
Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue, pages 109–116,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Multimodal Dialog Description Language
for Rapid System Development

Masahiro Araki Kenji Tachibana
Kyoto Institute of Technology

Graduate School of Science and Technology, Department of Information Science
Matsugasaki Sakyo-ku Kyoto 606-8585 Japan

araki@dj.kit.ac.jp

Abstract

In this paper, we explain a rapid devel-
opment method of multimodal dialogue
sys-tem using MIML (Multimodal Inter-
action Markup Language), which defines
dialogue patterns between human and
various types of interactive agents. The
feature of this language is three-layered
description of agent-based interactive
systems which separates task level de-
scription, interaction description and de-
vice dependent realization. MIML has
advantages in high-level interaction de-
scription, modality extensibility and
compatibility with standardized tech-
nologies.

1 Introduction

In recent years, various types of interactive
agents, such as personal robots, life-like agents
(Kawamoto et al. 2004), and animated agents are
developed for many purposes. Such interactive
agents have an ability of speech communication
with human by using automatic speech recog-
nizer and speech synthesizer as a main modality
of communication. The purpose of these interac-
tive agents is to realize a user-friendly interface
for information seeking, remote operation task,
entertainment, etc.

Each agent system is controlled by different
description language. For example, Microsoft
agent is controlled by JavaScript / VBScript em-
bedded in HTML files, Galatea (Kawamoto et al..
2004) is controlled by extended VoiceXML (in
Linux version) and XISL (Katsurada et al. 2003)
(in Windows version). In addition to this differ-
ence, these languages do not have the ability of

higher level task definition because the main
elements of these languages are the control of
modality functions for each agent. These make
rapid development of multimodal system diffi-
cult.

In order to deal with these problems, we pro-
pose a multimodal interaction description lan-
guage, MIML (Multimodal Interaction Markup
Language), which defines dialogue patterns be-
tween human and various types of interactive
agents by abstracting their functions. The feature
of this language is three-layered description of
agent-based interactive systems.

The high-level description is a task definition
that can easily construct typical agent-based in-
teractive task control information. The middle-
level description is an interaction description that
defines agent’s behavior and user’s input at the
granularity of dialogue segment. The low-level
description is a platform dependent description
that can override the pre-defined function in the
interaction description.

The connection between task-level and inter-
action-level is realized by generation of interac-
tion description templates from the task level
description. The connection between interaction-
level and platform-level is realized by a binding
mechanism of XML.

The rest of this paper consists as follows. Sec-
tion 2 describes the specification of the proposed
language. Section 3 explains a process of rapid
multimodal dialogue system development. Sec-
tion 4 gives a comparison with existing multi-
modal languages. Section 5 states conclusions
and future works.

109

2 Specification of MIML

2.1 Task level markup language

2.1.1 Task classification

In spoken dialogue system development, we pro-
posed task classification based on the direction
of information flow (Araki et al. 1999). We con-
sider that the same analysis can be applied to
agent based interactive systems (see Table 1).

Table 1: Task classification of agent-based inter-
active systems

Class Direction of Info. flow Typical task

Information
assistant

user agent Interactive

presentation

User agent

user agent
control of home
network equip-

ments

Question
and Answer

user agent daily life in-

formation query

In the information assistant class, the agent

has information to be presented to the user.
Typically, the information contents are Web
pages, an instruction of consumer product usage,
an educational content, etc. Sometimes the con-
tents are too long to deliver all the information to
the user. Therefore, it needs user model that can
manage user’s preference and past interaction
records in order to select or filter out the contents.

In the user agent class, the user has informa-
tion to be delivered to the agent in order to
achieve a user’s goal. Typically, the information
is a command to control networked home
equipments, travel schedule to reserve a train
ticket, etc. The agent mediates between user and
target application in order to make user’s input
appropriate and easy at the client side process
(e.g. checking a mandatory filed to be filled,
automatic filling with personal data (name, ad-
dress, e-mail, etc.)).

