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Abstract

Surface realisation from flat semantic for-
mulae is known to be exponential in the
length of the input. In this paper, we argue
that TAG naturally supports the integration
of three main ways of reducing complex-
ity: polarity filtering, delayed adjunction
and empty semantic items elimination. We
support these claims by presenting some
preliminary results of the TAG-based sur-
face realiserGenI.

1 Introduction

Surface realisation consists in producing all the
sentences associated by a grammar with a given
semantic formula. For lexicalist grammars such
as LTAG (Lexicalised Tree Adjoining Grammar),
surface realisation usually proceeds bottom-up
from a set of flat semantic literals1. However,
surface realisation from flat semantic formulae is
known to be exponential in the length of the input
(Kay96; Bre92; KS02). In this paper, we abstract
from the TAG based surface realiser for French
GenI, (GK05) and argue that TAG naturally sup-
ports the integration of various proposals made to
help reduce either surface realisation or parsing
complexity into a TAG based, lexically driven sur-
face realiser. Specifically, we show:

1. that TAG elementary trees naturally support
the implementation of a technique calledpo-
larity filtering used to reduce the exponen-
tial factor introduced bylexical ambiguity
(Per03),

1See e.g., (CCFP99) for a discussion summarising the rea-
sons for this choice.

2. that TAG two operations of substitution and
adjunction provides a natural framework for
implementing a delayed adjunction mecha-
nism capable of reducing the complexity due
to thelack of ordering informationand

3. that TAG extended domain of locality helps
reduce the potential complexity increment in-
troduced bysemantically empty itemssuch as
infinitival “to” or complementiser“that” .

2 Surface realisation, flat semantics and
computational complexity

Why is surface realisation exponential in the
length of the input? As shown in (Kay96), one
reason for this is thelack of ordering information.
Contrary to parsing where the input is a string i.e.,
an ordered list of words, the input to surface re-
alisation is a set of literals. Supposing each lit-
eral selects exactly one constituent in the lexicon,
then the number of possible combinations between
these constituents will be 2n (the number of sub-
sets obtainable from a set of sizen).

In practice of course, there are possible restric-
tions on constituent combination. In particular,
most existing realisers impose the constraint that
only constituents with non overlapping semantics
and compatible indices can be combined. Be-
cause of this restriction, the core of the complex-
ity stems in practice fromintersective modifiers
(Bre92; Kay96). Given a set ofn modifiers all
modifying the same structure, all possible inter-
mediate structures will be constructed i.e. 2n+1.

A second reason for the exponential complexity
of surface realisation islexical ambiguity. As for
bottom-up parsing, in surface realisation from flat
semantics, the input is used to select a set of lexi-
cal entries namely all lexical entries whose seman-
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tics subsumes one or more of the input literals. In
a realistic grammar, one literal will be associated
with more than one lexical entries. So ifLexi is the
number of lexical entries associated with literalli,
then for an input semantics comprisingn literals,
the number of sets of lexical constituents covering
the input semantics is:

∏
i=n

i=1
Lexi

The two sources of complexity interact by mul-
tiplying out so that the potential number of combi-
nations of constituents is:

2n ×
i=n∏

i=1

Lexi

In what follows, we show that TAG naturally
supports various optimisations that have been pro-
posed to reduce the search space.

3 Polarity filtering

To restrict the impact of lexical ambiguity on pars-
ing efficiency, (Per03) introduces a method called
Polarity filtering. This method is based on the ob-
servation that many of the combinations of lexi-
cal entries which cover the input semantics are in
fact syntactically invalid either because a syntactic
requirement is not fulfilled or because a syntactic
resource is not used. Accordingly, polarity based
filtering eliminates such combinations by:

• assigning each lexical entry with a set of po-
larities reflecting its syntactic requirements
and resources,

• computing for each possible combination of
lexical entries the sum of its polarities and

• only allowing surface realisation on combi-
nations which have a net sum of zero (all re-
quirements are satisfied and all resources are
used).

By filtering the initial search space before the
tree combination phase, polarity filtering in effect
reduces the impact of lexical ambiguity i.e. de-
creases

∏
i=n

i=1
Lexi.

