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Abstract C>
5-CAGG
Several grammars have been proposed \ E;E;A G U
for modeling RNA pseudoknotted struc- G/U Ce
ture. In this paper, we focus on multiple \C/U cAGs

context-free grammars (MCFGs), which
are natural extension of context-free gram-
mars and can represent pseudoknots, and

(a) Pseudoknot

extend a specific subclass of MCFGs to caggcugaccugcucag

a probabilistic model called SMCFG. We (b) Arc depiction of (a)

present a polynomial time parsing algo-

rithm for finding the most probable deriva- Figure 1: Example of RNA secondary structure

tion tree and a probability parameter esti-
mation algorithm. Furthermore, we show
some experimental results of pseudoknot

- . ) derivation trees among them. One solution to this
prediction using SMCFG algorithm. g

problem is to extend a grammar to a probabilistic
model and find the most likely derivation tree, and
another is to take free energy minimization into ac-
Non-coding RNAs fold into characteristic struc- count. Eddy and Durbin (1994), and Sakakibara et
tures determined by interactions between mosthal. (1994) modeled RNA secondary structure with-
Watson-Crick complementary base pairs. Such aut pseudoknots by using stochastic context-free
base paired structure is called $econdary struc- grammars (stochastic CFGs or SCFGs). For pseu-
ture. PseudoknofFigure 1 (a)) is one of the typi- doknotted structure (Figure 1 (a)), however, an-
cal substructures found in the secondary structuresther approach has to be taken since a single CFG
of several RNAs, including rRNAs, tmRNAs and cannot represent crossing dependencies of base
viral RNAs. An alternative graphic representationpairs in pseudoknots (Figure 1 (b)) for the lack of
of a pseudoknot is arc depiction where arcs congenerative power. Brown and Wilson (1996) pro-
nect base pairs (Figure 1 (b)). It has been recposed a model based on intersections of SCFGs
ognized that pseudoknots play an important roleéo describe RNA pseudoknots. Cai et al. (2003)
in RNA functions such as ribosomal frameshiftingintroduced a model based on parallel communi-
and regulation of translation. cation grammar systems using a single CFG syn-
Many attempts have so far been made at modehronized with a number of regular grammars.
eling RNA secondary structure by formal gram-Akutsu (2000) provided dynamic programming al-
mars. In a grammatical approach, secondary strugorithms for RNA pseudoknot prediction without
ture prediction can be viewed as parsing problemusing grammars. On the other hand, several gram-
However, there may be many different derivationmars have been proposed where the grammar itself
trees for an input sequence. Thus, itis necessary wan fully describe pseudoknots. Rivas and Eddy
have a method of extracting biologically realistic (1999, 2000) provided a dynamic programming
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algorithm for predicting RNA secondary structureis given andA derivesdim(A)-tuples of terminal
including pseudoknots, and introduced a new classequences. For the start symbldim(S) = 1.
of grammars called RNA pseudoknot grammard-or eachf € F, positive integerg; (0 < i < k)
(RPGs) for deriving sequences with gap. Ue-are given and is a total function from7*) x
mura et al. (1999) defined specific subclasses of- - x (T%)% to (T*)% where each component of
tree adjoining grammars (TAGs) named SL-TAGs{ is defined as the concatenation of some compo-
and extended SL-TAGs (ESL-TAGS) respectively,nents of arguments and constant sequences. Note
and predicted RNA pseudoknots by using parsthat each component of an argument should oc-
ing algorithm of ESL-TAG. Matsui et al. (2005) cur in the function value at most once (linear-
proposed pair stochastic tree adjoining grammargy). For example, f[(x11, 712), (221, 222)] =
(PSTAGS) based on ESL-TAGs and tree automatér;;xs1, x12222). Each rule inP has the form
for aligning and predicting pseudoknots, whichof A4q 2 f[A;,..., A;] where4; € N (0 <
showed good prediction accuracy. These gram; < k), f : (T*)dim(Al) NI (T*)dim(Ak) —
mars have generative power stronger than CFGgr+)dim(4o) ¢ [ andp is a real number witlo <
and polynomial time algorithms for parsing prob-» < 1 called theprobability of this rule. The sum-
lem. mation of the probabilities of the rules with the
In our previous work (Kato et al.,, 2005), same left-hand side should be one. If we are not
we identified RPGs, SL-TAGs and ESL-TAGs interested i, we justwritedg — f[Aq1, ..., Agl.
as subclasses ohultiple context-free grammars If £ > 1, then the rule is called aonterminat-
(MCFGSs) (Kasami et al., 1988; Seki et al., 1991),ing rule, and if ¥ = 0, then it is called aermi-
which can model RNA pseudoknots, and showed aating rule A terminating ruled, — f[] with
candidate subclass of the minimum grammars forfl"![] = g, (1 < h < dim(Ay)) is simply written
representing pseudoknots. The generative powers Ay — (51, . - -, Bdim(A,))-
of MCFGs is stronger than that of CFGs and
MCFGs have a polynomial time parsing algo- . _ p i
rithm like the CYK (Cocke-Younger-Kasami) al- lowing (L1) and (L2):(L1.) if A*H ackh (@€
gorithm for CFGs. In this paper, we extend the(I” )im()), then we erteA = @ with proba-
above candidate subclass of MCFGs to a probbility p, and(L2) if A 5 f[A;,..., Ay € P
abilistic model called a stochastic MCFG (SM-and 4; = @ € (T*)4mA) (1 < ¢ < k)
CFG). We present a polynomial time parsing algowith probabilities p1, ..., px, respectively, then
rithm for finding the most probable derivation tree,we write A = f[ar, ..., o] with probability
which is applicable to RNA pseudoknot predic-p - Hlepi. In parallel with the relation>, we
tion. In addition, we mention a probability param- define derivation trees as followgD1) if A RN
eter estimation method based on the EM (expecy ¢ P (@ e (T*)dim(A)), then the ordered tree
tation maximization) algorithm. Finally, we show with the root labeledd which hasa as the only
some experimental results on pseudoknot predicne child is a derivation tree fak with proba-
tion for three RNA families using SMCFG algo- pility p, and(D2) if A 2 flA1,..., Ay € P,

