Coupling a Linguistic Formalism and a Script Language

Claude Roux
Xerox Research Centre Europe/ 6,
chemin de Maupertuis, 38240 Meylan,
France

Claude.roux@xrce.xerox.com

better deal with these issues. However, most
Abstract solutions rely on formalism enrichments with
solutions “engraved in stone”, that makes it diffi-
This article presents a novel syntactic cult to adapt a grammar to new domains (see De-
parser architecture, in which a linguistic clerck, 2002, or Roux, 2004), even though they
formalism can be enriched with all sorts use XML representation or database to store
of constraints, included extra-linguistic huge amounts of extra-linguistic information.
ones, thanks to the seamless coupling of The interpretation of these data is intertwined

the formalism with a programming lan- into the very fabric of the parser and requires

guage. deep modifications to use new sources with a
complete different DTD.

1 Introduction Of course, there are many other ways to solve

these problems. For instance, in the case of lan-

The utilization of constraints in natural Ianguagetgjuc.iges such as Prolog or Lisp, the grammar for-
parsers (see Blache and Balfourier,2001 Ofajism is often indistinguishable from the pro-
Tapanainen and Jarvinen , 1994) is central tg{l

_gramming language itself. For these parsers, the
most systems today. However, these constrainfg,erying of external information is easily solved
are often limited to purely linguistic features

, ; i 'as grammar rules can be naturally augmented
such as linearity or dependency relations b&ith non-linguistic procedures that are written in

tween categories within a given syntactic treejha same language. In other cases, when the
Most linguistic formalisms have been createdpalrser is independent from any specific pro-
with the sole purpose of extracting linguistic i”'gramming languages, the problem can prove dif-
formation from bits and pieces of text. They usUsjcit to solve. The formalism can of course be
ally use a launch and forget strategy, where a teXj,gmented with new instructions to tackle the
is analyzed according to local constraints, diSgerying of external information. However the
played and then discarded to make room for thg,o required to enrich the parser language may
next block of text. These parsers take each sefut pe worth the effort, as the development of a
tence as an independent input, on which grams,mplete new instruction set is a heavy and
mar rules are applied together with constraints,omplex task that is loosely related to linguistic
However, no sentence is independent of a texbarser programming.

and no text is really independent of extrayye propose in this article a new way of building

linguistic information.. In order to assess Cor-natyral language parsers, with the coupling of a
rectly the phrasePresident Bushwe need 10 gerint janguage with an already rich linguistic
know thatBushis a proper name, whose function¢,malism.

is “President”. Washingtoncan be a town, a

state, the name of a famous president, but alsp Scripting

the name of an actor. Moreover, the analysis of a

sentence is never an independent process, The system we describe in this article mix a
President Buslis found in a text, the reference tohatural language parser, namely Xerox Incre-
president later in the document will be related tomental Parser (XIP hereafter, see Ait-Mohktar et
this phrase. al., 2002, Roux, 1999) with a scripting language,
These problems are certainly not new and # our case Python. The interaction of a grammar
dense literature has been written about how twith scripting instructions is almost as old as

33

Proceedings of the 3rd Workshop on Constraints and Language Processing (CSlfadeé 33—40,
Sydney, July 20062006 Association for Computational Linguistics

computational linguistics. Pereira and Shieber fotation is an XML document, the number of pos-
instance, in their book: Prolog and Natural Lansible enrichments is almost limitless, as each
guage Processing (see Pereira and Shieber, 198@ddule will only extract from this document the
already suggested mixing grammar rules wittKML markup tags that it is designed to handle.
extra-linguistic information. This mélange wasHowever, since XML is by nature furiously ver-
made possible thanks to the homogeneity bdsose, the overall system might be very slow as it
tween grammar rules and the external code, writnight spend a large amount of time translating
ten in both cases in the same programming larexternal XML representation into internal repre-
guage. However, these programming languagesentations.

