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Abstract 

Adapting language models across styles 
and topics, such as for lecture transcrip-
tion, involves combining generic style 
models with topic-specific content rele-
vant to the target document.  In this 
work, we investigate the use of the Hid-
den Markov Model with Latent Dirichlet 
Allocation (HMM-LDA) to obtain syn-
tactic state and semantic topic assign-
ments to word instances in the training 
corpus.  From these context-dependent 
labels, we construct style and topic mod-
els that better model the target document, 
and extend the traditional bag-of-words 
topic models to n-grams.  Experiments 
with static model interpolation yielded a 
perplexity and relative word error rate 
(WER) reduction of 7.1% and 2.1%, re-
spectively, over an adapted trigram base-
line.  Adaptive interpolation of mixture 
components further reduced perplexity 
by 9.5% and WER by a modest 0.3%. 

1 Introduction 

With the rapid growth of audio-visual materials 
available over the web, effective language mod-
eling of the diverse content, both in style and 
topic, becomes essential for efficient access and 
management of this information.  As a prime 
example, successful language modeling for aca-
demic lectures not only enables the initial tran-
scription via automatic speech recognition, but 
also assists educators and students in the creation 
and navigation of these materials through annota-
tion, retrieval, summarization, and even transla-
tion of the embedded content. 

Compared with other types of audio content, 
lecture speech often exhibits a high degree of 
spontaneity and focuses on narrow topics with 
specific terminology (Furui, 2003; Glass et al, 
2004).  Unfortunately, training corpora available 
for language modeling rarely match the target 
lecture in both style and topic.  While transcripts 
from other lectures better match the style of the 
target lecture than written text, it is often difficult 
to find transcripts on the target topic.  On the 
other hand, although topic-specific vocabulary 
can be gleaned from related text materials, such 
as the textbook and lecture slides, written lan-
guage is a poor predictor of how words are actu-
ally spoken.  Furthermore, given that the precise 
topic of a target lecture is often unknown a priori 
and may even shift over time, it is generally dif-
ficult to identify topically related documents.  
Thus, an effective language model (LM) need to 
not only account for the casual speaking style of 
lectures, but also accommodate the topic-specific 
vocabulary of the subject matter. Moreover, the 
ability of the language model to dynamically 
adapt over the course of the lecture could prove 
extremely useful for both increasing transcription 
accuracy, as well as providing evidence for lec-
ture segmentation and information retrieval. 

In this paper, we investigate the application of 
the syntactic state and semantic topic assign-
ments from the Hidden Markov Model with La-
tent Dirichlet Allocation model to the problem of 
language modeling.  We explore the use of these 
context-dependent labels to identify style and 
learn topics from both a large number of spoken 
lectures as well as written text.  By dynamically 
interpolating lecture style models with topic-
specific models, we obtain language models that 
better describe the subtopic structure within a 
lecture.  Initial experiments demonstrate a 16.1% 
perplexity reduction and a 2.4% WER reduction 
over an adapted trigram baseline. 
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In the following sections, we first summarize 
related research on adaptive and topic-mixture 
language models, and describe previous work on 
the HMM-LDA model.  We then examine the 
ability of the model to learn syntactic classes as 
well as topics from textbook materials and lec-
ture transcripts.  Next, we describe a variety of 
language model experiments we performed to 
combine style and topic models constructed from 
the state and topic labels with conventional tri-
gram models trained from both spoken and writ-
ten materials.  We also demonstrate the use of 
the combined model in an on-line adaptive mode.  
Finally, we summarize the results of this research 
and suggest future opportunities for related mod-
eling techniques in spoken lecture and other con-
tent processing research. 

2 Adaptive and Topic-M ixture LMs 

The concept of adaptive and topic-mixture lan-
guage models has been previously explored by 
many researchers.  Adaptive language modeling 
exploits the property that words appearing earlier 
in a document are likely to appear again. Cache 
language models (Kuhn and De Mori, 1990; 
Clarkson and Robinson, 1997) leverage this ob-
servation and increase the probability of previ-
ously observed words in a document when pre-
dicting the next word. By interpolating with a 
conditional trigram cache model, Goodman 
(2001) demonstrated up to 34% decrease in per-
plexity over a trigram baseline for small training 
sets. 

