this
approach because in practice candidates are nor-
mally provided by some probabilistic model and
its probability estimates are used as additional fea-
tures in the reranker (Collins and Koo, 2005; Shen
and Joshi, 2003; Henderson and Titov, 2005).

In order to estimate the expected loss on the ba-
sis of a candidate list, we make the assumption that
the total probability of the labels not in the can-
didate list is sufficiently small that the difference
δ(x, y′) of expected loss between the labels in the
candidate list and the labels not in the candidate
list does not have an impact on the loss defined
in (1):

δ(x, y′) =

∑
y/∈G(x) P (y|x)∆(y, y′)

∑
y/∈G(x) P (y|x)

− (3)

∑
y∈G(x) P (y|x)∆(y, y′)

∑
y∈G(x) P (y|x)

This gives us the following approximation to the
expected loss for the label:

l(x, y′) =

∑
y∈G(x) P (y|x)∆(y, y′)

∑
y∈G(x) P (y|x)

. (4)

For the reranking case, often the probabilistic
model only estimates the joint probability P (x, y).
However, neither this difference nor the denomi-
nator in (4) affects the classification. Thus, replac-
ing the true probabilities with their estimates, we
can define the classifier

ĥ(x) = arg min
y′∈G(x)

∑

y∈G(x)

P (x, y|θ̂)∆(y, y′), (5)

where θ̂ denotes the parameters of the probabilis-
tic model learned from the training data. This ap-
proach for expected loss approximation was con-
sidered in the context of word error rate minimiza-
tion in speech recognition, see for example (Stol-
cke et al., 1997).

3 Estimating Expected Loss with
Discriminative Classifiers

In this section we propose a method to improve on
the loss approximation used in (5) by constructing
the probability estimates using a trained discrimi-
native classifier. Special emphasis is placed on lin-
ear classifiers with data-defined kernels for rerank-
ing (Henderson and Titov, 2005), because they do
not require any additional domain knowledge not
already encoded in the probabilistic model, and
they have demonstrated significant improvement
over the baseline probabilistic model for the parse
reranking task. This kernel construction can be
motivated by the existence of a function which
maps a linear function in the feature space of the
kernel to probability estimates which are superior
to the estimates of the original probabilistic model.
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3.1 Estimation with Fisher Kernels

The Fisher kernel for structured classification
is a trivial generalization of one of the best
known data-defined kernels for binary classifica-
tion (Jaakkola and Haussler, 1998). The Fisher
score of an example input-label pair (x, y) is a
vector of partial derivatives of the log-likelihood
of the example with respect to the model parame-
ters1:

φFK
θ̂

(x, y) = (6)

(logP (x, y|θ̂),
∂logP (x,y|θ̂)

∂θ1
,...,

∂logP (x,y|θ̂)

∂θl
).

This kernel defines a feature space which is appro-
priate for estimating the discriminative probability
in the candidate list in the form of a normalized
exponential

P (x, y)
∑

y′∈G(x) P (x, y′)
≈ (7)

exp(w?T φFK
θ̂

(x, y))
∑

y′∈G(x) exp(w?T φFK
θ̂

(x, y′))

for some choice of the decision vector w = w?

with the first component equal to one.
It follows that it is natural to use an estimator

of the discriminative probability P (y|x) in expo-
nential form and, therefore, the appropriate form
of the loss minimizing classifier is the following:

ĥFK(x) = (8)

arg min
y′∈G(x)

∑

y∈G(x)

exp(AŵT φFK
θ̂

(x, y′))∆(y, y′),

where ŵ is learned during classifier training and
the scalar parameter A can be tuned on the devel-
opment set. From the construction of the Fisher
kernel, it follows that the optimal value A is ex-
pected to be close to inverse of the first component
of ŵ, 1/ŵ1.

If an SVM is used to learn the classifier, then
the form (7) is the same as that proposed by (Platt,
1999), where it is proposed to use the logistic sig-
moid of the SVM output as the probability estima-
tor for binary classification problems.

1The first component logP (x, y|̂θ) is not in the strict
sense part of the Fisher score, but usually added to kernel
features in practice (Henderson and Titov, 2005).