We recursively define the relatiof by the fol-

rithm, which show good prediction accuracy. A 2 @ e (T7)imA) (1 < i < k) and
] . t1,...,t; are derivation trees faky, . . ., ai with

2 Stochastic Multiple Context-Free probabilitiesp1, . . ., pi, respectively, then the or-
Grammar dered tree with the root labeled (or A : f

if necessary) which has, ..., t; as (immediate)

A stochastic multiple context-free grammar
(stochastic MCFG, or SMCFG) is a probabilistic
extension of MCFG (Kasami et al., 1988; Seki etf[
al., 1991) orlinear context-free rewriting system ample rules arel = f[ | where f[(z1,z2)] =
(Vijay-Shanker et al., 1987). An SMCFG is a 5- (ax1b, czad) and A 2% (ab,cd). Then, A =
tupleG = (N, T, F, P,S) whereN is a finite set (ab,cd) by the second rule, which is followed
of nonterminals is a finite set of terminalsi’ is by A = f[(ab, cd)] = (aabb, ccdd) by the first
a finite set of functionsp is a finite set of (pro- rule. The probability of the latter derivation is
duction) rules and’ € N is the start symbol. For 0.3 - 0.7 = 0.21. The language generated by an
each4 € N, apositive integer denoted bym(4)  SMCFGG is defined ad.(G) = {w € T* | S =

subtrees from left to right is a derivation tree for
., @) with probabllltyp lelpl. Ex-
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Table 1: SMCFQG,

