1

Entity Annotation based on Inverse Index Operations

Ganesh Ramakrishnan, Sreeram Balakrishnan, Sachindra Joshi
IBM India Research Labs
IIT Delhi, Hauz Khas,
New Delhi, India
{ganramkr, sreevb, jsachip@in.ibm.com

Abstract

Entity annotation involves attaching a la-
bel such as ‘name’ or ‘organization’ to a
sequence of tokens in a document. All the
current rule-based and machine learning-
based approaches for this task operate at
the document level. We present a new
and generic approach to entity annotation
which uses the inverse index typically cre-
ated for rapid key-word based searching
of a document collection. We define a set
of operations on the inverse index that al-
lows us to create annotations defined by
cascading regular expressions. The entity
annotations for an entire document cor-
pus can be created purely of the index
with no need to access the original docu-
ments. Experiments on two publicly avail-
able data sets show very significant perfor-
mance improvements over the document-
based annotators.

Introduction

In this paper, we propose an alternative para-
digm for entity annotation. We build an index for
the tokens in the document collection first. Us-
ing a set of operators on the index, we can gener-
ate new index entries for sequences of tokens that
match any given regular expression. Since a large
class of annotatorse(g, GATE (Cunningham et
al., 2002)) can be built using cascading regular ex-
pressions, this approach allows us to support anno-
tation of the document collection purely from the
index.

We show both theoretically and experimentally
that this approach can lead to substantial reduc-
tions in computational complexity, since the order
of computation is dependent on the size of the in-
dexes and not the number of tokens in the doc-
ument collection. In most cases, the index sizes
used for computing the annotations will be a small
fraction of the total number of tokens.

In (Cho and Rajagopalan, 2002) the authors de-
velop a method for speeding up the evaluation of
a regular expressio?’ on a large text corpus by
use of an optimally constructed multi-gram index
to filter documents that will matchR’. Unfortu-

Entity Annotation associates a well-defined labelnately, their method requires access to the docu-
such as ‘person name’, ‘organization’, ‘place’, ment collection for the final match of?’ to the
etc, with a sequence of tokens in unstructurediltered document set, which can be very time con-

text.

The dominant paradigm for annotating asuming. The other bodies of related prior work

document collection is to annotate each documerdoncern indexing annotated data (Cooper et al.,
separately. The computational complexity of an-2001; Li and Moon, 2001) and methods for doc-
notating the collection in this paradigm, dependsument level annotation (Agichtein and Gravano,
linearly on the number of documents and the cos000; McCallum et al., 2000). The work on index-
of annotating each document. More precisely, iing annotated data is not directly relevant, since
depends on the total number of tokens in the doceur method creates the index to the annotations di-
ument collection. It is not uncommon to have mil- rectly as part of the algorithm for computing the
lions of documents in a collection. Using this par-annotation. (Eikvil, 1999) has a good survey of
adigm, it can take hours or days to annotate sucbxisting document level IE methods. The rele-
big collections even with highly parallel server vance to our work is that only a certain class of
farms. Another drawback of this paradigm is thatannotators can be implemented using our method:
the entire document collection needs to be renamely anything that can be implemented using

processed whenever new annotations are requiredascading weighted regular expressions.

Fortu-

492

Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLR2086y92-500,
Sydney, July 20062006 Association for Computational Linguistics

nately, this is still powerful enough to enable acase characters, and (2) gazetteer (dictionary) con-
large class of highly effective entity annotators. tainment properties of tokens and token sequences
The rest of the paper is organized as follows. Insuch as ‘location’ and ‘person name’. The set of
Section 2, we present an overview of the proposetbkens along with entity types specified by either
approach for entity annotation. In Section 3, weof these two properties are referred to Basic
construct an algorithm for implementing a deter-Entities The instances of basic entities specified
ministic finite automaton (DFA) using an inverse by orthographic properties must be single tokens.
index of a document collection. We also comparg-owever, instances of basic entities specified us-
the complexity of this approach against the direcing gazetteer containment properties can be token
approach of running the DFA over the documentsequences.
collection, and show that under typical conditions, The module (1) of our system shown in Fig-
the index-based approach will be an order of magure 1, identifies postings lists for each basic en-
nitude faster. In Section 4, we develop an alterdity type. These postings lists are entered as index
native algorithm which is based on translating theentries inI for the corresponding types. For ex-
original regular expression directly into an orderedample, if the input rules require tokens/token se-
AND/OR graph with an associated set of indexquences that satisfCapswordor Location Dic-
level operators. This has the advantage of opetionary properties, a postings list is created for
ating directly on the much more compact regulareach of these basic types. Constructing the post-
expressions instead of the equivalent DFA (whichings list for a basic entity type with some ortho-
can become very large as a result of the NFA tayraphic property is a fairly straightforward task;
DFA conversion and epsilon removal steps). Wethe postings lists of tokens satisfying the ortho-
provide details of our experiments on two publicly graphic properties are merged (while retaining the
available data sets in Section 5. Finally we presengorted order of each postings list). The mecha-

