Features, Bagging, and System Combination
for the Chinese POS Tagging Task

Fei Xia
University of Washington
Seattle, WA 98195-4340, USA
fxia®@u.washington.edu

Abstract

In recent years more and more NLP
packages become available to the pub-
lic, and many of them are implementa-
tions of general machine learning meth-
ods. A natural question is how one
can quickly build a good system using
those packages. To address this issue,
we built three part-of-speech taggers
(i.e., trigram, TBL, and MaxEnt tag-
gers) for Chinese using existing pack-
ages. Our experiments showed that
adapting and extending a package is
relative easy if the package is well-
written and source code is available.
We studied the contribution of each
type of feature templates to the tag-
ging accuracy and showed that adding
some templates could help one tagger
but hurt another one. Furthermore, we
demonstrated that bagging (Breiman,
1996) provides a moderate gain for the
TBL tagger, and combining TBL and
MaxEnt taggers work better than using
all three taggers.

1 Introduction

In recent years, there has been much progress
in the NLP field, and more and more NLP
packages become available to the public.
Many of those packages are implementations
of general machine learning methods, and
their usefulness has been demonstrated by
some particular tasks for certain languages.
Given those resources, how can we quickly
build a good system for a new language? For
instance, how do packages differ and what kind

25

Lap Cheung
University of Washington
Seattle, WA 98195-4340, USA
lapcheung@gmail.com

of packages should we choose for a particular
task? If a package requires additional input
such as feature templates besides the training
data, what kinds of templates help and what
do not? Will the same templates have the
same effect on different methods? Is it easy
to extend a package to accept new types of
templates? If multiple packages are available,
will system combination provide an additional
boost?

In order to answer those questions, we did a
case study: the goal was to quickly develop
a Chinese Part-of-speech (POS) tagger that
performs well. Our approach has three steps.
First, we built three baseline POS taggers us-
ing existing packages. Two of the taggers re-
quire feature templates as input, in addition
to training data. In the second step, we cre-
ated several types of templates for Chinese and
studied the contribution of each type to the
tagging accuracy. In the third step, we ap-
plied the bagging technique (Breiman, 1996)
and showed that bagging provide a moderate
gain for one of the taggers, and combining two
taggers work better than combining all three.
In the next three sections, we shall describe
each step in detail.

2 Baseline taggers

POS tagging is an important task for many
NLP applications. Some common ap-
proaches are Hidden Marcov Models (HMM),
transformation-based learning (TBL) (Brill,
1995; Florian and Ngai, 2001), maximum en-
tropy models (MaxEnt) (Ratnaparkhi, 1996),
boosting (Abney et al., 1999), decision tree
(Marquez, 1999), just to name a few.

For our case study, we trained three taggers:

Proceedings of the Fifth SIGHAN Workshop on Chinese Language Procgsages 25-32,
Sydney, July 200602006 Association for Computational Linguistics

a trigram tagger using Carmel (Knight and
Al-Onaizan, 1999) as a decoder, a TBL tag-
ger using the InTBL package (Ngai and Flo-
rian, 2001), and a MaxEnt tagger built by Le
Zhang.! We chose these packages mainly be-
cause they all provide source codes and are
well-packaged with detailed tutorials.

Both MaxEnt and TBL taggers take feature
templates as input. There are a series of inter-
esting questions with respect to feature tem-
plates. For instance, are there some types of
templates that are allowed by one tagger, but
not by the other? If so, are those templates
useful? When we use the same templates, do
they have similar effects on both taggers? If
we want to add a new type of templates, is it
easier for one tagger than the other? Before
answering those questions, let us take a closer
look at the two taggers.

2.1 POS tagging as a classification
problem

In a standard classification problem, there are
a finite set of input attributes and a target
(a.k.a. label or class). For supervised learn-
ing, a training corpus T is a set of classified
examples; that is, 7" is a set of (z;,y;) pairs,
where z; is an example, and y; is the correct
label for z;. At the training stage, a learner in-
duces a classifier from T, and at the test stage
the classifier labels new examples.

