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Abstract 

In this paper, we demonstrate how to ex-
tend TimeML, a rich specification lan-
guage for event and temporal expressions 
in text, with the implicit typical durations 
of events, temporal information in text 
that has hitherto been largely unexploited. 
Event duration information can be very 
important in applications in which the 
time course of events is to be extracted 
from text. For example, whether two 
events overlap or are in sequence often 
depends very much on their durations.     

1 Introduction 

Temporal information processing has become 
more and more important in many natural lan-
guage processing (NLP) applications, such as 
question answering (Harabagiu and Bejan, 2005; 
Moldovan et. al., 2005; Saurí et. al., 2005), 
summarization (Mani and Schiffman, 2005), and 
information extraction (Surdeanu et. al., 2003). 

Temporal anchoring and event ordering are 
among the most important kinds of temporal in-
formation needed for NLP applications. Al-
though there has been much work on extracting 
and inferring such information from texts 
(Hitzeman et al., 1995; Mani and Wilson, 2000; 
Filatova and Hovy, 2001; Boguraev and Ando, 
2005), none of this work has exploited the im-
plicit event duration information from the text.  

Consider the sentence from a news article: 

George W. Bush met with Vladimir Putin in 
Moscow. 

How long was the meeting?  Our first reaction 
to this question might be that we have no idea.  
But in fact we do have an idea.  We know the 
meeting was longer than 10 seconds and less 
than a year.  How much tighter can we get the 

bounds to be?  Most people would say the meet-
ing lasted between an hour and three days. 

There is much temporal information in text 
that has hitherto been largely unexploited, en-
coded in the descriptions of events and relying 
on our knowledge of the range of usual durations 
of types of events, which can be very important 
in applications in which the time course of events 
is to be extracted from news.  For example, 
whether two events overlap or are in sequence 
often depends very much on their durations.  If a 
war started yesterday, we can be pretty sure it is 
still going on today.  If a hurricane started last 
year, we can be sure it is over by now. 

To extract such implicit event duration infor-
mation from texts automatically, we developed a 
corpus annotated with typical durations of events 
(Pan et al., 2006a) which currently contains all 
the 48 non-Wall-Street-Journal (non-WSJ) news 
articles (a total of 2132 event instances), as well 
as 10 WSJ articles (156 event instances), from 
the TimeBank corpus annotated in TimeML 
(Pustejovky et al., 2003).  

Because the annotated corpus is still fairly 
small, we cannot hope to learn to make fine-
grained judgments of event durations that are 
currently annotated in the corpus, but as we show 
in greater detail in (Pan et al., 2006b), it is possi-
ble to learn useful coarse-grained judgments that 
considerably outperform a baseline and approach 
human performance. 

This paper describes our work on extending 
TimeML with annotations of typical durations of 
events, which can enrich the expressiveness of 
TimeML, and provides NLP applications that 
exploit TimeML with this additional implicit 
event duration information for their temporal 
information processing tasks. 

In Section 2 we first describe the corpus of 
typical durations of events, including the annota-
tion guidelines, the representative event classes 
with examples, the inter-annotator agreement 
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study, and the machine learning results. TimeML 
and its event classes will be described in Section 
3, and we will discuss how to integrate event du-
ration annotations into TimeML in Section 4.  

2 Annotating and Learning Typical Du-
ration of Events 

In the corpus of typical durations of events, every 
event to be annotated was already identified in 
the TimeBank corpus.  Annotators are asked to 
provide lower and upper bounds on the duration 
of the event, and a judgment of level of confi-
dence in those estimates on a scale from one to 
ten. An interface was built to facilitate the anno-
tation. Graphical output is displayed to enable us 
to visualize quickly the level of agreement 
among different annotators for each event. For 
example, here is the output of the annotations (3 
annotators) for the “finished” event (in bold) in 
the sentence 

After the victim, Linda Sanders, 35, had fin-
ished her cleaning and was waiting for her 
clothes to dry,... 

 
 

This graph shows that the first annotator believes 
that the event lasts for minutes whereas the sec-
ond annotator believes it could only last for sev-
eral seconds. The third annotates the event to 
range from a few seconds to a few minutes. A 
logarithmic scale is used for the output. 