[ Type | Rule set | Function | Transition probability] Emission probability|
E W, — (e,¢) 1 1
S W, — J[Wy] J[(ml, 1'2)] = T1T2 ty (y) 1
D W, — SK[W,] SK[(z1,x2)] = (1, x2) to(y) 1
B: Wy — Ci[Wy, W, Chlz1, (21, T22)] = (T1221, T22) 1 1
B- Wy — ColWy, W.] | Colzy, (z21, 222)] = (2121, T22) 1 1
Bs W, — C3[W,,W.] | Cslz1, (z21,x22)] = (w21, T1222) 1 1
By W, — Ca[Wy, W.] | Culz1, (x21,x22)] = (@21, T22w1) 1 1
Ui, | Wy = UPW,] | UP[(z1,22)] = (aiz1, x2) to(y) ev(ai)
Uir || Wo = UPRIW,] | UP3[(z1,22)] = (2105, x2) to(y) ev(a;)
Uor || Wo = UPp[W,] | UPy7[(w, 22)] = (21, axwa) tu(y) ev(ax)
Usr || Wo = UPR[W, | | UPyp[(21, 22)] = (21, 201) to(y) ev(ar)
P W, — BP*[W,] | BP*%[(x1,x2)] = (a;z1, z2a;1) tv(y) ev(ai,ar)
w with probability greater thafi}. guence. This problem can be solved by a dynamic
In this paper, we focus on an SMCHG; =  programming algorithm similar to the CYK algo-

(N, T, F, P,S) that satisfies the following condi- rithm for SCFGs (Durbin et al., 1998), and in this

tions: G hasm different nonterminals denoted paper, we also call the parsing algorithm &g

by W71, ..., W,,, each of which uses the only one the CYK algorithm. We fix an input sequenge=

type of arule denoted b, S, D, By, By, B3, By,  a1---a, (Jw] = n). Lety,(¢,5) and~, (4,7, k,1)

Ui, Uir, Ugr, Usg or P 1 (see Table 1). The be the logarithm of maximum probabilities of a

type of W, is denoted by type) and we prede- derivation subtree rooted at a nontermifiél for

fine typg1) = S, that is,W; is the start symbol. a terminal subsequeneg- - - a; and of a deriva-

Consider a sample rule s&t, — UP{[W,] | tionsubtree rooted at a nontermin&], for a tuple

UPY W] where UPY; [(z1,22)] = (axq,22)  Of terminal subsequencés; - --a;,ax - - - a;) re-

anda € T. For each ruler, two real values spectively. The variables, (i,7 — 1) and~, (i, —

calledtransition probabilityp; andemission prob- 1,j,j — 1) are the logarithm of maximum prob-

ability p, are specified in Table 1. The probability abilities for an empty sequeneeand a pair of.

of r is simply defined ap; - po. In application, Letr, (¢, ) andr,(s, j, k,[) be traceback variables

p1 = t,(y) andpy = e,(a;), ... in Table 1 are the for constructing a derivation tree, which are calcu-

parameters of the grammar, which are set by hantited together withy, (¢, j) and~, (¢, j, k,1). We

or by a training algorithm (Section 3.3) dependingdefineC, = {y | W, — f[W,] € P, f € F}.

on the set of possible sequences to be analyzed. To avoid non-emitting cycles, we assume that the
. nonterminals are numbered such that y for

3 Algorithms for SMCFG all y € C,. The CYK algorithm uses five dimen-

In RNA structure analysis using stochastic gramSional dynamic programming matrix to calculate
which leads tdog P(w, 7 | 6) where7 is the

mars, we have to deal with the following three 7 'S4 i )
problems: (1) calculate the optimal alignment of most prob_qble derivation tree afids an entire set_
a sequence to a stochastic grammar (alignmel?[f probability paramgters: The detailed descrip-
problem), (2) calculate the probability of a se- 10N Of the CYK algorithm is as follows:

quence given a stochastic grammar (scoring probAlgorithm 1 (CYK).

lem), and(3) estimate optimal probability param- Initialization:

eters for a stochastic grammar given a set of exanfor i <~ 1ton +1,j «—iton+1,v < 1tom

ple sequences (training problem). In this section, do if type(v) = E

we give solutions to each problem for the specific ~ then,(i,i —1,j,j — 1) < 0

SMCFGG, = (N, T, F, P, S). elsevy(i,i —1,5,j — 1) « —o0

Iteration:

for ; «<— ndowntol,j «—i—1ton, k< n-+1
The alignment problem foiGG; is to find the downtoj+1,l« k—1ton,v« 1tom

most probable derivation tree for a given input se- do if type(v) = E

1These types stand fomib, START, DELETE, BIFURCA- then if j - i—landl=Fk—1
TION, UNPAIR and RAIR respectively. then skip

3.1 Alignment Problem
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elsev, (i, j, k,1) «— —o0
if type(v) =S
then v, (4, §)

log t
< max h:rigag_”j[ og ty(y)

