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Abstract
This paper proposes a statistical, tree-
to-tree model for producing translations.
Two main contributions are as follows:
(1) a method for the extraction of syn-
tactic structures with alignment informa-
tion from a parallel corpus of translations,
and (2) use of a discriminative, feature-
based model for prediction of these target-
language syntactic structures—which we
call aligned extended projections, or
AEPs. An evaluation of the method on
translation from German to English shows
similar performance to the phrase-based
model of Koehn et al. (2003).

1 Introduction

Phrase-based approaches (Och and Ney, 2004)
to statistical machine translation (SMT) have re-
cently achieved impressive results, leading to sig-
nificant improvements in accuracy over the origi-
nal IBM models (Brown et al., 1993). However,
phrase-based models lack a direct representation
of syntactic information in the source or target lan-
guages; this has prompted several researchers to
consider various approaches that make use of syn-
tactic information.

This paper describes a framework fortree-to-
tree based statistical translation. Our goal is to
learn a model that maps parse trees in the source
language to parse trees in the target language.
The model is learned from a corpus of transla-
tion pairs, where each sentence in the source or
target language has an associated parse tree. We
see two major benefits of tree-to-tree based trans-
lation. First, it is possible to explicitly model the
syntax of the target language, thereby improving
grammaticality. Second, we can build a detailed
model of the correspondence between the source
and target parse trees, with the aim of constructing
translations that preserve the meaning of source
language sentences.

Our translation framework involves a process

where the target-language parse tree is broken
down into a sequence of clauses, and each clause
is then translated separately. A central concept we
introduce in the translation of clauses is that of an
aligned extended projection(AEP). AEPs are de-
rived from the concept of anextended projection
in lexicalized tree adjoining grammars (LTAG)
(Frank, 2002), with the addition of alignment in-
formation that is based on work in synchronous
LTAG (Shieber and Schabes, 1990). A key con-
tribution of this paper is a method for learning
to map German clauses to AEPs using a feature-
based model with a perceptron learning algorithm.

We performed experiments on translation from
German to English on the Europarl data set. Eval-
uation in terms of both BLEU scores and human
judgments shows that our system performs sim-
ilarly to the phrase-based model of Koehn et al.
(2003).

1.1 A Sketch of the Approach

This section provides an overview of the transla-
tion process. We will use the German sentencewir
wissen daß das haupthemmnis der vorhersehbare
widerstand der hersteller waras a running exam-
ple. For this example we take the desired transla-
tion to bewe know that the main obstacle has been
the predictable resistance of manufacturers.

Translation of a German sentence proceeds in
the following four steps:

Step 1: The German sentence is parsed and then
broken down into separate parse structures for a
sequence of clauses. For example, the German ex-
ample above is broken into a parse structure for
the clausewir wissenfollowed by a parse struc-
ture for the subordinate clausedaß. . .war. Each
of these clauses is then translated separately, using
steps 2–3 below.

Step 2: An aligned extended projection(AEP)
is predicted for each German clause. To illustrate
this step, consider translation of the second Ger-
man clause, which has the following parse struc-
ture:
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s-oc kous-cp daß
np-sb1 art das

nn haupthemmnis
np-pd2 art der

adja vorhersehbare
nn widerstand
np-ag art der

nn hersteller
vafin-hd war

Note that we use the symbols1 and 2 to identify
the two modifiers (arguments or adjuncts) in the
clause, in this case a subject and an object.

A major part of the AEP is a parse-tree frag-
ment, that is similar to a TAG elementary tree (see
also Figure 2):

SBAR

that S

NP VP

V

has

VP

V

been

NP

Following the work of Frank (2002), we will refer
to a structure like this as anextended projection
(EP). The EP encapsulates the core syntactic struc-
ture in the English clause. It contains the main
verbbeen, as well as the function wordsthat and
has. It also contains a parse tree “spine” which has
the main verbbeenas one of its leaves, and has the
clause labelSBARas its root. In addition, it spec-
ifies positions for arguments in the clause—in this
case NPs corresponding to the subject and object.

An AEP contains an EP, as well asalignment
information about where the German modifiers
should be placed in the extended projection. For
example, the AEP in this case would contain the
tree fragment shown above, together with an align-
ment specifying that the modifiers1 and 2 from
the German parse will appear in the EP as subject
and object, respectively.

Step 3: The German modifiers are translated
and placed in the appropriate positions within the
AEP. For example, the modifiersdas haupthemm-
nis and der vorhersehbare widerstand der her-
steller would be translated asthe main obstacle,
and the predictable resistance of manufacturers,
respectively, and then placed into the subject and
object positions in the AEP.