The cache intuition has been extended by at-
tempting to increase the probability of unob-
served but topically related words.  Specifically, 
given a mixture model with topic-specific com-
ponents, we can increase the mixture weights of 
the topics corresponding to previously observed 
words to better predict the next word.  Some of 
the early work in this area used a maximum en-
tropy language model framework to trigger in-
creases in likelihood of related words (Lau et al., 
1993; Rosenfeld, 1996). 

A variety of methods has been used to explore 
topic-mixture models.  To model a mixture of 
topics within a document, the sentence mixture 
model (Iyer and Ostendorf, 1999) builds multiple 
topic models from clusters of training sentences 
and defines the probability of a target sentence as 
a weighted combination of its probability under 
each topic model.  Latent Semantic Analysis 
(LSA) has been used to cluster topically related 
words and has demonstrated significant reduc-

tion in perplexity and word error rate (Belle-
garda, 2000).  Probabilistic LSA (PLSA) has 
been used to decompose documents into compo-
nent word distributions and create unigram topic 
models from these distributions.  Gildea and 
Hofmann (1999) demonstrated noticeable per-
plexity reduction via dynamic combination of 
these unigram topic models with a generic tri-
gram model. 

To identify topics from an unlabeled corpus, 
(Blei et al., 2003) extends PLSA with the Latent 
Dirichlet Allocation (LDA) model that describes 
each document in a corpus as generated from a 
mixture of topics, each characterized by a word 
unigram distribution. Hidden Markov Model 
with LDA (HMM-LDA) (Griffiths et al., 2004) 
further extends this topic mixture model to sepa-
rate syntactic words from content words whose 
distributions depend primarily on local context 
and document topic, respectively. 

In the specific area of lecture processing, pre-
vious work in language model adaptation has 
primarily focused on customizing a fixed n-gram 
language model for each lecture by combining n-
gram statistics from general conversational 
speech, other lectures, textbooks, and other re-
sources related to the target lecture (Nanjo and 
Kawahara, 2002, 2004; Leeuwis et al., 2003; 
Park et al., 2005). 

Most of the previous work on topic-mixture 
models focuses on in-domain adaptation using 
large amounts of matched training data.  How-
ever, most, if not all, of the data available to train 
a lecture language model are either cross-domain 
or cross-style.  Furthermore, although adaptive 
models have been shown to yield significant per-
plexity reduction on clean transcripts, the im-
provements tend to diminish when working with 
speech recognizer hypotheses with high WER. 

In this work, we apply the concept of dynamic 
topic adaptation to the lecture transcription task.  
Unlike previous work, we first construct a style 
model and a topic-domain model using the clas-
sification of word instances into syntactic states 
and topics provided by HMM-LDA.  Further-
more, we leverage the context-dependent labels 
to extend topic models from unigrams to n-
grams, allowing for better prediction of transi-
tions involving topic words.  Note that although 
this work focuses on the use of HMM-LDA to 
generate the state and topic labels, any method 
that yields such labels suffices for the purpose of 
the language modeling experiments.  The follow-
ing section describes the HMM-LDA framework 
in more detail. 
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3 HMM-LDA 

3.1 Latent Dir ichlet Allocation 

Discrete Principal Component Analysis describes 
a family of models that decompose a set of fea-
ture vectors into its principal components (Bun-
tine and Jakulin, 2005).  Describing feature vec-
tors via their components reduces the number of 
parameters required to model the data, hence im-
proving the quality of the estimated parameters 
when given limited training data.  LSA, PLSA, 
and LDA are all examples from this family. 

Given a predefined number of desired compo-
nents, LSA models feature vectors by finding a 
set of orthonormal components that maximize 
the variance using singular value decomposition 
(Deerwester et al., 1990).  Unfortunately, the 
component vectors may contain non-interpret-
able negative values when working with word 
occurrence counts as feature vectors.  PLSA 
eliminates this problem by using non-negative 
matrix factorization to model each document as a 
weighted combination of a set of non-negative 
feature vectors (Hofmann, 1999).  However, be-
cause the number of parameters grows linearly 
with the number of documents, the model is 
prone to overfitting.  Furthermore, because each 
training document has its own set of topic weight 
parameters, PLSA does not provide a generative 
framework for describing the probability of an 
unseen document (Blei et al., 2003). 