The definitory properties of TAG elementary
trees provide a natural way to assign polarities to
a TAG lexical entries: each elementary tree can be
associated with a polarity+C, whereC is the cat-
egory of its root node and each substitution or foot
node in that tree, a polarity−C is added, whereC
is the category of that node.

We implemented polarity filtering inGenI
based on this way of associating lexical entries
with polarities2. We then measured the impact of
this filtering on the initial search space (the num-
ber of sets of lexical items actually explored by
the realiser), on space (measured by the number
of chart items created) and on time.

Table 1 summarises the impact of polarity fil-
tering on the initial search space3. possibleindi-
cates the number of combinations of lexical entries
which cover the input semantics and thus can po-
tentially lead to a valid syntactic tree realising the
input semantics andexplored gives the number of
combinations actually explored by the surface re-
aliser after polarity filtering has ruled out combi-
nations which cannot possibly lead to a valid syn-
tactic tree).

As is to be expected, the impact increases with
the number of input literals so that while polarity
filtering divides the initial search space by 35.6 for
an input ranging between 1 and 6 literals, it divides
it by 441.6 for an input size ranging between 14
and 16 literals

literals possible explored (×)

1-6 199.10 5.60 35.6
7-9 6460.88 40.06 161.3

10-13 43028.25 137.06 313.9
14-16 292747.64 662.91 441.6

Figure 1: Polarity filtering and initial space
(Sets of initial trees covering the input semantics)

Table 2 gives the impact of polarity filtering on
space as measured by the number of created chart
items (or constituents). The first column (w/o pol.)
gives the number of created charted items when
polarity filtering is switched off and the second,
(with pol.) when polarity filtering is on. As can
be seen, the effect is particularly pronounced when
the input exceeds 10 literals.

Finally, Figure 3 shows that the overhead intro-
duced by the construction of the polarity automa-
ton means that formulae under 10 literals are re-
alised in roughly the same time with or without po-
larity filtering. However, for larger sentences, po-
larity filtering is increasingly important in keeping
realisation times reasonable. For instance, given
an input ranging between 14 and 16 literals, polar-

2See (GK05) for more details.
3For each group of input (1-6 literals, 7-9, etc.), measures

are based on an average of 15 cases.
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literals w/o pol. with pol. (×)
1-6 146.40 83.60 1.8
7-9 3273.50 1281.25 2.6

10-13 7468.06 702.50 10.6
14-16 17502.36 1613.91 10.8

Figure 2: With and without Polarity filtering
(Chart items)

ity filtering divides realisation time by 5, that is,
yields a realisation time of 2.21 seconds instead of
11.61.

literals w/o pol. with pol. (×)

1-6 0.81 0.79 1.0
7-9 1.68 1.35 1.2

10-13 3.56 1.88 1.9
14-16 11.61 2.21 5.3

Figure 3: With and without Polarity filtering (CPU
times)

4 Substitution/adjunction distinction

One important specificity of TAG is that it includes
two combination operations namely, adjunction
and substitution. We now show that this feature
of TAG is particularly useful in improving surface
realisation performance.

4.1 Reducing the impact of intersective
modifiers

To restrict the combinatorics induced by modi-
fiers, (CCFP99; CO05) proposes either to han-
dle modifiers after a complete syntactic tree is
built (i.e., after all syntactic requirements are ful-
filled) or before the modifiee is combined with
other items (e.g., before the head noun has com-
bined with a determiner). Although the number of
intermediate structures generated is still 2n for n
modifiers, both strategies have the effect of block-
ing these 2n structures from multiplying out with
other structures in the chart. More precisely, given
an input semantics of sizen wherek of its liter-
als are to be realised as modifiers, the number of
intermediate structures possible in the two phase
approach is2k + 2n−k, which can be considerably
smaller than2n, depending on the size ofk.