our conclusions in Section 6. nism for generating the postings list of basic en-
tities with gazetteer properties will be developed
2 Overview in the following sections. A rule for NE an-

notation may require a token to satisfy multiple
Figure 1 shows the process for entity annotatiorproperties such asocation Dictionaryas well as
presented in the paper. A given document colleccapsword The posting list for tokens that satisfy
tion D is tokenized and segmented into sentencesyltiple properties are determined by perform-
The tokens are stored in an inverse indexThe ing an operatioparallelint(L, L') over the post-
inverse index has an ordered ligf of the unique jng Jists of the corresponding basic entities. The
tokensu;, ug, ..uw that occur in the collection, ;,rqlielint(L, L') operation returns a posting list
whereW is the number of tokens if. Addition- gych that each entry in the returned list occurs in
ally, for each unique tokem;, I has a postings poth 1, as well asL’. The module (2) of our sys-
list L(u;) =< 11,12, ... lent(u;) > OF locations in - tem shown in Figure 1 identifies instances of each
D at whichu; occurs. cnt(u;) is the length of annotation type, by performing index-based oper-

L(u;). Each entryly, in the postings list.(u;), ations on the postings lists bésic entitytypes and
has three fields: (1) a sentence identiflgrsid, gther tokens.

(2) the begin position of the particular occurrence
of u;, l.. first and (3) the end position of the same3 Annotation using Cascading Regular
occurrence ofi;, I.last. Expressions
We require the input grammar to be the sam

as that used for named entity annotations in GAT
(Cunningham et al., 2002). The GATE architec-
ture for text engineering uses the Java Annota-
tions Pattern Engine (JAPE) (Cunningham, 1999?

can be implemented by a series of cascading regu-
for its information extraction task. JAPE is a pat-

lar expression matches.
tern matching language. We support two classes .

Consider a regular expressidi over an al-

of properties for tokens that are required by gram- habets. of basic entities, and a token sequence
mars such as JAPE: (1) orthographic propertleg ! i qu

such as an uppercase character followed by lower ‘*http://www.ai.sri.com/ ~appelt/TextPro

g?egular expressions over basic entities have been
extensively used for NE annotations. The Com-
mon. Pattern Specification Language (CSPL)

493

Annotations

4 @ N\ ([@ \

Generation of
Index entries
for Basic entities

Document
Collection

Generation of
Index entries
Gazetteer Lookup [} for Derived entities
(E.g. Person initials)] using
POS LOOkllP regular expressions
(E.g. Noun, verb dicts)
Inverse Regular expression
Index on tokens
(E.g. Capsword, Alphanum) (E.g. Person,

O ffline -\ / \ Organization, etc.) /

Document
Inverse
Index with

-- Annotation

entries

Sentence
chunking

tokenization

Document over Basic entities

Figure 1: Overview of the entity annotation process described in this paper

T = {t1,...,tw}. The annotation problem aims | findAnnotations(T, Dr)

at determining all matches of regular expression fLoertiTzzl i{éll;v"_wmé

R in the token sequencE. Additionally, NE an- let @t;., be a subsequence of length starting
notations do not span multiple sentences. We wil from¢; in T

useDr to annotatet; ;4 A

therefore assume that the length of any annotated end for

token sequence is bounded By, where A can
be the maximum sentence length in the documerftigure 2: The algorithm for finding all the occur-
collection of interest. In practice) can be even rences ofR in a token sequencek.