are not exactly tuned to do linguistic analysesFurthermore, applications that require natural
they are often slow and cumbersome. Moreovefanguage processing also have different pur-
they blur the boundary between program angboses, different needs. They may require a shal-
grammar rules, as the programming language isw output, such as a simple tokenization with a
both the algorithm language and the rule lanwhiff of tagging, or a much deeper analysis. Syn-
guage. Allen (see Allen, 1994) proposes a differtactic parsing is usually integrated as a black box
ent approach in his TRAINS Parsing system. Thato these architectures, with little control left
grammar formalism is independent to a certaiover the grammar execution, control which nev-
extent from the implementation language, whictertheless might prove very important in many
is LISP in this case. However, since the grammacases. An XML document, for instance, often
is translated into a LISP program, it is easy for @ontains some specific markup tags to identify a
linguist to specialize the generated rules withitle, a section or author name. If the parser is
external LISP procedures. Nevertheless, thgiven some indications about the input, it could
grammar formalism remains very close to LISPbe guided through the grammar maze to favor
data description, which makes the grammar rulethese rules that are better suited to analyze a title
somewhat difficult to read. for example.

The other solution, which is usually favored byFinally, syntactic parsing, when it is limited to
computational linguists, is to store the externalexical information, often fails to assess correctly
information in databases, which are accessesbme ambiguous relations. Thus, the only way to
with some pre-defined instructions and translatedeal with PP-attachment or anaphoric pronoun
into linguistic features. For instance (see Deantecedents is to use both previous analyses and
clerk, 2002 or Roux, 2004), the external informaexternal information. However, most syntactic
tion is presented as an XML document whos@arsers are often ill geared to link with external
DTD is defined once and for all. This DTD is modules. The formalism is engraved into a C
then enriched with extra-linguistic information program as in Link Grammar (see Grinberg et
that a parser can exploit to guide rule applicatioral.,1995) or as in Sylex (see Constant, 1995)
This method alleviates the necessity of a comwhich offers little or no opening to the rest of the
plex interaction mechanism between the parseworld, as it is mainly designed to accomplish one
and its external data sources. The XPath lansique task. We will show how the seamless in-
guage is used to query this document in order teegration of a script language into the very fabric
retrieve salient information at parsing time,of the formalism simplifies the task of keeping
which is then translated into local linguistic fea-track of previous analyses together with the use
tures. However, only static information can beof external sources of data.

exploited, as these XML databases must be built
beforehand. 3 Xerox Incremental Parser (XIP)

Similar mechanisms have also been proposed i .
other architectures to help heterogeneous Iinguiéll-1he XIP engine has been developed by a re-

tic modules to communicate through a commoriee?gf(thgsg;lr:; %OemnltorgtaEtLorgaleI'(ggl;'izg_sMiLg?;
XML interface (see Cunningham et al.,2002 P

Blache and Guénot , 2003). These architecturc’aest al., 2001). It has been designed from the be-

are very powerful as they connect together toolgInning fo follow a stricily incremental strategy,
that only need to comply with a common in_Where rules appl_y one after the other. There is
put/output DTD. Specialized Java modules carcl).nIy one analysis path that is followed for a

then be written which are applied to intermediate <" I|ngu.|st|c unit (phrase, sentence or even
paragraph): the failure of a rule does not prevent

r_epre_sgntations to add the_ir own tQUCh of extra’[he whole analysis from continuing to comple-
linguistic data. Since, the intermediate represen-

34

tion. Since the system never backtracks on any
rules, XIP cannot propel itself into a combinato- 1> AP = Ad.
rial explosion. 2> NP @= Det,(AP),(Noun),Noun.
3> FV=verb.
XIP can be divided into two main components: 4> SC= NP,FV.
* A component that builds a chunk tree on
the basis of lexical nodes. Each rule is associated with a layer number,

. which defines the order in which the rules must
« A component that creates functions Olhe executed.

dependencies that connect together distanf ihis grammar is applied to the above sentence,
nodes from the chunk tree. the result is the following:

The central goal of this parser is the extraction of TOP{SC{NP{The AP{chunking} rules}
dependencies. A dependency is a function that FV{produce}}

connects together distant nodes within a chunk NP{a chunk tree}

tree. The system constructs a dependency be- -}

tween two nodes, if these two nodes are in a spe- _ _

cific configuration within the chunk tree or if a TOP is @ node that is automatically created, once
specific set of dependencies has already beéhl chunking rules ha_ve applied, to transform this
extracted for some of these nodes (see Hage§gduence of chunks into a tree.

and Roux, 2002). The notion of constraint em{The “@" denotes a longest match strategy. The
bedded in XIP is both configurational and Boo-ule is then applied to the longest sequence of
lean. The configuration part is based on tre€ategories found in the linguistic unit)

regular rules which express constraints over node . . .
configuration, while the Boolean constraints are | N€ Next step consists of extracting some basic
expressed over dependencies. dependencies from this tree. These dependencies

are obtained with some very basic rules that only
3.1 ThreelLevd of Analysis connect nodes that occur in a specific sub-tree
The parsing is done in three different stages: configuration.
SUBJ(produce,rules)

* Part-of-speech disambiguation and OBJ(produce tree)

chunking.

« Dependency Extraction between wordsSUBJ is a subject relation, which has been ex-

on the basis of sub-tree patterns over th&#acted with the following rute

chunk sequence.
o) | NP{?*, noun#1}, FV{?*,verb#2}|
+ Combination of those dependencies with — suBJ(#2,#1).

Boolean operators to generate new de-

pendencies, or to modify or delete existingThis rule links together the noun and the verb

dependencies. respectively the sub-nodes of a NP and a VP that
are next to each other. The *{...}" denotes a pat-

tern over sub-nodes.

Below is an example of how a sentence is parsed.

We present a little grammar, written in the XIP Other rules may then be applied to this output,

formalism, together with the output yielded byto add or modify existing dependencies.

these rules.

3.2 TheDifferent Stepsof Analysis

if (SUBJ(#1,#2) & OBJ(#1,#3))
Example TRIPLET (#2,#1,#3).

The chunking rules produce a chunk tree. _ _
For instance, the above rule will generate a three

In a first stage, chunking rules are applied anglot dependencyRIPLET with the nodes ex-
the following chunk tree is built for this sen-tracted from the subject and object dependencies.

tence. If we apply this rule to our previous example, we
Below is a small XIP grammar that can analyzévill create: TRIPLET(rules,produce, tree).
the above example:

35

3.3 Script Language ment is backed up by thousands of dedicated

The utilization of a script language deeply in_computer scientists.

grained into the parser fabric might sound like 85 Python

pure technical gadget with very little influence

on parsing theories. However, the developmer'ﬁCripting languages have been around for a very

of a parser often poses some very trivial Iorob_ong time. Thus Perl and Awk have been part of

lems, which we can sum up in the three questior§€ Unix OS for at least twenty years. Python is
below: already an old language, in computational time

scale. It has been central to the Linux environ-
« How can we use previous analyses? ment fo_r more than ten years. 'Most 'of the basic

installation procedures are written in that lan-
* How do we access external information? guage. It has also been ported to a variety of plat-
forms such as Windows or Mac OS. The lan-
guage syntax is close to C, but lacks type verifi-
cation. However, the language is thoroughly
documented and a large quantity of specialized
Usually, the answer for each of these questiongyraries is available. Python has also been cho-
leads to three different implementations, as nongen because of the simplicity of its API, which
of these problem_s seem to have any connectioRfiows programmers to link easily a Python en-
whatsoever. Their only common point seems t@jine to their own application or to enlarge the
be some extra-programming into the parser enanguage with new libraries. The other reason of
gine. If a grammar and a parser are both writtefhis choice, over for instance a more conven-
in the same programming language, the problefional language such as C or Java is the fact that
is relatively simple to solve. However, if theit js an interpreted language. A XIP grammar is a
grammar is written in a formalism specifically set of text files, which are all compiled on the fly
deSigned for "ngUiStiC analysis interpreted with an memory every time the parser is run. It stems
linguistic compiler (as it is the case for XIP),from this choice that any addenda to this gram-
then any new features that would implemeninar should be written in a language that is also
some of these instructions translate into a modiompiled on the fly. In this way, the new instruc-
fication of the parsing engine itself. However,tions can be developed in parallel with the
one cannot expand the parser engine forever. T@?ammar and immediately put in test. It also
solution that has been chosen in XIP is to desimplifies the non-trivial task of debugging a
velop a script language, which linguists can us@omplete grammar as any modifications on any
to enrich the Original grammatical formalism parts of the grammar can be |mmed|ate|y ex-
with new instructions. perimented together with the python script.
34 Firs attempts We have produc_:ed two different versions of the

