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Abstract 

This article presents a novel syntactic 
parser architecture, in which a linguistic 
formalism can be enriched with all sorts 
of constraints, included extra-linguistic 
ones, thanks to the seamless coupling of 
the formalism with a programming lan-
guage. 

1 Introduction 

The utilization of constraints in natural language 
parsers (see Blache and Balfourier,2001 or 
Tapanainen and Järvinen , 1994) is central to 
most systems today. However, these constraints 
are often limited to purely linguistic features, 
such as linearity or dependency relations be-
tween categories within a given syntactic tree.  
Most linguistic formalisms have been created 
with the sole purpose of extracting linguistic in-
formation from bits and pieces of text. They usu-
ally use a launch and forget strategy, where a text 
is analyzed according to local constraints, dis-
played and then discarded to make room for the 
next block of text. These parsers take each sen-
tence as an independent input, on which gram-
mar rules are applied together with constraints. 
However, no sentence is independent of a text, 
and no text is really independent of extra-
linguistic information. In order to assess cor-
rectly the phrase President Bush, we need to 
know that Bush is a proper name, whose function 
is “President”. Washington can be a town, a 
state, the name of a famous president, but also 
the name of an actor. Moreover, the analysis of a 
sentence is never an independent process, if 
President Bush is found in a text, the reference to 
president, later in the document will be related to 
this phrase.  
These problems are certainly not new and a 
dense literature has been written about how to 

better deal with these issues.  However, most 
solutions rely on formalism enrichments with 
solutions “engraved in stone”, that makes it diffi-
cult to adapt a grammar to new domains (see De-
clerck, 2002, or Roux, 2004), even though they 
use XML representation or database to store 
huge amounts of extra-linguistic information. 
The interpretation of these data is intertwined 
into the very fabric of the parser and requires 
deep modifications to use new sources with a 
complete different DTD.  
Of course, there are many other ways to solve 
these problems. For instance, in the case of lan-
guages such as Prolog or Lisp, the grammar for-
malism is often indistinguishable from the pro-
gramming language itself. For these parsers, the 
querying of external information is easily solved 
as grammar rules can be naturally augmented 
with non-linguistic procedures that are written in 
the same language. In other cases, when the 
parser is independent from any specific pro-
gramming languages, the problem can prove dif-
ficult to solve. The formalism can of course be 
augmented with new instructions to tackle the 
querying of external information. However the 
time required to enrich the parser language may 
not be worth the effort, as the development of a 
complete new instruction set is a heavy and 
complex task that is loosely related to linguistic 
parser programming. 
We propose in this article a new way of building 
natural language parsers, with the coupling of a 
script language with an already rich linguistic 
formalism. 

2 Scripting 

The system we describe in this article mix a 
natural language parser, namely Xerox Incre-
mental Parser (XIP hereafter, see Aït-Mohktar et 
al., 2002, Roux, 1999) with a scripting language, 
in our case Python. The interaction of a grammar 
with scripting instructions is almost as old as 
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computational linguistics. Pereira and Shieber for 
instance, in their book: Prolog and Natural Lan-
guage Processing (see Pereira and Shieber, 1987) 
already suggested mixing grammar rules with 
extra-linguistic information. This mélange was 
made possible thanks to the homogeneity be-
tween grammar rules and the external code, writ-
ten in both cases in the same programming lan-
guage. However, these programming languages 
are not exactly tuned to do linguistic analyses; 
they are often slow and cumbersome. Moreover, 
they blur the boundary between program and 
grammar rules, as the programming language is 
both the algorithm language and the rule lan-
guage. Allen (see Allen, 1994) proposes a differ-
ent approach in his TRAINS Parsing system. The 
grammar formalism is independent to a certain 
extent from the implementation language, which 
is LISP in this case. However, since the grammar 
is translated into a LISP program, it is easy for a 
linguist to specialize the generated rules with 
external LISP procedures. Nevertheless, the 
grammar formalism remains very close to LISP 
data description, which makes the grammar rules 
somewhat difficult to read.  
The other solution, which is usually favored by 
computational linguists, is to store the external 
information in databases, which are accessed 
with some pre-defined instructions and translated 
into linguistic features. For instance (see De-
clerk, 2002 or Roux, 2004), the external informa-
tion is presented as an XML document whose 
DTD is defined once and for all. This DTD is 
then enriched with extra-linguistic information 
that a parser can exploit to guide rule application. 
This method alleviates the necessity of a com-
plex interaction mechanism between the parser 
and its external data sources. The XPath lan-
guage is used to query this document in order to 
retrieve salient information at parsing time, 
which is then translated into local linguistic fea-
tures. However, only static information can be 
exploited, as these XML databases must be built 
beforehand. 
Similar mechanisms have also been proposed in 
other architectures to help heterogeneous linguis-
tic modules to communicate through a common 
XML interface (see Cunningham et al.,2002, 
Blache and Guénot , 2003). These architectures 
are very powerful as they connect together tools 
that only need to comply with a common in-
put/output DTD.  Specialized Java modules can 
then be written which are applied to intermediate 
representations to add their own touch of extra-
linguistic data. Since, the intermediate represen-