In the Question and Answer class, the user has
an intention to acquire some information from
the agent that can access to the Web or a data-
base. First, the user makes a query in natural lan-
guage, and then the agent makes a response ac-
cording to the result of the information retrieval.
If too much information is retrieved, the agent
makes a narrowing down subdialogue. If there is
no information that matches user’s query, the
agent makes a request to reformulate an initial
query. If the amount of retrieved information is
appropriate to deliver to the user by using current
modality, the agent reports the results to the user.

The appropriate amount of information differs in
the main interaction modality of the target device,
such as small display, normal graphic display or
speech. Therefore, it needs the information of
media capability of the target device.

2.1.2 Overview of task markup language

As a result of above investigation, we specify
the task level interaction description language
shown in Figure 1.

taskml

bodyhead

userModel deviceModel

section*

xforms

qa

searchquery result

model input

Figure. 1 Structure of the Task Markup Lan-
guage.

The features of this language are (1) the ability

to model each participant of dialogue (i.e. user
and agent) and (2) to provide an execution
framework of each class of task.

The task markup language <taskml> consists
of two parts corresponding to above mentioned
features: <head> part and <body> part. The
<head> part specifies models of the user (by
<userModel> element) and the agent (by <de-
viceModel> element). The content of each model
is described in section 2.1.3. The <body> part
specifies a class of interaction task. The content
of each task is declaratively specified under the
<section>, <xforms> and <qa> elements, which
are explained in section 2.1.4.

2.1.3 Head part of task markup language

In the <head> element of the task markup lan-
guage, the developer can specify user model in
<userModel> element and agent model in <de-
viceModel> element.

In the <userModel> element, the developer
declares variables which represent user’s infor-
mation, such as expertise to domain, expertise to
dialogue system, interest level to the contents,
etc.

In the <deviceModel> element, the developer
can specify the type of interactive agent and
main modality of interaction. This information is

(* means the
element can
repeat more
than 1 time)

110

used for generating template from this task de-
scription to interaction descriptions.

2.1.4 Body part of task markup language

According to the class of the task, the <body>
element consists of a sequence of <section> ele-
ments, a <xforms> element or a <qa> element.

The <section> element represents a piece of
information in the task of the information assis-
tant class. The attributes of this element are id,
start time and end time of the presentation mate-
rial and declared user model variable which indi-
cates whether this section meets the user’s needs
or knowledge level. The child elements of the
<section> element specify multimodal presenta-
tion. These elements are the same set of the child
elements of <output> element in the interaction
level description explained in the next subsection.
Also, there is a <interaction> element as a child
element of the <section> element which specifies
agent interaction pattern description as an exter-
nal pointer. It is used for additional comment
generated by the agent to the presented contents.
For the sake of this separation of contents and
additional comments, the developer can easily
add agent’s behavior in accordance with the user
model. The interaction flow of this class is
shown in Figure 2.

start

interaction

presentation

question and
answer

subdialog

yes

end

no
end of

sections?

Multimedia
contents

matches
user model?

yes

next section

no

.

Figure. 2 Interaction flow of Information Assist
class

The <xforms> element represents a group of
information in the task of the user agent class. It
specifies a data model, constraint of the value
and submission action following the notation of
XForms 1.0.

In the task of user agent class, the role of in-
teractive agent is to collect information from the
user in order to achieve a specific task, such as
hotel reservation. XForms is designed to separate

the data structure of information and the appear-
ance at the user’s client, such as using text field
input, radio button, pull-down menu, etc. because
such interface appearances are different in de-
vices even in GUI-based systems. If the devel-
oper wants to use multimodal input for the user’s
client, such separation of the data structure and
the appearance, i.e. how to show the necessary
information and how to get user’s input, is very
important.

