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Abstract

This paper proposes a statistical, tree-
to-tree model for producing translations.
Two main contributions are as follows:
(1) a method for the extraction of syn-
tactic structures with alignment informa-
tion from a parallel corpus of translations,
and (2) use of a discriminative, feature-
based model for prediction of these target-
language syntactic structures—which we
call aligned extended projectionsor
AEPs. An evaluation of the method on
translation from German to English shows
similar performance to the phrase-based
model of Koehn et al. (2003).
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where the target-language parse tree is broken
down into a sequence of clauses, and each clause
is then translated separately. A central concept we
introduce in the translation of clauses is that of an
aligned extended projectiofAEP). AEPs are de-
rived from the concept of aaxtended projection
in lexicalized tree adjoining grammars (LTAG)
(Frank, 2002), with the addition of alignment in-
formation that is based on work in synchronous
LTAG (Shieber and Schabes, 1990). A key con-
tribution of this paper is a method for learning
to map German clauses to AEPs using a feature-
based model with a perceptron learning algorithm.
We performed experiments on translation from
German to English on the Europarl data set. Eval-
uation in terms of both BLEU scores and human
judgments shows that our system performs sim-
ilarly to the phrase-based model of Koehn et al.
003).

to statistical machine translation (SMT) have re-
cently achieved impressive results, leading to sig1.1 A Sketch of the Approach

nificant improvements in accuracy over the origi-rs section provides an overview of the transla-
nal IBM models (Brown et al., 1993). HOWeVer, yiqn hrocess. We will use the German sentenire
phrase-based models lack a direct representatiQflissen daf das haupthemmnis der vorhersehbare
of syntactic information in the source or target 1an-,ijerstand der hersteller waas a running exam-
guages; this has prompted several researchers fg, rqr this example we take the desired transla-
consider various approaches that make use of Syl 15 hewe know that the main obstacle has been
tactic information. the predictable resistance of manufacturers

This paper describes a framework fee-to-  rrapgjation of a German sentence proceeds in
tree based statistical translation. Our goal is toy,, following four steps:

learn a model that maps parse trees in the source

language to parse trees in the target Ianguagétep 1: The German sentence is parsed and then

The model is learned from a corpus of translaroken down into separate parse structures for a

tion pairs, where each sentence in the source gicduence of clauses. For example, the German ex-
target language has an associated parse tree. \RB'Plé above is broken into a parse structure for
see two major benefits of tree-to-tree based trandh® clausewir wissenfollowed by a parse struc-
lation. First, it is possible to explicitly model the turé for the subordinate clausfs . .war. Each

syntax of the target language, thereby improving°f these clauses is then translated separately, using
grammaticality. Second, we can build a detailed>t€PS 2—3 below.

model of the correspondence between the sourcgtep 2: An aligned extended projectiofAEP)

and target parse trees, with the aim of constructings predicted for each German clause. To illustrate

translations that preserve the meaning of sourcthis step, consider translation of the second Ger-

language sentences. man clause, which has the following parse struc-
Our translation framework involves a processture:
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s-oc kous-cp daR The main focus of this paper will be Step 2: the

np-stit] art das _ prediction of AEPs from German clauses. AEPs
nn haupthemmnis . . . .
np-pdzjart der are detailed structural objects, and their relation-
adja vorhersehbare ship to the source-language clause can be quite
gg_gédgrrfgaer:d complex. We use a discriminative feature-based
nn hersteller model, trained with the perceptron algorithm, to
vafin-hd war incrementally predict the AEP in a sequence of

Note that we use the symbdisand[2 to identify ~ Steps. At each step we define features that allow

the two modifiers (arguments or adjuncts) in thethe model to capture a wide variety of dependen-

C|ause, in this case a Subject and an Object. cies within the AEP itSEIf, or between the AEP and
A major part of the AEP is a parse-tree frag-the source-language clause.

ment, that is similar to a TAG elementary tree (see -
also Figure 2): 1.2 Motivation for the Approach

Our approach to tree-to-tree translation is mo-

>3 tivated by several observations. Breaking the

that N source-language tree into clauses (Step 1) consid-
NP/\VP erably simplifies the difficult problem of defining
V/\Vp an alignment between source and target trees. Our
s v We impression is that high-quality translations can be
baen produced in a clause-by-clause fashtohe use