+'Yy(i7 h7 h + 17.7)]
Tv(iaj)
— arg r(na;;;[log to(y)+vy (i, hy h41, 7)]
y7
if type(v) = By and W,, — C1[W,, W]
then, (i, j, k, 1)

— max
h=i—1,....j

Tv(i,j, k7l)
— arg (maz;)[’yy(i, h)+v:(h+1,7,k,1)]
y7z7
if type(v) = By and W,, — Ca[W,, W]
then Wv(iv jv k? l)

—  max
h=i—1,....j

Tv(i,j, k)l)

— arg (maz;)[yy(h—kl,j)*'%(i, h,k,1)]
Y.z,

if type(v) = Bs and W,, — C3[W,,, W]
then ’711(1.’ j7 k? l)

— max
h=k—1,..,

T’U(ia ja k? l)
— arg (ma;lc)['yz(i,j, h+1,0)+y(k, h)]
Yz,

if type(v) = By and Wv — C4[Wy, WZ]
then v, (4, 5, k, 1)

— max
h=k—1,...,1

Tv(ia ja k? l)
— arg (ma;f)[’yz(i,j, ky h) 4y (h+1,1)]

if type(v) =P
thenif j=i—1lorl=kKk—1
then ~, (i, j, k, 1) «— —o0
elsev, (i, j, k,1)
— max|log e, (ai, a;) + logt,(y)
y€Co

+'Yy(2 + 17j7kvl - 1)]
Tv(iajakJ)
« argmaxl[log e, (a;, a) + log tv(y)
Y
JF’Yy(Z =+ 1vj, kvl - 1)]
elsev, (i, j. k, 1)

— max(log ey (ai, aj, ax, ar) + log tu(y)
y v

+y (i + AL G — ALE |+ AZL
I — AZR)]
Tv(i,j,k‘,l)

— argmax(log e, (a;, aj, ax, a;)
Y

+1logty(y) + (i + AL 5 —
k + A%Lal - A%R)]

[y (i, ) +72(h+1, 5, k, 1)]

[y (h+1,5) +72 (i, b, k, 1))

1[72(17.77 h+17 l)""'Yy(k, h’)]

[72(i7j7 ka h)+7y(h+lv l)]

1R
ALY,

Note: e,(ai, aj,ar, a;) = ey(a;) for typev)
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ev(a;) for type(v)
ev(ax) for type(v)

UlLa €U(ai,aj,ak,al)
UlR! ev(ai,aj,ak,al)
Uor, ev(as, aj,ak, @) = ey(ar) for type(v)
Uor, ev(as,aj, ag,ar) 1 for the other types
exceptP. Also, Al = 1 for type(v) = Uy,
ALR = 1 for type(v) = Ujgr, A2 = 1 for
type(v) = Uar, A3 = 1 for type(v) = Usg,
andAlL ... A%F are set ta) for the other types
exceptP. O

When the calculation terminates, we obtain
log P(w, @ | 0) = ~1(1,n). If there areb BI-
FURCATION nonterminals and other nontermi-
nals, the time and space complexities of the CYK
algorithm areO(amn* + bn®) and O(mn*), re-
spectively. To recover the optimal derivation tree,
we use the traceback variablesDue to limitation
of the space, the full description of the traceback
algorithm is omitted (see (Kato and Seki, 2006)).

3.2 Scoring Problem

As in SCFGs (Durbin et al., 1998), the scor-
ing problem forG can be solved by the inside
algorithm. The inside algorithm calculates the
summed probabilities, (7, j) anday, (4, j, k, ) of

all derivation subtrees rooted at a nontermiral

for a subsequence; - - - a; and of all derivation
subtrees rooted at a nontermiridi, for a tuple

of subsequence@:; - - - aj, ay - - - a;) respectively.
The variablesy, (i,¢ —1) anday (4,1 —1,7,5 — 1)

are defined for empty sequences in a similar way
to the CYK algorithm. Therefore, we can easily
obtain the inside algorithm by replacing max op-
erations with summations in the CYK algorithm.
When the calculation terminates, we obtain the
probability P(w | 8) = a1(1,n). The time and
space complexities of the algorithm are identical
with those of the CYK algorithm.