3.2 Estimation with TOP Kernels for
Reranking

The TOP Reranking kernel was defined in (Hen-
derson and Titov, 2005), as a generalization of the
TOP kernel (Tsuda et al., 2002) proposed for bi-
nary classification tasks. The feature extractor for
the TOP reranking kernel is given by:

φTK
θ̂

(x, y) = (9)

(v(x, y, θ̂),
∂v(x, y, θ̂)

∂θ1
,...,

∂v(x, y, θ̂)

∂θl
),

where

v(x, y, θ̂) = log P (x, y|θ̂)− log
∑

y′∈G(x)−{y}

P (x, y′|θ̂).

The TOP reranking kernel has been demon-
strated to perform better than the Fisher kernel
for the parse reranking task (Henderson and Titov,
2005). The construction of this kernel is moti-
vated by the minimization of the classification er-
ror of a linear classifier wT φθ̂(x, y). This linear
classifier has been shown to converge, assuming
estimation of the discriminative probability in the
candidate list can be in the form of the logistic sig-
moid (Titov and Henderson, 2005):

P (x, y)
∑

y′∈G(x) P (x, y′)
≈ (10)

1

1 + exp(−w?T φTK
θ̂

(x, y))

for some choice of the decision vector w = w?

with the first component equal to one. From this
fact, the form of the loss minimizing classifier fol-
lows:

ĥTK(x) = (11)

arg min
y′∈G(x)

∑

y∈G(x)

g(AŵT φTK
θ̂

(x, y′))∆(y, y′),

where g is the logistic sigmoid and the scalar pa-
rameter A should be selected on the development
set. As for the Fisher kernel, the optimal value of
A should be close to 1/ŵ1.

3.3 Estimates from Arbitrary Classifiers

Although in this paper we focus on approaches
which do not require additional domain knowl-
edge, the output of most classifiers can be used
to estimate the discriminative probability in equa-
tion (7). As mentioned above, the form of (7)
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is appropriate for the SVM learning task with
arbitrary kernels, as follows from (Platt, 1999).
Also, for models which combine classifiers using
votes (e.g. the Voted Perceptron), the number of
votes cast for each candidate can be used to de-
fine this discriminative probability. The discrim-
inative probability of a candidate is simply the
number of votes cast for that candidate normalized
across candidates. Intuitively, we can think of this
method as treating the votes as a sample from the
discriminative distribution.

4 Expected Loss Learning

In this section, another approach to loss approx-
imation is proposed. We consider learning a lin-
ear classifier to choose the least loss candidate,
and propose two constructions of data-defined loss
kernels which define different feature spaces for
the classification. In addition to the kernel, this
approach differs from the previous one in that the
classifier is assumed to be linear, rather than the
nonlinear functions in equations (8) and (11).

4.1 Loss Kernel

The Loss Kernel feature extractor is composed of
the logarithm of the loss estimated by the proba-
bilistic model and its first derivatives with respect
to each model parameter:

φLK
θ̂

(x, y) = (12)

(v(x, y, θ̂),
∂v(x, y, θ̂)

∂θ1
,...,

∂v(x, y, θ̂)

∂θl
),

where

v(x, y, θ̂) = log(
∑

y′∈G(x)

P (y′, x|θ̂)∆(y′, y)).

The motivation for this kernel is very similar to
that for the Fisher kernel for structured classifica-
tion. The feature space of the kernel guarantees
convergence of an estimator for the expected loss
if the estimator is in normalized exponential form.
The standard Fisher kernel for structured classifi-
cation is a special case of this Loss Kernel when
∆(y, y′) is 0-1 loss.

4.2 Loss Logit Kernel

As the Loss kernel was a generalization of the
Fisher kernel to arbitrary loss function, so the Loss
Logit Kernel is a generalization of the TOP kernel
for reranking. The construction of the Loss Logit

Kernel, like the TOP kernel for reranking, can be
motivated by the minimization of the classification
error of a linear classifier wT φLLK

θ̂
(x, y), where

φLLK
θ̂

(x, y) is the feature extractor of the kernel
given by:

φLLK
θ̂

(x, y) = (13)

(v(x, y, θ̂),
∂v(x, y, θ̂)

∂θ1
,...,

∂v(x, y, θ̂)

∂θl
),

where

v(x, y, θ̂) = log(
∑

y′∈G(x)

P (y′|x, θ̂)(1−∆(y′, y)))−

log(
∑

y′∈G(x)

P (y′|x, θ̂)∆(y′, y)).

