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Abstract data is in the same format as the word segmenta-
tion task.
We describe the application of the Ling-
Pipe toolkit to Chinese word segmentation 3 LingPipe
and named entity recognition for the 3rd

SIGHAN bakeoff. LingPipe is a Java-based natural language process-
ing toolkit distributed with source code by Alias-i
1 Word Segmentation (2006). For this bakeoff, we used two LingPipe
packages, com.aliasi.spell for Chinese

Chinese is written without spaces between wordsyord segmentation andom.aliasi.chunk

For the word segmentation task, four training corfor named-entity extraction. Both of these de-
pora were provided with one sentence per line anggend on the character language modeling pack-
a single space character between words. Test dagge com.aliasi.Im , and the chunker also
consisted of Chinese text, one sentence per linglepends on the hidden Markov model package
without spaces between words. The task is to incom.alias.hmm . The experiments reported in
sert single space characters between the wordghis paper were carried out in May 2006 using (a
For this task and named entity recognition, weprerelease version of) LingPipe 2.3.0.

used theuTrs-encoded Unicode versions of the

corpora converted from their native formats by the3.1 LingPipe’s Character Language Models

bakeoff organizers. LingPipe providesn-gram based character lan-

guage models with a generalized form of Witten-
Bell smoothing, which performed better than other

Named entities consist of proper noun mention@pproaches to smoothing in extensive English tri-
of persons PER), locations [OQ, and organiza- als (Carpenter 2005). Language models provide
tions (ORG. Two training corpora were provided. @ probability distribution” (o) defined for strings
Each line consists of a single character, a single € X* over a fixed alphabet of charactets We
space character, and then a tag. The tags were i€gin with Markovian language models normal-
the standard BIO (begin/in/out) encodirg-PER  ized as random processes. This means the sum of
tags the first character in a person entitfER the probabilities for strings of a fixed length is 1.0.
tags subsequent characters in a personQasir- The chain rule factor®(oc) = P(o) - P(c|o)
acters not part of entities. We segmented thdor a charactee and stringr. Then-gram Marko-
data into sentences by taking Unicode charactevian assumption restricts the context to the previ-
0x3002 , which is rendered as a baseline-aligneddusn — 1 characters, taking(c, |oci - - - cp—1) =
small circle, as marking end of senten&®©Q. As  P(cnlct - cno1).

judged by our own sentence numbers (see Figures The maximum likelihood estimator fer-grams

1 and 2), this missed around 20% of the sentencis P, (clc) = count(oc)/extCount(c), where
boundaries in the City U NE corpus and 5% ofcount(o) is the number of times the sequence
the boundaries in the Microsoft NE corpus. Testwas observed in the training data aseCount(o)

2 Named Entity Recognition
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is the number of single-character extensiong of bility edit “cost” is zero) and matching a charac-

observedextCount(c) = > count(oc). ter is 100% likely, with any other operation be-

Witten-Bell smoothing uses linear interpolationing 0% likely (infinite cost). This makes any seg-

to form a mixture model of all orders of maximum mentation equally likely according to the channel

likelihood estimates down to the uniform estimatemodel, reducing decoding to finding the highest

Py(c) = 1/|X|. The interpolation ratio\(do)  likelihood hypothesis consisting of the test string
ranges between 0 and 1 depending on the contextiith spaces inserted. This approach reduces to
the cross-entropy/compression-based approach of

P(cldo) = Ado)Pu(c|do) (Teahan et al. 2000). Experiments showed that
+ (1= Xdo))P(c|o) skewing these space-insertion/matching probabil-
P) = M)Pu(c) ities reduces decoding accuracy.

+ (1 =20)(1/1%)

Generalized Witten-Bell smoothing defines the| jngpipe 2.1 introduced a hidden Markov

interpolation ratio with a hyperparameter model interface with several decoders: first-best
(Viterbi), n-best (Viterbi forward, A* backward
with exact Viterbi estimates), and confidence-
based (forward-backward).

We takenumexts(o) = |{c|count(cc) > 0}| to be LingPipe 2.2 introduced a chunking implemen-
the number of different symbols observed follow-tation that codes a chunking problem as an HMM

ing o in the training data. The original Witten-Bell tagging problem using a refinement of the stan-
estimator set the hyperparameter= 1. Ling- dard BIO coding. The refinement both introduces

3.3 LingPipe’s Named Entity Recognition

extCount(o)
extCount(o) + 6 - numExts(o)

Ao) =

Pipe’s default setg equal to thex-gram order. context and greatly simplifies confidence estima-
_ _ ' tion over the approach using standard BIO cod-
3.2 Noisy Channel Spelling Correction ing in (Culotta and McCallum 2004). The tags