In MIML, such device dependent ‘appearance’
information is defined in interaction level. There-
fore, in this user agent class, the task description
is only to define data structure because interac-
tion flows of this task can be limited to the typi-
cal patterns. For example, in hotel reservation, as
a result of AP (application) access, if there is no
available room at the requested date, the user’s
reservation request is rejected. If the system rec-
ommends an alternative choice to the user, the
interaction branches to subdialogue of recom-
mendation, after the first user’s request is proc-
essed (see Figure 3). The interaction pattern of
each subdialogue is described in the interaction
level markup language.

start

slot filling

AP access

all required
slots are filled?

confirmation
dialogue

rejection
dialogue

yes

no

end

application

recommendation
dialogue

accept?
yes

no

Figure. 3 Interaction flow of User Agent class

The <qa> element consists of three children:
<query>, <search> and <result>.

The content of <query> element is the same as
the <xforms> element explained above. However,
generated interaction patterns are different in
user agent class and question and answer class.
In user agent class, all the values (except for op-
tional slots indicated explicitly) are expected to
be filled. On the contrary, in question and answer
class, a subset of slots defined by form descrip-
tion can make a query. Therefore, the first ex-

111

change of the question and answer class task is
system’s prompt and user’s query input.

The <search> element represents application
command using the variable defined in the
<query> element. Such application command
can be a database access command or SPARQL
(Simple Protocol And RDF Query Language)1 in
case of Semantic Web search.

The <result> element specifies which informa-
tion to be delivered to the user from the query
result. The behavior of back-end application of
this class is not as simple as user agent class. If
too many results are searched, the system transits
to narrowing down subdialogue. If no result is
searched, the system transits to subdialogue that
relaxes initial user’s query. If appropriate num-
ber (it depends on presentation media) of results
are searched, the presentation subdialogue begins.
The flow of interaction is shown in Figure 4.

Figure. 4 Interaction flow of Question and An-
swer class

2.2 Interaction level markup language

2.2.1 Overview of interaction markup lan-
guage

Previously, we proposed a multimodal interac-
tion markup language (Araki et al. 2004) as an
extension of VoiceXML2. In this paper, we mod-
ify the previous proposal for specializing human-
agent interaction and for realizing interaction
pattern defined in the task level markup language.

The main extension is a definition of modality
independent elements for input and output. In
VoiceXML, system’s audio prompt is defined in
<prompt> element as a child of <field> element

1 http://www.w3.org/TR/rdf-sparql-query/
2 http://www.w3.org/TR/voicexml20/

that defines atomic interaction acquiring the
value of the variable. User’s speech input pattern
is defined by <grammar> element under <field>
element. In our MIML, <grammar> element is
replaced by the <input> element which specifies
active input modalities and their input pattern to
be bund to the variable that is indicated as name
attribute of the <field> element. Also, <prompt>
element is replaced by the <output> element
which specifies active output modalities and a
source media file or contents to be presented to
the user. In <output> element, the developer can
specify agent’s behavior by using <agent> ele-
ment. The outline of this interaction level
markup language is shown in Figure 5.

mmvxml

formlink

block
*

field filled

outputinput filled

**

*
initial

input

catch
*

audio
video
page
agent
smil

speech
image
touch

Figure. 5 Structure of Interaction level Markup
Language

2.2.2 Input and output control in agent

The <input> element and the <output> element
are designed for implementing various types of
interactive agent systems.

The <input> element specifies the input proc-
essing of each modality. For speech input,
grammar attribute of <speech> element specifies
user’s input pattern by SRGS (Speech Recogni-
tion Grammar Specification)3 , or alternatively,
type attribute specifies built-in grammar such as
Boolean, date, digit, etc. For image input, type
attribute of <image> element specifies built-in
behavior for camera input, such as nod, faceRec-
ognition, etc. For touch input, the value of the
variable is given by referring external definition
of the relation between displayed object and its
value.