To address the shortcomings of PLSA, Blei et 
al. (2003) introduced the LDA model, which fur-
ther imposes a Dirichlet distribution on the topic 
mixture weights corresponding to the documents 
in the corpus.  With the number of model pa-
rameters dependent only on the number of topic 
mixtures and vocabulary size, LDA is less prone 
to overfitting and is capable of estimating the 
probability of unobserved test documents. 

Empirically, LDA has been shown to outper-
form PLSA in corpus perplexity, collaborative 
filtering, and text classification experiments (Blei 
et al., 2003).  Various extensions to the basic 
LDA model have since been proposed.  The Au-
thor Topic model adds an additional dependency 
on the author(s) to the topic mixture weights of 
each document (Rosen-Zvi et al., 2005).  The 
Hierarchical Dirichlet Process is a nonparametric 
model that generalizes distribution parameter 
modeling to multiple levels.  Without having to 
estimate the number of mixture components, this 
model has been shown to match the best result 
from LDA on a document modeling task (Teh et 
al., 2004). 

3.2 Hidden Markov Model with LDA 

HMM-LDA model proposed by Griffiths et al. 
(2004) combines the HMM and LDA models to 
separate syntactic words with local dependencies 
from topic-dependent content words without re-
quiring any labeled data.  Similar to HMM-based 
part-of-speech taggers, HMM-LDA maps each 
word in the document to a hidden syntactic state.  
Each state generates words according to a uni-
gram distribution except the special topic state, 
where words are modeled by document-specific 
mixtures of topic distributions, as in LDA.  
Figure 1 describes this generative process in 
more detail. 

Figure 1: Generative framework and graphical 
model representation of HMM-LDA.  The num-
ber of states and topics are pre-specified.  The 
topic mixture for each document is modeled with 
a Dirichlet distribution.  Each word wi in the n-
word document is generated from its hidden state 
si or hidden topic zi if si is the special topic state. 

 
Unlike vocabulary selection techniques that 

separate domain-independent words from topic-
specific keywords using word collocation statis-
tics, HMM-LDA classifies each word instance 
according to its context.  Thus, an instance of the 
word “ return” may be assigned to a syntactic 
state in “ to return a” , but classified as a topic 
keyword in “ expected return for” .  By labeling 
each word in the training set with its syntactic 
state and mixture topic, HMM-LDA not only 
separates stylistic words from content words in a 
context-dependent manner, but also decomposes 
the corpus into a set of topic word distributions.  
This form of soft, context-dependent classifica-
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tion has many potential uses for language model-
ing, topic segmentation, and indexing. 

3.3 Training 

To train an HMM-LDA model, we employ the 
MATLAB Topic Modeling Toolbox 1.3 (Grif-
fiths and Steyvers, 2004; Griffiths et al., 2004).  
This particular implementation performs Gibbs 
sampling, a form of Markov chain Monte Carlo 
(MCMC), to estimate the optimal model parame-
ters fitted to the training data.  Specifically, the 
algorithm creates a Markov chain whose station-
ary distribution matches the expected distribution 
of the state and topic labels for each word in the 
training corpus.  Starting from random labels, 
Gibbs sampling sequentially samples the label 
for each hidden variable conditioned on the cur-
rent value of all other variables.  After a suffi-
cient number of iterations, the Markov chain 
converges to the stationary distribution.  We can 
easily compute the posterior word distribution 
for each state and topic from a single sample by 
averaging over the label counts and prior pa-
rameters.  With a sufficiently large training set, 
we will have enough words assigned to each 
state and topic to yield a reasonable approxima-
tion to the underlying distribution. 

In the following sections, we examine the ap-
plication of models derived from the HMM-LDA 
labels to the task of spoken lecture transcription 
and explore techniques on adaptive topic model-
ing to construct a better lecture language model. 