5 Experimental Evaluation

To perform empirical evaluations of the proposed
methods, we considered the task of parsing the
Penn Treebank Wall Street Journal corpus (Mar-
cus et al., 1993). First, we perform experiments
with SVM Struct (Tsochantaridis et al., 2004) as
the learner. Since SVM Struct already uses the
loss function during training to rescale the margin
or slack variables, this learner allows us to test the
hypothesis that loss functions are useful in pars-
ing not only to define the optimization criteria but
also to define the classifier and to define the feature
space. However, SVM Struct training for large
scale parsing experiments is computationally ex-
pensive2, so here we use only a small portion of
the available training data to perform evaluations
of the different approaches. In the other two sets
of experiments, described below, we test our best
model on the standard Wall Street Journal parsing
benchmark (Collins, 1999) with the Voted Percep-
tron algorithm as the learner.

5.1 The Probabilistic Models of Parsing

To perform the experiments with data-defined ker-
nels, we need to select a probabilistic model of
parsing. Data-defined kernels can be applied to
any kind of parameterized probabilistic model.

For our first set of experiments, we choose
to use a publicly available neural network based
probabilistic model of parsing (Henderson, 2003).

2In (Shen and Joshi, 2003) it was proposed to use an
ensemble of SVMs trained the Wall Street Journal corpus,
but the generalization performance of the resulting classifier
might be compromised in this approach.
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This parsing model is a good candidate for our ex-
periments because it achieves state-of-the-art re-
sults on the standard Wall Street Journal (WSJ)
parsing problem (Henderson, 2003), and data-
defined kernels derived from this parsing model
have recently been used with the Voted Percep-
tron algorithm on the WSJ parsing task, achiev-
ing a significant improvement in accuracy over the
neural network parser alone (Henderson and Titov,
2005). This gives us a baseline which is hard to
beat, and allows us to compare results of our new
approaches with the results of the original data-
defined kernels for reranking.

The probabilistic model of parsing in (Hender-
son, 2003) has two levels of parameterization. The
first level of parameterization is in terms of a
history-based generative probability model. These
parameters are estimated using a neural network,
the weights of which form the second level of pa-
rameterization. This approach allows the prob-
ability model to have an infinite number of pa-
rameters; the neural network only estimates the
bounded number of parameters which are relevant
to a given partial parse. We define data-defined
kernels in terms of the second level of parameteri-
zation (the network weights).

For the last set of experiments, we used the
probabilistic model described in (Collins, 1999)
(model 2), and the Tree Kernel (Collins and Duffy,
2002). However, in these experiments we only
used the estimates from the discriminative classi-
fier, so the details of the probabilistic model are
not relevant.

5.2 Experiments with SVM Struct

Both the neural network probabilistic model and
the kernel based classifiers were trained on sec-
tion 0 (1,921 sentences, 40,930 words). Section 24
(1,346 sentences, 29,125 words) was used as the
validation set during the neural network learning
and for choosing parameters of the models. Sec-
tion 23 (2,416 sentences, 54,268 words) was used
for the final testing of the models.

We used a publicly available tagger (Ratna-
parkhi, 1996) to provide the part-of-speech tags
for each word in the sentence. For each tag, there
is an unknown-word vocabulary item which is
used for all those words which are not sufficiently
frequent with that tag to be included individually
in the vocabulary. For these experiments, we only
included a specific tag-word pair in the vocabu-

R P F1 CM
SSN 80.9 81.7 81.3 18.3
TRK 81.1 82.4 81.7 18.2
SSN-Estim 81.4 82.3 81.8 18.3
LLK-Learn 81.2 82.4 81.8 17.6
LK-Learn 81.5 82.2 81.8 17.8
FK-Estim 81.4 82.6 82.0 18.3
TRK-Estim 81.5 82.8 82.1 18.6

Table 1: Percentage labeled constituent recall (R),
precision (P), combination of both (F1) and per-
centage complete match (CM) on the testing set.

lary if it occurred at least 20 time in the training
set, which (with tag-unknown-word pairs) led to
the very small vocabulary of 271 tag-word pairs.
The same model was used both for choosing the
list of candidate parses and for the probabilistic
model used for loss estimation and kernel feature
extraction. For training and testing of the kernel
models, we provided a candidate list consisting of
the top 20 parses found by the probabilistic model.
For the testing set, selecting the candidate with an
oracle results in an F1 score of 89.1%.