tation is an XML document, the number of pos-
sible enrichments is almost limitless, as each 
module will only extract from this document the 
XML markup tags that it is designed to handle. 
However, since XML is by nature furiously ver-
bose, the overall system might be very slow as it 
might spend a large amount of time translating 
external XML representation into internal repre-
sentations.  
Furthermore, applications that require natural 
language processing also have different pur-
poses, different needs. They may require a shal-
low output, such as a simple tokenization with a 
whiff of tagging, or a much deeper analysis. Syn-
tactic parsing is usually integrated as a black box 
into these architectures, with little control left 
over the grammar execution, control which nev-
ertheless might prove very important in many 
cases. An XML document, for instance, often 
contains some specific markup tags to identify a 
title, a section or author name. If the parser is 
given some indications about the input, it could 
be guided through the grammar maze to favor 
these rules that are better suited to analyze a title 
for example.  
Finally, syntactic parsing, when it is limited to 
lexical information, often fails to assess correctly 
some ambiguous relations. Thus, the only way to 
deal with PP-attachment or anaphoric pronoun 
antecedents is to use both previous analyses and 
external information. However, most syntactic 
parsers are often ill geared to link with external 
modules. The formalism is engraved into a C 
program as in Link Grammar (see Grinberg et 
al.,1995) or as in Sylex (see Constant, 1995) 
which offers little or no opening to the rest of the 
world, as it is mainly designed to accomplish one 
unique task. We will show how the seamless in-
tegration of a script language into the very fabric 
of the formalism simplifies the task of keeping 
track of previous analyses together with the use 
of external sources of data. 

3 Xerox Incremental Parser (XIP) 

The XIP engine has been developed by a re-
search team in computational linguistics at the 
Xerox Research Centre Europe (see Aït-Mokhtar 
et al., 2001). It has been designed from the be-
ginning to follow a strictly incremental strategy, 
where rules apply one after the other. There is 
only one analysis path that is followed for a 
given linguistic unit (phrase, sentence or even 
paragraph): the failure of a rule does not prevent 
the whole analysis from continuing to comple-
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tion. Since the system never backtracks on any 
rules, XIP cannot propel itself into a combinato-
rial explosion. 
 
XIP can be divided into two main components: 

• A component that builds a chunk tree on 
the basis of lexical nodes. 

• A component that creates functions or 
dependencies that connect together distant 
nodes from the chunk tree. 

 
The central goal of this parser is the extraction of 
dependencies. A dependency is a function that 
connects together distant nodes within a chunk 
tree. The system constructs a dependency be-
tween two nodes, if these two nodes are in a spe-
cific configuration within the chunk tree or if a 
specific set of dependencies has already been 
extracted for some of these nodes (see Hagege 
and Roux, 2002).  The notion of constraint em-
bedded in XIP is both configurational and Boo-
lean. The configuration part is based on tree 
regular rules which express constraints over node 
configuration, while the Boolean constraints are 
expressed over dependencies. 

3.1 Three Level of Analysis 

The parsing is done in three different stages: 
 

• Part-of-speech disambiguation and 
chunking. 

• Dependency Extraction between words 
on the basis of sub-tree patterns over the 
chunk sequence. 

• Combination of those dependencies with 
Boolean operators to generate new de-
pendencies, or to modify or delete existing 
dependencies. 

3.2 The Different Steps of Analysis 

Below is an example of how a sentence is parsed. 
We present a little grammar, written in the XIP 
formalism, together with the output yielded by 
these rules. 
 
Example 
The chunking rules produce a chunk tree. 
 