In TAG, we can make use of the fact that substi-
tution and adjunction apply independently of each
other to implement a two-phase generation strat-
egy where modifiers are handled only after a com-

plete syntactic tree is built. In the first phase,
only substitutions are performed and in the sec-
ond, only adjunctions. Additionally, before ad-
junction starts, all unsaturated trees (trees with
unfilled substitution sites) are discarded from the
chart thereby ensuring that modifiers do not com-
bine with structures that cannot possibly lead to a
valid result (since no constituent could be found to
fill the unsaturated substitution sites).

Since in TAG, modifiers always involve the use
of adjunction, modifiers will always be handled by
the second phase of the algorithm and thereby ad-
joined into “saturated trees” i.e., trees devoid of
unfilled substitutions sites. In this way, the prolif-
eration of structures induced by the modifiers can
be restricted.

The substitution-before-adjunction strategy was
integrated inGenI yielding the improvements in-
dicated in Figures 4 and 5.

literals 1 phase 2 phase (×)

≤ 3 0.73 0.73 1.0
4 0.74 0.75 1.0
5 0.97 0.93 1.0
6 2.91 0.89 3.3
7 4.24 1.30 3.3

≥ 8 Time out
Figure 4: With and without SBA (CPU times)

literals 1 phase 2 phase (×)

≤ 3 47.00 44.33 1.1
4 107.00 108.00 1.0
5 310.00 263.00 1.2
6 1387.33 883.00 1.6
7 2293.50 761.33 3.0

Figure 5: With and without SBA (Chart items)

As table 4 shows, when there is more than 7 lit-
erals in the input, the one-phase algorithm times
out. More in general, for the data shown, the two
phase strategy leads to an average decrease in time
ranging between 1 and 3.3% and a decrease in
space varying between 1.1% and 3% respectively.

Although the poor performance of the 1 phase
algorithm is in part due to a very large and strongly
overgenerating grammar4 , the data clearly shows
that SBA is essential in supporting large scale TAG
based surface realisation.

4The grammar used is a grammar for French which con-
tains roughly 3 400 initial trees (CD04).
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4.2 Substitution-before-adjunction combined
with Polarity Filtering

The substitution-before-adjunction strategy limits
the impact of intersective modifiers by restricting
the number of constituents the modifiers can com-
bine withwithin one set of lexical items. Because
polarity filtering reduces the number of sets of lex-
ical items to be considered, it trivially also reduces
the number of sets of lexical items involving ad-
junctions.

The space improvement provided by combining
the substitution-before-adjunction (SBA) strategy
with polarity filtering is illustrated in Figures 6
and 7 which show the space reduction associated
with cases ordered either according to their num-
ber of literals or according to their number of foot
nodes (i.e., adjunction cases). As should be ex-
pected, the number of foot nodes is more highly
correlated with a space reduction. Specifically,
a combined SBA/polarity strategy divides by 3.4
the space used for cases involving between 1 and
12 auxiliary trees; and by 18.8 the space used for
cases involving between 14 and 16 auxiliary trees.

literals w/o pol. with pol. (×)
1-6 367.90 109.50 3.4
7-9 6192.69 1550.19 4.0

10-13 11211.06 711.06 15.8
14-16 30660.27 1631.64 18.8

Figure 6: SBA + Polarity (Chart items)

# aux trees w/o pol. with pol. (×)

1-12 2124.27 620.82 3.4
13-120 8751.53 1786.47 4.9

121-190 11528.43 611.50 18.9
191-350 25279.75 1085.75 23.3

Figure 7: SBA + Polarity (Chart items)

4.3 Filtering out unusable trees

Another interesting aspect of TAG’s use of two
combination operations and more specifically of
the substitution-before-adjunction strategy is that
it naturally supports the inclusion of a third phase
to filter out unusable trees that is, trees which can
be determined not to be integrable in any valid
derivation. Specifically, this third phase occurs be-
tween substitution and adjunction and filters out:

• all trees with an unfilled substitution site

• all saturated trees whose root node is not la-
belled with an S category

The first filter (elimination of unsaturated trees)
is required, as indicated above, to restrict the im-
pact of intersective modifiers: by discarding them,
we restrict adjunction to saturated trees. The sec-
ond, makes use of the property of auxiliary trees
which insists that root and foot node be labelled
with the same category. Because of this property,
adjunction cannot affect the category of the tree it
adjoins to. In particular, a tree which after all pos-
sible substitutions have been performed, has root
labelC with C 6= S can never lead to the creation
by adjunction of a tree with root labelS. Hence it
can be discarded (provided of course, the genera-
tor is seeking to build sentences).