Following the work of Frank (2002), we will refer 0f a feature-based model for AEP prediction (Step
to a structure like this as aextended projection 2) allows us to capture complex syntactic corre-
(EP). The EP encapsulates the core syntactic struéPondences between English and German, as well
ture in the English clause. It contains the main@s grammaticality constraints on the English side.
verbbeen as well as the function wordsat and In this paper, we implement the translation of
has It also contains a parse tree “spine” which hagnodifiers (Step 3) with the phrase-based system
the main vertbeenas one of its leaves, and has theof Koehn et al. (2003). The modifiers in our data
clause labeSBARas its root. In addition, it spec- setare generally small chunks of text such as NPs,
ifies positions for arguments in the clause—in thisPPs, and ADJPs, which by definition do not in-
case NPs corresponding to the subject and objecglude clauses or verbs. In our approach, we use
An AEP contains an EP, as well aignment the phrase-based system to generabest lists of
information about where the German modifiers candidate translations and then rerank the trans-
should be placed in the extended projection. Folations based on grammaticality, i.e., using crite-
example, the AEP in this case would contain theia that judge how well they fit the position in the
tree fragment shown above, together with an alignAEP. In future work, we might use finite state ma-
ment specifying that the modifiefg and[z from  chines in place of a reranking approach, or recur-
the German parse will appear in the EP as subje&ively apply the AEP approach to the modifiers.
and object, respectively. Stitching translated clauses back together (Step
4) is a relatively simple task: in a substantial ma-

Step 3: The German modifiers are translated. ity of the G | t embed
and placed in the appropriate positions within thed Oty Of cases, the iserman clauses are not embed-

AEP. For example, the modifiedas haupthemm- ded, but instead form a linear sequence that ac-
nis énd der vorhe’rsehbare widerstand der her- COUNts for the entire sentence. In these cases we

stellerwould be translated ahe main obstacle can simply concatenate the English clause trans-

and the predictable resistance of manufacturers lations to form the full translation. Embedded

respectively, and then placed into the subject anélaf[u.f(.as thngrfmalrt\ ?ri sllghtlybmgcrje gor:wplltcated,
object positions in the AEP. ut it is not difficult to form embedded structures

in the English translations.

Step 4: The individual clause translations are  gection 5.2 of this paper describes the features
combined to give a final translation. For example
the translationsve knowandthat the main obsta- 'Note that we do not assume that all of the translations

le has b Idb t ted to ai in the training data have been produced in a clause-by-clause
cle has been. . wou € concatenated 1o gives fashion. Rather, we assume that good translations for test

know that the main obstacle has been examples can be produced in this way.
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we use for AEP prediction in translation from P

German to English. Many of the features of the ~Fa vp IN 5

AEP prediction model are specifically tuned to the v sra that NP_A/\VP

choice of German and English as the source and know

target languages. However, it should be easy to wp \f /vp\
N has \Y NP-A

develop new feature sets to deal with other lan- 5 N \
guages or treebanking styles. We see this as on@le  onace e
of the strengths of the feature-based approach. Figure 1: Extended projections for the vetrmwandbeen

In the work presented in this paper, we focus onemd for the noumbstacle The EPs were t_aken from the parse

. . .tree for the sentend#fe know that the main obstacle has been

the prediction of clausal AEPs, i.e., AEPs assoCithe predictable resistance of manufactuters
ated with main verbs. One reason for this is that
clause structures are particularly rich and comtic information through reranking approaches ap-
plex from a syntactic perspective. This means thaplied to n-best output from phrase-based systems
there should be considerable potential in improv{Och et al., 2004). Another class of approaches
ing translation quality if we can accurately predicthas shown improvements in translation through re-
these structures. It also means that clause-lev@lrdering, where source language strings are parsed
AEPs are a good test-bed for the discriminativeand then reordered, in an attempt to recover a word
approach to AEP prediction; future work may con-order that is closer to the target language (Collins
sider applying these methods to other structurest al., 2005; Xia and McCord, 2004).
such as NPs, PPs, ADJPs, and so on. Our approach is closely related to previous
2  Related Work work on synchronous tree adjoining grammars

) . (Shieber and Schabes, 1990; Shieber, 2004), and
There has been a substantial amount of previo

K hes that mak f svntactic i e work on TAG approaches to syntax described
work-on approaches that make use of syntactic mby Frank (2002). A major departure from previous
formation in statistical machine translation. Wu

1997) and Alshawi (1996) d i | K work on synchronous TAGs is in our use of a dis-
( ) and Alshawi ( ) describe early wor ONcriminative model that incrementally predicts the

formalisms that make use of transductive 9ram; - formation in the AEP. Note also that our model

mdar?; (:[;ra_ehl atnd Iinlghg (2004)'\26|scr|bg r;géz ay include features that take into account any
ods for training tree transducers. Melamed ( art of the German clause.