Step 4: The individual clause translations are
combined to give a final translation. For example,
the translationswe knowandthat the main obsta-
cle has been. . . would be concatenated to givewe
know that the main obstacle has been. . ..

The main focus of this paper will be Step 2: the
prediction of AEPs from German clauses. AEPs
are detailed structural objects, and their relation-
ship to the source-language clause can be quite
complex. We use a discriminative feature-based
model, trained with the perceptron algorithm, to
incrementally predict the AEP in a sequence of
steps. At each step we define features that allow
the model to capture a wide variety of dependen-
cies within the AEP itself, or between the AEP and
the source-language clause.

1.2 Motivation for the Approach

Our approach to tree-to-tree translation is mo-
tivated by several observations. Breaking the
source-language tree into clauses (Step 1) consid-
erably simplifies the difficult problem of defining
an alignment between source and target trees. Our
impression is that high-quality translations can be
produced in a clause-by-clause fashion.1 The use
of a feature-based model for AEP prediction (Step
2) allows us to capture complex syntactic corre-
spondences between English and German, as well
as grammaticality constraints on the English side.

In this paper, we implement the translation of
modifiers (Step 3) with the phrase-based system
of Koehn et al. (2003). The modifiers in our data
set are generally small chunks of text such as NPs,
PPs, and ADJPs, which by definition do not in-
clude clauses or verbs. In our approach, we use
the phrase-based system to generaten-best lists of
candidate translations and then rerank the trans-
lations based on grammaticality, i.e., using crite-
ria that judge how well they fit the position in the
AEP. In future work, we might use finite state ma-
chines in place of a reranking approach, or recur-
sively apply the AEP approach to the modifiers.

Stitching translated clauses back together (Step
4) is a relatively simple task: in a substantial ma-
jority of cases, the German clauses are not embed-
ded, but instead form a linear sequence that ac-
counts for the entire sentence. In these cases we
can simply concatenate the English clause trans-
lations to form the full translation. Embedded
clauses in German are slightly more complicated,
but it is not difficult to form embedded structures
in the English translations.

Section 5.2 of this paper describes the features

1Note that we do not assume that all of the translations
in the training data have been produced in a clause-by-clause
fashion. Rather, we assume that good translations for test
examples can be produced in this way.
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we use for AEP prediction in translation from
German to English. Many of the features of the
AEP prediction model are specifically tuned to the
choice of German and English as the source and
target languages. However, it should be easy to
develop new feature sets to deal with other lan-
guages or treebanking styles. We see this as one
of the strengths of the feature-based approach.

In the work presented in this paper, we focus on
the prediction of clausal AEPs, i.e., AEPs associ-
ated with main verbs. One reason for this is that
clause structures are particularly rich and com-
plex from a syntactic perspective. This means that
there should be considerable potential in improv-
ing translation quality if we can accurately predict
these structures. It also means that clause-level
AEPs are a good test-bed for the discriminative
approach to AEP prediction; future work may con-
sider applying these methods to other structures
such as NPs, PPs, ADJPs, and so on.

2 Related Work
There has been a substantial amount of previous
work on approaches that make use of syntactic in-
formation in statistical machine translation. Wu
(1997) and Alshawi (1996) describe early work on
formalisms that make use of transductive gram-
mars; Graehl and Knight (2004) describe meth-
ods for training tree transducers. Melamed (2004)
establishes a theoretical framework for general-
ized synchronous parsing and translation. Eisner
(2003) discusses methods for learning synchro-
nized elementary tree pairs from a parallel corpus
of parsed sentences. Chiang (2005) has recently
shown significant improvements in translation ac-
curacy, using synchronous grammars. Riezler and
Maxwell (2006) describe a method for learning
a probabilistic model that maps LFG parse struc-
tures in German into LFG parse structures in En-
glish.

Yamada and Knight (2001) and Galley et al.
(2004) describe methods that make use of syn-
tactic information in the target language alone;
Quirk et al. (2005) describe similar methods that
make use of dependency representations. Syntac-
tic parsers in the target language have been used
as language models in translation, giving some
improvement in accuracy (Charniak et al., 2001).
The work of Gildea (2003) involves methods that
make use of syntactic information in both the
source and target languages.

Other work has attempted to incorporate syntac-
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Figure 1: Extended projections for the verbsknowandbeen,
and for the nounobstacle. The EPs were taken from the parse
tree for the sentenceWe know that the main obstacle has been
the predictable resistance of manufacturers.

tic information through reranking approaches ap-
plied ton-best output from phrase-based systems
(Och et al., 2004). Another class of approaches
has shown improvements in translation through re-
ordering, where source language strings are parsed
and then reordered, in an attempt to recover a word
order that is closer to the target language (Collins
et al., 2005; Xia and McCord, 2004).