4 HMM-LDA Analysis 

Our language modeling experiments have been 
conducted on high-fidelity transcripts of ap-
proximately 168 hours of lectures from three un-
dergraduate subjects in math, physics, and com-
puter science (CS), as well as 79 seminars cover-
ing a wide range of topics (Glass et al., 2004).  
For evaluation, we withheld the set of 20 CS lec-
tures and used the first 10 lectures as a develop-
ment set and the last 10 lectures for the test set.  
The remainder of these data was used for training 

and will be referred to as the Lectures dataset. 
To supplement the out-of-domain lecture tran-

scripts with topic-specific textual resources, we 
added the CS course textbook (Textbook) as ad-
ditional training data for learning the target top-
ics.  To create topic-cohesive documents, the 
textbook is divided at every section heading to 
form 271 documents.  Next, the text is heuristi-
cally segmented at sentence-like boundaries and 
normalized into the words corresponding to the 
spoken form of the text.  Table 1 summarizes the 
data used in this evaluation. 

 
Dataset Documents Sentences Vocabulary Words 
Lectures 150 58,626 25,654 1,390,039 
Textbook 271 6,762 4,686 131,280 
CS Dev 10 4,102 3,285 93,348 
CS Test 10 3,595 3,357 87,518 

Table 1: Summary of evaluation datasets. 
 
In the following analysis, we ran the Gibbs 

sampler against the Lectures dataset for a total of 
2800 iterations, computing a model every 10 it-
erations, and took the model with the lowest per-
plexity as the final model.  We built the model 
with 20 states and 100 topics based on prelimi-
nary experiments.  We also trained an HMM-
LDA model on the Textbook dataset using the 
same model parameters.  We ran the sampler for 
a total of 2000 iterations, computing the perplex-
ity every 100 iterations.  Again, we selected the 
lowest perplexity model as the final model. 

4.1 Semantic Topics 

HMM-LDA extracts words whose distributions 
vary across documents and clusters them into a 
set of components.  In Figure 2, we list the top 
10 words from a random selection of 10 topics 
computed from the Lectures dataset.  As shown, 
the words assigned to the LDA topic state are 
representative of content words and are grouped 
into broad semantic topics.  For example, topic 4, 
8, and 9 correspond to machine learning, linear 
algebra, and magnetism, respectively. 

Since the Lectures dataset consists of speech 
transcripts with disfluencies, it is interesting to 
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Figure 2: The top 10 words from 10 randomly selected topics computed from the Lectures dataset. 
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observe that “ <laugh>”  is the top word in a 
topic corresponding to childhood memories.  
Cursory examination of the data suggests that the 
speakers talking about children tend to laugh 
more during the lecture.  Although it may not be 
desirable to capture speaker idiosyncrasies in the 
topic mixtures, HMM-LDA has clearly demon-
strated its ability to capture distinctive semantic 
topics in a corpus.  By leveraging all documents 
in the corpus, the model yields smoother topic 
word distributions that are less vulnerable to 
overfitting. 

Since HMM-LDA labels the state and topic of 
each word in the training corpus, we can also 
visualize the results by color-coding the words 
by their topic assignments.  Figure 3 shows a 
color-coded excerpt from a topically coherent 
paragraph in the Textbook dataset.  Notice how 
most of the content words (uppercase) are as-
signed to the same topic/color.  Furthermore, of 
the 7 instances of the words “ and”  and “ or”  
(underlined), 6 are correctly classified as syntac-
tic or topic words, demonstrating the context-
dependent labeling capabilities of the HMM-
LDA model.  Moreover, from these labels, we 
can identify multi-word topic key phrases (e.g. 
output signals, input signal, “ and”  gate) in addi-
tion to standalone keywords, an observation we 
will leverage later on with n-gram topic models. 

 

 
Figure 3: Color-coded excerpt from the Textbook 
dataset showing the context-dependent topic la-
bels.  Syntactic words appear black in lowercase.  
Topic words are shown in uppercase with their 
respective topic colors.  All instances of the 
words “ and”  and “ or”  are underlined. 

4.2 Syntactic States 

Since the syntactic states are shared across all 
documents, we expect words associated with the 
syntactic states when applying HMM-LDA to the 
Lectures dataset to reflect the lecture style vo-
cabulary.   