In order to re-estimate the probability parame-
ters of G5, we need the outside algorithm. The
outside algorithm calculates the summed prob-
ability (,(i,j) of all derivation trees excluding
subtrees rooted at a nontermindl, generat-
ing a subsequence; - --a;. Also, it calculates
By (i, 7,k,1), the summed probability of all deriva-
tion trees excluding subtrees rooted at a non-
terminal W, generating a tuple of subsequences
(a;---aj,a---ap). Inthe algorithm, we will use
Py, ={y | W, — f[W,] € P, f € F}. Note
that calculating the outside variablgsrequires
the inside variablea. Unlike CYK and inside al-
gorithms, the outside algorithm recursively works



its way inward. The time and space complexities — Z By(i — A G+ Ak — A2
of the outside algorithm are the same as those of yEPy
CYK and inside algorithms. Formally, the outside

algorithm is as follows:

Algorithm 2 (Outside)
Initialization:
ﬂl(l’n) —1
Iteration:
fori«— 1ton+1,j < ndowntoi—1,k «— j+1
ton+1,l <« ndowntok —1,v« 1tom
do if type(v) = Sand W, — C,[W,, W_]
then 3, (3, j)

n n+1 n
— Z Z Z ﬁy(ivhw k/7l/)
h=j k'=h+11'=k'—1
a(j+1,h K1)
if type(v) =S and W, — Ca[W,, W]

then 3,(i, j)
A n+1 n

=22 D Blhg kD)
h=1k'=j+11'=k'—1
ay(hyi—1,K,1)
if type(v) = S and W, — C3[W,, W]
then 3, (3, j)

A i—1 n
=YY D By KT
h=1k'=h—11'=j
oz (h, K, j+1,1)
if type(v) = S and W, — Cy[W,,, W]
then 8, (i, j)

7 i—1

HZ Z Z /By(h>k/7l/aj)
h=1k'=h—10'=k'+1
ay(h kK Ui —1)
if type(v) # S and W, — C1[W,, W,
then 6, (i, j, k. 1)

= By(h, gk, Doz (hyi — 1)

h=1
if type(v) # S and W, — Co[W,, W,
then G, (i, j, k, 1)
k—1

= > Byl h k,Daz(j +1,h)

h=j
if type(v) # S and W, — C3[W,, W,
then 6, (i, j, k. 1)
k

— Z /By(ivjv hal)az(h)k - 1)
h=j+1
if type(v) # S and Wy, — Cy[W,, W,]
then ﬁv(ia ja k7 l)

— "By g k. h)a(l + 1,h)
h=l
elseﬂv(i7j7 ka l)
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2
Z+AyR)€y(ai7AéL, AjpALR, A A2L,
ayy a2r )ty (v) [
3.3 Training Problem

The training problem fot7; can be solved by the
EM algorithm called the inside-outside algorithm
where the inside variables and outside variables
0 are used to re-estimate probability parameters.
First, we consider the probability that a nonter-
minal W, is used at positions, j, £ and/ in a
derivation of a single sequenee If type(v) =
S, the probability isﬁav(i,j)ﬂv(i,j), other-
wise mav(i,,ﬁ k,1)B,(i, j, k,1). By summing
these over all positions in the sequence, we can ob-
tain the expected number of times th&t is used
for w as follows: for typ€v) = S, the expected

countis

n+l n

Bl T) 2o 2o el d)u(id)

i=1 j=i—1

otherwise

n+l n n+1 n

1 .
P(T\@)Z D> D wlidkl)

i=1 j=i—1 k=j+1 l=k—1
Bu(i, j, k, ).

Next, we extend these expected values from a sin-
gle sequence to multiple independent sequences
w (1 <7 < N). Leta!”) and5) be the in-
side and outside variables calculated for each in-
put sequences”). Then we can obtain the ex-
pected number of times that a nontermimil is
used for training sequences” (1 < r < N) by
summing the above terms over all sequences: for
type(v) = S,

N n+l n

1 .
B0=2.2 2 paorg @)

r=1 i=1 j=i—1
B8 (i, ),
otherwise

N n+l n n+1 n

E@)= 3 > > > JW

r=1 i=1 j=i—1 k=j+11=k—-1
ol (i, 4, k, )85, 4, k, 1).