LingPipe performs spelling correction with a areB- T for the first character in a multi-character
noisy-channel model. A noisy-channel modelentity of typeT, M-T for a middle character in a
consists of a source modét, (1) defining the multi-character entitye- T for the end character in
probability of message:, coupled with a chan- amulti-character entity, and/-T for a single char-
nel modelP,.(o|) defining the likelihood of a sig- acter entity. The out tags are similarly contextual-
nal o given a messagg. In LingPipe, the source ized, with additional information on the start/end
model P, is a character language model. Thetags to model their context. Specifically, the tags
channel modelP, is a (probabilistically normal- used areB-O- T for a character not in an entity
ized) weighted edit distance (with transposition).following an entity of type TJ-O for any mid-
LingPipe’s decoder finds the most likely messageélle character not in an entity, arietO- T for a
1+ to have produced a signal argmax, P(u|o) =  character not in an entity but preceding a charac-
argmaﬁP(u) - P(o|p). ter in an entity of typerl, and finally, W-O-T for

For spelling correction, the channBl(c|x) is @ character that is a single character between two
a model of what is likely to be typed given an in- entities, the following entity being of typ&. Fi-
tended message. Uniform models work fairly wellnally, the first tag is conditioned on the begin-of-
and ones tuned to brainos and typos work even besentence tagBO9 and after the last tag, the end-
ter. The source model is typically estimated fromof-sentence tagfO9 is generated. Thus the prob-
a corpus of ordinary text. abilities normalize to model string/tag joint prob-

For Chinese word segmentation, the sourceébilities.
model is trained over the corpus with spaces in- In the HMM implementation considered here,
serted. The noisy channel deterministically elim-transitions between states (tags) in the HMM are
inates spaces so that.(c|p) = 1.0 if o is modeled by a maximum likelihood estimate over
identical to . with all of the spaces removed, the training data. Tag emissions are generated by
and 0.0 otherwise. This channel is easily imple- bounded character language models. Rather than
mented as a weighted edit distance where deldhe process estimat®(X), we useP(X#|#),
tion of a single space is 100% likely (log proba-where # is a distinguished boundary character
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| Corpus | Encod | Sents| Chars| Unig | Words| Uniq || TestS| Test Ch| Unseen

City UHK | HKSCS (trad) || 57K || 4.3M [ 5113] 1.6M| 76K | 7.5K| 364K | 0.046%
Microsoft | gh18030 (simp)| 46K | 3.4M | 4768 1.3M | 63K || 4.4K| 173K | 0.046%
Ac Sinica | Big5 (trad) 709K | 13.2M | 6123 55M | 146K || 11.0K | 146K | 0.560%
Penn/Colo| CP936 (simp) || 19K | 1.3M | 4294 05M| 37K || 5.1K| 256K | 0.160%

Figure 1: Word Segmentation Corpora

| Corpus | Sents| Chars| Unig | LOC| PER| ORG | TestS| Test Ch| Unseen|

City UHK | 48K | 2.7M | 5113 || 48.2K | 36.4K | 27.8K || 7.5K | 364K | 0.046%
Microsoft | 44K | 2.2M | 4791 36.9K | 17.6K | 20.6K | 4.4K 173K | 0.046%

Figure 2: Named Entity Recognition Corpora

not in the training or test character sets. We alsanodel, and where the are distinct characters
train with boundaries. For Chinese at the characnot in the training/test sets that encode begin-of-
ter level, this bounding is irrelevant as all tokenssentenceB0OS, end-of-sentenceE0S, and type
are length 1, so probabilities are already normal{e.g. PER LOC ORG. In words, we generate an
ized and there is no contextual position to take acalternating sequence @UTand type estimates,
count of within a token. In the more usual word- starting and ending with a®@UT estimate. We
tokenized case, it normalizes probabilities over albegin by conditioning on the begin-of-sentence
strings and accounts for the special status of preag. Because the first character is in an entity, we
fixes and suffixes (e.g. capitalization, inflection). do not generate any text, but rather generate a
Consider the chunking consisting of the stringcharacter indicating that we are done generating
John J. Smith lives in Seattlaith John J. Smitm  the OUT characters and ready to switch to gen-
person mention anBeattlea location mention. In  erating person characters. We then generate the
the coded HMM model, the joint estimate is: phraseJohn J. Smithn the person model; note

Aoy erERUonid) oo Eharacter. sosentially making them bounded
- Pu (1PER [B-PER) - PLpeR (J#[#) out , y making

A models. After generating the name and the
-{’ML I-PER [I-PER ) - P-peR (.#|#) 9 9

character to end the entity, we revert to generating

(
D (E-PER[I-PER ) - PEZPER(SmW?##) more out characters, starting from a person and
+ P (B-O-PER|E-PER) - PBzo‘PER(lZ”?S#‘#) ending with a location. Note that we are generat-
- P (E-0-LOC|B-O-PER) - Pe-0-LOC (in#|#) ing the phraséives inincluding the preceding and
- B (W-LOGE-O-LOC) - RFw-Lod Seattle##|#)  following space. All such spaces are generated in
- B (W-0-EOSW-LOQ - Fv-0-e0S - #(#) theOUTmodels for English; there are no spaces in
- Py (EO§W-0-EO9 the Chinese input. Next, we generate the location