establishes a theoretical framework for general-

ized synchronous parsing and translation. EisneB A Translation Architecture Based on

(2003) discusses methods for learning synchro- Aligned Extended Projections
nized elementary tree pairs from a parallel corpus

of parsed sentences. Chiang (2005) has recentfyL Background: Extended Projections (EPs)
shown significant improvements in translation acExtended projections (EPs) play a crucial role in
curacy, using synchronous grammars. Riezler anthe lexicalized tree adjoining grammar (LTAG)
Maxwell (2006) describe a method for learning(Joshi, 1985) approach to syntax described by
a probabilistic model that maps LFG parse strucfrank (2002). In this paper we focus almost ex-
tures in German into LFG parse structures in Enclusively on extended projections associated with
glish. main verbs; note, however, that EPs are typically
Yamada and Knight (2001) and Galley et al.associated with all content words (nouns, adjec-
(2004) describe methods that make use of syrtives, etc.). As an example, a parse tree for the
tactic information in the target language alone;sentenceve know that the main obstacle has been
Quirk et al. (2005) describe similar methods thatthe predictable resistance of manufacturessuld
make use of dependency representations. Syntagiake use of EPs for the wordg, know, main, ob-
tic parsers in the target language have been useatacle, been, predictable, resistanaadmanufac-
as language models in translation, giving someurers. Function words (in this sententeat, the,
improvement in accuracy (Charniak et al., 2001)has andof) do not have EPs; instead, as we de-
The work of Gildea (2003) involves methods thatscribe shortly, each function word is incorporated
make use of syntactic information in both thein an EP of some content word.
source and target languages. Figure 1 has examples of EPs. Each one is
Other work has attempted to incorporate syntacan LTAG elementary tree which contains a sin-
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gle content word as one of its leaves. SubstitutiotSBUBJECT: This variable can be one of three
nodes (such allP-A or SBAR-A) in the elemen- types. If there is no subject position in t8B®INE
tary trees specify the positions of arguments of thevariable, then the value fd(BUBJECTis NULL
content words. Each EP may contain one or mor®therwise, SUBJECTcan either be a string, for
function words that are associated with the conexamplethere3 or an index of one of the modi-
tent word. For verbs, these function words includefiers in the German clause.

items such as modal verbs and auxiliaries (€.90gJECT  This variable is similar {SUBJECT
should and has; complementizers (e.g.that_); and can also take three typeSIULL, a specific
and Wh—words (e.g.wmch). For nouns,_f_uncnon string, or an index of one of the German modi-
words include determiners and _preposmons. fiers. It is alwaySNULL f there is no object posi-
Elementary trees corresponding to EPs form theg, i, theSPINE; it can never be a modifier index

basic units in the LTAG approach described bythat has already been assigneGtdBIECT
Frank (2002). They are combined to form a full

parse tree for a sentence using the TAG operationd/H:  This variable is alway8IULLIf there is no

of substitution and adjunction. For example, theVh-phrase position within th8PINE; itis always

EP forbeenin Figure 1 can be substituted into the @ NON-€Mpty string (such aehich, orin which) if
SBAR-A position in the EP foknow the EP for & wh-phrase position does exist.

obstaclecan be substituted into the subject posi-MODALS: This is a string of verbs that consti-
tion of the EP fobeen tute the modals that appear within the clause. We
3.2 Aligned Extended Projections (AEPS) useNULLto signify an absence of modals.

We now build on the idea of extended projections\EL:  The inflected form of the verb.

to give a detailed description of AEPs. Figure 2 _ . _

shows examples of German clauses paired with thMOD('): There are n modifier variables
AEPs found in training datd.The German clause _MOD(I)’ M_OD(Z)’ .--» MOD(n) that spec-

is assumed to have(wheren > 0) modifiers. For ify the positions for Ge_rman arguments that have
example, the first German parse in Figure 2 had°t already _b_een §155|gned .to tB&JBJECTQr
two arguments, indexed asand2. Each of these OBJE_CTposmons in the'spme. _Each variable
modifiers must either have a translation in the cor-MOD(') can take one of five possible values:
responding English clause, or must be deleted.