smaller.

gorithmfindAnnotationsan be obtained by sum-
ming up the number of times each state is vis-
Given a regular expressioR, we can convert it jied as the input tokens are consumed. Clearly,
into a deterministic finite automate (DFA)g. A the stateS; is visited W times, W being the total
DFA is a finite state machine, where for each paifymber of symbols in the token sequericeLet

of state and input symbol, there is one and only.,,;(;) give the total number of times the state

one transition to a next state)r starts process- has peen visited. The complexity of this method
ing of an input sequence from a start staggand -

for each input symbol, it makes a transition to a
state given by a transition functichr. Whenever .
Drp, lands in an accept state, the symbol sequence ~_ _ oY ent(S) =a
till that point is accepted by . For simplicity of p—
the document and index algorithms, we will ignore _ _
document and sentence boundaries in the follow3-2 Computing Regular Expression Matches
ing analysis. using Index
Let@t; ;1a,1 <i < W — A be asubsequence Inthis section, we present a new approach for find-
of T of lengthA. On a given input@t; ;. A, Dr ing all matches of a regular expressifinn a to-
will determine all token sequences originating;at ken sequencg, based on the inverse indéxf T'.
that are accepted by the regular expression granmi-he structure of the inverse index was presented in
mar specified througlD . Figure 2 outlines the Section 2. We define two operations on postings
algorithm findAnnotationsthat locates all token lists which find use in our annotation algorithm.
sequences iff" that are accepted by . 1. merge(L, L"): Returns a postings list such
Let Dy have{Si,..., Sy} states. We assume that each entry in the returned list occurs either in
that the states have been topologically ordered sé or L’ or both. This operation tak&3(|L|+|L'|)
that Sy is the start state. Let be the time taken time.
to consume a single token and advance the DFA 2. consint(L, L’): Returns a postings list such
to the next state (this is typically implemented asthat each entry in the returned list points to a to-
a table or hash look-up). The time taken by the alken sequence which consists of two consecutive

3.1 Computing Annotations using a DFA

W+ i: cnt(Si)] 1)

1=2

494

subsequence8sa and @sb within the same sen- 3.3 Implementing a DFA using the Inverse
tence, such thatl, has an entry fof@sa and L’ Index

has an entry forasb. There are several meth- |, yhis section, we present a method that takes a
ods for computing this depending on the relativeny-a Dr and an inverse index of a token se-
size of L and /. If they are roughly equal in g enceT, to compute a postings list of subse-

: ; ; ;
size, a simple linear pass througrand L', anal- 4 ,ences of length at mos, that match the regu-
ogous to a merge, can be performed. If there ig,, expressiorR.

a significant difference in sizes, a more efficient | ot the sets — {S1,.... Sy} denote the set
modified binary search algorithm can be |mple-0f states inDy, and let the states be topologi-

mented. The details are shown in Figure 3. Thecally ordered withS; as the start state. We as-

sociate an objedtst, ;, with each state € S and
V1l < k < A. The objectlist,, is a posting list

consint(L, L") of all token sequences of length exadtlyhat end
Let M elements of L bé; - -- in states. Thelist, is initialized to be empty
Let N elementsof L' bd] - --In ’ . .
it M < N then for all states and lengths. We iteratively compute
setj =1 list, . for all the states using the algorithm given
for i =1to M do ; i i)
seth — 1. keep doublings unti in Figure 4. The functiondest(S;) returns a set
. first < l.last < . first of states, such that for eaghe dest(S5;), there
binary search thé’ in the intervalj - - - k is an arc from stateS; to states. The function
to determine the value gfsuch that label(S;, S;) returns the token associated with the

l,.first <lilast <l,,,.first
if 1,. first = l;.last a match exists, copy to outpit edge(S;, S;).

setj =p+1
end for for k=1toA do
else fori=1toN do
Same as above excepand!’ are reversed for s € dest(S;) do
end if if i == 1 then
. o . t = L(label(S:, 5))
Figure 3: The modified binary search algorithm else
for consint t = consint(lists, k-1, L(label(S;, s)))
end if
lists,, = merge(lists i, t)
end for
. end for
complexity of this algorithm is determined by the | onq for

sizeq; of the interval required to satisty. first <

lilast < U, .first (assumingL| < |L']). It Figure 4: The algorithm for building the index to
will take an average dbg,(¢;) operations to de- all token sequences ifi that matchz.