We used the SVM Struct software pack-
age (Tsochantaridis et al., 2004) to train the SVM
for all the approaches based on discriminative
classifier learning, with slack rescaling and lin-
ear slack penalty. The loss function is defined as
∆(y, y′) = 1 − F1(y, y′), where F1 denotes F1

measure on bracketed constituents. This loss was
used both for rescaling the slacks in the SVM and
for defining our classification models and kernels.

We performed initial testing of the models on
the validation set and preselected the best model
for each of the approaches before testing it on
the final testing set. Standard measures of pars-
ing accuracy, plus complete match accuracy, are
shown in table 1.3 As the baselines, the table in-
cludes the results of the standard TOP reranking
kernel (TRK) (Henderson and Titov, 2005) and
the baseline probabilistic model (SSN) (Hender-
son, 2003). SSN-Estim is the model using loss
estimation on the basic probabilistic model, as ex-
plained in section 2. LLK-Learn and LK-Learn are
the models which define the kernel based on loss,
using the Loss Logit Kernel (equation (13)) and
the Loss Kernel (equation (12)), respectively. FK-
Estim and TRK-Estim are the models which esti-

3All our results are computed with the evalb pro-
gram (Collins, 1999).
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mate the loss with data-defined kernels, using the
Fisher Kernel (equation (8)) and the TOP Rerank-
ing kernel (equation (11)), respectively.

All our proposed models show better F1 accu-
racy than the baseline probabilistic model SSN,
and all these differences are statistically signifi-
cant.4 The difference in F1 between TRK-Estim
and FK-Estim is not statistically significant, but
otherwise TRK-Estim demonstrates a statistically
significant improvement over all other models. It
should also be noted that exact match measures for
TRK-Estim and SSN-Estim are not negatively af-
fected, even though the F1 loss function was opti-
mized. It is important to point out that SSN-Estim,
which improves significantly over SSN, does not
require the learning of a discriminative classifier,
and differs from the SSN only by use of the dif-
ferent classification model (equation (5)), which
means that it is extremely easy to apply in prac-
tice.

One surprising aspect of these results is the fail-
ure of LLK-Learn and LK-Learn to achieve im-
provement over SSN-Estim. This might be ex-
plained by the difficulty of learning a linear ap-
proximation to (4). Under this explanation, the
performance of LLK-Learn and LK-Learn could
be explained by the fact that the first component of
their kernels is a monotonic function of the SSN-
Estim estimation. To test this hypothesis, we did
an additional experiment where we removed the
first component of Loss Logit Kernel (13) from
the feature vector and performed learning. Sur-
prisingly, the model achieved virtually the same
results, rather than the predicted worse perfor-
mance. This result might indicate that the LLK-
Learn model still can be useful for different prob-
lems where discriminative learning gives more ad-
vantage over generative approaches.

These experimental results demonstrate that
the loss approximation reranking approaches pro-
posed in this paper demonstrate significant im-
provement over the baseline models, achieving
about the same relative error reduction as previ-
ously achieved with data-defined kernels (Hender-
son and Titov, 2005). This improvement is despite
the fact that the loss function is already used in the
definition of the training criteria for all the mod-
els except SSN. It is also interesting to note that
the best result on the validation set for estimation

4We measured significance of all the experiments in this
paper with the randomized significance test (Yeh, 2000).

of the loss with data-defined kernels (12) and (13)
was achieved when the parameter A is close to the
inverse of the first component of the learned de-
cision vector, which confirms the motivation for
these kernels.

5.3 Experiments with Voted Perceptron and
Data-Defined Kernels

The above experiments with the SVM Struct
demonstrate empirically the viability of our ap-
proaches. The aim of experiments on the entire
WSJ is to test whether our approaches still achieve
significant improvement when more accurate gen-
erative models are used, and also to show that
they generalize well to learning methods different
from SVMs. We perform experiments on the stan-
dard WSJ parsing data using the standard split into
training, validation and testing sets. We replicate
completely the setup of experiments in (Hender-
son and Titov, 2005). For a detailed description of
the experiment setup, we refer the reader to (Hen-
derson and Titov, 2005). We only note here that
the candidate list has 20 candidates, and, for the
testing set, selecting the candidate with an oracle
results in an F1 score of 95.4%.

We selected the TRK-Estim approach for these
experiments because it demonstrated the best re-
sults in the previous set of experiments (5.2). We
trained the Voted Perceptron (VP) modification
described in (Henderson and Titov, 2005) with the
TOP Reranking kernel. VP is not a linear classi-
fier, so we were not able to use a classifier in the
form (11). Instead the normalized counts of votes
given to the candidate parses were used as proba-
bility estimates, as discussed in section 3.3.