2.1 Annotation Instructions 

Annotators are asked to identify upper and lower 
bounds that would include 80% of the possible 
cases, excluding anomalous cases.   

The judgments are to be made in context.  
First of all, information in the syntactic environ-
ment needs to be considered before annotating, 
and the events need to be annotated in light of 
the information provided by the entire article. 
Annotation is made easier and more consistent if 
coreferential and near-coreferential descriptions 
of events are identified initially. 

When the articles were completely annotated 
by the three annotators, the results were analyzed 
and the differences were reconciled. Differences 
in annotation could be due to the differences in 

interpretations of the event; however, we found 
that the vast majority of radically different judg-
ments can be categorized into a relatively small 
number of classes. Some of these correspond to 
aspectual features of events, which have been 
intensively investigated (e.g., Vendler, 1967; 
Dowty, 1979; Moens and Steedman, 1988; Pas-
sonneau, 1988). We then developed guidelines to 
cover those cases (see the next section). 

2.2 Event Classes 

Action vs. State: Actions involve change, such 
as those described by words like "speaking", 
"gave", and "skyrocketed". States involve things 
staying the same, such as being dead, being dry, 
and being at peace. When we have an event in 
the passive tense, sometimes there is an ambigu-
ity about whether the event is a state or an action. 
For example, 

Three people were injured in the attack. 

Is the “injured” event an action or a state? This 
matters because they will have different dura-
tions. The state begins with the action and lasts 
until the victim is healed. Besides the general 
diagnostic tests to distinguish them (Vendler, 
1967; Dowty, 1979), another test can be applied 
to this specific case: Imagine someone says the 
sentence after the action had ended but the state 
was still persisting. Would they use the past or 
present tense? In the “injured” example, it is 
clear we would say “Three people were injured 
in the attack”, whereas we would say “Three 
people are injured from the attack.” Our annota-
tion interface handles events of this type by al-
lowing the annotator to specify which interpreta-
tion he is giving. If the annotator feels it’s too 
ambiguous to distinguish, annotations can be 
given for both interpretations. 
 
Aspectual Events:  Some events are aspects of 
larger events, such as their start or finish. Al-
though they may seem instantaneous, we believe 
they should be considered to happen across some 
interval, i.e., the first or last sub-event of the lar-
ger event. For example,   

 After the victim, Linda Sanders, 35, had fin-
ished her cleaning and was waiting for her 
clothes to dry,… 

The “finished” event should be considered as the 
last sub-event of the larger event (the “cleaning” 
event), since it actually involves opening the 
door of the washer, taking out the clothes, clos-
ing the door, and so on. All this takes time. This 
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interpretation will also give us more information 
on typical durations than simply assuming such 
events are instantaneous. 
 
Reporting Events: These are everywhere in the 
news. They can be direct quotes, taking exactly 
as long as the sentence takes to read, or they can 
be summarizations of long press conferences. We 
need to distinguish different cases: 

Quoted Report: This is when the reported 
content is quoted. The duration of the event 
should be the actual duration of the utterance of 
the quoted content. The time duration can be eas-
ily verified by saying the sentence out loud and 
timing it. For example, 

"It looks as though they panicked," a detective 
said of the robbers. 

This probably took between 1 and 3 seconds; it’s 
very unlikely it took more than 10 seconds. 

Unquoted Report: This is when the reporting 
description occurs without quotes that could be 
as short as just the duration of the actual utter-
ance of the reported content (lower bound), and 
as long as the duration of a briefing or press con-
ference (upper bound). 

If the sentence is very short, then it's likely 
that it is one complete sentence from the 
speaker's remarks, and a short duration should be 
given; if it is a long, complex sentence, then it's 
more likely to be a summary of a long discussion 
or press conference, and a longer duration should 
be given. For example, 

The police said it did not appear that anyone 
else was injured. 

A Brooklyn woman who was watching her 
clothes dry in a laundromat was killed Thursday 
evening when two would-be robbers emptied 
their pistols into the store, the police said. 

If the first sentence were quoted text, it would be 
very much the same. Hence the duration of the 
“said” event should be short. In the second sen-
tence everything that the spokesperson (here the 
police) has said is compiled into a single sen-
tence by the reporter, and it is unlikely that the 
spokesperson said only a single sentence with all 
this information. Thus, it is reasonable to give 
longer duration to this “said” event. 
 