Similarly, for a givenlv,,, the expected number of
times that a ruldV,, — f[W,] is applied can be



obtained as follows: for tyge) = S,

N n+l n J
Bo-0 =Y ¥ Y s
r=1i=1 j=i—1 h=i—1
B, i)t ()l (6, h b+ 1, ),
otherwise
N n+l n n+1 n
Bo—y)=3.2 2 2 2 Futiid

rlzl]zlijrllkl
B’z()r)(z ]ak l)ev(aiaajaakaal)tv(y>
o+ A G — AR | A2

Yy
[ — A2y,

For a given terminad or a pair of terminalga, b),

and for typgv) = P,
N n—1n—1 n n 1
E(Uﬁab)zzzz Zf
r=1i=1 j=i k=j+1 I=k P(w) | 9)
8oy = a,q;”) = 0)B0 (0,5, k1)
O[UT)(Z"j, k,l)a

whered(C) is 1 if the conditionC' in the parenthe-
sis is ture, and if C is false.

Now, we re-estimate probability parameters by
using the above expected counts. Lgly) be re-
estimated transition probabilities frofir, to W,.
Also, leté,(a) andé,(a,b) be re-estimated emis-
sion probabilities thai¥, emits a symbok and
two symbolsa and b respectively. We can ob-
tain each re-estimated probability by the following
equations:

the expected number of times that a rule contain-

ing a (or « andb) is applied is as shown below: for
type(v) = UL,
n n n+l n

ERTED ) 3 3D Bip pees

r=1i=1 j=i k=j5+11=k— 1 )
5(a! =a>ﬁ¥><z,y,k,l>
ol (i, 4, k, 1),

1
r)

for type(v) = Ui,

U—>CL iv:z

r=1 1=

o(a

n

) P(w

n  n+l
DD SD P
Jj= j+11=k—

1 j=1i k=
W = )8 (i, 4 k. 1)
(Z.7j7 k? l)?

62

- _ EBlv—y) . _ E(v—a)

YO TR T TR,
. E(v — ab) 3-1)
W= Ty

Note that the expected count correctly correspond-
ing to its nonterminal type must be substituted

for the above equations. In summary, the inside-
outside algorithm is as follows:

Algorithm 3 (Inside-Outside)
Initialization: Pick arbitrary probability parame-
ters of the model.

Iteration: Calculate the new probability parame-
ters using (3.1). Calculate the new log likelihood
S log P(w() | §) of the model.

Termination: Stop if the change in log likelihood
is less than predefined threshold. O

4 Experimental Results

4.1 Data for Experiments

The dataset for experiments was taken from an
RNA family database called “Rfam” (version 7.0)
(Griffiths-Jones et al., 2003) which is a database
of multiple sequence alignment and covariance
models (Eddy and Durbin, 1994) representing
non-coding RNA families. We selected three vi-
ral RNA families with pseudoknot annotations
named Corongk 3 (Corona), HDVribozyme
(HDV) and Tombus3_1V (Tombus) (see Table 2).
Coronapk_3 has a simple pseudoknotted struc-
ture, whereas HD\Wibozyme and TombuS8_IV
have more complicated structures with pseudo-
knot.



Table 2: Three RNA families from Rfam ver. 7.0

[ Family [ Range of length[ # of annotated sequencgs# of test sequencep
Coronapk_3 62-64 14 10
HDV _ribozyme 87-91 15 10
Tombus3_IV 89-92 18 12

Table 3: Prediction results

Family Precision [%] Recall [%)] CPU time [sec]
Average| Min [ Max [ Average] Min | Max | Average| Min | Max
Coronapk-3 99.4 | 94.4 | 100.0 99.4 | 94.4 | 100.0 27.8| 26.0| 304
HDV _ribozyme 100.0 | 100.0 | 100.0 100.0 | 100.0 | 100.0 252.1| 219.0| 278.4
Tombus3_IV 100.0 | 100.0| 100.0 100.0 | 100.0 | 100.0 2448 215.2| 257.5
4.2 Implementation 2 where underlined base pairs agree with trusted

We specified a particular SMCFG. by utiliz- ones. The secondary struct_ures predicted by our
ing secondary structure annotation of each fam‘?lg’omhm agree very well with the trusted struc-
ily. Rules were determined by considering Con_tures.