Figures 8 and 9 illustrate the impact of this sec-
ond filter (called theRoot Node Filter, RNF) on
the chart size when polarity filtering is switched
off. As for SAB, the figures show a higher correla-
tion between the RNF and the number of adjunc-
tion nodes than with the number of literals. In-
triguingly, the impact of the filter is proportionally
higher on sentences with fewer foot nodes. Al-
though this needs to be checked more thoroughly,
the explanation for this could be the following.
The trees removed by the Root Node Filter are sat-
urated tree not rooted in S hence essentially sat-
urated NP trees. Examination of the data reveals
that the number of these trees removed by the RNF
remains almost constant (though this might be an
ad hoc property of the specific testsuite used).
Hence in proportion, the effect of the RNF dimin-
ishes.

Note however that in absolute terms, the num-
ber of trees whose derivation is avoided by the
RNF remains quite high thus contributing to an
overall better performance.

literals w/o RNF with RNF (×)
1-6 367.90 146.40 2.5
7-9 6192.69 3273.50 1.9

10-13 11211.06 7468.06 1.5
14-16 30660.27 17502.36 1.8

Figure 8: Root node filter w/o Pol (Chart Items).

As Figures 10 and 11 show, combining the Root
Node Filter with polarity filtering simply rein-
forces the biases noted above: Root Node Filtering
is proportionally more effective for short input but
can remain useful in absolute terms. A more thor-
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# aux trees w/o RNF with RNF (×)
1-12 2124.27 527.36 4.0

13-120 8751.53 5570.33 1.6
121-190 11528.43 6490.14 1.8
191-350 25279.75 15469.17 1.6

Figure 9: Root node filter w/o Pol (Chart Items).

ough investigation of the data and further exper-
iments are needed however to determine whether
such behaviour is not tied to some ad hoc property
of our (still too limited) testsuite.

literals w/o RNF with RNF (×)
1-6 109.50 83.60 1.3
7-9 1550.19 1281.25 1.2

10-13 711.06 702.50 1.0
14-16 1631.64 1613.91 1.0

Figure 10: Root node filter + Pol (Chart Items).

# aux trees w/o RNF with RNF (×)
1-12 422 621 1.5

13-120 1627 1786 1.1
121-190 600 612 1.0
191-350 1073 1086 1.0

Figure 11: Root Node Filter + Pol (Chart Items).

5 TAG extended domain of locality

Arguably there are words such as complementiser
that or infinitival to whose semantics is empty.
These words are to surface realisation what gaps
(or empty categories) are to parsing. In a naive ap-
proach, they require that all trees with an empty
semantics be considered as potential constituent
candidate at each combining step. In terms of ef-
ficiency, this roughly means increasing the size of
the inputn (just like postulating gaps at all po-
sition in an input string increases the size of that
string).

To avoid this shortcoming, a common practice
(CCFP99) consists in specifying a set of rules
which selects empty semantic items on the basis
of the input literals. However these rules fail to re-
flect the fact that empty semantic items are usually
functional words and hence governed by syntactic
rather than semantic constraints.

By contrast, in a TAG based surface realiser,
TAG elementary trees provide a natural way to
specify the syntactic environment in which empty

semantic items can occur. For instance, comple-
mentiserthatoccurs with verbs taking a sentential
argument which is generally captured by includ-
ing the complementiser as a co-anchor in the trees
of these verbs.

More in general, the extended domain of local-
ity provided by TAG elementary trees, together
with the possibility of specifying co-anchors
means that empty semantic items can be avoided
altogether. Hence they do not require specific
treatment and have no impact on efficiency.

6 Discussion

We have argued that TAG presents several fea-
tures that makes it particularly amenable to the
development of an optimised surface realiser. We
now summarise these features and briefly compare
TAG with CCG (Combinatory Categorial Gram-
mar) and HPSG (Head Driven Phrase Structure
Grammar) based surface realisation.