In a first stage, chunking rules are applied and 
the following chunk tree is built for this sen-
tence. 
Below is a small XIP grammar that can analyze 
the above example: 

 
1> AP = Adj. 
2> NP @= Det,(AP),(Noun),Noun. 
3> FV= verb. 
4> SC= NP,FV. 

 
Each rule is associated with a layer number, 
which defines the order in which the rules must 
be executed. 
If this grammar is applied to the above sentence, 
the result is the following: 
 

TOP{SC{NP{The AP{chunking} rules}  
       FV{produce}}  
    NP{a chunk tree}  
    .} 

 
TOP is a node that is automatically created, once 
all chunking rules have applied, to transform this 
sequence of chunks into a tree. 
(The “@” denotes a longest match strategy. The 
rule is then applied to the longest sequence of 
categories found in the linguistic unit) 
 

The next step consists of extracting some basic 
dependencies from this tree. These dependencies 
are obtained with some very basic rules that only 
connect nodes that occur in a specific sub-tree 
configuration. 

 
SUBJ(produce,rules) 
OBJ(produce,tree) 

 
SUBJ is a subject relation, which has been ex-
tracted with the following rule: 
 

| NP{?*, noun#1}, FV{?*,verb#2}|       
   SUBJ(#2,#1). 

 
This rule links together the noun and the verb 
respectively the sub-nodes of a NP and a VP that 
are next to each other. The “{…}” denotes a pat-
tern over sub-nodes. 
 

Other rules may then be applied to this output, 
to add or modify existing dependencies. 
 

if (SUBJ(#1,#2) & OBJ(#1,#3)) 
 TRIPLET(#2,#1,#3). 

 
For instance, the above rule will generate a three 
slot dependency TRIPLET with the nodes ex-
tracted from the subject and object dependencies. 
If we apply this rule to our previous example, we 
will create: TRIPLET(rules,produce,tree). 
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3.3 Script Language 

The utilization of a script language deeply in-
grained into the parser fabric might sound like a 
pure technical gadget with very little influence 
on parsing theories. However, the development 
of a parser often poses some very trivial prob-
lems, which we can sum up in the three questions 
below: 
 

• How can we use previous analyses? 

• How do we access external information? 

• How do we control the grammar from an 
embedding application? 

 
Usually, the answer for each of these questions 
leads to three different implementations, as none 
of these problems seem to have any connections 
whatsoever. Their only common point seems to 
be some extra-programming into the parser en-
gine. If a grammar and a parser are both written 
in the same programming language, the problem 
is relatively simple to solve. However, if the 
grammar is written in a formalism specifically 
designed for linguistic analysis interpreted with a 
linguistic compiler (as it is the case for XIP), 
then any new features that would implement 
some of these instructions translate into a modi-
fication of the parsing engine itself. However, 
one cannot expand the parser engine forever. The 
solution that has been chosen in XIP is to de-
velop a script language, which linguists can use 
to enrich the original grammatical formalism 
with new instructions.  

3.4 First attempts 

The first attempts to add scripting instructions to 
XIP consisted in enriching the grammar with 
numerical and string variables together with 
some instructions to handle these values. For 
instance, it is possible in XIP to declare a string 
variable, to instantiate it with the lemma value of 
a syntactic node and to apply some string modi-
fications upon it. However, the development of 
such a script language, however useful it proved, 
became closer and closer to a general-purpose 
programming language, which XIP was not de-
signed to be. The task of developing a full-
fledged programming language with a large in-
struction set is a complex ongoing process, 
which has little connection with parsing theories. 
Nevertheless, there was a need for such an ad-
dendum, which led the development team to link 
XIP with Python, whose own ongoing develop-

ment is backed up by thousands of dedicated 
computer scientists. 

3.5 Python 

Scripting languages have been around for a very 
long time. Thus Perl and Awk have been part of 
the Unix OS for at least twenty years. Python is 
already an old language, in computational time 
scale. It has been central to the Linux environ-
ment for more than ten years. Most of the basic 
installation procedures are written in that lan-
guage. It has also been ported to a variety of plat-
forms such as Windows or Mac OS. The lan-
guage syntax is close to C, but lacks type verifi-
cation. However, the language is thoroughly 
documented and a large quantity of specialized 
libraries is available. Python has also been cho-
sen because of the simplicity of its API, which 
allows programmers to link easily a Python en-
gine to their own application or to enlarge the 
language with new libraries. The other reason of 
this choice, over for instance a more conven-
tional language such as C or Java is the fact that 
it is an interpreted language. A XIP grammar is a 
set of text files, which are all compiled on the fly 
in memory every time the parser is run. It stems 
from this choice that any addenda to this gram-
mar should be written in a language that is also 
compiled on the fly. In this way, the new instruc-
tions can be developed in parallel with the 
grammar and immediately put in test. It also 
simplifies the non-trivial task of debugging a 
complete grammar as any modifications on any 
parts of the grammar can be immediately ex-
perimented together with the python script.  
We have produced two different versions of the 
XIP-python parsing engine.  

