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Abstract

We describe the application of the Ling-
Pipe toolkit to Chinese word segmentation
and named entity recognition for the 3rd
SIGHAN bakeoff.

1 Word Segmentation

Chinese is written without spaces between words.
For the word segmentation task, four training cor-
pora were provided with one sentence per line and
a single space character between words. Test data
consisted of Chinese text, one sentence per line,
without spaces between words. The task is to in-
sert single space characters between the words.
For this task and named entity recognition, we
used theUTF8-encoded Unicode versions of the
corpora converted from their native formats by the
bakeoff organizers.

2 Named Entity Recognition

Named entities consist of proper noun mentions
of persons (PER), locations (LOC), and organiza-
tions (ORG). Two training corpora were provided.
Each line consists of a single character, a single
space character, and then a tag. The tags were in
the standard BIO (begin/in/out) encoding.B-PER
tags the first character in a person entity,I-PER
tags subsequent characters in a person, and0 char-
acters not part of entities. We segmented the
data into sentences by taking Unicode character
0x3002 , which is rendered as a baseline-aligned
small circle, as marking end of sentence (EOS). As
judged by our own sentence numbers (see Figures
1 and 2), this missed around 20% of the sentence
boundaries in the City U NE corpus and 5% of
the boundaries in the Microsoft NE corpus. Test

data is in the same format as the word segmenta-
tion task.

3 LingPipe

LingPipe is a Java-based natural language process-
ing toolkit distributed with source code by Alias-i
(2006). For this bakeoff, we used two LingPipe
packages,com.aliasi.spell for Chinese
word segmentation andcom.aliasi.chunk
for named-entity extraction. Both of these de-
pend on the character language modeling pack-
age com.aliasi.lm , and the chunker also
depends on the hidden Markov model package
com.alias.hmm . The experiments reported in
this paper were carried out in May 2006 using (a
prerelease version of) LingPipe 2.3.0.

3.1 LingPipe’s Character Language Models

LingPipe providesn-gram based character lan-
guage models with a generalized form of Witten-
Bell smoothing, which performed better than other
approaches to smoothing in extensive English tri-
als (Carpenter 2005). Language models provide
a probability distributionP (σ) defined for strings
σ ∈ Σ∗ over a fixed alphabet of charactersΣ. We
begin with Markovian language models normal-
ized as random processes. This means the sum of
the probabilities for strings of a fixed length is 1.0.

The chain rule factorsP (σc) = P (σ) · P (c|σ)
for a characterc and stringσ. Then-gram Marko-
vian assumption restricts the context to the previ-
ousn−1 characters, takingP (cn|σc1 · · · cn−1) =
P (cn|c1 · · · cn−1).

The maximum likelihood estimator forn-grams
is P̂ML(c|σ) = count(σc)/extCount(σ), where
count(σ) is the number of times the sequenceσ
was observed in the training data andextCount(σ)
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is the number of single-character extensions ofσ
observed:extCount(σ) =

∑
c count(σc).

Witten-Bell smoothing uses linear interpolation
to form a mixture model of all orders of maximum
likelihood estimates down to the uniform estimate
PU (c) = 1/|Σ|. The interpolation ratioλ(dσ)
ranges between 0 and 1 depending on the context:

P̂ (c|dσ) = λ(dσ)PML(c|dσ)
+ (1 − λ(dσ))P̂ (c|σ)

P̂ (c) = λ()PML(c)
+ (1 − λ())(1/|Σ|)

Generalized Witten-Bell smoothing defines the
interpolation ratio with a hyperparameterθ:

λ(σ) =
extCount(σ)

extCount(σ) + θ · numExts(σ)

We takenumExts(σ) = |{c|count(σc) > 0}| to be
the number of different symbols observed follow-
ingσ in the training data. The original Witten-Bell
estimator set the hyperparameterθ = 1. Ling-
Pipe’s default setsθ equal to then-gram order.

3.2 Noisy Channel Spelling Correction

LingPipe performs spelling correction with a
noisy-channel model. A noisy-channel model
consists of a source modelPs(µ) defining the
probability of messageµ, coupled with a chan-
nel modelPc(σ|µ) defining the likelihood of a sig-
nal σ given a messageµ. In LingPipe, the source
model Ps is a character language model. The
channel modelPc is a (probabilistically normal-
ized) weighted edit distance (with transposition).
LingPipe’s decoder finds the most likely message
µ to have produced a signalσ: argmaxµP (µ|σ) =
argmaxµP (µ) · P (σ|µ).

For spelling correction, the channelPc(σ|µ) is
a model of what is likely to be typed given an in-
tended message. Uniform models work fairly well
and ones tuned to brainos and typos work even bet-
ter. The source model is typically estimated from
a corpus of ordinary text.