termine the size of interval anlbg,(q;) opera- _
tions to perform the binary search, giving a to- At the end of the algorithm, all token sequences

tal of 2log,(q;). Letqy---qu be the sequence corresponding to postings listsst, ;, s € S,1 <

of intervals. Since the intervals will be at most? < A are sequences that are matched by the reg-
two times larger than the actual interval betweer}/lar €Xpressiori.

the nearest matches ifY to L, we can see that
|IL'| < S°M, ¢; < 2 |L|. Hence the worst case
will be reached whemr; = 2|L’|/|L| with a time

complexity given by2| L| (log, (|| /|L]) + 1), as- The .complexity analysis of the algorithm given
suming|L| < |L]. in Figure 4 is based on the observation that,

S =2 |lists, x| = cnt(S;). This holds, since

To support annotation of a token sequence thalistg, , contains an entry for all sequences that
matches a regular expression only in the convisit the stateS; and are of length exactly. Sum-
text of some regular expression match on its lefiming the length of these lists for a particular state
and/or right, we implement simple extensions toS; across all the values df will yield the total
the consint(Ly, L2) operator. Details of the ex- number of sequences of length at masthat visit
tensions are left out from this paper owing to spacéhe states;.
constraints. For the algorithm in Figure 3, the time taken by

3.4 Complexity Analysis for the Index-based
Approach

495

oneconsint operation is given bRj3(|lists, | * much faster. However, if eithgfcnt(.S;) starts ap-
(log(piji) + 1)) whereg is a constant that varies proachingl or - ¢ .. (s,) log(pis) starts getting
with the lower level implementation. p;;, = very large (caused by a large fan out fréfy), the
W is the ratio of the postings list size direct match using the DFA may be more efficient.
of the fébel associated with the arc frof to Intuitively, this makes sense since the main ben-
S; to the list size ofS; at stepk. Note that efit of the index is to eliminate unnecessary hash
pi > 1. Let prev(S:) be the list of pre- lookups for tokens do not match the arcs of the
1] el . 1 . .
decessor states t6;. The time taken by all DFA- As fent(S;) approaches 1, this assumption
the merge operations for a state; at stepk breaks down and hence the inherent efficiency of
(2 . .
is given by ~(log(|prev(S;)|)|lists. 1|) Assum- the direct DFA approach, where only a single hash
. >)ookup is required per state regardless of the num-

ing all the merges are performed simultaneousl 5))
~(log(|prev(S:)|) is the time taken to create eachf ert of destination states, becomes the dominant
actor.

entry in the final merged list, wherg is a con-
;tant that varies with the lower level |mplementa-3.6 Comparison of Complexities for Simple
tion. Note this scales as the log of the number of Dictionary DFA
lists that are being merged.)))]

The total time taken by the algorithm given in To illustrate th_e potent!al gains from the mdex-
Figure 4 can be computed using the time spent off@S€d annotation, consider a simple DB with

merge and consint operations for all states and WO StatesSy and S;. Let the set of unique to-
all lengths. Settingii, — maxy, pisk, the total time K€NSA be{a,b,c---z}. Let E be the dictionary
C; can be given as: {a,e,i,0,u}. Let D have five arcs fron; to S,

one for each element if. The DFADg is a sim-
ple acceptor for the dictionark, and if run over
s a token sequencé drawn from A, it will match
(igny single token that is ifv. For this simple case
@ fent(S2) is just the fraction of tokens that occur
Note that in deriving Equation 2, we have ig- in £ and hence by definitioficnt(Ss) < 1. Sub-
nored the cost of mergingist(S,, k) for k = Stituting into 3 we get
1--- A for the accept states. O 1+ fent(Ss)

=N

Cr =Y |vlog(lprev(Si)l) +28 > log(pis) | ent

i=2 sedest(S;)