! X e null : This value is chosen if and only if
An AEP consists of the following parts:

the modifier has already been assigned to the
STEM: A string specifying the stemmed form subject or object position.

of the main verb in the clause. e deleted : This means that a translation of

SPINE: A syntactic structure associated with thei'th German modifier is not present in the
the main verb. The structure has the symkol English clause.

as one of its leaf nodes; this is the position of
the main verb. It includes higher projections of
the verb such as VPs, Ss, and SBARs. It also in-
cludes leaf nodeBIP-A in positions correspond-
ing to noun-phrase arguments (e.g., the subject e post-sub : The modifier appears after the
or object) of the main verb. In addition, it may subject of the English clause, but before the
contain leaf nodes labeled with categories such  modals.

asWHNRr WHADVRvhere a wh-phrase may be
placed. It may include leaf nodes corresponding
to one or more complementizers (common exam-
ples beinghat, if, so that and so on).

e pre-sub : The modifier appears after any
complementizers or wh-phrases, but before
the subject of the English clause.

e in-modals : The modifier appears after the
first modal in the sequence of modals, but be-
fore the second modal or the main verb.

e post-verb : The modifier appears some-

VOICE: One of two alternativesactive or )
where after the main verb.

passive , specifying the voice of the main verb.
Note that in this paper we consider translation from Ger-  3This happens in the case where there exists a subject in
man to English; in the remainder of the paper we takglish ~ the English clause which is not aligned to a modifier in the

to be synonymous with the target language in translation an@erman clause. See, for instance, the second example in Fig-
Germanto be synonymous with the source language. ure 2.
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4 Extracting AEPs from a Corpus

[ German Clause [ English AEP A crucial step in our approach is the extraction
STEM: be of training examples from a translation corpus.
. dar SPINE: Each training example consists of a German clause
s-oc kous-cp dal SBAR-A IN that i i i i
np-sli] art das SNPA paired with an !Engllsh AEP (see Figure 2).
nn haupthemmnis VPV In our experiments, we used the Europarl cor-
”p'p@:&g%rhersehbam NP-A pus (Koehn, 2005). For each sentence pair from
nn widerstand | . this data, we used a version of the German parser
np-ag art der \S/SLEI'EE'CT, C“Ve described by Dubey (2005) to parse the German
vafinhdwar hersteller| JeiEcT m component, and a version of the English parser
WH: NULL described by Collins (1999) to parse the English
Paraphrase:that [np-sb the | MODALS: has
main obstacle] [np-pd the | |NFL: been component. To extract AEPs, we perform the fol-
predictable resistance of man-| MoOD1: null lowing steps:
ufacturers] was MOD2: null
NP and PP Alignment To align NPs and PPs,
i first all German and English nouns, personal
S pp-mad appr zwischen ) . ..
piat beiden STEM: be and possessive pronouns, numbers, and adjectives
nn gesetzen gﬁ’\:gi are identified in each sentence and aligned using
vvfin-hd bestehen . i
adv-maz also VPV GIZA++ (Och and Ney, 2003). Next, each NP in
np-siiE] adja erhebliche NP-A an English tree is aligned to an NP or PP in the
gdia rechtliche corresponding German tree in a way thatassis-

' VOICE: active ; _ali ; ; i
adja praktische SUBJECT: “there” tentwith the Wo.rd alignment |nformat|on. That is,
kon und OBJECT: the words dominated by the English node must be
adja wirtschaftliche | WH: NULL aligned only to words dominated by the German

nn unterschiede
Paraphrase:[pp-mo between

legal, practical and economic
differences]

MODALS: NULL
INFL: are

ne tschernobyl
vvpp-hd ge#indet

STEM: release

SUBJECT: NULL
OBJECT: NULL

node, and vice versa. Note that if there is more

the wo pieces of legislation] | MOD1:  post-verb than one German node that is consistent, then the
exist so [np-sb significant mggg- pre“-sub one rooted at the minimal subtree is selected.
. nu

Clause alignment, and AEP Extraction The
next step in the training process is to identify
German/English clause pairs which are transla-

X <h di SPINE: : s :

s rc\f’ge;;_fﬁzppr an SBAR WHNP tions of each other. We first break each English
pdat jenem SG-AVPYV or German parse tree into a set of clauses; see
nn tag Appendix A for a description of how we iden-

pp-ma2] apprin VOICE: passive

tify clauses. We retain only those training ex-
amples where the English and German sentences

vafin-hd wurde WH: which have the same number of clauses. For these re-
Paraphrasewhich [pp-mo on | MODALS: was tained examples, define the English sentence to
that day] [pp-mo in cher- :\TF:Sl- releasedb contain the clause sequengsg, e en), and
nobyl] released were OD1:  post-ver 172y s B
MOD2:  post-verb the German sentence to contain the clause se-

quence(gi, g2, - --,9n). The clauses are ordered
Figure 2: Three examples of German parse trees, togeth@ccording to the position of their main verbs in
W|th the|r al|gned e.Xtended prOJeCthnS (AEPS) n the traln-the Orlglnal Sentence We Creat&andldate palrs