In Figure 4, we list the top 10 words from each 
of the 19 syntactic states (state 20 is the topic 
state).  Note that each state plays a clear syntactic 
role.  For example, state 2 contains prepositions 
while state 7 contains verbs.  Since the model is 
trained on transcriptions of spontaneous speech, 
hesitation disfluencies (<uh> , <um> , <partial>) 
are all grouped in state 3 along with other words 
(so, if, okay) that frequently indicate hesitation.  
While many of these hesitation words are con-
junctions, the words in state 6 show that most 
conjunctions are actually assigned to a different 
state representing different syntactic behavior 
from hesitations.  As demonstrated with sponta-
neous speech, HMM-LDA yields syntactic states 
that have a good correspondence to part-of-
speech labels, without requiring any labeled 
training data. 

4.3 Discussions 

Although MCMC techniques converge to the 
global stationary distribution, we cannot guaran-
tee convergence from observation of the perplex-
ity alone.  Unlike EM algorithms, random sam-
pling may actually temporarily decrease the 
model likelihood.  Thus, in the above analysis, 
the number of iterations was chosen to be at least 
double the point at which the perplexity first ap-
peared to converge. 

In addition to the number of iterations, the 
choice of the number of states and topics, as well 
as the values of the hyper-parameters on the 
Dirichlet prior, also impact the quality and effec-
tiveness of the resulting model.  Ideally, we run 
the algorithm with different combinations of the 
parameter values and perform model selection to 
choose the model with the best complexity-
penalized likelihood.  However, given finite 
computing resources, this approach is often im-

We draw an INVERTER SYMBOLICALLY as in Figure 3.24.  
An AND GATE, also shown in Figure 3.24, is a PRIMITIVE 
FUNCTION box with two INPUTS and ONE OUTPUT.  It 
drives its OUTPUT SIGNAL to a value that is the LOGICAL 
AND of the INPUTS.  That is, if both of its INPUT SIGNALS 
BECOME 1.  Then ONE and GATE DELAY time later the AND 
GATE wil l force its OUTPUT SIGNAL TO be 1; otherwise the 
OUTPUT will be 0.  An OR GATE is a SIMILAR two INPUT 
PRIMITIVE FUNCTION box that drives its OUTPUT SIGNAL 
to a value that is the LOGICAL OR of the INPUTS.  That is, the 
OUTPUT will BECOME 1 if at least ONE of the INPUT 
SIGNALS is 1; otherwise the OUTPUT will BECOME 0. 
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Figure 4: The top 10 words from the 19 syntactic states computed from the Lectures dataset. 
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practical.  As an alternative for future work, we 
would like to perform Gibbs sampling on the 
hyper-parameters (Griffiths et al., 2004) and ap-
ply the Dirichlet process to estimate the number 
of states and topics (Teh et al., 2004). 

Despite the suboptimal choice of parameters 
and potential lack of convergence, the labels de-
rived from HMM-LDA are still effective for lan-
guage modeling applications, as described next. 

5 Language Modeling Experiments 

To evaluate the effectiveness of models derived 
from the separation of syntax from content, we 
performed experiments that compare the per-
plexities and WERs of various model combina-
tions.  For a baseline, we used an adapted model 
(L+T) that linearly interpolates trigram models 
trained on the Lectures (L) and Textbook (T) 
datasets.  In all models, all interpolation weights 
and additional parameters are tuned on a devel-
opment set consisting of the first half of the CS 
lectures and tested on the second half.  Unless 
otherwise noted, modified Kneser-Ney discount-
ing (Chen and Goodman, 1998) is applied with 
the respective training set vocabulary using the 
SRILM Toolkit (Stolcke, 2002). 

To compute the word error rates associated 
with a specific language model, we used a 
speaker-independent speech recognizer (Glass, 
2003).  The lectures were pre-segmented into 
utterances by forced alignment of the reference 
transcription. 