XIP-python parsing engine.

The first attempts to add scripting instructions to o
XIP consisted in enriching the grammar with3:6 Python Embedded within XIP

numerical and string variables together withye have linked the python engine to XIP, which
some instructions to handle these values. FCHIIOWS us to call and execute python Scripts from
instance, it is pOSSible in XIP to declare a Stnng\”th”’] the parsing engine. In this case, a gram-
variable, to instantiate it with the lemma value ofmar rule can call a python script to verify spe-

a syntactic node and to apply some string modkific conditions. The python scripts are then ap-
fications upon it. However, the development ofpended to the grammar itself. These scripts have
such a script language, however useful it provecﬁ,” access to all linguistic objects constructed so
became closer and closer to a general-purposgr. XIP is the master program with python

programming language, which XIP was not descripts being triggered by grammar rules
signed to be. The task of developing a full-

fledged programming language with a large in3.7 XIP asaPython Library
struction set is a complex 0ongoing Processye have created a specific XIP library which can
which has little connection with parsing theoriesyq freely imported in python. In this case, the

Nevertheless, there was a need for such an agp library exports a basic API, compliant with

dendum, which led the developmen_t team to linky,o python programming interface, which allows
XIP with Python, whose own ongoing develop-python developers to benefit from the XIP en-

* How do we control the grammar from an
embedding application?

36

gine. The XIP results are then returned as pythasimple Python variables. However, the syntactic

objects. Since the purpose in this article is tmodes and the dependencies are not directly

show how a grammar formalism can be enrichettansformed into Python objects; we simply

with new instructions, we will mainly concen- propagate them into the Python code as integers.

trate on the first point. Each node and each dependency has a unique

index, which simplifies the task of sharing pa-

rameters between XIP and Python.

A XIP grammar mainly handles syntactic nodes,

features, categories, and dependencies. In ordgr,

to be efficient, a Python script, called from a Xllgg'10 XIP APl

grammar, should have access to all this informaRPython procedures have access to all internal

tion in a simple and natural way. The notion ofparsing data through a specific API. This API

procedure has already been added to the XIgonsists of a dozen instructions, which can be

formalism. They can be used in any sort of rule. called anywhere in the Python code. For in-
stance, XIP provides Python instructions to re-

3.8 Interfacing Python and a XIP grammar

Example turn a node or a dependency object on the basis
of its index. We have implemented the Python
if (subject(#1,#2) & TestNode(#1)) XipNode class, with the following fields:
ambiguous(#1).
class XipNode
The above rule tests the existence of a subject index #the unique index of the node
dependency and will use the TestNode procedure PQOS #the part of speech
to check some properties of the #1 node. If all Lemma #a vector of possible lemmas
these conditions are true, then a new depend- for the node

ency:ambiguouds created with #1 as parameter. Surface #the surface form as it ap
pears in the sentence

39 Interface features #a vector of attribute-value

The TestNodeprocedure is declared in a XIP features
grammar in the following way: leftoffset, rightoffset#the text offsets
next,previous,parent,child # indexes

Example

Python: //XIP field name A XipNode object is automatically created when
TestNode(#1). //the XIP procedure name, witlthe object creator is called with the node index as