ing data. Note that in the second example the correspondeng@ . f

between the German clause and its English translation is not\€15 g1), (e2,92), - - -, (en, gn)) (i-e., force a one-
entirely direct. The subject in the English is the expletiveto-one correspondence between the two clause se-

there the subject in the German clause becomes the obje i ;
in English. This is a typical pattern for the German verbcéluences)' We then discard any clause p(&l@)

bestehen The German PRwischen ...appears at the start Which are inconsistent with the NP/PP alignments
of the clause in German, but is post-verbal in the Englishfor that sentencé.
The modifieralso—whose English translation g&—is in an

intermediate position in the German clause, butappearsinthe 4, 5 <o pair is inconsistent with the NP/PP alignments
pre-subject position in the English clause.

if it contains an NP/PP on either the German or English side
which is aligned to another NP/PP which is not within the
clause pair.
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Note that this method is deliberately conservaput z, a well-formeddecision sequence faris a
tive (i.e., high precision, but lower recall), in that it sequencédy,...,dy) such that fori = 1...n,
discards sentence pairs where the English/Germaiy € ADVANCE (z, (di,...,d;—1)). We define
sentences have different numbers of clauses. IBEN(x) to be the set of all decision sequences (or
practice, we have found that the method yields sAEPs) which are well-formed for.
large number of training examples, and that these The model that we will use is a
training examples are of relatively high quality. discriminatively-trained, feature-based model. A
Future work may consider improved methods forsignificant advantage to feature-based mod-
identifying clause pairs, for example methods thakls is their flexibility: it is very easy to
make use of labeled training examples. sensitize the model to dependencies in the

An AEP can then be extracted from eachdata by encoding new features. To define a
clause pair. The EP for the English clause ideature-based model, we assume a function
first extracted, giving values for all variables ex-¢(z, (d1,...,d;_1),d;) € R? which maps a deci-
cept forSUBJECT OBJECT andMOD(1), ..., siond; in context(x, (d1,...,d;—1)) to afeature
MOD(n). The values for th€UBJECTOBJECT vector We also assume a vect@rc R? of param-
andMOD(i) variables are derived from the align- eter values. We define tteeorefor any partial or
ments between NPs/PPs, and an alignment afomplete decision sequenge= (di,ds, ..., dn,)
other clauses (ADVPs, ADJPs, etc.) derived frompaired withz as:

GIZA++ alignments. If the English clause has a
subject or object which is not aligned to a German SCOREz,y) = ®(z,y) - & ()
modifier, then the value f@dUBJECTor OBJECT

is taken to be the full English string. where &(z,y) = 32, (@, {di,. -, diz), di).

In particular, given the definitions above, the out-
5 The Model put structureF () for an inputz is the highest—
5.1 Beam search and the perceptron scoring well-formed structure far.

In this section we describe linear history-based _
models with beam search, and the perceptron al- F(z) = arg yeé?éf\‘,(x) SCOREz,y) ()

gorithm for learning in these models. These meth- _
ods will form the basis for our model that maps T0 decode with the model we use a beam-search