5.1 Lecture Style 

In general, an n-gram model trained on a limited 
set of topic-specific documents tends to overem-
phasize words from the observed topics instead 
of evenly distributing weights over all potential 
topics.  Specifically, given the list of words fol-
lowing an n-gram context, we would like to 
deemphasize the observed occurrences of topic 
words and ideally redistribute these counts to all 
potential topic words.  As an approximation, we 
can build such a topic-deemphasized style tri-
gram model (S) by using counts of only n-gram 
sequences that do not end on a topic word, 
smoothed over the Lectures vocabulary.  Figure 
5 shows the n-grams corresponding to an utter-
ance used to build the style trigram model.  Note 
that the counts of topic to style word transitions 
are not altered as these probabilities are mostly 
independent of the observed topic distribution. 

By interpolating the style model (S) from 
above with the smoothed trigram model based on 

the Lectures dataset (L), the combined model 
(L+S) achieves a 3.6% perplexity reduction and 
1.0% WER reduction over (L), as shown in Table 
2.  Without introducing topic-specific training 
data, we can already improve the generic lecture 
LM performance using the HMM-LDA labels. 

 

<s> for the SPATIAL MEMORY </s> 

unigrams: for, the, spatial, memory, </s> 
bigrams: <s> for, for the, the spatial, spatial memory, memory </s> 
trigrams: <s> <s> for, <s> for the, for the spatial, 
 the spatial memory, spatial memory </s> 

Figure 5: Style model n-grams.  Topic words in 
the utterance are in uppercase.   

5.2 Topic Domain 

Unlike Lectures, the Textbook dataset contains 
content words relevant to the target lectures, but 
in a mismatched style.  Commonly, the Textbook 
trigram model is interpolated with the generic 
model to improve the probability estimates of the 
transitions involving topic words.  The interpola-
tion weight is chosen to best fit the probabilities 
of these n-gram sequences while minimizing the 
mismatch in style.  However, with only one pa-
rameter, all n-gram contexts must share the same 
mixture weight.  Because transitions from con-
texts containing topic words are rarely observed 
in the off-topic Lectures, the Textbook model (T) 
should ideally have higher weight in these con-
texts than contexts that are more equally ob-
served in both datasets. 

One heuristic approach for adjusting the 
weight in these contexts is to build a topic-
domain trigram model (D) from the Textbook n-
gram counts with Witten-Bell smoothing (Chen 
and Goodman, 1998) where we emphasize the 
sequences containing a topic word in the context 
by doubling their counts.  In effect, this reduces 
the smoothing on words following topic contexts 
with respect to lower-order models without sig-
nificantly affecting the transitions from non-topic 
words.  Figure 6 shows the adjusted counts for an 
utterance used to build the domain trigram 
model.   

 
<s> HUFFMAN CODE can be represented as a BINARY TREE … 

unigrams: huffman, code, can, be, represented, as, binary, tree, … 
bigrams: <s> huffman, huffman code (2×), code can (2×),  
 can be, be represented, represented as, a binary,  
 binary tree (2×), … 
trigrams: <s> <s> hufmann, <s> hufmann code (2×),  
 hufmann code can (2×), code can be (2×),  
 can be represented, be represented as,  
 represented as a, as a binary, a binary tree (2×), ... 

Figure 6: Domain model n-grams.  Topic words 
in the utterance are in uppercase. 
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Empirically, interpolating the lectures, text-
book, and style models with the domain model 
(L+T+S+D) further decreases the perplexity by 
1.4% and WER by 0.3% over (L+T+S), validat-
ing our intuition.  Overall, the addition of the 
style and domain models reduces perplexity and 
WER by a noticeable 7.1% and 2.1%, respec-
tively, as shown in Table 2. 

 
 Perplexity 

Model Development Test 
L: Lectures Trigram 180.2 (0.0%) 199.6 (0.0%) 
T: Textbook Trigram 291.7 (+61.8%) 331.7 (+66.2%) 
S: Style Trigram 207.0 (+14.9%) 224.6 (+12.5%) 
D: Domain Trigram 354.1 (+96.5%) 411.6 (+106.3%) 
L+S 174.2 (–3.3%) 192.4 (–3.6%) 
L+T: Baseline 138.3 (0.0%) 154.4 (0.0%) 
L+T+S 131.0 (–5.3%) 145.6 (–5.7%) 
L+T+S+D 128.8 (–6.9%) 143.6 (–7.1%) 
L+T+S+D+Topic100 
• Static Mixture (cheat) 
• Dynamic M ixture 