Our approach is closely related to previous
work on synchronous tree adjoining grammars
(Shieber and Schabes, 1990; Shieber, 2004), and
the work on TAG approaches to syntax described
by Frank (2002). A major departure from previous
work on synchronous TAGs is in our use of a dis-
criminative model that incrementally predicts the
information in the AEP. Note also that our model
may include features that take into account any
part of the German clause.

3 A Translation Architecture Based on
Aligned Extended Projections

3.1 Background: Extended Projections (EPs)

Extended projections (EPs) play a crucial role in
the lexicalized tree adjoining grammar (LTAG)
(Joshi, 1985) approach to syntax described by
Frank (2002). In this paper we focus almost ex-
clusively on extended projections associated with
main verbs; note, however, that EPs are typically
associated with all content words (nouns, adjec-
tives, etc.). As an example, a parse tree for the
sentencewe know that the main obstacle has been
the predictable resistance of manufacturerswould
make use of EPs for the wordswe, know, main, ob-
stacle, been, predictable, resistance, andmanufac-
turers. Function words (in this sentencethat, the,
has, andof) do not have EPs; instead, as we de-
scribe shortly, each function word is incorporated
in an EP of some content word.

Figure 1 has examples of EPs. Each one is
an LTAG elementary tree which contains a sin-
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gle content word as one of its leaves. Substitution
nodes (such asNP-A or SBAR-A) in the elemen-
tary trees specify the positions of arguments of the
content words. Each EP may contain one or more
function words that are associated with the con-
tent word. For verbs, these function words include
items such as modal verbs and auxiliaries (e.g.,
should and has); complementizers (e.g.,that);
and wh-words (e.g.,which). For nouns, function
words include determiners and prepositions.

Elementary trees corresponding to EPs form the
basic units in the LTAG approach described by
Frank (2002). They are combined to form a full
parse tree for a sentence using the TAG operations
of substitution and adjunction. For example, the
EP forbeenin Figure 1 can be substituted into the
SBAR-A position in the EP forknow; the EP for
obstaclecan be substituted into the subject posi-
tion of the EP forbeen.

3.2 Aligned Extended Projections (AEPs)
We now build on the idea of extended projections
to give a detailed description of AEPs. Figure 2
shows examples of German clauses paired with the
AEPs found in training data.2 The German clause
is assumed to haven (wheren ≥ 0) modifiers. For
example, the first German parse in Figure 2 has
two arguments, indexed as1 and2. Each of these
modifiers must either have a translation in the cor-
responding English clause, or must be deleted.

An AEP consists of the following parts:

STEM: A string specifying the stemmed form
of the main verb in the clause.

SPINE: A syntactic structure associated with
the main verb. The structure has the symbolV
as one of its leaf nodes; this is the position of
the main verb. It includes higher projections of
the verb such as VPs, Ss, and SBARs. It also in-
cludes leaf nodesNP-A in positions correspond-
ing to noun-phrase arguments (e.g., the subject
or object) of the main verb. In addition, it may
contain leaf nodes labeled with categories such
asWHNPor WHADVPwhere a wh-phrase may be
placed. It may include leaf nodes corresponding
to one or more complementizers (common exam-
ples beingthat, if, so that, and so on).

VOICE: One of two alternatives,active or
passive , specifying the voice of the main verb.

2Note that in this paper we consider translation from Ger-
man to English; in the remainder of the paper we takeEnglish
to be synonymous with the target language in translation and
Germanto be synonymous with the source language.

SUBJECT: This variable can be one of three
types. If there is no subject position in theSPINE
variable, then the value forSUBJECTis NULL.
Otherwise,SUBJECTcan either be a string, for
examplethere,3 or an index of one of then modi-
fiers in the German clause.

OBJECT: This variable is similar toSUBJECT,
and can also take three types:NULL, a specific
string, or an index of one of then German modi-
fiers. It is alwaysNULL if there is no object posi-
tion in theSPINE; it can never be a modifier index
that has already been assigned toSUBJECT.

WH: This variable is alwaysNULL if there is no
wh-phrase position within theSPINE; it is always
a non-empty string (such aswhich, or in which) if
a wh-phrase position does exist.

MODALS: This is a string of verbs that consti-
tute the modals that appear within the clause. We
useNULL to signify an absence of modals.

INFL: The inflected form of the verb.

MOD(i): There are n modifier variables
MOD(1), MOD(2), . . ., MOD(n) that spec-
ify the positions for German arguments that have
not already been assigned to theSUBJECTor
OBJECTpositions in the spine. Each variable
MOD(i) can take one of five possible values:

• null : This value is chosen if and only if
the modifier has already been assigned to the
subject or object position.