German clauses to AEPs. method. The method incrementally builds an AEP

We have a training set of examples(z;, ;) in the decision ordeil;,ds,...,dy. At each
fori = 1...n, where each; is a German parse point, a beam contains the tdg highest—scoring
tree, and eachy, is an AEP. We follow previous partial paths for the firstn decisions, wheré\/
work on history-based models, by representinds taken to be a fixed number. The score for any
eachy; as a series aV decisions(d;, da, . .. dx ). partial path is defined in Eq. 1. The ADVANCE
In our approachlN will be a fixed number for any function is used to specify the set of possible deci-
inputz: we take theV decisions to correspond to sions that can extend any given path in the beam.
the sequence of variabl&EM, SPINE, ..., To train the model, we use the averaged per-
MOD(1), MOD(2), ..., MOD(n) described Ceptron algorithm described by Collins (2002).
in section 3. Eachl; is a member of a seb; This combination of the perceptron algorithm with
which specifies the set of allowable decisions apeam-search is similar to that described by Collins
the i'th point (for example D, would be the set and Roark (2004). The perceptron algorithm is a
of all possible values foSPINE). We assume a convenient choice because it converges quickly —
function ADVANCE(z, (dy, ds, . . ., d;_1)) which usually taking only a few iterations over the train-
maps an input: together with a prefix of decisions ng set (Collins, 2002; Collins and Roark, 2004).
dy...d;—1toasubsetoD,. ADVANCE isafunc- 5.2 The Features of the Model
tion that specifies which decisions are allowableThe model's features allow it to capture depen-
for a past history(dy, .. .,d; 1) and an input:. In dencies between the AEP and the German clause,
our case the ADVANCE function implements hardas well as dependencies between different parts
constraints on AEPs (for example, the constrain®f the AEP itself. The features included in
that theSUBJECTvariable must beNULL if no mk may consider alternative algorithms, such
subject position exists in thiBPINE). For any in-  as those described by Daérand Marcu (2005).
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1 | mainverb 1 | does theSPINE have a subject?
2 | any verb in the clause 2 | does theSPINE have an object?
3 | all verbs, in sequence 3 | does theSPINE have any wh-words?
4 | spine 4 | the labels of any complementizer nonterminals
5 | tree in the SPINE
6 | preterminal label of left-most child of subject 5 | the labels of any wh-nonterminals in t8&INE
7 | terminallabel of left-most child of subject 6 | the nonterminal labelSQor SBARQnN the SPINE
8 | suffix of terminal label of right-most child of subject | 7 | the nonterminal label of the root of tf&PINE
9 | preterminal label of left-most child of object 8 | the grammatical category of the finite verbal form
10 | terminal label of left-most child of object INFL (i.e., infinitive, 1st-, 2nd-, or 3rd-person pres,
11 | suffix of terminal label of right-most child of object pres participle, sing past, plur past, past participle)
12 | preterminal label of the negation wonitht (nof) Table 2: Functions of the English AEP used for making fea-
13 | is either of the stringss gibt(there is/arg tures in the AEP prediction model.
or es gah(there was/werepresent?
14 | complementizers and wh-words
15 | Tabels of all wh-nonterminals at substructure in the spine. For instance, one of
16 | terminal labels of all wh-words the features foBPINE is the labelSBARQr SQ

17 | preterminal label of a verb in first position s . . . . . .
18 | terminal label of a verb in first position if it exists in the candidate spine, conjoined with

19 | terminal labels of all words in any relative pronoun @ verbal preterminal label if there is a verb in the
under a PP first position of the German clause. This feature

20 | are all of the verbs at the end? .
>T T nonterminal label of the oot of the Tree captures the fact that German yes/no questions be-

22 | terminal labels of all words constituting the subject  9in with a verb in the first position.
23 | terminal labels of all words constituting the object

24 | the leaves dominated by each node in the tree VOICE: \oice features in general combine val-

25 | each node in the context of a CFG rule ; _

26 | each node in the context of the RHS of a CFG rul¢ qes O.NC.)ICE’ SPINE, andSTEM with the func

27 | each node with its left and right sibling tions in lines 1-5, 22, and 23 of Table 1.

28 | the number of leaves dominated by each node ] o

in the tree SUBJECT: Features used for subject prediction

Table 1: Functions of the German clause used for makingnake use of the AEP variabl®#OICEandSTEM
features in the AEP prediction model. In addition, if the value 0SUBJECTis an index

i (see section 3), then looks at the nontermi-
nal label of the German node indexeddgs well

can consist of any function of the decision history H gi i the G | |
(d1,....d; 1), the current decisiod;, or the Ger- as the surrounding context in the German clausa

man clause. In defining features over AEP/claus& €€ Otherwisep looks at the value BUBJECT

pairs, we make use of some basic functions whicl:lrhese basic features are combined with the func-

look at the German clause and the AEP (see Taions inlines 1, 3, and 24-27 of Table 1.

bles 1 and 2). We use various combinations 0f5gjECT:  We make similar features to those for
these basic functions in the prediction of each defhe prediction ofSUBJECT In addition, & can
cisiond;, as described below. look at the value predicted f@UBJECT

STEM: Features for the prediction oc8TEM

conjoin the value of this variable with each of the
functions in lines 1-13 of Table 1. For example,
one feature is the value &TEMconjoined with 1,15, and 19 of Table 1.

the main verb of the German clause. In additionMODAL5: For the prediction Oﬂ\/IODALS(E

¢_includes fgatures sensitive to th_e rank .of a Canyoks atMODALSSPINE, and STEM conjoined
didate stem in an externally-compiled lexicdn. \yith the functions in lines 2—5 and 12 of Table 1.

SPINE: Spine prediction features make use of .
INFL: The features folNFL include the values

the values of the variabl&PINE andSTEMfrom
the AEP, as well as functions of the spine in IinesOf INFL , MODALSand SUBJECT andVOICE,

1-7 of Table 2, conjoined in various ways with and the function in line 8 of Table 2.
the functions in lines 4, 12, and 14-21 of Table 1MmOD(): For the MOD(i) variables, & looks

Note that the functions in Table 2 allow us to look at the value oMODALSSPINE and the current
6The lexicon is derived from GIZA++ and provides, fora MOD(i) , as well as the nonterminal label of the

large number of German main verbs, a ranked list of possiblgoot node of the German modifier being placed,

English translations. and the functions in lines 24 and 28 of Table 1.