Multiple Events: Many occurrences of verbs 
and other event descriptors refer to multiple 
events, especially, but not exclusively, if the sub-
ject or object of the verb is plural.  For example,   

Iraq has destroyed its long-range missiles.  

Both single (i.e., destroyed one missile) and ag-
gregate (i.e., destroyed all missiles) events hap-
pened. This was a significant source in dis-
agreements in our first round of annotation. 
Since both judgments provide useful informa-
tion, our current annotation interface allows the 
annotator to specify the event as multiple, and 
give durations for both the single and aggregate 
events.  

 
Events Involving Negation: Negated events 
didn't happen, so it may seem strange to specify 
their duration. But whenever negation is used, 
there is a certain class of events whose occur-
rence is being denied. Annotators should con-
sider this class, and make a judgment about the 
likely duration of the events in it. In addition, 
there is the interval during which the nonoccur-
rence of the events holds. For example,  

He was willing to withdraw troops in ex-
change for guarantees that Israel would not be 
attacked. 

There is the typical amount of time of “being 
attacked”, i.e., the duration of a single attack, and 
a longer period of time of “not being attacked”. 
Similarly to multiple events, annotators are asked 
to give durations for both the event negated and 
the negation of that event.   
 
Positive Infinite Durations: These are states 
which continue essentially forever once they be-
gin. For example, 

He is dead. 

Here the time continues for an infinite amount 
of time, and we allow this as an annotation. 

2.3 Inter-Annotator Agreement 

Although the graphical output of the annotations 
enables us to visualize quickly the level of agree-
ment among different annotators for each event, 
a quantitative measurement of the agreement is 
needed. The kappa statistic (Krippendorff, 1980; 
Carletta, 1996) has become the de facto standard 
to assess inter-annotator agreement. It is com-
puted as: 
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−
−
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P(A) is the observed agreement among the an-
notators, and P(E) is the expected agreement,  
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Figure 1: Overlap of Judgments of [10 minutes, 
30 minutes] and [10 minutes, 2 hours]. 

 
which is the probability that the annotators agree 
by chance.  

2.3.1  What Should Count as Agreement? 

Determining what should count as agreement is 
not only important for assessing inter-annotator 
agreement, but is also crucial for later evaluation 
of machine learning experiments.  

We first need to decide what scale is most ap-
propriate. One possibility is just to convert all the 
temporal units to seconds. However, this would 
not correctly capture our intuitions about the 
relative relations between duration ranges. For 
example, the difference between 1 second and 20 
seconds is significant; while the difference be-
tween 1 year 1 second and 1 year 20 seconds is 
negligible. In order to handle this problem, we 
use a logarithmic scale for our data. After first 
converting from temporal units to seconds, we 
then take the natural logarithms of these values. 
This logarithmic scale also conforms to the half 
orders of magnitude (HOM) (Hobbs and Kreino-
vich, 2001) which was shown to have utility in 
several very different linguistic contexts. 

In the literature on the kappa statistic, most au-
thors address only category data; some can han-
dle more general data, such as data in interval 
scales or ratio scales (Krippendorff, 1980; Car-
letta, 1996). However, none of the techniques 
directly apply to our data, which are ranges of 
durations from a lower bound to an upper bound. 

In fact, what coders were instructed to anno-
tate for a given event is not just a range, but a 
duration distribution for the event, where the 
area between the lower bound and the upper 
bound covers about 80% of the entire distribution 
area. Since it’s natural to assume the most likely 
duration for such distribution is its mean (aver-
age) duration, and the distribution flattens out 
toward the upper and lower bounds, we use the  
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Figure 2: Distribution of Means of Annotated 
Durations. 

 
normal or Gaussian distribution to model our 
duration distributions. 

In order to determine a normal distribution, we 
need to know two parameters: the mean and the 
standard deviation. For our duration distributions 
with given lower and upper bounds, the mean is 
the average of the bounds. Under the assumption 
that the area between lower and upper bounds 
covers 80% of the entire distribution area, the 
lower and upper bounds are each 1.28 standard 
deviations from the mean.  