The POS tagging task is different from the
standard classification problem in that its goal
is to find the best tag sequence, not the best
tag for each word. The MaxEnt tagger and
the TBL tagger resolve this issue in different
ways, as we shall discuss in the remaining of
the section.

2.2 The MaxEnt tagger

The flowchart for the training stage of the
MaxEnt tagger is shown in Figure 1. The tag-
ger requires two inputs: an original training
corpus (OT), which is a set of tagged sen-
tences, and a set of feature templates (FT).
They are fed to the C&FI module, which con-
verts OT into the attribute-value representa-
tion and instantiate features based on F'T. The
converted corpus (CT) and the instantiated

!The MaxEnt package can be downloaded from
http://homepages.inf.ed.ac.uk /s0450736.

26

Table 1: Attribute-value representation for the
sentence time flies like an arrow in MaxEnt

Zq Yi
Wo t_1 | t_2,t_1 | Target
time - - N
flies N -,N \%
ike |V | N,V P
an P | V)P DT
arrow | DT | PDT N

features (F) are sent to the MaxEnt learner,
which iteratively adjusts feature weights.

The conversion from OT to CT is straight-
forward. For instance, let us assume that the
FT contains only three templates: (1) the cur-
rent word wy, (2) the tag t_; of the previous
word, and (3) the tags “t_o,t_1” of the two
previous words. If the OT contains only one
sentence as in (#1), the corresponding CT is
shown in Table 1: each word in the sentence
corresponds to a row in the table; each column
except the last one corresponds to a feature
template, and the last column lists the tag for
the word.

(#1) Time/N flies/V like/P an/DT arrow/N

At the test stage, in order to find the best
tag sequence, the MaxEnt tagger uses beam
search and labels words from left to right, as
described in (Ratnaparkhi, 1996). Because the
decoding is done from left to right, a feature
template cannot contain the tag of the current
word or tags in the right context such as ¢;.?

2.3 The TBL tagger

Like MaxEnt, the TBL tagger takes two in-
puts: the original training corpus (OT) and
feature templates (FT), as shown in Figure 2.
TBL differs from MaxEnt and many other ma-
chine learning methods in that for each (x;, y;)
in the training data, TBL also maintains a y.,
which is the current label of z;. Therefore, the
converted corpus (CT) is a list of (z;, v}, y;) tu-
ples.

The training stage has three steps: (1) Each
z; is labeled y; by an initial tagger (e.g., a un-
igram tagger), and the converted corpus (CT)
is formed; (2) The current label v} is compared
with the gold standard y;, and the TBL learner

2In this paper w; means the i-th word from the cur-
rent word, not the i-th word in the sentence. t; is
defined similarly.

MaxEnt tagger

converter
and feature
instantiator

Original
corpus (OT)

(C&FI)

Converted
corpus (CT)
~Eo—
A

MaxEnt Feature
Learner > weights
(Core) (FW)

Feature
templates
FT)

Figure 1: The training stage of the MaxEnt tagger

TBL tagger

Transformation

Applier
Original Initial
corpus (OT) 7| tagger >

(Im

Converted
corpus (CT)

—>

— Qmae

Transformation Transformation

Learner (L)

list (TL)

Feature
templates
FT)

Figure 2: The training stage of the TBL tagger

selects a transformation that reduces the er-
rors the most; (3) The CT is updated as the
newly learned transformation is applied to it.
Steps (2)-(3) are repeated until no more good
transformations can be learned.

At the test stage, the test data are first la-
beled by the initial tagger, then the transfor-
mations learned at the training stage are ap-
plied to the test data one by one in the same
order as they were learned.

We illustrate the main steps of TBL with
an example. Suppose the TBL tagger uses
the same set of feature templates and training
data as in the MaxEnt tagger, and let (#2)
be the result produced by the initial tagger.
Table 2 shows the CT after the initial tagging.
This table has one more column than Table
1, and the column, CurTag, stores the tag for
the current word.? Also, if a feature template
contains a t;, the value of ¢; comes from the
CurTag column, not from the Target column.