For Chinese word segmentation, the source
model is trained over the corpus with spaces in-
serted. The noisy channel deterministically elim-
inates spaces so thatPc(σ|µ) = 1.0 if σ is
identical to µ with all of the spaces removed,
and0.0 otherwise. This channel is easily imple-
mented as a weighted edit distance where dele-
tion of a single space is 100% likely (log proba-

bility edit “cost” is zero) and matching a charac-
ter is 100% likely, with any other operation be-
ing 0% likely (infinite cost). This makes any seg-
mentation equally likely according to the channel
model, reducing decoding to finding the highest
likelihood hypothesis consisting of the test string
with spaces inserted. This approach reduces to
the cross-entropy/compression-based approach of
(Teahan et al. 2000). Experiments showed that
skewing these space-insertion/matching probabil-
ities reduces decoding accuracy.

3.3 LingPipe’s Named Entity Recognition

LingPipe 2.1 introduced a hidden Markov
model interface with several decoders: first-best
(Viterbi), n-best (Viterbi forward, A* backward
with exact Viterbi estimates), and confidence-
based (forward-backward).

LingPipe 2.2 introduced a chunking implemen-
tation that codes a chunking problem as an HMM
tagging problem using a refinement of the stan-
dard BIO coding. The refinement both introduces
context and greatly simplifies confidence estima-
tion over the approach using standard BIO cod-
ing in (Culotta and McCallum 2004). The tags
areB- T for the first character in a multi-character
entity of typeT, M-T for a middle character in a
multi-character entity,E- T for the end character in
a multi-character entity, andW-T for a single char-
acter entity. The out tags are similarly contextual-
ized, with additional information on the start/end
tags to model their context. Specifically, the tags
used areB-O- T for a character not in an entity
following an entity of type T,I-O for any mid-
dle character not in an entity, andE-O- T for a
character not in an entity but preceding a charac-
ter in an entity of typeT, and finally,W-O-T for
a character that is a single character between two
entities, the following entity being of typeT. Fi-
nally, the first tag is conditioned on the begin-of-
sentence tag (BOS) and after the last tag, the end-
of-sentence tag (EOS) is generated. Thus the prob-
abilities normalize to model string/tag joint prob-
abilities.

In the HMM implementation considered here,
transitions between states (tags) in the HMM are
modeled by a maximum likelihood estimate over
the training data. Tag emissions are generated by
bounded character language models. Rather than
the process estimateP (X), we useP (X#|#),
where # is a distinguished boundary character
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Corpus Encod Sents Chars Uniq Words Uniq Test S Test Ch Unseen

City U HK HKSCS (trad) 57K 4.3M 5113 1.6M 76K 7.5K 364K 0.046%
Microsoft gb18030 (simp) 46K 3.4M 4768 1.3M 63K 4.4K 173K 0.046%
Ac Sinica Big5 (trad) 709K 13.2M 6123 5.5M 146K 11.0K 146K 0.560%
Penn/Colo CP936 (simp) 19K 1.3M 4294 0.5M 37K 5.1K 256K 0.160%

Figure 1: Word Segmentation Corpora

Corpus Sents Chars Uniq LOC PER ORG Test S Test Ch Unseen

City U HK 48K 2.7M 5113 48.2K 36.4K 27.8K 7.5K 364K 0.046%
Microsoft 44K 2.2M 4791 36.9K 17.6K 20.6K 4.4K 173K 0.046%

Figure 2: Named Entity Recognition Corpora

not in the training or test character sets. We also
train with boundaries. For Chinese at the charac-
ter level, this bounding is irrelevant as all tokens
are length 1, so probabilities are already normal-
ized and there is no contextual position to take ac-
count of within a token. In the more usual word-
tokenized case, it normalizes probabilities over all
strings and accounts for the special status of pre-
fixes and suffixes (e.g. capitalization, inflection).

Consider the chunking consisting of the string
John J. Smith lives in Seattle.with John J. Smitha
person mention andSeattlea location mention. In
the coded HMM model, the joint estimate is:

P̂ML(B-PER|BOS) · P̂B-PER(John#|#)
· P̂ML(I-PER |B-PER) · P̂I-PER (J#|#)
· P̂ML(I-PER |I-PER ) · P̂I-PER (.#|#)
· P̂ML(E-PER|I-PER ) · P̂E-PER(Smith#|#)
· P̂ML(B-O-PER|E-PER) · P̂B-O-PER(lives#|#)
· P̂ML(E-O-LOC|B-O-PER) · P̂E-O-LOC(in#|#)
· P̂ML(W-LOC|E-O-LOC) · P̂W-LOC(Seattle#|#)
· P̂ML(W-O-EOS|W-LOC) · P̂W-O-EOS(.#|#)
· P̂ML(EOS|W-O-EOS)

LingPipe 2.3 introduced ann-best chunking im-
plementation that adapts an underlyingn-best
chunker via rescoring. In rescoring, each of these
outputs is scored on its own and the new best
output is returned. The rescoring model is a
longer-distance generative model that produces
alternating out/entity tags for all characters. The
joint probability of the specified chunking is:

P̂OUT(cPER|cBOS)
· P̂PER(John J. SmithcOUT|cOUT)
· P̂OUT( lives in cLOC|cPER)
· P̂LOC(SeattlecOUT|cOUT)
· P̂OUT(.cEOS|cLOC)

where each estimator is a character language

model, and where thecT are distinct characters
not in the training/test sets that encode begin-of-
sentence (BOS), end-of-sentence (EOS), and type
(e.g. PER, LOC, ORG). In words, we generate an
alternating sequence ofOUTand type estimates,
starting and ending with anOUTestimate. We
begin by conditioning on the begin-of-sentence
tag. Because the first character is in an entity, we
do not generate any text, but rather generate a
character indicating that we are done generating
the OUTcharacters and ready to switch to gen-
erating person characters. We then generate the
phraseJohn J. Smithin the person model; note
that type estimates always begin and end with the
cOUTcharacter, essentially making them bounded
models. After generating the name and the
character to end the entity, we revert to generating
more out characters, starting from a person and
ending with a location. Note that we are generat-
ing the phraselives in including the preceding and
following space. All such spaces are generated in
theOUTmodels for English; there are no spaces in
the Chinese input. Next, we generate the location
phrase the same way as the person phrase. Next,
we generate the final period in theOUT model
and then the end-of-sentence symbol. Note that
the OUT category’s language model shoulders
the brunt of the burden of estimating contextual
effects. It conditions on the preceding type, so
that the likelihood oflives in is conditioned on
following a person entity. Furthermore, the choice
to begin an entity of type location is based on
the fact that it followslives in. This includes
begin-of-sentence and end-of-sentence effects,
so the model is sensitive to initial capitalization
in the out model as a distribution of character
sequences likely to followBOS. Similarly, the
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Corpus R P F1 BestF1 OOV ROOV

City Uni Hong Kong .966 .957 .961 .972 4.0% .555
Microsoft Research .959 .955 .957 .963 3.4% .494
Academia Sinica .951 .935 .943 .958 4.2% .389
U Penn and U Colorado .919 .895 .907 .933 8.8% .459

Figure 3: Word Segmentation Results (Closed Category)

Corpus R P F1 BestF1 PLOC RLOC PPER RPER PORG RORG

City Uni HK .8417 .8690 .8551 .8903 .8961 .8762 .8749 .8943 .6997 .8176
MS Research .8097 .8188 .8142 .8651 .8351 .8716 .7968 .8438 .7739 .6899

Figure 4: Named Entity Recognition Results (Closed Category)

end-of-sentence is conditioned on the preceding
text, in this case a single period. The resulting
model defines a (properly normalized) joint
probability distribution over chunkings.

4 Held-out Parameter Tuning

We ran preliminary tests on MUC 6 English and
City University of Hong Kong data for Chinese
and found baseline performance around 72% and
rescored performance around 82%. The underly-
ing model was designed to have good recall in gen-
erating hypotheses. Over 99% of the MUC test
sentences had their correct analysis in a 1024-best
list generated by the underlying model. Neverthe-
less, setting the number of hypotheses beyond 64
did not improve results in either English or Chi-
nese, so we reported runs withn-best set to 64.
We believe this is because the two language-model
based approaches make highly correlated ranking
decisions based on charactern-grams.

Held-out scores peaked with 5-grams for Chi-
nese; 3-grams and 4-grams were not much worse
and longern-grams performed nearly identically.
We used 7500 as the number of distinct charac-
ters, though this parameter is not at all sensitive
to within an order of magnitude. We used Ling-
Pipe’s default of setting the interpolation parame-
ter equal to then-gram length; for the final eval-
uationθ = 5.0. Higher interpolation ratios favor
precision over recall, lower ratios favor recall. Val-
ues within an order of magnitude performed with
1% F-measure and 2% precision/recall.

5 Bakeoff Time and Effort

The total time spent on this SIGHAN bakeoff was
about 2 hours for the word segmentation task and
10 hours for the named-entity task (not including

writing this paper). We started from a working
word segmentation system for the last SIGHAN.
Most of the time was spent munging entity data,
with the rest devoted to held out analysis. The final
code was roughly one page per task, with only a
dozen or so LingPipe-specific lines. The final run,
including unpacking, training and testing, took 45
minutes on a 512MB home PC; most of the time
was named-entity decoding.

6 Results

Official bakeoff results for the four word segmen-
tation corpora are shown in Figure 3, and for the
two named entity corpora in Figure 4. Column
labels areR for recall, P for precision,F1 for
balancedF -measure,BestF1 for the best closed
system’sF1 score,OOV for the out-of-vocabulary
rate in the test corpus, andROOV for recall on the
out-of-vocabulary items. For the named-entity re-
sults, precision and recall are also broken down by
category.

7 Distribution

LingPipe may be downloaded from its homepage,
http://www.alias-i.com/lingpipe . The code
for the bakeoff is available via anonymous CVS
from the sandbox. An Apache Ant makefile is pro-
vided to generate our bakeoff submission from the
official data distribution format.
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