With this data model, the agreement between 
two annotations can be defined as the overlap-
ping area between two normal distributions. The 
agreement among many annotations is the aver-
age overlap of all the pairwise overlapping areas. 
For example, the overlap of judgments of [10 
minutes, 30 minutes] and [10 minutes, 2 hours] 
are as in Figure 1. The overlap or agreement is 
0.508706. 

2.3.2  Expected Agreement 

As in (Krippendorff, 1980), we assume there ex-
ists one global distribution for our task (i.e., the 
duration ranges for all the events), and “chance” 
annotations would be consistent with this distri-
bution. Thus, the baseline will be an annotator 
who knows the global distribution and annotates 
in accordance with it, but does not read the spe-
cific article being annotated. Therefore, we must 
compute the global distribution of the durations, 
in particular, of their means and their widths. 
This will be of interest not only in determining 
expected agreement, but also in terms of what it 
says about the genre of news articles and about 
fuzzy judgments in general. 

We first compute the distribution of the means 
of all the annotated durations. Its histogram is 
shown in Figure 2, where the horizontal axis 
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Figure 3: Distribution of Widths of Annotated 
Durations. 
 
represents the mean values in the natural loga-
rithmic scale and the vertical axis represents the 
number of annotated durations with that mean. 

We also compute the distribution of the widths 
(i.e., upper bound – lower bound) of all the anno-
tated durations, and its histogram is shown in 
Figure 3, where the horizontal axis represents the 
width in the natural logarithmic scale and the 
vertical axis represents the number of annotated 
durations with that width. 

Two different methods were used to compute 
the expected agreement (baseline), both yielding 
nearly equal results. These are described in detail 
in (Pan et al., 2006a). For both, P(E) is about 
0.15. 

Experimental results show that the use of the 
annotation guidelines resulted in about 10% im-
provement in inter-annotator agreement, meas-
ured as described in this section, see (Pan et al., 
2006a) for details. 

2.4 Machine Learning Experiments 

2.4.1  Features 

Local Context. For a given event, the local con-
text features include a window of n tokens to its 
left and n tokens to its right, as well as the event 
itself. The best n was determined via cross vali-
dation. A token can be a word or a punctuation 
mark. For each token in the local context, includ-
ing the event itself, three features are included: 
the original form of the token, its lemma (or root 
form), and its part-of-speech (POS) tag. 

Syntactic Relations. The information in the 
event’s syntactic environment is very important 
in deciding the durations of events. For a given 
event, both the head of its subject and the head of 
its object are extracted from the parse trees gen-
erated by the CONTEX parser (Hermjakob and 

Mooney, 1997). Similarly to the local context 
features, for both the subject head and the object 
head, their original form, lemma, and POS tags 
are extracted as features. 

 WordNet Hypernyms. Events with the same 
hypernyms may have similar durations. But 
closely related events don’t always have the 
same direct hypernyms. We extract the hy-
pernyms not only for the event itself, but also for 
the subject and object of the event, since events 
related to a group of people or an organization 
usually last longer than those involving individu-
als, and the hypernyms can help distinguish such 
concepts. For our learning experiments, we ex-
tract the first 3 levels of hypernyms from Word-
Net (Miller, 1990). 

2.4.2  Learning Coarse-grained Binary 
Event Durations 

The distribution of the means of the annotated 
durations in Figure 2 is bimodal, dividing the 
events into those that take less than a day and 
those that take more than a day. Thus, in our first 
machine learning experiment, we have tried to 
learn this coarse-grained event duration informa-
tion as a binary classification task. 

Data. The original annotated data can be 
straightforwardly transformed for this binary 
classification task. For each event annotation, the 
most likely (mean) duration is calculated first by 
averaging (the logs of) its lower and upper bound 
durations. If its most likely (mean) duration is 
less than a day (about 11.4 in the natural loga-
rithmic scale), it is assigned to the “short” event 
class, otherwise it is assigned to the “long” event 
class. (Note that these labels are strictly a con-
venience and not an analysis of the meanings of 
“short” and “long”.) 