3In this paper, CurTag is the same as to. We use
CurTag in the running text, tables, and on the right-
hand side of a transformation, and use t; when it ap-
pears in a feature template or on the left-hand side of
a transformation.

27

Table 2: The training corpus after initial tag-

ging in TBL

i Yi yi
Wo t_1 | t_2,t_1 | CurTag | Target
time - - N N
flies N - N N \%
like N N,N \4 P
an vV | N,V DT DT
arrow | DT | V,DT N N

Therefore, the errors in CurTag column are
passed to the second and third columns, as
marked in boldface.

(#2) Time/N flies/N like/V an/DT arrow/N

In the second step of the training, y; and y;
in the CT are compared and the best trans-
formation is selected at each iteration. Let us
assume the transformation selected at this it-
eration is t_1 =N = CurTag=V, which means
that if the tag of the previous word is N and
the CurTag for the current word is not V', then
set CurTag to be V.

In the third step of training, the selected
transformation is applied to the whole cor-
pus, and the updated corpus is shown in Ta-
ble 3. Notice that the CurTag for word flies is

Table 3: The training corpus after applying
the transformation “t_1=N = CurTag=V"
(The updated parts are underlined).

Ti yi yi
Wo t_1 | t_2,t_1 | CurTag | Target
time - - N N
flies N -,N \ \Y
like \Y% NV \4 P
an vV | V.V DT DT
arrow | DT | V,DT N N

changed, and its corresponding values in the
second and third columns are updated too.*

2.4 Differences between MaxEnt and
TBL taggers

TBL and MaxEnt are very different learning
methods: TBL is rule-based, whereas MaxEnt
is statistical. Because MaxEnt is statistical,
MaxEnt taggers can treat the tagging of each
word as a classification problem, produce the
top-N best tags for each word, and then use
beam search to find the best tag sequence.
Such an option is not available to the TBL
method, because TBL does not provide scores
or probabilities for its decisions.

In addition, the two methods have sev-
eral major differences that are relevant to our
present work:

e The CT in MaxEnt is a list of (z;, y;) pairs
and is unchanged once created, whereas
the CT in TBL is a list of (z;, ¥}, ;) tuples
and is updated at each iteration.

The feature set F' in MaxEnt is unchanged
once created; whereas the TBL learner
may generate new features at each iter-
ation because the CT keeps changing.

It is easy to extend the MaxEnt tagger
to accept new types of feature templates:
we only need to change the C&FI mod-
Doing the same for TBL is harder
as we need to change the transformation
learner, which is more complicated.’

ule.

“The fnTBL package stores the training corpus in
a slightly different representation, but our statement
about TBL still holds.

5In the fnTBL package, a template is a conjunction
of so-called atomic templates, and each atomic tem-
plate is defined as a C++ class. If a new template
includes new types of atomic templates, we have to
define additional C++ classes for the new atomic tem-
plates.

28

e The MaxEnt tagger labels a sentence from
left to right, which implies that features
used in MaxEnt cannot refer to tags in
the right context. In contrast, TBL does
not label words from left to right, and the
CurTags for the words in the right context
are always available. Therefore, features
in TBL can refer to tags of any words in
the sentence.

Feature templates are used differently in
the two taggers, as we shall explain in Sec-
tion 3.

To summarize, adding new feature template
types to the MaxFEnt tagger is easier than
adding them to the TBL tagger because both
CT and instantiated features are unchanged
during the iteration in the MaxEnt tagger.
However, the MaxEnt tagger cannot use fea-
tures that refer to the tag of the current word
and the tags in the right context, while the
TBL tagger can. But are those features use-
ful? We shall answer that question in Section
5.

3 Feature templates

Feature templates can be divided into two
types: contextual templates that look at the
context (e.g., neighboring words), and lexical
templates that look at word spelling and the
like.