- = 4
3.5 Comparison of Complexities Cr 2log(5)fent(S2) @
To simplify further analysis, we can replace asong asfcnt(S,) < 0.27, this ratio will always

ent(S;)/W. If we assume that the token distribu-
tion statistics of the document collection remain4 Inverse Index-based Annotation using
constant as the number of documents increases, Regular Expressions

we can also assume thatnt(.S;) is invariant to
W. Sincep;j;, is given by a ratio of list sizes, we
can also consider it to be invariantid. We now
assumex ~ (8 = + since these are implementa-
tion specific times for similar low level compute
operations. With this assumptions from Equation
1 and 2, the rati@’p /C can be approximated by:

A DFA corresponding to a given regular expres-
sion can be used for annotation, using the inverse
index approach as described in Section 3.3. How-
ever, the NFA to DFA conversion step may result
é'n a DFA with a very large number of states. We
develop an alternative algorithm that translates the
original regular expression directly into an ordered
N AND/OR graph. Associated with each node in the
14D iy fent(S)) graph is a regular expression and a postings list
>y, [Zsedcst(si) 2log(pis) +log(\prev(5¢)|)} fent(S;) that points to all the matches for the node’s regu-
(3) lar expression in the document collection. There
The overall ratio ofCp to C7 is invariant toWW are two node types: AND nodes where the output
and depends on two key factorgnt(S;) and listis computed from theonsint of the postings
Y scdest(s) 108(pis). If fent(S;) < 1, the ratio lists of two children nodes and OR nodes where
will be large and the index-based approach will bethe output list is formed by merging the posting

496

lists of all the children nodes. Additionally, each
node has two binary properties: isOpt and self-
Loop. The first property is set if the regular ex-
pression being matched is of the form ‘R?’, where
‘?’” denotes that the regular expression R is op-
tional. The second property is set if the regular
expression is of the form ‘R+’, where ‘+’ is the
Kleen operator denoting one or more occurrenced;igure 6: An example regular expression and cor-
For the case of ‘R*, both properties are set. responding AND/OR graph

The AND/OR graph is recursively built by scan-
ning the regular expression from left to right and4.1 Handling ‘?’ and Kleen Operators

identifying every sub-regular expression forwhlch_l_he isOpt and selfLoop properties of a node are

a sub-graph can be built. We use capital letters . . T
R, X to denote regular expressions and small Iet§et If the corresponding regular expression is of

’ . . the form R?, R+ or R+. To handle theR? case
tersa, b, ¢, etc, to denote terminal symbols in

the symbol sek.. Figure 5 details the algorithm we associate a new propersOpt with the output

used to build the AND/OR graph. Effectively, the !lfStLL(v). frOor?EoldeiX/, SUICh ;hTL(Ut)V'VZSOpt 7t'1
AND/OR graph decomposes the computation o elms. pt = 1. Ve aiso define two operations
the postings list foi into a ordered set oherge Consmée In Figure 7 andmefgee which aF:count
andconsint operations, such that the outpltv) for th‘estpt property of th_elr argqment lists. For
for nodev become the input to its parents. Theco.nsmtﬁ’ the' generated list has 't.SOpt set to .
graph specifies the ordering, and by evaluating al} 't and only if both the argument lists hz_ave their
the nodes in dependency order, the root node wiﬁSOpt property settd. Themerge. operation re-

. . . mains the same asgerge, except that the resultant
end up with a postings list that corresponds to th . ; . :
. : ist hasisOpt set tol if any of its argument lists
desired regular expression.

hasisOpt set tol. The worst case time taken by
consint. is bounded byl consint and2 merge

Example Regular Expression

bl(a(c[b)H)+

if Ris emptythen
ReturnNULL
else if Ris asymbok € X then
Returncreate N ode(name = a)
else
DecomposeR such that? — R’ <regexp>
if <regexp> is emptythen
if R == (X) or X+ or X or X7 then
node = createGraph(X)
if R == X+ or X« then
node.sel f Loop = 1
end if
if R == X7 or Xx then
node.isOpt = 1
end if
else if R == (X1|X2|..|Xx) then
node = createNode(name = R)
node.nodetype = OR
for i = 1tokdo
node.children[i] = createGraph(X;)
end for
end if
else
node = createNode(name = R)
node.nodetype = AN D
node.children[l] = createGraph(R’)
node.children|2] = createGraph(<regexp>)
end if
Returnnode
end if

Figure 5:createGraph(R)

operations.