• deleted : This means that a translation of
thei’th German modifier is not present in the
English clause.

• pre-sub : The modifier appears after any
complementizers or wh-phrases, but before
the subject of the English clause.

• post-sub : The modifier appears after the
subject of the English clause, but before the
modals.

• in-modals : The modifier appears after the
first modal in the sequence of modals, but be-
fore the second modal or the main verb.

• post-verb : The modifier appears some-
where after the main verb.

3This happens in the case where there exists a subject in
the English clause which is not aligned to a modifier in the
German clause. See, for instance, the second example in Fig-
ure 2.
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German Clause English AEP

s-oc kous-cp daß
np-sb1 art das

nn haupthemmnis
np-pd2 art der

adja vorhersehbare
nn widerstand
np-ag art der

nn hersteller
vafin-hd war

Paraphrase: that [np-sb the
main obstacle] [np-pd the
predictable resistance of man-
ufacturers] was

STEM: be
SPINE:
SBAR-A IN that

S NP-A
VP V

NP-A

VOICE: active
SUBJECT: 1

OBJECT: 2

WH: NULL
MODALS: has
INFL: been
MOD1: null
MOD2: null

s pp-mo1 appr zwischen
piat beiden
nn gesetzen

vvfin-hd bestehen
adv-mo2 also
np-sb3 adja erhebliche

adja rechtliche
$, ,
adja praktische
kon und
adja wirtschaftliche
nn unterschiede

Paraphrase:[pp-mo between
the two pieces of legislation]
exist so [np-sb significant
legal, practical and economic
differences]

STEM: be
SPINE:
S NP-A

VP V
NP-A

VOICE: active
SUBJECT: “there”
OBJECT: 3

WH: NULL
MODALS: NULL
INFL: are
MOD1: post-verb
MOD2: pre-sub
MOD3: null

s-rc prels-sb die
vp pp-mo1 appr an

pdat jenem
nn tag

pp-mo2 appr in
ne tschernobyl

vvpp-hd gez̈undet
vafin-hd wurde

Paraphrase:which [pp-mo on
that day] [pp-mo in cher-
nobyl] released were

STEM: release
SPINE:
SBAR WHNP

SG-A VP V

VOICE: passive
SUBJECT: NULL
OBJECT: NULL
WH: which
MODALS: was
INFL: released
MOD1: post-verb
MOD2: post-verb

Figure 2: Three examples of German parse trees, together
with their aligned extended projections (AEPs) in the train-
ing data. Note that in the second example the correspondence
between the German clause and its English translation is not
entirely direct. The subject in the English is the expletive
there; the subject in the German clause becomes the object
in English. This is a typical pattern for the German verb
bestehen. The German PPzwischen ...appears at the start
of the clause in German, but is post-verbal in the English.
The modifieralso—whose English translation isso—is in an
intermediate position in the German clause, but appears in the
pre-subject position in the English clause.

4 Extracting AEPs from a Corpus

A crucial step in our approach is the extraction
of training examples from a translation corpus.
Each training example consists of a German clause
paired with an English AEP (see Figure 2).

In our experiments, we used the Europarl cor-
pus (Koehn, 2005). For each sentence pair from
this data, we used a version of the German parser
described by Dubey (2005) to parse the German
component, and a version of the English parser
described by Collins (1999) to parse the English
component. To extract AEPs, we perform the fol-
lowing steps:

NP and PP Alignment To align NPs and PPs,
first all German and English nouns, personal
and possessive pronouns, numbers, and adjectives
are identified in each sentence and aligned using
GIZA++ (Och and Ney, 2003). Next, each NP in
an English tree is aligned to an NP or PP in the
corresponding German tree in a way that isconsis-
tentwith the word-alignment information. That is,
the words dominated by the English node must be
aligned only to words dominated by the German
node, and vice versa. Note that if there is more
than one German node that is consistent, then the
one rooted at the minimal subtree is selected.