The <output> element specifies the output
control of each modality. Each child element of

3 http://www.w3.org/TR/speech-grammar/

start

initial query
input

searchDB

of
results

relaxation
dialogue

report
dialogue

narrowing
down

subdialog

0

appropriate

too many

end

Web

112

this element is performed in parallel. If the de-
veloper wants to make sequential output, it
should be written in <smil> element (Synchro-
nized Multimedia Integration Language) 4 , For
audio output, <audio> element works as the
same way as VoiceXML, that is, the content of
the element is passed to TTS (Text-to-Speech
module) and if the audio file is specified by the
src attribute, it is a prior output. In <video>,
<page> (e.g. HTML) and <smil> (for rich mul-
timedia presentation) output, each element speci-
fies the contents file by src attribute. In <agent>
element, the agent’s behavior definition, such as
move, emotion, status attribute specifies the pa-
rameter for each action.

2.3 Platform level description

The differences of agent and other devices for
input/output are absorbed in this level. In interac-
tion level markup language, <agent> element
specifies agent’s behavior. However, some agent
can move in a real world (e.g. personal robot),
some agent can move on a computer screen (e.g.
Microsoft Agent), and some cannot move but
display their face (e.g. life-like agent).

One solution for dealing with such variety of
behavior is to define many attributes at <agent>
element, for example, move, facial expression,
gesture, point, etc. However, the defects of this
solution are inflexibility of correspondence to
progress of agent technology (if an agent adds
new ability to its behavior, the specification of
language should be changed) and interference of
reusability of interaction description (description
for one agent cannot apply to another agent).

Our solution is to use the binding mechanism
in XML language between interaction level and
platform dependent level. We assume default
behavior for each value of the move, emotion
and status attributes of the <agent> element. If
such default behavior is not enough for some
purpose, the developer can override the agent’s
behavior using binding mechanism and the
agent’s native control language. As a result, the
platform level description is embedded in bind-
ing language described in next section.

3 Rapid system development

3.1 Usage of application framework

Each task class has a typical execution steps as
investigated in previous section. Therefore a sys-
tem developer has to specify a data model and

4 http://www.w3.org/AudioVideo/

specific information for each task execution.
Web application framework can drive interactive
task using these declarative parameters.

As an application framework, we use Struts5

which is based on Model-View-Controller (MVC)
model. It clearly separates application logic
(model part), transition of interaction (controller
part) and user interface (view part). Although
MVC model is popular in GUI-based Web appli-
cation, it can be applied in speech-based applica-
tion because any modality dependent information
can be excluded from the view part. Struts pro-
vides (1) a controller mechanism and (2) integra-
tion mechanism with the back-end application
part and the user interface part. In driving Struts,
a developer has to (1) define a data class which
stores the user’s input and responding results, (2)
make action mapping rules which defines a tran-
sition pattern of the target interactive system, and
(3) make the view part which defines human-
computer interaction patterns. The process of
Struts begins by the request from the user client
(typically in HTML, form data is submitted to
the Web server via HTTP post method).

The controller catches the request and stores
the submitted data to the data class, and then
calls the action class specified by the request fol-
lowing the definition of action mapping rules.

The action class communicates with the back-
end application, such as database management
system or outside Web servers by referring the
data class, and returns the status of the process-
ing to the controller. According to the status, the
controller refers the action mapping rules and
selects the view file which is passed to the user’s
client. Basically, this view file is written in Java
Server Pages, which can be any XML file that
includes Java code or useful tag libraries. Using
this embedded programming method, the results
of the application processing is reflected to the
response. The flow of processing in the Struts is
shown in Figure 6.

Figure. 6 MVC model.

5 http:// struts.apache.org

user
interface controller application

logic

data
class

Action
mapping

request

results

call

status

lookup

view modelcontroller

113

The first step of rapid development is to pre-
pare backend application (Typically using Data-
base Management System) and their application
logic code. The action mapping file and data
class file are created automatically from the task
level description described next subsection.