To handle theR+ case, we define a new oper-
ator consint.(L,+) which returns a postings list
L', such that each entry in the returned list points
to a token sequence consisting of alle [1, A]
consecutive subsequenc@s;, Qs ... Qsg, each
@s;,1 < i < k being an entry inL. A sim-
ple linear pass through is sufficient to obtain
consint(L,+). The time complexity of this op-
eration is linear in the size df’. TheisOpt prop-
erty of the result list.’ is set to the same value as
its argument listL.

Figure 6 shows an example regular expres-
sion and its corresponding AND/OR graph; AND
nodes are shown as circles whereas OR nodes are
shown as square boxes. Nodes having isOpt and
selfLoop properties are labeled with, x or 7.

Any AND/OR graph thus constructed is acyclic.
The edges in the graph represent dependency be-
tween computing nodes. The main regular expres-
sion is at the root node of the graph. The leaf
nodes correspond to symbolsih Figure 8 out-
lines the algorithm for computing the postings list
of a regular expression by operating bottom-up on
the AND/OR graph.

497

consinte(L, L) standard tooRs
if ((L.isOpt ==0) and (L".isOpt == 0)}hen

enﬁ?}}”mwmi”t@v L) 5.1 Rule Specification using JAPE
if ((L.isOpt == 0) and (L".isOpt == 1)jhen JAPE is a version of CPSL(Common Pattern
en'j?ft“mmerge@’C‘msmt(L’L) Specification Language). JAPE provides finite
if (L.isOpt == 1) and (L’.isOpt == O)}hen state transduction over annotations based on reg-
Returnmer ge(consint(L, L"), L") ular expressions. The JAPE grammar requires in-
i?n(?I_ITiSOpt == 1) and (L".isOpt == 1))hen formation from two main resources: (i) a tokenizer
t =merge(consint(L, L"), L) and (ii) a gazetteer.
enﬁ?}}”mmeme(tv L) (1) Tokenizer:The tokenizer splits the text into
very simple tokens such as numbers, punctuation
Figure 7:consint. and words of different types. For example, one

might distinguish between words in uppercase and

for Each nodev in the reverse topological sorting 6f lowercase, and between certain types of punctua-
doif vnodetune —— AND then tion. Although the tokenizer is ca pable of much
Let v, al‘r/,%w be the children of deeper analysis than this, the aim is to limit its
L(v) = consinte(L(v1), L(v2)) work to maximise efficiency, and enable greater
e'sf(fj;"iyﬁef;fﬁfc%dn, .. L{v.childn)) flexibility by placing the burden on the grammar
end if rules, which are more adaptable. A rule has a
if v.sel f Loop == 1 then left hand side (LHS) and a right hand side (RHS).
en{](if) = consinte(L(v), +) The LHS is a regular expression which has to be
if v.isOpt == 1 then matched on the input; the RHS describes the an-
L(v).isOpt = 1 notations to be added to the Annotation Set. The
enznfgr'f LHS is separated from the RHS by". The fol-

lowing four operators can be used on the LHS:’
Figure 8: The algorithm for computing postings'?’, ' «" and '+'. The RHS uses '}’ as a separa-
list of a regular expressioRt using the inverse in- tor between statements that set the values of the
dex I and the corresponding AND/OR gragfr different attributes. The following tokenizer rule
identifies each character sequence that begins with
a letter in upper case and is followed Bpr more

5 Experiments and Results letters in lower case:
"UPPERCASELETTER" "LOWERCASELETTER"
In this section, we present empirical compari->>> Token; orth=upperinitial; kind=word;

son of performance of the index-based annotatiogach such character sequence will be annotated as
technique (Section 4) against annotation based ofype “Token”. The attribute “orth” (orthography)

the ‘document paradigm’ using GATE. The exper-pas the value “upperinitial”; the attribute “kind”
iments were performed on two data set,., () has the value “word”.

the enron email data Setnd (i) a combination of (2) GazetteerThe gazetteer lists used are plain
Reuters-21578 data_émnd the20 Newsgroups (et files, with one entry per line. Each list rep-
data st After cleaning, the former data set was gsents a set of names, such as names of cities,