MaxEnt and TBL taggers use feature tem-
plates in different ways. For instance, given a
template “¢_1” and the training corpus in Ta-
ble 1, the MaxEnt tagger will create the fol-
lowing feature for the word flies:

_J 1 ift =N and t=V
fih:t) = { 0 otherwise
(1)
Each feature f; has a weight A;, and is used
to calculate the probability of a history h and
the tag ¢ as defined below:
-1 i fi ()

In contrast, for the same feature template
t_1 and for the corpus in Table 2, the TBL tag-
ger will create a transformation for the word
flies:

t_1=N= CurTag=V (3)

This transformation is applicable if the
CurTag is not V and the previous tag is N;
when the transformation applies, it will set the
CurTag to be V.

If we treat a transformation as a rule,
CurTag can appear in both sides of the rule.
For instance for the template “ty _1” and the
word flies in Table 2, the TBL tagger will cre-
ate a transformation

to=Nandit_1 =N= CurTag=V (4)

Notice that the transformations in (3) and
(4) are different, as (4) will not fire unless
the CurTag is N. In Section 5, we shall show
that whether or not CurTag is included in the
templates could affect tagging accuracy signif-
icantly.

3.1 Contextual templates

To study the contribution of each type of tem-
plates, we define three types of contextual
templates:®

C1: seven templates that are used in both the
TBL tagger and the original MaxEnt tag-
ger

C2: seventeen less commonly used templates

C3: thirteen templates that include tags from
the right context

To test the effect of including CurTag, we
also define a set C] for each C;: templates in
C! are the same as the ones in C; except that
they include CurTag. For instance, “¢t_1” in
C1 becomes “tg,t—1” in Cf.

3.2 Lexical templates

In addition to contextual templates, both tag-
gers use lexical templates to handle unknown
words. In our experiments, we use three types
of lexical templates that are defined in the
fnTBL package:

L1: Affix: An Affix template checks whether
a word starts (or ends) with a character
n-gram.

5We started with the templates used in the fnTBL
package and then made some modifications. The com-
plete contextual template list is given in the Appendix.

29

L2: WordInVoc: A WordInVoc template
checks whether removing or adding a
character n-gram will result in a word
that has appeared in the training data.

L3: SubString: A SubString template checks
whether a word contains a particular sub-

string.

The original MaxEnt package uses features
in C1 and L1. We modified the code so that
it accepts features in C2, L2, and L3 as well.

4 Bagging

Bagging (Bootstrap Aggregating) is a method
for generating multiple versions of a predictor
and using them to get an aggregated predic-
tor (Breiman, 1996).” The bagging algorithm
is very simple: during the training stage, mul-
tiple bootstrap replicates® are generated from
the training data and each replicate induces
a predictor. During the decoding stage, each
test example is processed by all the predictors
and the final result is created in a voting ap-
proach.

Breiman (1996) shows that bagging achieves
impressive results when applied to unstable
learning algorithms (e.g., decision tree), but
it could degrade the performance of stable
algorithms (e.g., kNN). Henderson and Brill
(2000) used bagging and boosting to improve
a Treebank parser. For the POS tagging task,
Marquez et al. (1999) shows that bagging
decision-tree taggers improves tagging accu-
racy on English text, and similar improvement
is observed for Hungarian text when bagging
TBL taggers (Kuba et al., 2005).

In our present work, we test the effect of
bagging on our three baseline taggers for Chi-
nese text.

5 Experiments

We ran our experiment on the Chinese Penn
Treebank (CTB) version 5.0, which contains
500 thousand words of newspaper and maga-
zine articles from three sources: Xinhua News
Agency from Mainland China, HKSAR from

"A predictor can be any function that maps input
to output, and in this case, a predictor is simply a POS
tagger.

8Given a training set of n examples, a bootstrap
replicate is created by randomly drawing with replace-
ment n times.

Hong Kong, and Sinorama Magazine from Tai-
wan. Three previous work (Xue et al., 2002;
Florian and Ngai, 2001; Ng and Low, 2004)
were trained on various earlier versions of
the treebank, which contain 100K, 160K, and
250K words respectively. (Tseng et al., 2005)
is the only previous work that was trained on
version 5.0; therefore we used the same data
split as they did.® Table 4 shows the sources
and sizes of the data sets. The average sen-
tence length is 27 words, and the OOV rate
(the percentage of unknown tokens) is 6.42%
on the DevSet and 5.86% on the TestSet. The
unigram tagging accuracy on the DevSet is
86.31%.