6.1 Using tree node types

Thedifferent types of tree nodesidentified by TAG
can be used to support polarity filtering whereby
substitution nodes can be associated with negative
polarities (requirements) and root nodes with pos-
itive polarities (resources). As our preliminary ex-
periments show, polarity filtering has a significant
impact on the initial search space, on the space
used and on CPU times.

So far, this particular type of global filtering
on the initial search space has been used neither
in the HPSG (CCFP99; CO05) nor in the CCG
(Whi04) approach. Although it could presumably
be adapted to fit these grammars, such an adapta-
tion is in essence less straightforward than in TAG.

In CCG, the several combination rules mean
that a subcategory can function either as a re-
source or as a requirement depending on the rule
that applies. For instance, in the verbal category
(S\NP )/NP , the subcategoryS\NP functions
as a resource when NPs are type raised (it satisfies
the requirement of a type raised NP with category
S/(S\NP )). However it will need to be further
decomposed into a resource and a requirement if
they are not. More in general, polarity specifica-
tion in CCG would need to take into account the
several combination rules in addition to the cate-
gory structure. In HPSG, it is the interaction of
lexical categories with lexical and phrasal rules
that will need to be taken into consideration.
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6.2 Using rule types

The two types of tree combining operationsper-
mitted by TAG can be used to structure the sur-
face realisation algorithm. As we’ve shown, per-
forming all substitutions before allowing for ad-
junction greatly reduces the exponential impact of
intersective modifiers. Moreover, combining such
a substitution-before-adjunction strategy with po-
larity filtering further improves performance.

In comparison, the HPSG and the CCG ap-
proach do not support such a natural structuring
of the algorithm and intersective modifiers induce
either a pre- or a post-processing.

In HPSG, intersective modifiers are discarded
during the chart generation phase and adjoined
into the generated structures at a later stage. This
is inelegant in that (i) intersective modifiers are ar-
tificially treated separately and (ii) structures sub-
ject to adjunction have to be non monotonically
recomputed to reflect the impact of the adjunction
in that part of the tree dominating the adjunction.

In CCG, the input logical form is chunked into
subtrees each corresponding to a separate gen-
eration subproblem to be solved independently.
Again the approach is ad hoc in that it does not
rely on a given grammatical or linguistic property.
As a result, e.g., negation needs special treatment
to avoid incompleteness (if the heuristic applies,
negated sentences cannot be generated). Similarly,
it is unclear how long distance dependencies in-
volving modifiers (e.g.,Which office did you say
that Peter work in ?) are handled.

6.3 Using TAG extended domain of locality

TAG extended domain of locality means that
empty semantic items need no special treatment.
In contrast, both the HPSG and the CCG approach
resort to ad hoc filtering rules which, based on
a scan of the input semantics, add semantically
empty items to the chart.

7 Further research

Although the results presented give strong evi-
dence for the claim that TAG naturally supports
the development of an optimised surface based re-
aliser, they are based on a limited testsuite and on
a core grammar for French that heavily overgen-
erates. Hence they do not truly reflect the poten-
tial of the proposed optimisations on the perfor-
mance of a large scale surface realiser. Current
work concentrates on remedying these shortcom-

ings. In particular, we are working on develop-
ing a structured test suite which permits a pre-
cise measure of the impact of different factors both
on complexity and on the optimisations used. In
this testsuite for instance, each item is associated
with a series of indicators concerning its potential
complexity: number of literals in the correspond-
ing input semantics, number of trees, number of
nodes, number of substitutions nodes and number
of foot nodes in the corresponding selection of ini-
tial trees.

Further work also includes restricting overgen-
eration and exploring in how far, polarity filtering
can be used to select one among the many para-
phrases

References

C. Brew. Letting the cat out of the bag: Generation
for shake-and-bake MT. InProceedings of COLING
’92, Nantes, France, 1992.

J. Carroll, A. Copestake, D. Flickinger, and
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université Nancy 2.

M. White. Reining in CCG chart realization. InINLG,
pages 182–191, 2004.

102