We divide the total annotated non-WSJ data 
(2132 event instances) into two data sets: a train-
ing data set with 1705 event instances (about 
80% of the total non-WSJ data) and a held-out 
test data set with 427 event instances (about 20% 
of the total non-WSJ data). The WSJ data (156 
event instances) is kept for further test purposes. 

Results. The learning results in Figure 4 show 
that among all three learning algorithms explored 
(Naïve Bayes (NB), Decision Trees C4.5, and 
Support Vector Machines (SVM)), SVM with 
linear kernel achieves the best overall precision 
(76.6%). Compared with the baseline (59.0%) 
and human agreement (87.7%), this level of per-
formance is very encouraging, especially as the 
learning is from such limited training data. 
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Figure 4: Overall Test Precision on non-WSJ 
Data. 

 
Feature evaluation in (Pan et al., 2006b) shows 

that most of the performance comes from event 
word or phrase itself. A significant improvement 
above that is due to the addition of information 
about the subject and object. Local context does 
not help and in fact may hurt, and hypernym in-
formation also does not seem to help. It is grati-
fying to see that the most important information 
is that from the predicate and arguments describ-
ing the event, as our linguistic intuitions would 
lead us to expect. 

In order to evaluate whether the learned model 
can perform well on data from different news 
genres, we tested it on the unseen WSJ data (156 
event instances). A precision of 75.0%, which is 
very close to the test performance on the non-
WSJ data, proves the great generalization capac-
ity of the learned model. 

Some preliminary experimental results of 
learning the more fine-grained event duration 
information, i.e., the most likely temporal unit 
(cf. (Rieger 1974)’s ORDERHOURS, ORDERDAYS), 
are shown in (Pan et al., 2006b). SVM again 
achieves the best performance with 67.9% test 
precision (baseline 51.5% and human agreement 
79.8%) in “approximate agreement” where tem-
poral units are considered to match if they are the 
same temporal unit or an adjacent one. 

3 TimeML and Its Event Classes 

TimeML (Pustejovsky et al., 2003) is a rich 
specification language for event and temporal 
expressions in natural language text. Unlike most 
previous attempts at event and temporal specifi-
cation, TimeML separates the representation of 
event and temporal expressions from the anchor-
ing or ordering dependencies that may exist in a 
given text. 

TimeML includes four major data structures: 
EVENT, TIMEX3, SIGNAL, AND LINK. 

EVENT is a cover term for situations that happen 
or occur, and also those predicates describing 
states or circumstances in which something ob-
tains or holds true. TIMEX3, which extends 
TIMEX2 (Ferro, 2001), is used to mark up ex-
plicit temporal expressions, such as time, dates, 
and durations. SIGNAL is used to annotate sec-
tions of text, typically function words that indi-
cate how temporal objects are related to each 
other (e.g., “when”, “during”, “before”). The set 
of LINK tags encode various relations that exist 
between the temporal elements of a document, 
including three subtypes: TLINK (temporal 
links), SLINK (subordination links), and ALINK 
(aspectual links). 

Our event duration annotations can be inte-
grated into the EVENT tag. In TimeML each 
event belongs to one of the seven event classes, 
i.e., reporting, perception, aspectual, I-action, I-
state, state, occurrence. TimeML annotation 
guidelines1 give detailed description for each of 
the classes: 

Reporting. This class describes the action of a 
person or an organization declaring something, 
narrating an event, informing about an event, etc 
(e.g., say, report, tell, explain, state). 

Perception. This class includes events involv-
ing the physical perception of another event (e.g., 
see, watch, view, hear). 

Aspectual. In languages such as English and 
French, there is a grammatical device of aspec-
tual predication, which focuses on different fac-
ets of event history, i.e., initiation, reinitiation, 
termination, culmination, continuation (e.g., be-
gin, stop, finish, continue). 

I-Action. An I-Action is an Intensional Action. 
It introduces an event argument (which must be 
in the text explicitly) describing an action or 
situation from which we can infer something 
given its relation with the I-Action (e.g., attempt, 
try, promise). 

I-State.  This class of events are similar to the 
previous class. This class includes states that re-
fer to alternative or possible worlds (e.g., believe, 
intend, want). 

State. This class describes circumstances in 
which something obtains or holds true (e.g., on 
board, kidnapped, peace). 