2.3 GB while the latter wa93 MB in size. Our grganjzations, days of the weakc. An index file
code is entirely in Java. The experiments Wergs ,sed to access these lists; for each list, a ma-
performed on a dual 3.ZGHz_ Xeon server with 4jor type is specified and, optionally, a minor type.
GB RAM. The code for creation of the index was Thege lists are compiled into finite state machines.
custom-built in Java. Prior to indexing, the SeN-Any text tokens that are matched by these ma-
tence segmentation and tokenization of each daigines will be annotated with features specifying
set was performed using in-house Java versions @f,e major and minor types. JAPE grammar rules

“http://www.cs.cmu.edu/ ~enron/ Shttp://12r.cs.uiuc.edu/ ~cogcomp/
3http:/iwww.daviddlewis.com/resources/ tools.php
testcollections/reuters21578/ A good description of the original version of this lan-
“http://people.csail.mit.edu/jrennie/ guage is in Doug Appelt's TextPro manuaktp://www.
20Newsgroups/ ai.sri.com/ ~appelt/TextPro

498

then specify the types to be identified in particular
circumstances.

The JAPE Rule: Each JAPE rule has two parts,
separated by “>”. The LHS consists of an an-
notation pattern to be matched; the RHS describes
the annotation to be assigned. A basic rule is given
as:
Rule::=
<rule> <ident> (<priority> <integer>)?
LeftHandSide ">>>" RightHandSide

(1) Left hand side:On the LHS, the pattern is
described in terms of the annotations already as-
signed by the tokenizer and gazetteer. The annota-
tion pattern may contain regular expression opera-
tors €.9.*, 7, +). There are 3 main ways in which
the pattern can be specified:

1. value: specify a string of text, e.g.
{Token.string == “of"}

Macro: CWORDGROUP

(

({Token.orth ==upperlnitial })
({Token.orth ==upperitial})?
({Token.orth = uppernitial})?
({Token.orth ==upperInitial })?
({Token.orth ==uppernitial})?
({Token.orth ==uppernitial})?
)

Rule:Personl
Priority: 1
{Token.kind = word,
Lookup.majorType == INITIAL}
({Token.string == "."})?
(
(CWORDGROUP)
):personl

-

:personl.Person={rule=Personl }

Figure 9: An example JAPE rule used in the ex-
periments

2. attribute: specify the attributes (and values) &fter the label given to the annotation. Context is

of a token (or any other annotationg.g.
{Token.kind == numbér

used where a pattern should only be recognised if
it occurs in a certain situation, but the context itself

does not form part of the pattern to be annotated.

3. annotation: specify an annotation type from

For example, the following rule for ‘email-id’'s

the gazetteerg.g. {Lookup.minorType == (assuming an appropriate regular expression for

month}

(2) Right hand side:The RHS consists of de-

tails of the annotations and optional features to befgo

created. Annotations matched on the LHS of arule

“EMAIL-ADD”) would mean that an email ad-
dress would only be recognized if it occurred in-
side angled brackets (which would not themselves
rm part of the entity):

may be referred to on the RHS by means of label&ule: Emailaddress1

that are attached to pattern elements. Finally, a

Token.string=="<"})

tributes and their corresponding values are addeg-oken.kind==EMAIL-ADD}

to the annotation. An example of a complete rule
is:

({Token.kind=="number"})+:numbers
{Token.kind=="unit"})
>>>

:numbers.Name={rule="NumbersAndUnit"}

This says ‘match sequences of numbers followe
by a unit; create Alameannotation across the span
of the numbers, and attribute rule with valNam-
bersAndUnit

:email

({Token.string==">"})

Rule: NumbersAndUnit >>>
:email.Address={kind="email",
rule="Emailaddress1"}

5.2 Results

(iln our first experiment, we performed annotation
of the two corpora forl annotation types using
JAPE rules for each type. Thieannotation types

were ‘Person name’, ‘Organization’, ‘Location’
Use of context: Context can be dealt with in the and ‘Date’. A sample JAPE rule for identifying

grammar rules in the following way. The pattern toperson names is shown in Figure 9. This rule iden-
be annotated is always enclosed by a set of rountifies a sequence of words as a person name when
brackets. If preceding context is to be included ineach word in the sequence starts with an alpha-
the rule, this is placed before this set of bracketsbet in upper-case and when the sequence is imme-
This context is described in exactly the same wayiately preceded by a word from a dictionary of
as the pattern to be matched. If context follow-‘INITIAL's. Example words in the ‘INITIAL dic-

ing the pattern needs to be included, it is placedionary are: ‘Mr.’, ‘Dr., 'Lt.", etc.