 
118.1 (–14.6%) 
115.7 (–16.4% ) 

 
131.3 (–15.0%) 
129.5 (–16.1% ) 

 

 Word Er ror  Rate 
Model Development Test 
L: Lectures Trigram 49.5% (0.0%) 50.2% (0.0%) 
L+S 49.2% (–0.7%) 49.7% (–1.0%) 
L+T: Baseline 46.6% (0.0%) 46.7% (0.0%) 
L+T+S 46.0% (–1.2%) 45.8% (–1.8%) 
L+T+S+D 45.8% (–1.8%) 45.7% (–2.1%) 
L+T+S+D+Topic100 
• Static Mixture (cheat) 
• Dynamic M ixture 

 
45.5% (–2.4%) 
45.4%  (–2.6% ) 

 
45.4% (–2.8%) 
45.6%  (–2.4% ) 

 

Table 2: Perplexity (top) and WER (bottom) per-
formance of various model combinations.  Rela-
tive reduction is shown in parentheses. 

5.3 Textbook Topics 

In addition to identifying content words, HMM-
LDA also assigns words to a topic based on their 
distribution across documents.  Thus, we can 
apply HMM-LDA with 100 topics to the Text-
book dataset to identify representative words and 
their associated contexts for each topic.  From 
these labels, we can build unsmoothed trigram 
language models (Topic100) for each topic from 
the counts of observed n-gram sequences that 
end in a word assigned to the respective topic. 

Figure 7 shows a sample of the word n-grams 
identified via this approach for a few topics.  
Note that some of the n-grams are key phrases 
for the topic while others contain a mixture of 
syntactic and topic words.  Unlike bag-of-words 
models that only identify the unigram distribu-
tion for each topic, the use of context-dependent 
labels enables the construction of n-gram topic 
models that not only characterize the frequencies 
of topic words, but also describe the transition 
contexts leading up to these words. 

 

Huffman tree 
relative frequency 

relative frequencies 
the tree 

one hundred 

Monte Carlo 
rand update 

random numbers 
trials remaining 

trials passed 

time segment 
the agenda 

segment time 
current time 
first agenda 

assoc key 
the table 

local table 
a table 

of records 

Figure 7: Sample of n-grams from select topics. 

5.4 Topic Mixtures 

Since each target lecture generally only covers a 
subset of the available topics, it will be ideal to 
identify the specific topics corresponding to a 
target lecture and assign those topic models more 
weight in a linearly interpolated mixture model.  
As an ideal case, we performed a cheating ex-
periment to measure the best performance of a 
statically interpolated topic mixture model 
(L+T+S+D+Topic100) where we tuned the 
mixture weights of all mixture components, in-
cluding the lectures, textbook, style, domain, and 
the 100 individual topic trigram models on indi-
vidual target lectures.   

Table 2 shows that by weighting the compo-
nent models appropriately, we can reduce the 
perplexity and WER by an additional 7.9% and 
0.7%, respectively, over the (L+T+S+D) model 
even with simple linear interpolation for model 
combination. 

To gain further insight into the topic mixture 
model, we examine the breakdown of the nor-
malized topic weights for a specific lecture.  As 
shown in Figure 8, of the 100 topic models, 15 of 
them account for over 90% of the total weight.  
Thus, lectures tend to show a significant topic 
skew which topic adaptation approaches can 
model effectively. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
Figure 8: Topic mixture weight breakdown. 

5.5 Topic Adaptation 

Unfortunately, since different lectures cover dif-
ferent topics, we generally cannot tune the topic 
mixture weights ahead of time.  One approach, 
without any a priori knowledge of the target lec-
ture, is to adaptively estimate the optimal mix-
ture weights as we process the lecture (Gildea 
and Hofmann, 1999).  However, since the topic 
distribution shifts over a long lecture, modeling a 
lecture as an interpolation of components with 
fixed weights may not be the most optimal.  In-
stead, we employ an exponential decay strategy 
where we update the current mixture distribution 
by linearly interpolating it with the posterior 
topic distribution given the current word.  Spe-
cifically, applying Bayes’  rule, the probability of 
topic t generating the current word w is given by: 
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To achieve the exponential decay, we update the 
topic distribution after each word according to 
Pi+1(t) = (1 – � )�Pi(t) + � �P(t | wi), where �  is the 
adaptation rate. 