3.2 Task definition

Figure 7 shows an example description of the
information assistant task. In this task setting,
video contents which are divided into sections
are presented to the user one by one. At the end
of a section, a robot agent put in a word in order
to help user’s understanding and to measure the
user’s preference (e.g. by the recognition of ac-
knowledging, nodding, etc.) . If low user’s pref-
erence is observed, unimportant parts of the
presentation are skipped and comments of the
robot are adjusted to beginner’s level. The im-
portance of the section is indicated by interes-
tLevel attribute and knowledgeLevel attribute
that are introduced in the <userModel> element.
If one of the values of these attribute is below the
current value of the user model, the relevant sec-
tion is skipped. The skipping mechanism using
user model variables is automatically inserted
into an interaction level description.

Figure. 7 An Example of Task Markup Lan-
guage.

3.3 Describing Interaction

The connection between task-level and interac-
tion-level is realized by generation of interaction
description templates from the task level descrip-
tion. The interaction level description corre-
sponds to the view part of the MVC model on
which task level description is based. From this
point of view, task level language specification
gives higher level parameters over MVC frame-
work which restricts behavior of the model for
typical interactive application patterns. Therefore,
from this pattern information, the skeletons of
the view part of each typical pattern can be gen-
erated based on the device model information in
task markup language.

For example, by the task level description
shown in Figure 7, data class is generated from
<userModel> element by mapping the field of
the class to user model variable, and action map-
ping rule set is generated using the sequence in-
formation of <section> elements. The branch is
realized by calling application logic which com-
pares the attribute variables of the <section> and
user model data class. Following action mapping
rule, the interaction level description is generated
for each <section> element. In information assis-
tant class, a <section> element corresponds to
two interaction level descriptions: the one is pre-
senting contents which transform <video> ele-
ment to the <output> elements and the other is
interacting with user, such as shown in Figure 8.

The latter file is merely a skeleton. Therefore,
the developer has to fill the system’s prompt,
specify user’s input and add corresponding ac-
tions.

Figure 8 describes an interaction as follows: at
the end of some segment, the agent asks the user
whether the contents are interesting or not. The
user can reply by speech or by nodding gesture.
If the user’s response is affirmative, the global
variable of interest level in user model is incre-
mented.

<taskml type="infoAssist">
 <head>
 <userModel>
 <interestLevel/>
 <knowledgeLevel/>
 </userModel>
 <deviceModel

mainMode="speech" agentType="robot"/>
 </head>
 <body>
 <section id="001"

 s_time="00:00:00" e_time="00:00:50"
intersetLevel="1" knowledgeLevel="1">

 <video src="vtr1.avi" />
 <interaction name="interest1.mmi"

 s_time="00:00:30"/>
 </section>
 ...
 </body>
</taskml>

114

Bool speak
(String message){

Module m
=Call TTS-module;
m.set(message);
m.speak(message);
release m;

}

Bool speak
(String message){

Module m
=Call TTS-module;
m.set(message);
m.speak(message);
release m;

}

<message>
<head>

<to>TTS-module</to>
<from>DM</from>

<head>
<body>

Set Text “hello”
</body>

</message>

<audio>
Hello

</audio>

１

２ ３

４ ５

n

Child Place

+

１

２

４ ５

n

Figure. 8 An Example of Interaction level
Markup Language.

3.4 Adaptation to multiple interaction de-
vices

The connection between interaction-level and
platform-level is realized by binding mechanism
of XML. XBL (XML Binding Language)6 was
originally defined for smart user interface de-
scription, extended for SVG afterwards, and fur-
thermore, for general XML language. The con-
cept of binding in XBL is a tree extension by
inheriting the value of attributes to the sub tree
(see Figure 9). As a result of this mechanism, the
base language, in this the case interaction
markup language, can keep its simplicity but
does not loose flexibility.

Figure. 9 Concept of XML binding.

By using this mechanism, we implemented

various types of weather information system,

6 http://www.w3.org/TR/xbl/

such as Microsoft agent (Figure 10), Galatea
(Figure 11) and a personal robot. The platform
change is made only by modifying agentType
attribute of <deviceModel> element of taskML.