499

Table 1 compares the time taken by the index6 Conclusions

based annotator against that taken by GATE forth?zn this paper we demonstrated that a suitably con-

8 JAPE rules. The index-based annotator performs . .)

. . structed inverse index contains all the necessary
8-13 times faster than GATE. Table 2 splits the. . . .
. . . .information to implement entity annotators that
time mentioned for the index-based annotator in

Table 1 into the time taken for the task of comput—use cascading regular Eexpressions. _The approach
. has the key advantage of not requiring access to
ing postings lists for basic entities and derived N, oridinal unstructured data to compute the an-
tities (c.f. Section 2) for each of the data sets. We g P

. ._nqtations. The method uses a basic set of opera-
can also observe that a greater speedup is achiev . . i
ors on the inverse index to construct indexes to all
for the larger corpus.

matches for a regular expression in the tokenized
data set. We showed theoretically, that for a DFA

Dataset] GATE | Index-based implementation, the index approach can be much
Enron | 4974343 374926 P . . T PP .
Reuters| 752287 92238 faster if the index sizes corresponding to the labels

on the DFA are a small fraction of the total num-

Table 1: Time (in milliseconds) for computing an- per of tokens in the data set. We also provided
notations using the two techniques a more efficient index-based implementation that
is directly computed from the regular expressions
without the need of a DFA conversion and experi-
mentally demonstrated the gains.

Data set| Orthographic| Gazetteer| Derived
entity types| entity types| entity types
Enron 38285 105870 230771
Reuters 28493 21531| 42214 References

Eugene Agichtein and Luis Gravano. 2000. Snow-
ball: Extracting relations from large plain-text col-
lections. InProceedings of the Fifth ACM Interna-
tional Conference on Digital Libraries

Table 2: Time (in milliseconds) for computing
postings lists of entity types

]) Junghoo Cho and Sridhar Rajagopalan. 2002. A fast
An important advantage of performing annota- regular expression indexing engine. Rroceedings

tions over the inverse index is that index entries of th§918th International Conference on Data Engi-
for basic entity types can be preserved and reused "€€rng
for annotation types as additional rules for annoBrian Cooper, Neal Sample, Michael J. Franklin,
tation are specified by users. For instance, the in- Gisli R. Hjaltason, and Moshe Shadmon. 2001. A
dex entry for ‘Capsword’ might find reuse in sev- fast index for semistructured data. The VLDB
eral annotation rules. As against this, a document- Conferencepages 341-350.
based annotator has to process each documert Cunningham, D. Maynard, K. Bontcheva, and
from scratch for every newly introduced annota- V- Tablan. 2002. GATE: A framework and graph-
tion rule. To verify this, we introduced addi- g:r?é (;%\ﬁilggtrigﬁgf environment for robust NLP tools
tional rule for each of the named entity types.
In Table 3, we compare the time required byH. Cunningham. 1999. Jape — a java annotation pat-
the index-based annotator against that required by €S engine.
GATE for annotating the two corpora using the Line Eikvil. 1999. Information extraction from world
additional rules. We achieve a greater speedup fac- Wide web - a survey. Technical Report 945, Nor-
tor of 23-37 for incremental annotation. weigan Computing Center.

Quanzhong Li and Bongki Moon. 2001. Indexing and

Dataset GATE | Index-based guerying XML data for regular path expressions. In
Enron | 1479954 62227 The VLDB Journalpages 361-370.
Reuters| 661157 17929

Andrew McCallum, Dayne Freitag, and Fernando
Pereira. 2000. Maximum entropy Markov mod-
els for information extraction and segmentation. In
Proc. 17th International Conf. on Machine Learn-
ing, pages 591-598. Morgan Kaufmann, San Fran-
cisco, CA.

Table 3: Time (in milliseconds) for computing an-
notations using the two techniques for the addi-
tional 4 rules

500