Clause alignment, and AEP Extraction The
next step in the training process is to identify
German/English clause pairs which are transla-
tions of each other. We first break each English
or German parse tree into a set of clauses; see
Appendix A for a description of how we iden-
tify clauses. We retain only those training ex-
amples where the English and German sentences
have the same number of clauses. For these re-
tained examples, define the English sentence to
contain the clause sequence〈e1, e2, . . . , en〉, and
the German sentence to contain the clause se-
quence〈g1, g2, . . . , gn〉. The clauses are ordered
according to the position of their main verbs in
the original sentence. We createn candidate pairs
〈(e1, g1), (e2, g2), . . . , (en, gn)〉 (i.e., force a one-
to-one correspondence between the two clause se-
quences). We then discard any clause pairs(e, g)
which are inconsistent with the NP/PP alignments
for that sentence.4

4A clause pair is inconsistent with the NP/PP alignments
if it contains an NP/PP on either the German or English side
which is aligned to another NP/PP which is not within the
clause pair.
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Note that this method is deliberately conserva-
tive (i.e., high precision, but lower recall), in that it
discards sentence pairs where the English/German
sentences have different numbers of clauses. In
practice, we have found that the method yields a
large number of training examples, and that these
training examples are of relatively high quality.
Future work may consider improved methods for
identifying clause pairs, for example methods that
make use of labeled training examples.

An AEP can then be extracted from each
clause pair. The EP for the English clause is
first extracted, giving values for all variables ex-
cept forSUBJECT, OBJECT, andMOD(1), . . . ,
MOD(n). The values for theSUBJECT, OBJECT,
andMOD(i) variables are derived from the align-
ments between NPs/PPs, and an alignment of
other clauses (ADVPs, ADJPs, etc.) derived from
GIZA++ alignments. If the English clause has a
subject or object which is not aligned to a German
modifier, then the value forSUBJECTor OBJECT
is taken to be the full English string.

5 The Model
5.1 Beam search and the perceptron

In this section we describe linear history-based
models with beam search, and the perceptron al-
gorithm for learning in these models. These meth-
ods will form the basis for our model that maps
German clauses to AEPs.

We have a training set ofn examples,(xi, yi)
for i = 1 . . . n, where eachxi is a German parse
tree, and eachyi is an AEP. We follow previous
work on history-based models, by representing
eachyi as a series ofN decisions〈d1, d2, . . . dN 〉.
In our approach,N will be a fixed number for any
inputx: we take theN decisions to correspond to
the sequence of variablesSTEM, SPINE, . . .,
MOD(1), MOD(2), . . ., MOD(n) described
in section 3. Eachdi is a member of a setDi
which specifies the set of allowable decisions at
the i’th point (for example,D2 would be the set
of all possible values forSPINE). We assume a
function ADVANCE(x, 〈d1, d2, . . . , di−1〉) which
maps an inputx together with a prefix of decisions
d1 . . . di−1 to a subset ofDi. ADVANCE is a func-
tion that specifies which decisions are allowable
for a past history〈d1, . . . , di−1〉 and an inputx. In
our case the ADVANCE function implements hard
constraints on AEPs (for example, the constraint
that theSUBJECTvariable must beNULL if no
subject position exists in theSPINE). For any in-

put x, a well-formeddecision sequence forx is a
sequence〈d1, . . . , dN 〉 such that fori = 1 . . . n,
di ∈ ADVANCE(x, 〈d1, . . . , di−1〉). We define
GEN(x) to be the set of all decision sequences (or
AEPs) which are well-formed forx.

The model that we will use is a
discriminatively-trained, feature-based model. A
significant advantage to feature-based mod-
els is their flexibility: it is very easy to
sensitize the model to dependencies in the
data by encoding new features. To define a
feature-based model, we assume a function
φ̄(x, 〈d1, . . . , di−1〉, di) ∈ Rd which maps a deci-
siondi in context(x, 〈d1, . . . , di−1〉) to a feature
vector. We also assume a vectorᾱ ∈ Rd of param-
eter values. We define thescorefor any partial or
complete decision sequencey = 〈d1, d2, . . . , dm〉
paired withx as:

SCORE(x, y) = Φ(x, y) · ᾱ (1)

where Φ(x, y) =
∑m
i=1 φ̄(x, 〈d1, . . . , di−1〉, di).

In particular, given the definitions above, the out-
put structureF (x) for an inputx is the highest–
scoring well–formed structure forx:

F (x) = arg max
y∈GEN(x)

SCORE(x, y) (2)

To decode with the model we use a beam-search
method. The method incrementally builds an AEP
in the decision orderd1, d2, . . . , dN . At each
point, a beam contains the topM highest–scoring
partial paths for the firstm decisions, whereM
is taken to be a fixed number. The score for any
partial path is defined in Eq. 1. The ADVANCE
function is used to specify the set of possible deci-
sions that can extend any given path in the beam.

To train the model, we use the averaged per-
ceptron algorithm described by Collins (2002).
This combination of the perceptron algorithm with
beam-search is similar to that described by Collins
and Roark (2004).5 The perceptron algorithm is a
convenient choice because it converges quickly —
usually taking only a few iterations over the train-
ing set (Collins, 2002; Collins and Roark, 2004).