3.6 Python Embedded within XIP  

We have linked the python engine to XIP, which 
allows us to call and execute python scripts from 
within the parsing engine. In this case, a gram-
mar rule can call a python script to verify spe-
cific conditions. The python scripts are then ap-
pended to the grammar itself. These scripts have 
full access to all linguistic objects constructed so 
far. XIP is the master program with python 
scripts being triggered by grammar rules.  

3.7 XIP as a Python Library 

We have created a specific XIP library which can 
be freely imported in python. In this case, the 
XIP library exports a basic API, compliant with 
the python programming interface, which allows 
python developers to benefit from the XIP en-
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gine. The XIP results are then returned as python 
objects. Since the purpose in this article is to 
show how a grammar formalism can be enriched 
with new instructions, we will mainly concen-
trate on the first point. 

3.8 Interfacing Python and a XIP grammar 

A XIP grammar mainly handles syntactic nodes, 
features, categories, and dependencies. In order 
to be efficient, a Python script, called from a XIP 
grammar, should have access to all this informa-
tion in a simple and natural way. The notion of 
procedure has already been added to the XIP 
formalism. They can be used in any sort of rule.  
 
Example 
 

if (subject(#1,#2) & TestNode(#1))  
    ambiguous(#1). 

 
The above rule tests the existence of a subject 
dependency and will use the TestNode procedure 
to check some properties of the #1 node. If all 
these conditions are true, then a new depend-
ency: ambiguous is created with #1 as parameter. 

3.9 Interface 

The TestNode procedure is declared in a XIP 
grammar in the following way: 
 
Example 
Python: //XIP field name 

TestNode(#1). //the XIP procedure name, with 
  XIP parameter style. 

 
//All that follows is in Python 
def TestNode(node): 
… 

 
The only constraint is that the XIP procedure 
name (TestNode) should also have been imple-
mented as a Python procedure. If this Python 
procedure is missing, then the grammar compila-
tion fails. 
The system works as a very simple linker, where 
the code integrity is verified to the presence of 
common names in XIP and Python. 
However, the next step, which consists in trans-
lating XIP data into Python data, is done at run-
time.  
XIP recognizes many different sorts of data, 
which can all be transmitted to a Python script, 
such as syntactic nodes, dependencies, integer 
variables, string variables, or even vector vari-
ables. Each of these data is then translated into 

simple Python variables. However, the syntactic 
nodes and the dependencies are not directly 
transformed into Python objects; we simply 
propagate them into the Python code as integers. 
Each node and each dependency has a unique 
index, which simplifies the task of sharing pa-
rameters between XIP and Python.  
 

3.10 XIP API 

Python procedures have access to all internal 
parsing data through a specific API. This API 
consists of a dozen instructions, which can be 
called anywhere in the Python code. For in-
stance, XIP provides Python instructions to re-
turn a node or a dependency object on the basis 
of its index. We have implemented the Python 
XipNode class, with the following fields: 
 
class XipNode 
 index #the unique index of the node 
 POS #the part of speech 
 Lemma #a vector of possible lemmas  
   for the node 
 Surface #the surface form as it ap 
   pears in the sentence 
 features  #a vector of attribute-value  
   features 
 leftoffset,rightoffset  #the text offsets
 next,previous,parent,child # indexes 
 
A XipNode object is automatically created when 
the object creator is called with the node index as 
parameter. We can also travel through the syn-
tactic tree, thanks to the next, previous, parent, 
child indexes that are provided by this class.  
There is a big difference between using this API 
and exploiting the regular output of a syntactic 
parser. Since the Python procedures are called at 
runtime from the grammar, they have full access 
to the on-going linguistic data. Second, the selec-
tion of syntactic nodes on which to apply Python 
procedures is done at the grammar level, which 
means that the access of specific nodes is done 
through the parsing engine itself, without any 
need to duplicate any sorts of tree operators, 
which would be mandatory in the case of a Java, 
XML or C++ object. Finally, the memory foot-
print is only limited to the nodes that are re-
quested by the application, there is no need to 
reduplicate the whole linguistic data structure. 
The memory footprint reduction also has the ef-
fect of speeding up the execution.  
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3.11 Other Basic Instructions 

XIP provides the following Python instructions: 
 

• XipDependency(index) builds a Xip-
Dependency object. 