We evaluated this approach of dynamic mix-
ture weight adaptation on the (L+T+S+D+Topic 
100) model, with the same set of components as 
the cheating experiment with static weights.  As 
shown in Table 2, the dynamic model actually 
outperforms the static model by more than 1% in 
perplexity, by better modeling the dynamic topic 
substructure within the lecture. 

To run the recognizer with a dynamic LM, we 
rescored the top 100 hypotheses generated with 
the (L+T+S+D) model using the dynamic LM.  
The WER obtained through such n-best rescoring 
yielded noticeable improvements over the 
(L+T+S+D) model without a priori knowledge 
of the topic distribution, but did not beat the op-
timal static model on the test set.   

To further gain an intuition for mixture weight 
adaptation, we plotted the normalized adapted 
weights of the topic models across the first lec-
ture of the test set in Figure 9.  Note that the 
topic mixture varies greatly across the lecture.  In 
this particular lecture, the lecturer starts out with 
a review of the previous lecture.  Subsequently, 
he shows an example of computation using ac-
cumulators.  Finally, he focuses the lecture on 
stream as a data structure, with an intervening 
example that finds pairs of i and j that sum up to 
a prime.  By comparing the topic labels in Figure 
9 with the top words from the corresponding top-
ics in Figure 10, we observe that the topic 
weights obtained via dynamic adaptation match 
the subject matter of the lecture fairly closely. 

Finally, to assess the effect that word error rate 
has on adaptation performance, we applied the 
adaptation algorithm to the corresponding tran-
script from the automatic speech recognizer 
(ASR).  Traditional cache language models tend 
to be vulnerable to recognition errors since incor-
rect words in the history negatively bias the pre-
diction of the current word.  However, by adapt-
ing at a topic level, which reduces the number of 
dynamic parameters, the dynamic topic model is 
less sensitive to recognition errors.  As seen in 
Figure 9, even with a word error rate around 
40%, the normalized topic mixture weights from 
the ASR transcript still show a strong resem-
blance to the original weights from the manual 
reference transcript.  

 
Figure 9: Adaptation of topic model weights on 
manual and ASR transcription of a single lecture. 
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Figure 10: Top 10 words from select Textbook 
topics appearing in Figure 9. 

6 Summary and Conclusions 

In this paper, we have shown how to leverage 
context-dependent state and topic labels, such as 
the ones generated by the HMM-LDA model, to 
construct better language models for lecture tran-
scription and extend topic models beyond tradi-
tional unigrams.  Although the WER of the top 
recognizer hypotheses exceeds 45%, by dynami-
cally updating the mixture weights to model the 
topic substructure within individual lectures, we 
are able to reduce the test set perplexity and 
WER by over 16% and 2.4%, respectively, rela-
tive to the combined Lectures and Textbook 
(L+T) baseline. 

Although we primarily focused on lecture 
transcription in this work, the techniques extend 
to language modeling scenarios where exactly 
matched training data are often limited or non-
existent.  Instead, we have to rely on appropriate 
combination of models derived from partially 
matched data.  HMM-LDA and related tech-
niques show great promise for finding structure 
in unlabeled data, from which we can build more 
sophisticated models. 

The experiments in this paper combine models 
primarily through simple linear interpolation.  As 
motivated in section 5.2, allowing for context-
dependent interpolation weights based on topic 
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labels may yield significant improvement for 
both perplexity and WER.  Thus, in future work, 
we would like to study algorithms for automati-
cally learning appropriate context-dependent in-
terpolation weights.  Furthermore, we hope to 
improve the convergence properties of the dy-
namic adaptation scheme at the start of lectures 
and across topic transitions.  Lastly, we would 
like to extend the LDA framework to support 
speaker-specific adaptation and apply the result-
ing topic distributions to lecture segmentation. 
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