5.2 The Features of the Model
The model’s features allow it to capture depen-
dencies between the AEP and the German clause,
as well as dependencies between different parts
of the AEP itself. The features included in̄φ

5Future work may consider alternative algorithms, such
as those described by Daumé and Marcu (2005).
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1 main verb
2 any verb in the clause
3 all verbs, in sequence
4 spine
5 tree
6 preterminal label of left-most child of subject
7 terminal label of left-most child of subject
8 suffix of terminal label of right-most child of subject
9 preterminal label of left-most child of object
10 terminal label of left-most child of object
11 suffix of terminal label of right-most child of object
12 preterminal label of the negation wordnicht (not)
13 is either of the stringses gibt(there is/are)

or es gab(there was/were) present?
14 complementizers and wh-words
15 labels of all wh-nonterminals
16 terminal labels of all wh-words
17 preterminal label of a verb in first position
18 terminal label of a verb in first position
19 terminal labels of all words in any relative pronoun

under a PP
20 are all of the verbs at the end?
21 nonterminal label of the root of the tree
22 terminal labels of all words constituting the subject
23 terminal labels of all words constituting the object
24 the leaves dominated by each node in the tree
25 each node in the context of a CFG rule
26 each node in the context of the RHS of a CFG rule
27 each node with its left and right sibling
28 the number of leaves dominated by each node

in the tree

Table 1: Functions of the German clause used for making
features in the AEP prediction model.

can consist of any function of the decision history
〈d1, . . . , di−1〉, the current decisiondi, or the Ger-
man clause. In defining features over AEP/clause
pairs, we make use of some basic functions which
look at the German clause and the AEP (see Ta-
bles 1 and 2). We use various combinations of
these basic functions in the prediction of each de-
cisiondi, as described below.

STEM: Features for the prediction ofSTEM
conjoin the value of this variable with each of the
functions in lines 1–13 of Table 1. For example,
one feature is the value ofSTEMconjoined with
the main verb of the German clause. In addition,
φ̄ includes features sensitive to the rank of a can-
didate stem in an externally-compiled lexicon.6

SPINE: Spine prediction features make use of
the values of the variablesSPINE andSTEMfrom
the AEP, as well as functions of the spine in lines
1–7 of Table 2, conjoined in various ways with
the functions in lines 4, 12, and 14–21 of Table 1.
Note that the functions in Table 2 allow us to look

6The lexicon is derived from GIZA++ and provides, for a
large number of German main verbs, a ranked list of possible
English translations.

1 does theSPINE have a subject?
2 does theSPINE have an object?
3 does theSPINE have any wh-words?
4 the labels of any complementizer nonterminals

in theSPINE
5 the labels of any wh-nonterminals in theSPINE
6 the nonterminal labelsSQor SBARQin theSPINE
7 the nonterminal label of the root of theSPINE
8 the grammatical category of the finite verbal form

INFL (i.e., infinitive, 1st-, 2nd-, or 3rd-person pres,
pres participle, sing past, plur past, past participle)

Table 2: Functions of the English AEP used for making fea-
tures in the AEP prediction model.

at substructure in the spine. For instance, one of
the features forSPINE is the labelSBARQor SQ,
if it exists in the candidate spine, conjoined with
a verbal preterminal label if there is a verb in the
first position of the German clause. This feature
captures the fact that German yes/no questions be-
gin with a verb in the first position.

VOICE: Voice features in general combine val-
ues ofVOICE, SPINE, andSTEM, with the func-
tions in lines 1–5, 22, and 23 of Table 1.

SUBJECT: Features used for subject prediction
make use of the AEP variablesVOICEandSTEM.
In addition, if the value ofSUBJECTis an index
i (see section 3), then̄φ looks at the nontermi-
nal label of the German node indexed byi as well
as the surrounding context in the German clausal
tree. Otherwise,̄φ looks at the value ofSUBJECT.
These basic features are combined with the func-
tions in lines 1, 3, and 24–27 of Table 1.

OBJECT: We make similar features to those for
the prediction ofSUBJECT. In addition, φ̄ can
look at the value predicted forSUBJECT.

WH: Features forWHlook at the values ofWH
andSPINE, conjoined with the functions in lines
1, 15, and 19 of Table 1.

MODALS: For the prediction ofMODALS, φ̄
looks atMODALS, SPINE, andSTEM, conjoined
with the functions in lines 2–5 and 12 of Table 1.

INFL: The features forINFL include the values
of INFL , MODALS, andSUBJECT, andVOICE,
and the function in line 8 of Table 2.