XIP parameter style. parameter. We can also travel through the syn-
tactic tree, thanks to theext, previous, parent,

/IAll that follows is in Python child indexes that are provided by this class.
def TestNode(node): There is a big difference between using this API

and exploiting the regular output of a syntactic

parser. Since the Python procedures are called at
The only constraint is that the XIP procedureyntime from the grammar, they have full access
name TestNodg should also have been imple-tg the on-going linguistic data. Second, the selec-
mented as a Python procedure. If this Pythofion of syntactic nodes on which to apply Python
procedure is missing, then the grammar compilaprocedures is done #te grammar levelwhich
tion fails. means that the access of specific nodes is done
The system works as a very simple linker, wherghrough the parsing engine itself, without any
the code integrity is verified to the presence oheed to duplicate any sorts of tree operators,
common names in XIP and Python. which would be mandatory in the case of a Java,
However, the next step, which consists in transx ML or C++ Object_ Fina"y’ the memory foot-
lating XIP data into Python data, is done at runprint is only limited to the nodes that are re-
time. qguested by the application, there is no need to
XIP recognizes many different sorts of datareduplicate the whole linguistic data structure.
which can all be transmitted to a Python scriptThe memory footprint reduction also has the ef-

such as syntactic nodes, dependencies, integgict of speeding up the execution.
variables, string variables, or even vector vari-

ables. Each of these data is then translated into

37

3.11 Other Basic Instructions How do we control the grammar from an

XIP provides the following Python instructions: embedding application?

We have shown in the previous section how new

« XipDependency(index) builds a Xip- instructions could be easily defined and thus be-
Dependency object. come part of the XIP formalism. These instruc-
tions are mapped to a Python program which

* nodeset(POS) returns a vector of node)
() offers all we need to answer the above questions.

indices corresponding to a PO8ode-
set(“noun”) 4.1 How can we use previous analyses?

» dependencyset(POS) returns a vector of Since, we have a full access to the internal lin-
dependency indices corresponding to @uistic representation of XIP, we can store what-
dependency name: dependen- ever data we might find useful for a given task.
cyset(“SUBJECT") For instance, we could decide to count the num-

ber of time a word has been detected in the

gourse of parsing. This could be implemented
with a Python dictionary variable.

* dependencyonfirstnode(n) returns a
vector of dependency indices, whose firs
parameter is the node index depend-

encyonfirstnode(12) Python:

These basic instructions make it possible for a countword(#1).
Python script to access all internal XIP data at getcount(#1).
any stages.

312 AnExample The first procedurecountword receives a node

Let us define the Python code BéstNbSensegs index as input. It translates it into a XipNode,
which checks whether a verbal node is highl@nd it uses the lemma as an entry for the Python
ambiguous according to WordNet. As a demondictionarywordcounter.At the end of the proc-
stration, a verb will be said to be highly ambigu-€ss,wordcountercontains a list of words with

ous if the number of its senses is larger than 10.their number of occurrences. The second proce-
dure implements a simple test which returns the

def TestNbSenses(i): number of time a word has been found. It returns
n=XipNode(i) 0, if it is an unknown word.
senses=N[n.lemma].getSenses() The grammar rule below is used to count words:
if len(senses)>=10:
return 1 INoun#1| {
return 0 countword(#1);
}

We can now use this procedure in a syntactic _ _
rule to test the ambiguity of a verb in order toThe instruction [noun#1| automatically loops

guide the grammar: between alhounnodes.
The rule below is used to test if a word has al-
if (subject(#1,#2) & TestNbSenses(#1)) ready been found:
ambiguous(#1).

if (subject(#1,#2) & getcount(#2)) ...
The dependencgmbiguouswill be created for a
verbal node, if this verb is highly ambiguous. 42 How dowe access external information?
We have already given an example with Word-
4 Back tothelnitial Questions Net. Thanks to the large number of libraries
The questions we wish to answer are the fO”OngallabIe, a Python script can benefit from

ing: Wo_rdNet information. It can also connet_:t to a
. How can we use previous analyses? variety of databases such as MySQL, which also
' allows a grammar to query a database for spe-

+ How do we access external information? cific data.