sensus secondary structure. Probability paramer 4 comparison with PSTAG
ters were estimated in a few selected sequences bg

the simplest pseudocounting method known as th E é orr|1par_e: the _pr:edrictionf a;;uTr:éy Olf ou_rhS M-
Laplace’s rule (Durbin et al., 1998): to add one ex- qgorlt m with that o algorithm
Matsui et al., 2005) (see Table 4). PSTAGs,

tra count to the true counts for each base configu( :

ration observed in a few selected sequences. Nof&® we' have _mgntlongd before, are proposed for
that the inside-outside algorithm was not used i _odelmg pairwise allgnmgnt of RNA sequences
the experiments. The other sequences in the aligﬁ'\—".th pseudoknots and assigna probability to each
ment were used as the test sequences for predi@llg_nmem of TAG derlvatl_O n trees. P_S TAG al-
tion (see Table 2). We implemented the CYK al_gorlthm, based on dyna_mlc programming, c_alcu-
gorithm with traceback in ANSI C on a machine lates th? m_ost likely alignment for the pair of
with Intel Pentium D CPU 2.80 GHz and 2.00 GB TAG derivation trees where one of them is in t_he
RAM. Straightforward implementation gives rise form of an unfolded sequence and the other is a

to a serious problem of lack of memory space due-:rAG derivation tree for known structure. SMCFG

to the higher order dynamic programming matrixmethOd shows bgtter performance in accuracy than
(remember that the space complexity of the CYKPSTAG method in the same test sets.

algorithm is O(mn*)). The dynamic program- 5 Conclusion

ming matrix in our specified model is sparse, and

therefore, we successfully implemented the matriXn this paper, we have proposed a probabilistic
as a hash table storing only nonzero probabilitynmodel named SMCFG, and designed a polyno-
values (equivalently, finite values of the logarithmmial time parsing and a parameter estimation al-

of probabilities). gorithm for SMCFG. Moreover, we have demon-
strated computational experiments of RNA sec-
4.3 Tests ondary structure prediction with pseudoknots us-

ing SMCFG parsing algorithm, which show good

We tested prediction accuracy by calculating pre i
performance in accuracy.

cision and recall (sensitivity), which are the ratio
of the number of correct base pairs predicted b%
the algorithm to the total number of predicted base
pairs, and the ratio of the number of correct bas@his work is supported in part by Grant-in-Aid
pairs predicted by the algorithm to the total num-for Scientific Research from Japan Society for the
ber of base pairs specified by the trusted annotaPromotion of Science (JSPS). We also wish to
tion, respectively. The results are shown in Tablg¢hank JSPS Research Fellowships for Young Sci-
3. A nearly correct prediction (94.4% precision entists for their generous financial assistance. The
and recall) for Corongk_3 is shown in Figure authors thank Dr. Yoshiaki Takata for his useful

cknowledgments
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Corona_pk3 (EMBL accession #: X51325.1)

[Trusted structure in Rfam]
CUAGUCUUAUACACAAUGGUAAGCCAGUGCUAGUAAAGGUAUAAGAAAUUUGCUACUAUGUUA
Coeeeeee (CC CCCCCCC TITTTTTT D)) )))

[Prediction by SMCFG]
CUAGUCUUAUACACAAUGGUAAGCCAGUGCUAGUAAAGCUAUAAGAAAUUUGCUACUAUGUUA

COOOCCOE CCCCCCCCCC T1TITTIT - )))))))))

Figure 2: Comparison of a prediction result with a trusted structure in Rfam

Table 4: Comparison between SMCFG and PSTAG
Model Average precision [%)] Average recall [%0]
Corona| HDV | Tombus| Corona| HDV [ Tombus
SMCFG 99.4 | 100.0 100.0 99.4 | 100.0 100.0
PSTAG 95.5| 95.6 97.4 946 | 941 97.4

comments on implementation of high dimensionalvuki Kato and Hiroyuki Seki. 2006. Stochastic

dynamic programming. multiple context-free grammar for RNA pseudoknot
modeling. NAIST Info. Sci. Tech. Rep. (NAIST-IS-
TR2006002)
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