WH: Features foWWHIook at the values o¥WH
andSPINE, conjoined with the functions in lines
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6 Deriving Full Translations SUBJECT has been OBJECT> The AEP

As we described in section 1.1, the translation of e{‘md modifier translations would be combined

full German sentence proceeds in a series ofstepg? give the final English string. In gen-

a German parse tree is broken into a sequence S{al’ any rpodlflers assigned tpre-sub ,
clauses; each clause isindividuallytranslated;anHOSt'Sup , in-modals or post—_\{erb _are
finally, the clause-level translations are combine(PIa_meOI in the corresponding position W'th'n the
to form the translation for a full sentence. The first>P'"€: For example, f[he seco_nd AEP In Fig-
and last steps are relatively straightforward. W ure 2 has a spine with orderingSUBJECT
now show how the second step is achieved— edr® OBJECT>; modifiers 1 and 2 would be

how AEPs can be used to derive English clausé)l‘r’lceoI mh p05|t|((j)n$)re Sl;AbODan;F:JCJBSSEEY_:_J '
translations from German clauses. gving the ordering < are

>
We will again use the following translation OBJECT MOD1>Note that modifiers assigned

pair as an exampleda das haupthemmnis der post-verb  are placed after the object. If mul-

: tiple modifiers appear in the same position (e.
vorhersehbare widerstand der hersteller vithiat 'P M P ! position (e.g.,

: . ost-verb then they are placed in the order
the main obstacle has been the predictable resi sp ) y P
seen in the original German clause.
tance of manufacturers.

First, an AEP like the one at the top of Fig- 7 EXxperiments
ure 2 is predicted. Then, for each German modwe applied the approach to translation from Ger-
ifier which does not have the valgeleted ,an manto English, using the Europarl corpus (Koehn,
English translation is predicted. In the example2005) for our training data. This corpus contains
the modifierglas haupthemmnandder vorherse-  over 750,000 training sentences; we extracted over
hbare widerstand der herstellewould be trans- 441,000 training examples for the AEP model
lated tothe main obstacleandthe predictable re-  from this corpus, using the method described in
sistance of manufacturersespectively. section 4. We reserved 35,000 of these training

A number of methods could be used for trans-examples as development data for the model. We
lation of the modifiers. In this paper, we use theused a set of features derived from the those de-
phrase-based system of Koehn et al. (2003) tscribed in section 5.2. This set was optimized us-
generaten-best translations for each of the mod-ing the development data through experimentation
ifiers, and we then use a discriminative rerankwith several different feature subsets.
ing algorithm (Bartlett et al., 2004) to choose be- Modifiers within German clauses were trans-
tween these modifiers. The features in the rerankated using the phrase-based model of Koehn et
ing model can be sensitive to various properties ofl. (2003). We first generatedbest lists for each
the candidate English translation, for example thenodifier. We then built a reranking model—see
words, the part-of-speech sequence or the parsction 6—to choose between the elements in the
tree for the string. The reranker can also take inta:-best lists. The reranker was trained using around
account the original German string. Finally, the800 labeled examples from a development set.
features can be sensitive to properties of the AEP, The test data for the experiments consisted of
such as the main verb or the position in which the, 000 sentences, and was the same test set as that
modifier appears (e.g., subject, objgmg-sub , used by Collins et al. (2005). We use the model
post-verb , etc.) in the English clause. See of Koehn et al. (2003) as a baseline for our ex-
Appendix B for a full description of the features periments. The AEP-driven model was used to
used in the modifier translation model. Note thatranslate all test set sentences where all clauses
the reranking stage allows us to filter translationyithin the German parse tree contained at least
candidates which do not fit syntactically with the one verb and there was no embedding of clauses—
position in the English tree. For example, we carnthere were 1,335 sentences which met these crite-
parse the members of thebest list, and then learn ria. The remaining 665 sentences were translated
a feature which strongly disprefers prepositionalyith the baseline system. This set of 2,000 trans-
phrases if the modifier appears in subject positioniations had a BLEU score of 23.96. The baseline