MOD(i): For the MOD(i) variables, φ̄ looks
at the value ofMODALS, SPINE and the current
MOD(i) , as well as the nonterminal label of the
root node of the German modifier being placed,
and the functions in lines 24 and 28 of Table 1.
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6 Deriving Full Translations

As we described in section 1.1, the translation of a
full German sentence proceeds in a series of steps:
a German parse tree is broken into a sequence of
clauses; each clause is individually translated; and
finally, the clause-level translations are combined
to form the translation for a full sentence. The first
and last steps are relatively straightforward. We
now show how the second step is achieved—i.e.,
how AEPs can be used to derive English clause
translations from German clauses.

We will again use the following translation
pair as an example:daß das haupthemmnis der
vorhersehbare widerstand der hersteller war./that
the main obstacle has been the predictable resis-
tance of manufacturers.

First, an AEP like the one at the top of Fig-
ure 2 is predicted. Then, for each German mod-
ifier which does not have the valuedeleted , an
English translation is predicted. In the example,
the modifiersdas haupthemmnisandder vorherse-
hbare widerstand der herstellerwould be trans-
lated tothe main obstacle, andthe predictable re-
sistance of manufacturers, respectively.

A number of methods could be used for trans-
lation of the modifiers. In this paper, we use the
phrase-based system of Koehn et al. (2003) to
generaten-best translations for each of the mod-
ifiers, and we then use a discriminative rerank-
ing algorithm (Bartlett et al., 2004) to choose be-
tween these modifiers. The features in the rerank-
ing model can be sensitive to various properties of
the candidate English translation, for example the
words, the part-of-speech sequence or the parse
tree for the string. The reranker can also take into
account the original German string. Finally, the
features can be sensitive to properties of the AEP,
such as the main verb or the position in which the
modifier appears (e.g., subject, object,pre-sub ,
post-verb , etc.) in the English clause. See
Appendix B for a full description of the features
used in the modifier translation model. Note that
the reranking stage allows us to filter translation
candidates which do not fit syntactically with the
position in the English tree. For example, we can
parse the members of then-best list, and then learn
a feature which strongly disprefers prepositional
phrases if the modifier appears in subject position.

Finally, the full string is predicted. In our
example, the AEP variablesSPINE, MODALS,
and INFL in Figure 2 give the ordering<that

SUBJECT has been OBJECT>. The AEP
and modifier translations would be combined
to give the final English string. In gen-
eral, any modifiers assigned topre-sub ,
post-sub , in-modals or post-verb are
placed in the corresponding position within the
spine. For example, the second AEP in Fig-
ure 2 has a spine with ordering<SUBJECT
are OBJECT>; modifiers 1 and 2 would be
placed in positionspre-sub andpost-verb ,
giving the ordering <MOD2 SUBJECT are
OBJECT MOD1>. Note that modifiers assigned
post-verb are placed after the object. If mul-
tiple modifiers appear in the same position (e.g.,
post-verb ), then they are placed in the order
seen in the original German clause.

7 Experiments
We applied the approach to translation from Ger-
man to English, using the Europarl corpus (Koehn,
2005) for our training data. This corpus contains
over 750,000 training sentences; we extracted over
441,000 training examples for the AEP model
from this corpus, using the method described in
section 4. We reserved 35,000 of these training
examples as development data for the model. We
used a set of features derived from the those de-
scribed in section 5.2. This set was optimized us-
ing the development data through experimentation
with several different feature subsets.

Modifiers within German clauses were trans-
lated using the phrase-based model of Koehn et
al. (2003). We first generatedn-best lists for each
modifier. We then built a reranking model—see
section 6—to choose between the elements in the
n-best lists. The reranker was trained using around
800 labeled examples from a development set.

The test data for the experiments consisted of
2,000 sentences, and was the same test set as that
used by Collins et al. (2005). We use the model
of Koehn et al. (2003) as a baseline for our ex-
periments. The AEP-driven model was used to
translate all test set sentences where all clauses
within the German parse tree contained at least
one verb and there was no embedding of clauses—
there were 1,335 sentences which met these crite-
ria. The remaining 665 sentences were translated
with the baseline system. This set of 2,000 trans-
lations had a BLEU score of 23.96. The baseline
system alone achieved a BLEU score of 25.26 on
the same set of 2,000 test sentences. We also ob-
tained judgments from two human annotators on
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100 randomly-drawn sentences on which the base-
line and AEP-based outputs differed. For each ex-
ample the annotator viewed the reference transla-
tion, together with the two systems’ translations
presented in a random order. Annotator 1 judged
62 translations to be equal in quality, 16 transla-
tions to be better under the AEP system, and 22
to be better for the baseline system. Annotator 2
judged 37 translations to be equal in quality, 32 to
be better under the baseline, and 31 to be better
under the AEP-based system.