The resulting accuracies of this model are pre-
sented in table 2, together with results of the
TOP Reranking kernel VP (Henderson and Titov,
2005) and the SSN probabilistic model (Hender-
son, 2003). Model TRK-Estim achieves signifi-
cantly better results than the previously proposed
models, which were evaluated in the same exper-
imental setup. Again, the relative error reduction
is about the same as that of TRK. The resulting
system, consisting of the generative model and
the reranker, achieves results at the state-of-the-art
level. We believe that this method can be applied
to most parsing models to achieve a significant im-
provement.
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R P F1

Henderson, 2003 88.8 89.5 89.1
Henderson&Titov, 2005 89.1 90.1 89.6
TRK-Estim 89.5 90.5 90.0

Table 2: Percentage labeled constituent recall (R),
precision (P), combination of both (F1) on the test-
ing set.

5.4 Experiments with Voted Perceptron and
Tree Kernel

In this series of experiments we validate the state-
ment in section 3.3, where we suggested that loss
approximation from a discriminative classifier is
not limited only to models with data-defined ker-
nels. We apply the same method as used in
the TRK-Estim model above to the Tree Ker-
nel (Collins and Duffy, 2002), which we call the
TK-Estim model.

We replicated the parse reranking experimen-
tal setup used for the evaluation of the Tree Ker-
nel in (Collins and Duffy, 2002), where the can-
didate list was provided by the generative proba-
bilistic model (Collins, 1999) (model 2). A list of
on average 29 candidates was used, with an oracle
F1 score on the testing set of 95.0%. We trained
VP using the same parameters for the Tree Ker-
nel and probability feature weighting as described
in (Collins and Duffy, 2002). A publicly avail-
able efficient implementation of the Tree Kernel
was utilized to speed up computations (Moschitti,
2004). As in the previous section, votes of the per-
ceptron were used to define the probability esti-
mate used in the classifier.

The results for the MBR decoding method (TK-
Estim), defined in section 3.3, along with the stan-
dard Tree Kernel VP results (Collins and Duffy,
2002) (TK) and the probabilistic baseline (Collins,
1999) (CO99) are presented in table 3. The pro-
posed model improves in F1 score over the stan-
dard VP results. Differences between all the mod-
els are statistically significant. The error reduction
of TK-Estim is again about the same as the error
reduction of TK. This improvement is achieved
without adding any additional linguistic features.
It is important to note that the model improves
in other accuracy measures as well. We would
expect even better results with MBR-decoding if
larger n-best lists are used. The n-best parsing al-
gorithm (Huang and Chiang, 2005) can be used to
efficiently produce candidate lists as large as 106

R P F1∗ CB 0C 2C
CO99 88.1 88.3 88.2 1.06 64.0 85.1
TK 88.6 88.9 88.7 0.99 66.5 86.3
TK-Estim 89.0 89.5 89.2 0.91 66.6 87.4

* F1 for previous models may have rounding errors.

Table 3: Result on the testing set. Percentage la-
beled constituent recall (R), precision (P), combi-
nation of both (F1), an average number of cross-
ing brackets per sentence (CB), percentage of sen-
tences with 0 and ≤ 2 crossing brackets (0C and
2C, respectively).

parse trees with the model of (Collins, 1999).

6 Conclusions

This paper considers methods for the estimation of
expected loss for parse reranking tasks. The pro-
posed methods include estimation of the loss from
a probabilistic model, estimation from a discrim-
inative classifier, and learning of the loss using a
specialized kernel. An empirical comparison of
these approaches on parse reranking tasks is pre-
sented. Special emphasis is given to data-defined
kernels for reranking, as they do not require the
introduction of any additional domain knowledge
not already encoded in the probabilistic model.
The best approach, estimation of the loss on the
basis of a discriminative classifier, achieves very
significant improvements over the baseline gener-
ative probabilistic models and the discriminative
classifier itself. Though the largest improvement is
demonstrated in the measure which corresponds to
the considered loss functional, other measures of
accuracy are also improved. The proposed method
achieves 90.0% F1 score on the standard Wall
Street Journal parsing task when the SSN neural
network is used as the probabilistic model and VP
with a TOP Reranking kernel as the discriminative
classifier.
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