• nodeset(POS) returns a vector of node 
indices corresponding to a POS: node-
set(“noun”) 

• dependencyset(POS) returns a vector of 
dependency indices corresponding to a 
dependency name: dependen-
cyset(“SUBJECT”) 

• dependencyonfirstnode(n) returns a 
vector of dependency indices, whose first 
parameter is the node index n: depend-
encyonfirstnode(12) 

These basic instructions make it possible for a 
Python script to access all internal XIP data at 
any stages. 

3.12 An Example 

Let us define the Python code of TestNbSenses, 
which checks whether a verbal node is highly 
ambiguous according to WordNet. As a demon-
stration, a verb will be said to be highly ambigu-
ous if the number of its senses is larger than 10. 
 
def TestNbSenses(i): 
    n=XipNode(i) 
    senses=N[n.lemma].getSenses() 
    if len(senses)>=10: 
       return 1 
    return 0 
 
We can now use this procedure in a syntactic 
rule to test the ambiguity of a verb in order to 
guide the grammar:  

 
if (subject(#1,#2) & TestNbSenses(#1))  
 ambiguous(#1). 
 
The dependency ambiguous will be created for a 
verbal node, if this verb is highly ambiguous. 
 

4 Back to the Initial Questions 

The questions we wish to answer are the follow-
ing: 

• How can we use previous analyses? 

• How do we access external information? 

• How do we control the grammar from an 
embedding application? 

We have shown in the previous section how new 
instructions could be easily defined and thus be-
come part of the XIP formalism. These instruc-
tions are mapped to a Python program which 
offers all we need to answer the above questions. 

4.1 How can we use previous analyses? 

Since, we have a full access to the internal lin-
guistic representation of XIP, we can store what-
ever data we might find useful for a given task. 
For instance, we could decide to count the num-
ber of time a word has been detected in the 
course of parsing. This could be implemented 
with a Python dictionary variable. 
 
Python: 

countword(#1).  
getcount(#1). 
… 

 
The first procedure countword receives a node 
index as input. It translates it into a XipNode, 
and it uses the lemma as an entry for the Python 
dictionary wordcounter. At the end of the proc-
ess, wordcounter contains a list of words with 
their number of occurrences. The second proce-
dure implements a simple test which returns the 
number of time a word has been found. It returns 
0, if it is an unknown word. 
The grammar rule below is used to count words: 
 
|Noun#1| {  

countword(#1); 
} 
 
The instruction |noun#1| automatically loops 
between all noun nodes. 
The rule below is used to test if a word has al-
ready been found: 
 
if (subject(#1,#2) & getcount(#2)) … 
 

4.2 How do we access external information? 

We have already given an example with Word-
Net. Thanks to the large number of libraries 
available, a Python script can benefit from 
WordNet information. It can also connect to a 
variety of databases such as MySQL, which also 
allows a grammar to query a database for spe-
cific data. 
For instance, we could store in a database verb-
noun couples that have been extracted from a 
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large corpus. Then, at runtime, a grammar could 
check whether a certain verb and a certain noun 
have already been found together in another 
document.  
 
Example 

 
Python: 
TestCouple(#1,#2). 
 

def TestCouple(v,n): 
noun=XipNode(n) 
verb=XipNode(v) 
cmd=”select * from couples where ” 
cmd+=”verb=”+verb.lemma+" 
cmd+=” and noun=”+noun.lemma+”;” 
nb=mysql.execute(cmd) 
return nb 
 

In the XIP grammar: 
 

|FV{verb#1},PP{prep,NP{noun#2}}| 
   if (TestCouple(#1,#2)) 
       Complement(#1,#2). 
 

If we have a verb followed by a PP, then if we 
have already found in a previous analysis a link 
between the verb and the noun embedded in the 
PP, we create a dependency Complement over 
the verb and the noun. 