Occurrence. This class includes all the many 
other kinds of events describing something that 
happens or occurs in the world (e.g., die, crash, 
build, sell). 

                                                 
1http://www.cs.brandeis.edu/~jamesp/arda/time/time
MLdocs/annguide12wp.pdf 
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4 Integrating Event Duration Annota-
tions into TimeML 

Our event duration annotations can be integrated 
into TimeML by adding two more attributes to 
the EVENT tag for the lower bound and upper 
bound duration annotations (e.g., “lowerBound-
Duration” and “upperBoundDuration” attributes). 

To minimize changes of the existing TimeML 
specifications caused by the integration, we can 
try to share as much as possible our event classes 
as described in Section 2.2 with the existing ones 
in TimeML as described in Section 3.  

We can see that four event classes are shared 
with very similar definitions, i.e., reporting, as-
pectual, state, and action/occurrence. For the 
other three event classes that only belong to Ti-
meML (i.e., perception, I-action, I-state), the I-
action and perception classes can be treated as 
special subclasses of the action/occurrence class, 
and the I-state class as a special subclass of the 
state class. 

However, there are still three classes that only 
belong to the event duration annotations (i.e., 
multiple, negation, and positive infinite). The 
positive infinite class can be treated as a special 
subclass of the state class with a special duration 
annotation for positive infinity.  

Each multiple event has two annotations. For 
example, for 

Iraq has destroyed its long-range missiles.  

there is the time it takes to destroy one missile 
and the duration of the interval in which all the 
individual events are situated – the time it takes 
to destroy all its missiles.  

Since the single event is usually more likely to 
be encountered in multiple documents, and thus 
the duration of the single event is usually more 
likely to be shared and re-used, to simplify the 
specification, we can take only the duration an-
notation of the single events for the multiple 
event class, and the single event can be assigned 
with one of the seven TimeML event classes. For 
example, the “destroyed” event in the above ex-
ample is assigned with the occurrence class in 
TimeBank. 

The events involving negation can be simpli-
fied similarly. Since the event negated is usually 
more likely to be encountered in multiple docu-
ments, we can take only the duration annotation 
of the negated event for this class. For example, 
in 

He was willing to withdraw troops in ex-
change for guarantees that Israel would not be 
attacked. 

the event negated is the “being attacked” event 
and it is assigned with the occurrence class in 
TimeBank.  Alternatively, TimeML could be 
extended to treat negations of events as states. 

The format used for annotated durations is 
consistent with that for the value of the DURA-
TION type in TimeML. For example, the sen-
tence 

The official said these sites could only be vis-
ited by a special team of U.N. monitors and dip-
lomats. 

can be marked up in TimeML as: 
 

The official <EVENT eid="e63" 
class="REPORTING"> said </EVENT> 
these sites <SIGNAL sid="s65" 
>could</SIGNAL> only be <EVENT 
eid="e64" class="OCCURRENCE"> 
visited </EVENT> by a special team 
of <ENAMEX TYPE="ORGANIZATION"> U.N. 
</ENAMEX> monitors and diplomats. 

 
If we annotate the “said” event with the dura-

tion annotation of [5 seconds, 5 minutes], and the 
“visited” event with [10 minutes, 1 day], the ex-
tended mark-up becomes: 

 
The official <EVENT eid="e63" 
class="REPORTING" lowerBoundDura-
tion="PT5S" upperBoundDura-
tion="PT5M"> said </EVENT> these 
sites <SIGNAL sid="s65" 
>could</SIGNAL> only be <EVENT 
eid="e64" class="OCCURRENCE" lower-
BoundDuration="PT10M" upperBoundDu-
ration="P1D"> visited </EVENT> by a 
special team of <ENAMEX 
TYPE="ORGANIZATION"> U.N. </ENAMEX> 
monitors and diplomats. 

5 Conclusion 

In this paper we have demonstrated how to ex-
tend TimeML with typical durations of events. 
We can see that the extension is very straight-
forward. Other interesting temporal information 
can be extracted or learned. For example, for 
each event class, we can generate its own mean 
and widths graphs, and learn their durations 
separately from other classes, which may capture 
different duration characteristics associated with 
each event class.   
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