Figure. 10 Interaction with Microsoft agent.

Figure. 11 Interaction with Galatea.

4 Comparison with existing multimodal
language

There are several multimodal interaction systems,
mainly in research level (López-Cózar and Araki
2005). XHTML+Voice 7 and SALT 8 are most
popular multimodal interaction description lan-
guages. These two languages concentrate on how
to add speech interaction on graphical Web
pages by adding spoken dialogue description to
(X)HTML codes. These are not suitable for a
description of virtual agent interactions.

(Fernando D’Haro et al. 2005) proposes new
multimodal languages for several layers. Their
proposal is mainly on development environment
which supports development steps but for lan-
guage itself. In contrary to that, our proposal is a

7 http://www-306.ibm.com/software/pervasive/
multimodal/x%2Bv/11/spec.htm
8 http://www.saltforum.org/

<mmvxml>
<form>

 <field name=”question”>
 <input>
 <speech type=”boolean”/>
 <image type=”nod”/>
 </input>
 <output>
 <audio> Is it interesting? </audio>
 </output>
 <filled>
 <if cond=”question==true”>

<assign name=”intersestLevel”
 expr=” intersestLevel+1”/>

</if>
<submit src=”http://localhost:8080/step2/>

 </filled>
 </field>
 </form>
</mmvxml>

115

simplified language and framework that auto-
mate several steps for system development.

5 Conclusion and future works

In this paper, we explained a rapid development
method of multimodal dialogue system using
MIML. This language can be extended for more
complex task settings, such as multi-scenario
presentation and multiple-task agents. Although
it is difficult to realize multi-scenario presenta-
tion by the proposed filtering method, it can be
treated by extending filtering concept to discrete
variable and enriching the data type of <user-
Model> variables. For example, if the value of
<knowledgeLevel> variable in Figure 7 can take
one of “expert”, “moderate” and “novice”, and
each scenario in multi-scenario presentation is
marked with these values, multi-scenario presen-
tation can be realized by filtering with discrete
variables. In case of multiple-task agents, we can
implement such agents by adding one additional
interaction description which guides to branch
various tasks.

Acknowledgments

Authors would like to thank the members of
ISTC/MMI markup language working group for
their useful discussions.

References
M. Araki, K. Komatani, T. Hirata and S. Doshita.

1999. A Dialogue Library for Task-oriented Spo-
ken Dialogue Systems, Proc. IJCAI Workshop on
Knowledge and Reasoning in Practical Dialogue
Systems, pp.1-7.

M. Araki, K. Ueda, M. Akita, T. Nishimoto and Y.
Niimi. 2002. Proposal of a Multimodal Dialogue
Description Language, In Proc. of PRICAI 02.

L. Fernando D’Haro et al. 2005. An advanced plat-
form to speed up the design of multilingual dialog
applications for multiple modalities, Speech Com-
munication, in Press.

R. López-Cózar Delgado, M Araki. 2005. Spoken,
Multilingual and Multimodal Dialogue Systems:
Development and Assessment, Wiley.

K. Katsurada, Y. Nakamura, H. Yamada, T. Nitta.
2003. XISL: A Language for Describing Multimo-
dal Interaction Scenarios, Proc. of ICMI'03,
pp.281-284.

S. Kawamoto, H. Shimodaira, T. Nitta, T. Nishimoto,
S. Nakamura, K. Itou, S. Morishima, T. Yotsukura,

A. Kai, A. Lee, Y. Yamashita, T. Kobayashi, K.
Tokuda, K. Hirose, N. Minematsu, A. Yamada, Y.
Den, T. Utsuro and S. Sagayama. 2004. Galatea:
Open-Source Software for Developing Anthropo-
morphic Spoken Dialog Agents, In Life-Like Char-
acters. Tools, Affective Functions, and Applica-
tions. ed. H. Prendinger and M. Ishizuka, pp.187-
212, Springer.

116