For instance, we could store in a database verb-

noun couples that have been extracted from a

38

large corpus. Then, at runtime, a grammar couldents these formalisms to benefit from extra-
check whether a certain verb and a certain nouimguistic data through a complex feature system
have already been found together in anothehat would encode the sentence context. How

document. these features are instantiated is nevertheless out
the realm of these theories. The originality of our
Example system lies in the fact that we intertwine from the
beginning these constraints into the fabric of the
Python: formalism. Since any rules can be governed by a
TestCouple(#1,#2). Boolean expression, which in turn can accept any

Boolean python functions, it becomes feasible to
define a formalism in which a constraint is no
longer reduced to only linguistic data, but to any
properties that a full-fledged programming lan-
guage can allow. Thus, any rule can be con-
strained during its application with complex con-
straints which are implemented as a python script.

def TestCouple(v,n):
noun=XipNode(n)
verb=XipNode(v)
cmd="select * from couples where "
cmd+="verb="+verb.lemma+"
cmd+=" and noun="+noun.lemma+";”
nb=mysql.execute(cmd)
return nb Example

In the XIP grammar: pythontesis a generic Boolean python function,

IFVi{verb#1},PP{prep,NP{noun#2}}| which any XIP rules can embed within its own
if (TestCouple(#1,#2)) set of constraints.
Complement(#1,#2).

Below are some examples of XIP rules, which
If we have averb followed by aPP, then if we are constrained with this generic python function.
have already found in a previous analysis a linlA constraint in XIP is introduced with the key-
between theverb and thenounembedded in the word “if”.

PP, we create a dependen8omplemeniover * Achunking rule:
theverband thenoun. PP = prep, NP#1, ipthontest1)).
43 How do we control the grammar from * Adependency rule:

an embedding application? if (subject(#1,#2) &pythonteg#1)) ...

Since a Python script can exploit any sort of in-

put, from text files to databases; it becomes relddowever, since any rule might be constrained
tively simple to implement a simple Python pro-with an external process it should be noted that
cedure that blocks the execution of certairthis system can no longer be described as a pure
grammar rules. If we examine the above exanlinguistic parser. Its expression power largely
ple, we can see how the grammar execution ca@xceeds what is usually expected from a syntac-
be modified by an external calling program. Foitic formalism.

instance, the selection of a different database will]

have a strong influence on how dependencies afRe | mplementation Examples

constructed. We have successfully used Python in our gram-

mars in two different applications so far. The
first implementation consists of a script that is
The main goal of this article is to describe a wagalled at the end of any sentence analysis to store
to articulate no-linguistic constraints with a dedi-the results in a MySQL database. Since the sav-
cated linguistic formalism. The notion of con-ing is done with a Python program, it is very
straint in this perspective does not only apply teimple to modify this script to store only infor-
purely linguistic properties such as category ormation that is salient to a particular application.
der or dependency building constraints; it idn this respect, the maintenance of such a script
enlarged to encompass properties that are rargly much simpler and much flexible than its C++
taken into account in syntactic theories. It shoul®r Java counterpart. The storage is also done at
be noted, however, that if most theories are deguntime which limits the amount of data kept in
signed to apply to a single sentence, nothing pré&remory.

5 Expression Power

39

The second example is the implementation of &ereira F. and S. Shieber, 19®folog and Natural
co-reference system (Salah Ait-Mohktar to ap- Language Analysjs CSLI, Chicago University
pear), which uses Python as a backup language Press.

to keep a specific representation of linguistic inallen J. F, 1994.TRAINS Parsing SystenNatural
formation that is used at the end of the analysis Language Understanding, Second Ed., chapters
to link together pronouns and their antecedents. 3,4,5.