Finally, the full string is predicted. In our system alone achieved a BLEU score of 25.26 on
example, the AEP variableSPINE, MODALS the same set of 2,000 test sentences. We also ob-
andINFL in Figure 2 give the orderingthat tained judgments from two human annotators on
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100 randomly-drawn sentences on which the basesf English monolingual data.
line and AEP-based outputs differed. For each ex- _ o
ample the annotator viewed the reference translgdppendix A: Identification of Clauses

tion, together with the two systems’ translationsIn the English parse trees, we identify clauses as
presented in a random order. Annotator 1 judgeq ’

. . . llows. Any non-terminal label th rser
62 translations to be equal in quality, 16 transla—0 ows y non-te al labeled by the parse

tions to be better under the AEP system, and 2£f (Collins, 1999) asSBARor SBAR-AIs labeled
s a clause root. Any node labeled by the parser as

to be better for the baseline system. Annotator % .
‘udaed 37 translations to be equal in quality. 32 t or S-A is also labeled as the root of a clause, un-
judg q 9 Y, Yessitis directly dominated by a non-terminal la-

be better under the baseline, and 31 to be bett%reledSBARorSBAR—A Any node labele@Gor
under the AEP-based system.

SG-A by the parser is labeled as a clause root, un-
8 Conclusions and Future Work less (1) the node is directly dominated BBARor

We have presented an approach to tree-toSBAR-A or (2) the node is directly dominated by
tree based translation which models a newd VP, and the node is directly preceded by a verb
representation—aligned extended projections—(POS tag beginning witkl) or modal (POS tag be-
within a discriminative, feature-based framework.ginning with M. Any node labeled/P is marked
Our model makes use of an explicit representatio@®s & clause root if (1) the node is not directly dom-
of syntax in the target language, together with coninated by avP, S, S-A, SBAR SBAR-A, SG or

straints on the alignments between source and taBfG-A; or (2) the node is directly preceded by a
get parse trees. coordinating conjunction (i.e., a POS tag labeled

The current system presents many opportuni@SCO- -
ties for future work. For example, improve- In German parse trees, we identify any nodes
ment in accuracy may come from a tighter in-labeled asS or CS as clause roots. In addition,

tegration of modifier translation into the over- W& mark any node labeled & as a clause root,
all translation process. The current method—Provided that (1) it is preceded by a coordinating
using ame-best reranking model to select the bestconjunction, i.e., a POS tag labeledk@N or (2)
candidate—chooses each modifier independentl§ has one of the functional tagso, -re or-sb .
and then places it into the translation. We in-
tend to explore an alternative method that com
bines finite-state machines representingrthzest
output from the phrase-based system with finiteThe ,_pest reranking model for the translation of
state machines representing the complementizyqgifiers considers a list of candidate translations.
ers, verbs, modals, and other substrings of thye hand-labeled 800 examples, marking the ele-
translation derived from the AEP. Selecting mod-ment in each list that would lead to the best trans-
ifiers using this representation would corresponqyiion. The features of the-best reranking algo-
to searching the finite-state network for the mosfithm are combinations of the basic features in Ta-
likely path. A finite-state representation has many,|es 3 and 4.
advantages, including the ability to easily incorpo-  £5¢h Jist contained the-best translations pro-
rate am-gram language model. duced by the phrase-based system of Koehn et al.
Future work may also consider expanded defi{2003). The lists also contained a supplementary
nitions of AEPs. For example, we might considercandidate “DELETED”, signifying that the mod-
AEPs that include larger chunks of phrase strucifier should be deleted from the English transla-
ture, or we might consider AEPs that contain more;jon. In addition, each candidate derived from the
detailed information about the relative ordering ofphrase-based system contributed one new candi-
modifiers. There is certainly room for improve- gate to the list signifying that the first word of
ment in the accuracy with which AEPs are pre-the candidate should be deleted. These additional
dicted in our data; the feature-driven approach alzandidates were motivated by our observation that
lows a wide range of features to be tested. For exthe optimal candidate in the-best list produced
ample, it would be relatively easy to incorporate apy the phrase-based system often included an un-

syntactic language model (i.e., a prior distributionyanted preposition at the beginning of the string.
over AEP structures) induced from a large amount

Appendix B: Reranking Modifier
Translations
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1 | candidate string _ , M. Collins, P. Koehn, and I. Kierowa. 2005. Clause restruc-
2 | should the f|_rst word of the ca_mdldate be deleted? turing for statistical machine translatioACL 05
3 | POS tag of first word of candidate
4 | POS tag of last word of candidate H. Daunt Ill and D. Marcu. 2005. Learning as search op-
5 | top nonterminal of parse of candidate timization: approximate large margin methods for struc-
6 | modifier deleted from English translation? tured prediction]CML 05.
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Table 3: Functions of the candidate modifier translations use(E)
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translation.ACL 03
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