4.3 How do we control the grammar from 
an embedding application? 

Since a Python script can exploit any sort of in-
put, from text files to databases; it becomes rela-
tively simple to implement a simple Python pro-
cedure that blocks the execution of certain 
grammar rules. If we examine the above exam-
ple, we can see how the grammar execution can 
be modified by an external calling program. For 
instance, the selection of a different database will 
have a strong influence on how dependencies are 
constructed.  

5 Expression Power 

The main goal of this article is to describe a way 
to articulate no-linguistic constraints with a dedi-
cated linguistic formalism. The notion of con-
straint in this perspective does not only apply to 
purely linguistic properties such as category or-
der or dependency building constraints; it is 
enlarged to encompass properties that are rarely 
taken into account in syntactic theories. It should 
be noted, however, that if most theories are de-
signed to apply to a single sentence, nothing pre-

vents these formalisms to benefit from extra-
linguistic data through a complex feature system 
that would encode the sentence context. How 
these features are instantiated is nevertheless out 
the realm of these theories. The originality of our 
system lies in the fact that we intertwine from the 
beginning these constraints into the fabric of the 
formalism. Since any rules can be governed by a 
Boolean expression, which in turn can accept any 
Boolean python functions, it becomes feasible to 
define a formalism in which a constraint is no 
longer reduced to only linguistic data, but to any 
properties that a full-fledged programming lan-
guage can allow. Thus, any rule can be con-
strained during its application with complex con-
straints which are implemented as a python script.  
 
Example 

 
pythontest is a generic Boolean python function, 
which  any XIP rules can embed within its own 
set of constraints. 
 
Below are some examples of XIP rules, which 
are constrained with this generic python function. 
A constraint in XIP is introduced with the key-
word “if”.  

• A chunking rule: 

PP = prep, NP#1, if (pythontest(#1)). 
• A dependency rule: 

if (subject(#1,#2) & pythontest(#1)) … 
 
However, since any rule might be constrained 
with an external process it should be noted that 
this system can no longer be described as a pure 
linguistic parser. Its expression power largely 
exceeds what is usually expected from a syntac-
tic formalism.  

6 Implementation Examples 

We have successfully used Python in our gram-
mars in two different applications so far. The 
first implementation consists of a script that is 
called at the end of any sentence analysis to store 
the results in a MySQL database. Since the sav-
ing is done with a Python program, it is very 
simple to modify this script to store only infor-
mation that is salient to a particular application. 
In this respect, the maintenance of such a script 
is much simpler and much flexible than its C++ 
or Java counterpart. The storage is also done at 
runtime which limits the amount of data kept in 
memory. 
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The second example is the implementation of a 
co-reference system (Salah Aït-Mohktar to ap-
pear), which uses Python as a backup language 
to keep a specific representation of linguistic in-
formation that is used at the end of the analysis 
to link together pronouns and their antecedents. 
Once again, this program could have been cre-
ated in C++ or Java, using the C++ or the Java 
XIP API, however, the development of such a 
system in python benefits from the simplicity of 
the language itself and its direct bridge to inter-
nal XIP representation.  

7 Conclusion 

The integration of a linguistic parser into an ap-
plication has always posed some tricky prob-
lems. First, the grammar, whether it has been 
compiled into an external library or run through 
an interpreter, often works as a black box, which 
allows little or no possibility of interfering with 
the internal execution. Second, the output is usu-
ally frozen into one single object which forces 
the calling applications to perform format trans-
lation afterward. In many systems (Cunningham 
et al.,2002, Grinberg et al., 1995), the output is 
often a large, complex object, or a large XML 
document. This has an impact on both memory 
footprint (these objects might be very large) and 
the analysis speed as the system must re-
implement some tree operators to traverse these 
objects. Thereby, the automatic extraction of all 
nodes that share a common property on the basis 
of these objects requires some cumbersome pro-
gramming, when this could be more elegantly 
handled through the linguistic formalism. Third, 
the use of extra-linguistic information often im-
poses a modification of the parsing engine itself, 
which prevents developers from switching 
quickly between heterogeneous data sources. For 
a long time, linguistic formalisms have been 
conceived as specialized theoretical languages 
with little if no algorithmic possibilities. How-
ever, today, the use of syntactic parsers in large 
applications triggers the need for more than just 
pure linguistic description. For all these reasons, 
the integration of a script language as part of the 
formalism seems a reasonable solution, as it will 
transform dedicated linguistic formalisms to lin-
guistically driven programming languages. 
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