Once_ again, this program could have been CrQ'apanainen P., Jarvinen T. 1998yntactic analysis
ated in C++ or Java, using the C++ or the Java of natural language using linguistic rules and cor-
XIP API, however, the development of such a pus-based patterndroceedings of the 15th con-
system in python benefits from the simplicity of ference on Computational linguistics, Kyoto, Japan,
the language itself and its direct bridge to inter- pages: 629-634.

nal XIP representation. Constant P. 1994 'analyseur Linguistique SYLEX

eme école d'été du CNET.

Grinberg D., Lafferty John, Sleator D., 19%6robust
The integration of a linguistic parser into an ap- parsing algorithm for link grammaysCarnegie
plication has always posed some tricky prob- Mellon University Computer Science technical re-
lems. First, the grammar, whether it has been port CMU-CS-95-125, also Proceedings of the
compiled into an external library or run through Fourth International Workshop on Parsing Tech-
an interpreter, often works as a black box, which Nnologies, Prague, September, 1995.
allows little or no possibility of interfering with Fellbaum C., 1998WordNet: An Electronic Lexical
the internal execution. Second, the output is usu- Database Rider University and Princeton Univer-
ally frozen into one single object which forces sity, Cambridge, MA: The MIT Press (Language,
the calling applications to perform format trans- speech, and communication series), 1998, xxii+423
lation afterward. In many systems (Cunningham PP; hardbound, ISBN 0-262-06197-X.
et al.,2002, Grinberg et al., 1995), the output iRoux C. 1999Phrase-Driven ParseProceedings of
often a large, complex object, or a large XML VEXTALL 99, Venezia, San Servolo, V.l.U. - 22-
document. This has an impact on both memory 24.

footprint (these objects might be very large) angsjache p., Balfourier J.-M., 200Property Gram-

the analysis speed as the system must re-mars: a Flexible Constraint-Based Approach to
implement some tree operators to traverse theseParsing in proceedings diWVPT-2001

objects. Thereby, the automatic extraction of al,lo.(rt-lvlokhtar S.. Chanod J-P., Roux C.. 208@bust-

nodes that _share a co_mmon property on the baSISness beyond shallowness incremental dependency
of these objects requires some cumbersome pro- narsing NLE Journal, 2002.

gramming, when this could be more elegantly _

handled through the linguistic formalism. Third,Hagege C., Roux C., 2002 Robust And Flexible

the use of extra-linguistic information often im- Flatiorm for Dependency Extractipin proceed-
e . L ings of LREC 2002.

poses a modification of the parsing engine itself,

which prevents developers from switchingDeclerck T. 2002A set of tools for integrating lin-

quickly between heterogeneous data sources. Forguistic and non-linguistic informatiorProceedings

a long time, linguistic formalisms have been ©f SAAKM.

conceived as specialized theoretical languagas. Cunningham, D. Maynard, K. Bontcheva, V. Tab-

with little if no algorithmic possibilities. How- lan.,2002. GATE: A Framework and Graphical

ever, today, the use of syntactic parsers in large Development Environment for Robust NLP Tools

applications triggers the need for more than just and Applications Proceedings of the 40th Anni-

pure linguistic description. For all these reasons, Versary Meeting of the {A‘SSOC'a“_O” for Computa-

the integration of a script language as part of the tional Linguistics (ACL'02), Philadelphia, July

formalism seems a reasonable solution, as it will 2002.

transform dedicated linguistic formalisms to lin-Blache P., Guénot M-L. 2008lexible Corpus Anno-

7 Conclusion

guistically driven programming languages. _tation with Property Grammar8ulTreeBank Pro-
ject
Reference Roux C., 2004Une Grammaire XMLTALN Confe-
Gazdar G., Klein E., Pullum G., Sag A.1985.Gen- '€nce. Fez, Morocco, April, 19-22, 2004.
eralized Phrase Structure GrammaBlackwell, [Python]http://www.python.org/

Cambridge Mass., Harvard University Press.

40