LingPipe 2.3 introduced an-best chunking im- phrase the same way as the person phrase. Next,
plementation that adapts an underlyingbest we generate the final period in tf@UT model
chunker via rescoring. In rescoring, each of thes@nd then the end-of-sentence symbol. Note that
outputs is scored on its own and the new besthe OUT category’s language model shoulders
output is returned. The rescoring model is athe brunt of the burden of estimating contextual
longer-distance generative model that producesffects. It conditions on the preceding type, so
alternating out/entity tags for all characters. Thethat the likelihood oflives in is conditioned on
joint probability of the specified chunking is: following a person entity. Furthermore, the choice
to begin an entity of type location is based on
the fact that it followslives in This includes
begin-of-sentence and end-of-sentence effects,
so the model is sensitive to initial capitalization
in the out model as a distribution of character

+ Pour(-ceos|croc) sequences likely to followBOS Similarly, the
where each estimator is a character language

PQUT(CPER‘CBDS)
. PpER(JOhn J. SmithcouﬂcUUT)

. EOUT( lives m CLgc’CpER)
. PLDC(SeattleCOUT ’CDUT)
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| Corpus | R| P| Fi|BestF || OOV| Roo |
City Uni Hong Kong .966 | .957| .961 972 | 4.0% | .555
Microsoft Research .959 | .955| .957 963 || 3.4% | .494
Academia Sinica 951 | .935| .943 958 | 4.2% | .389
U Penn and U Coloradg .919 | .895| .907 933 || 8.8% | .459

Figure 3: Word Segmentation Results (Closed Category)

’ Corpus H R ‘ P ‘ Fy ‘ BestF H Ploc ‘ Rioc H Peer ‘ Rper H PORG‘ RORG‘
City UniHK || .8417| .8690| .8551 .8903 | .8961| .8762| .8749| .8943| .6997| .8176
MS Research| .8097 | .8188| .8142 .8651| .8351| .8716| .7968| .8438| .7739| .6899

Figure 4: Named Entity Recognition Results (Closed Category)

end-of-sentence is conditioned on the precedingvriting this paper). We started from a working
text, in this case a single period. The resultingword segmentation system for the last SIGHAN.
model defines a (properly normalized) joint Most of the time was spent munging entity data,

probability distribution over chunkings. with the rest devoted to held out analysis. The final
_ code was roughly one page per task, with only a
4 Held-out Parameter Tuning dozen or so LingPipe-specific lines. The final run,

including unpacking, training and testing, took 45

We ran preliminary tests on MUC 6 English and
P y g minutes on a 512MB home PC; most of the time

City University of Hong Kong data for Chinese ) ,

and found baseline performance around 72% anas named-entity decoding.

rescored performance around 82%. The underlyg Results

ing model was designed to have good recall in gen-

erating hypotheses. Over 99% of the MUC testOfficial bakeoff results for the four word segmen-

sentences had their correct analysis in a 1024-be&tion corpora are shown in Figure 3, and for the

list generated by the underlying model. NeverthefW0 named entity corpora in Figure 4. Column

less, setting the number of hypotheses beyond 6l@bels areR for recall, P for precision, £ for

did not improve results in either English or Chi- PalancedF-measureBestF; for the best closed

nese, so we reported runs withbest set to 64. system’sF; score,O0Vfor the out-of-vocabulary

We believe this is because the two language-modéfte in the test corpus, amtpoy for recall on the

based approaches make highly correlated rankingut-of-vocabulary items. For the named-entity re-

decisions based on charactegrams. sults, precision and recall are also broken down by
Held-out scores peaked with 5-grams for Chi-Category.

nese; 3-grams and 4-grams were not_muc_h WOrse  ictribution

and longem-grams performed nearly identically.

We used 7500 as the number of distinct charactingPipe may be downloaded from its homepage,

ters, though this parameter is not at all sensitivénttp:/mwww.alias-i.com/lingpipe . The code

to within an order of magnitude. We used Ling- for the bakeoff is available via anonymous CVS

Pipe’s default of setting the interpolation parame+from the sandbox. An Apache Ant makefile is pro-

ter equal to thex-gram length; for the final eval- vided to generate our bakeoff submission from the

uationd = 5.0. Higher interpolation ratios favor official data distribution format.

precision over recall, lower ratios favor recall. Val-

ues within an order of magnitude performed withReferences

1% F-measure and 2% precision/recall. Carpenter, B. 2005. Scaling high-order character language
models to gigabytefACL Software Workshog\nn Arbor.
5 Bakeoff Time and Effort Culotta, A. and A. McCallum. 2004. Confidence estimation

) ) for information extractionHLT/NAACL 2004Boston.
The total time spent on this SIGHAN bakeoff was _
eahan, W. J., Y. Wen, R. McNab, and I. H. Witten. 2000. A

. T
about 2 hours for the word s_egmentatlon task _and compression-based algorithm for Chinese word segmenta-
10 hours for the named-entity task (not including tion. Computational Linguistic26(3):375-393.
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