Table 4: Training, development, and test data

Data Set Sections words
Training 461406
Xinhua 026-270, 301-325,
400-454, 600-931 213910
HKSAR none 0
Sinorama | 1003-1039, 1043-1151 247496
DevSet 23839
Xinhua 001-025 7844
HKSAR 500-527 8202
Sinorama | 590-593, 1001-1002 7793
TestSet 23522
Xinhua 271-300 8008
HKSAR 528-554 7153
Sinorama | 594-596, 1040-1042 8361

5.1 TBL results

To test the effects of contextual templates on
TBL, we first use an empty lexical template
set, which means all the unknown words are
assigned a default tag at both the training and
the test stages. The results are in Table 5,
where the three columns list the tagging accu-
racy for all words, known words, and unknown
words, respectively. As shown in the first two
rows, C1’ works much better than C1, indicat-
ing that it is useful to include CurTag in the
feature templates for this template set.

Then we add either C2 or C2' to C1'.
both cases, the tagging accuracy improves,
and C2 works slightly better than C2'. Next,
we add C3 or C3’, and the results are further
improved.

To test the effect of lexical templates, we
start with the best result from Table 5, which
uses C1’+C2+C3’. The results are in Table

In

90ur training data plus the DevSet is the same as
the Training IIT defined in their paper.

30

Table 5: Effects of contextual templates for
TBL (on the DevSet)

Features Overall | Known | Unk

C1 88.82 91.24 53.52
Ccr 91.35 93.46 60.76
C1’+C2 91.70 93.83 60.69
C1'+C2 91.60 93.80 59.71
C1’+C2+C3 92.05 94.22 60.52
C1’+C2+C3’ | 92.13 94.26 61.15

Table 6: Effects of lexical templates for TBL
(on the DevSet)

Features Overall | Known | Unk
C1’'+C2+C3 92.13 94.26 61.15
C1'+C2+C3’+L1 92.74 94.17 71.90
C1’+C2+C3+L1+L2 92.46 93.89 71.66
C1'+C2+C3’+L1+L2+L3 | 92.83 94.29 71.56

6. The lexical templates greatly improve the
accuracy of unknown words, and the overall
accuracy increases from 92.13% to 92.83%.

5.2 MaxEnt results

The MaxEnt tagger cannot use C1’, C2’, C3’
(which refer to the tag of the current word)
and C3 (which refers to tags of words to the
right). We ran the tagger with other template
sets, and the results are in Table 7. When
we compare this with TBL results, we observe
that some templates can have opposite effects
on the two taggers. For instance, while adding
C2 helps the TBL tagger, it hurts the MaxEnt
tagger.

Table 7: Tagging accuracy of the MaxEnt tag-
ger (on the DevSet)

Features Overall | Known | Unk
C1 92.75 94.46 67.99
C1+C2 92.56 94.28 67.54
Ci1+L1 93.65 94.83 76.53
C1+L1+L2 93.62 94.79 76.60
C1+4+L14+L2+L3 | 93.42 94.76 74.05

5.3 Bagging results

Table 8 shows the bagging results. The first
row is the baseline result without bagging.
The rest are the results when the number of
bags ranges from 1 to 100.

A few observations are in order: First,
among three taggers, bagging helps TBL the
most (from 92.83% to 93.25%) with a relative
error reduction of 5.85%, but the gain is very

Table 8: Bagging with different numbers of bags (on the DevSet)

Trigram | TBL | MaxEnt | Trigram+TBL+MaxEnt | TBL+MaxEnt

no bagging | 90.41 92.83 | 93.65 93.25 N/A

1 bag 89.71 91.71 | 92.73 92.87 N/A

3 bags 90.06 92.70 | 93.15 93.32 93.55
10 bags 90.30 93.08 | 93.45 93.46 93.85
25 bags 90.43 93.13 | 93.58 93.47 93.91
50 bags 90.50 93.20 | 93.60 93.48 93.93
75 bags 90.48 93.23 | 93.61 93.49 93.93
100 bags 90.51 93.25 | 93.60 93.50 93.95

moderate.'® Second, the last two columns in-
dicate that leaving out the trigram tagger from
voting yields better results. Overall, bagging
and system combination together improves the
tagging accuracy from 93.65% (the best single
system) to 93.95% (TBL+MaxEnt with 100
bags), achieving a relative error rate deduc-
tion of 4.72%.