8 Conclusions and Future Work
We have presented an approach to tree-to-
tree based translation which models a new
representation—aligned extended projections—
within a discriminative, feature-based framework.
Our model makes use of an explicit representation
of syntax in the target language, together with con-
straints on the alignments between source and tar-
get parse trees.

The current system presents many opportuni-
ties for future work. For example, improve-
ment in accuracy may come from a tighter in-
tegration of modifier translation into the over-
all translation process. The current method—
using ann-best reranking model to select the best
candidate—chooses each modifier independently
and then places it into the translation. We in-
tend to explore an alternative method that com-
bines finite-state machines representing then-best
output from the phrase-based system with finite-
state machines representing the complementiz-
ers, verbs, modals, and other substrings of the
translation derived from the AEP. Selecting mod-
ifiers using this representation would correspond
to searching the finite-state network for the most
likely path. A finite-state representation has many
advantages, including the ability to easily incorpo-
rate ann-gram language model.

Future work may also consider expanded defi-
nitions of AEPs. For example, we might consider
AEPs that include larger chunks of phrase struc-
ture, or we might consider AEPs that contain more
detailed information about the relative ordering of
modifiers. There is certainly room for improve-
ment in the accuracy with which AEPs are pre-
dicted in our data; the feature-driven approach al-
lows a wide range of features to be tested. For ex-
ample, it would be relatively easy to incorporate a
syntactic language model (i.e., a prior distribution
over AEP structures) induced from a large amount

of English monolingual data.

Appendix A: Identification of Clauses

In the English parse trees, we identify clauses as
follows. Any non-terminal labeled by the parser
of (Collins, 1999) asSBARor SBAR-A is labeled
as a clause root. Any node labeled by the parser as
S or S-A is also labeled as the root of a clause, un-
less it is directly dominated by a non-terminal la-
beledSBARor SBAR-A. Any node labeledSGor
SG-A by the parser is labeled as a clause root, un-
less (1) the node is directly dominated bySBARor
SBAR-A; or (2) the node is directly dominated by
a VP, and the node is directly preceded by a verb
(POS tag beginning withV) or modal (POS tag be-
ginning with M). Any node labeledVP is marked
as a clause root if (1) the node is not directly dom-
inated by aVP, S, S-A , SBAR, SBAR-A, SG, or
SG-A; or (2) the node is directly preceded by a
coordinating conjunction (i.e., a POS tag labeled
asCC).

In German parse trees, we identify any nodes
labeled asS or CS as clause roots. In addition,
we mark any node labeled asVP as a clause root,
provided that (1) it is preceded by a coordinating
conjunction, i.e., a POS tag labeled asKON; or (2)
it has one of the functional tags-mo, -re or -sb .

Appendix B: Reranking Modifier
Translations

Then-best reranking model for the translation of
modifiers considers a list of candidate translations.
We hand-labeled 800 examples, marking the ele-
ment in each list that would lead to the best trans-
lation. The features of then-best reranking algo-
rithm are combinations of the basic features in Ta-
bles 3 and 4.

Each list contained then-best translations pro-
duced by the phrase-based system of Koehn et al.
(2003). The lists also contained a supplementary
candidate “DELETED”, signifying that the mod-
ifier should be deleted from the English transla-
tion. In addition, each candidate derived from the
phrase-based system contributed one new candi-
date to the list signifying that the first word of
the candidate should be deleted. These additional
candidates were motivated by our observation that
the optimal candidate in then-best list produced
by the phrase-based system often included an un-
wanted preposition at the beginning of the string.
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1 candidate string
2 should the first word of the candidate be deleted?
3 POS tag of first word of candidate
4 POS tag of last word of candidate
5 top nonterminal of parse of candidate
6 modifier deleted from English translation?
7 first candidate onn-best list
8 first word of candidate
9 last word of candidate
10 rank of candidate inn-best list
11 is there punctuation at the beginning, middle,

or end of the string?
12 if the first word of the candidate should be deleted,

what is the string that is deleted?
13 if the first word of the candidate should be deleted,

what is the POS tag of the word that is deleted?

Table 3: Functions of the candidate modifier translations used
for making features in then-best reranking model.

1 the position of the modifier (0–4) in AEP
2 main verb
3 voice
4 subject prediction
5 German input string

Table 4: Functions of the German input string and predicted
AEP output used for making features in then-best reranking
model.
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M. Collins, P. Koehn, and I. Kŭcerov́a. 2005. Clause restruc-
turing for statistical machine translation.ACL 05.
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