5.4 Results on the test data

Table 9 shows the results on the test data. It
follows the same pattern as Table 8, and the
overall improvement is from 93.14% to 93.58%.

Table 9: Tagging accuracy on the TestSet
TBL

Trigram MaxEnt | TBL +
MaxEnt
no bagging | 90.32 92.41 | 93.14 N/A
1 bags 89.63 91.19 | 92.31 N/A
3 bags 89.95 92.13 | 92.73 93.17
10 bags 90.16 92.49 | 93.00 93.42
25 bags 90.32 92.65 | 93.08 93.52
100 bags 90.33 92.69 | 93.10 93.58

For comparison, among all the previous
work on the Chinese POS tagging, (Tseng et
al., 2005) was the only one that was trained
and tested on the Chinese Penn Treebank ver-
sion 5.0. However, in their experiments, the
whole corpus was cleaned up before train-
ing, which yielded a 0.46% absolute perfor-
mance gain when their tagger was trained on
a subset of the whole training data. Because
of the clean-up step and the fact that they
used a different MaxFEnt package, their Max-
Ent baseline result on the test set was 93.51%
whereas ours was 93.14%. By adding seven

Tn comparison, Kuba et al. (2005) reports a rela-
tive error reduction of 18% (tagging accuracy changes
from 98.26% to approximately 98.58%) on Hungarian
text. Because the two experiments used texts from dif-
ferent languages and the baseline results (92.83% vs.
98.26%) are quite different, comparing the error reduc-
tion rates is not very meaningful. Nevertheless, we plan
to look into this difference in the future.

new types of templates, their tagging accu-
racy improves from 93.51% to 93.74%, whereas
our tagging accuracy improves from 93.14% to
93.58% when MaxEnt and TBL output were
combined. The two sets of experiments show
that both adding features and system combi-
nation could improve tagging accuracy.

6 Conclusion

In this paper, we investigated the possibility
of quickly adapting existing tools for a new
language. We learned a few important lessons.

First, one should choose good NLP packages
as the starting point. For our experiments, it is
crucial that the packages include source code,
which allows us to modify or extend the pack-
ages. For instance, we modified the MaxEnt
tool so that it can accept feature templates in
(C2), (L2), and (L3).

Second, both MaxEnt and TBL taggers use
feature templates, but the same templates
(e.g., C2, L2, and L3) could have opposite ef-
fects on the two taggers. In addition, TBL
taggers can use feature templates that refer to
the tags of the current word and the words to
the right. Including CurTag in C1 greatly im-
proves the tagging accuracy (from 88.82% to
91.35%), but adding it in C2 hurts the accu-
racy slightly (from 91.70% to 91.60%). Adding
templates that refer to tags of the words to
the right helps a little bit (from 91.70% to
92.13%).

Third, among the three taggers bagging
helps TBL the most, and it has little effect on
the trigram and the MaxEnt taggers. Com-
bining TBL and MaxEnt provides a moderate
gain, and it is better to leave out the Trigram
tagger from the system combination.

For future work, we plan to experiment with
other learning algorithms such as SVM, and
other methods of system combination.

31

A Contextual templates used in
the TBL and MaxEnt taggers

We follow the template format used in the fn TBL pack-
age. All the numbers in the templates are relative po-
sitions with respect to the current word. For instance,
pos_-1 is the tag of the previous word, and word_1 is
the next word. [i,j] is a range of the context. For
instance, word:[-3,-1] means one of the previous three
words. Notice that C3 is used only in TBL.

Cl: seven basic templates that do not use
tags in the right context.

word_O
word_-1
word_1
word_-2
word_2
pos_-1
pos_-2 pos_-1

C2: seventeen more templates that do not
use tags in the right context.

word_0 word_1 word_2

word_-1 word_O word_1
word_0 word_-1

word_0 word_1

word_0O word_2

word_0 word_-2

word: [1,2]

word: [-2,-1]

word: [1,3]

word: [-3,-1]

word_0 pos_-2

word_0 pos_-1

pos_-2

pos:[-3,-1]

pos: [-2,-1]

pos_-1 word_-1 word_O
pos_-1 word_O word_1

C3: thirteen templates that use the tags in
the right context.

word_0 pos_1
word_0 pos_2

pos_-1 pos_1
pos_1 pos_2
pos_1
pos_2

pos_1 word_0 word_1
pos_1 word_0O word_-1
pos: [1,3]

pos:[1,2]

pos_1 pos_2 word_1
pos_1 word_0 word_1
pos_1 word_O word_-1

References

Steven Abney, Robert E. Schapire, and Yoram Singer.
1999. Boosting Applied to Tagging and PP Attach-
ment. In Proceedings of the 1999 Joint SIGDAT
Conference on Empirical Methods in Natural Lan-
guage Processing and Very Large Corpora (EMNLP-
1999), pages 38—45.

32

Leo Breiman. 1996. Bagging predictors. Machine

Learning, 24(2):123-140.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging. Computational Lin-
guistics, 21(4):543-565.

Radu Florian and Grace Ngai. 2001. Multidimensional
transformation-based learning. In Proceedings of the
5th Conference on Computational Natural Language
Learning (CoNLL-2001).

John Henderson and Eric Brill. 2000. Bagging and
boosting a treebank parser. In Proceedings of the

6th Applied Natural Language Processing Confer-
ence (ANLP-2000).

Kevin Knight and Yaser Al-Onaizan. 1999.
A primer on finite-state software for natu-
ral language processing. downloadable from
http://www.isi.edu/licensed-sw/carmel/carmel-

tutorial2.pdf.

Andrds Kuba, L&szlé Felfoldi, and Andris Kocsor.
2005. Pos tagger combinations on hungarian text.
In 2nd International Joint Conference on Natural
Language Processing (IJCNLP-2005).

Lluis Marquez, Horacio Rodriguez, Josep Carmona,
and Josep Montolio. 1999. Improving pos tagging
using machine-learning techniques. In Proceedings
of the 1999 Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very
Large Corpora (EMNLP-1999), pages 53—62.

Lluis Marquez. 1999. Part-of-speech Tagging: A Ma-
chine Learning Approach based on Decision Trees.
Ph.D. thesis, Universitat Politecnica de Catalunya.

Hweee Tou Ng and Jin Kiat Low. 2004. Chinese Part-
of-speech Tagging: One-at-a-Time or All-at-Once?
Word-based or Character-based? In Proc. of the 9th
Conf. on Empirical Methods in Natural Language
Processing (EMNLP-2004).

Grace Ngai and Radu Florian. 2001. Transformation-
based learning in the fast lane. In Proceedings of
North American ACL (NAACL-2001), pages 40-47,
June.

Adwait Ratnaparkhi. 1996. A Maximum Entropy
Model for Part-of-speech Tagging. In Proc. of Joint
SIGDAT Conference on Empirical Methods in Nat-
ural Language Processing and Very Large Corpora
(EMNLP-1996).

Huihsin Tseng, Daniel Jurafsky, and Christopher Man-
ning. 2005. Morphological features help pos tag-
ging of unknown words across language varieties.
In Proc. of the 4th Workshop on Chinese Language
Processing (SIGHAN-2005).

Nianwen Xue, Fu dong Chiou, and Martha Palmer.
2002. Building a Large-scale Annotated Chinese
Corpus. In Proc. of the 19th International Con-
ference on Computational Linguistics (COLING-
2002).

