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Abstract typical parsing features in that they cannot be deter-

o mined from tree-local information. Though lengths
In lexicalized phrase-structure or dependency parses, a word’s t I id d il that bilexical
modifiers tend to fall near it in the string. We show that a crugé&ll® ot usually consiaered, we will see that bilexica

way to use dependency length as a parsing feature can suynamic-programming parsing algorithms can eas-

stantially improve parsing speed and accuracy in English arw/ consider them as they build the parse
Chinese, with more mixed results on German. We then sho )

similar improvements by imposirizard bounds on dependency ~ SOft constraints. Like any other feature of trees,
length and (additionally) modeling the resulting sequence aflependency lengths can be explicitly used as fea-

parse fragments. This simple “vine grammar” formalism h"?‘?ures in a probability model that chooses among
only finite-state power, but a context-free parameterization wit

some extra parameters for stringing fragments together. We eft€€s. Such a model will tend to disfavor long de-
hibit a linear-time chart parsing algorithm with a low grammarpendencies (at least of some kinds), as these are em-

constant. pirically rare. In the first part of the paper, we show
1 Introduction that such features improve a simple baseline depen-

) ) dency parser.
Many modem parsers identify the head word of Hard constraints. If the bias against long de-

eaf:h cqnstltuent they find. This makeg It Poss_'b_lﬁendencies is strengthened into a hard constraint
_to |dent|fye1the word-to-word ?(ependencgjes 'mgl'c'tthat absolutely prohibits long dependencies, then the
in a pars€. (Some parsers, known as 0ependencya ser turns into a partial parser with only finite-state

parsers, even return these dependencies as their %ré'wer. In the second part of the paper, we show how

mary:]oubtpur;[.) identify th q dencies? to perform chart parsing in asymptotic linear time
Why bother to identify these dependencies? Thg;, a low grammar constant. Such a partial parser

typical reason is to model the fact that some Worgloes less work than a full parser in practice, and in

pairs are more_hkely. than qthers to engage in a d?ﬁany cases recovers a more precise set of dependen-
pendency relationship.In this paper, we propose A jes (with little loss in recall).
different reason to identify dependencies in candi-

date parses: to evaluate not the dependency’s wopd Short Dependencies in Langugage
pair but itslength(i.e., thestring distancebetween

the two words). Dependency lengths differ fromWe assume that correct parses exhibit a “short-

- dependency preference”: a word’s dependents tend
* This work was supported by NSF ITR grant 11S-0313193 P yp P

to the first author and a fellowship from the Fannie and Joh#0 D€ close toitin the stringIf the jt"word of a sen-
Hertz Foundation to the second author. The views express¢dnce depends on théword, then|z' —j| tends to be
are not necessarily endorsed by the sponsors. The authors thank

Mark Johnson, Eugene Charniak, Charles Schafer, Keith Hall, 3 |n this paper, we consider only a crude notion of “close-

and John Hale for helpful discussion and Elliottabek and ness”: the number of intervening words. Other distance mea-
Markus Dreyer for insights on (respectively) Chinese and Geksyres could be substituted or added (following the literature on
man parsing. They also thank an anonymous reviewer for sugieavy-shift and sentence comprehension), including the phono-
gesting the German experiments. logical, morphological, syntactic, or referential (given/new)
!In a phrase-structure parse, if phrakeheaded by word complexity of the intervening material (Gibson, 1998). In pars-
tokenz is a subconstituent of phra3e headed by word token ing, the most relevant previous work is due to Collins (1997),
y # =z, thenz is said to depend op. In a more powerful who considered three binary features of the intervening mate-
compositional formalism like LTAG or CCG, dependencies carial: did it contain (a) any word tokens at all, (b) any verbs,
be extracted from the derivation tree. (c) any commas or colons? Note that (b) is effective because
2It has recently been questioned whether these “bilexicalit measures the length of a dependency in terms of the number
features actually contribute much to parsing performance (Kleiof alternative attachment sites that the dependent skipped over,
and Manning, 2003; Bikel, 2004), at least when one has only a notion that could be generalized. Similarly, McDonald et al.
million words of training. (2005) separately considered each of the intervening POS tags.
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small. Thisimplies that neithémnorj is modified by that another sentence that had center-embedding

complex phrases that fall betweéandj. In terms was inside was incomprehensiple

of phrase structure, it implies that tbrasesmod- Such functionalist pressures are not all-powerful.

ifying word ¢ from a given side tend to be (1) few For example, many languages use SOV basic word

in number, (2) ordered so that the longer phrases faltder where SVO (or OVS) would give shorter de-

farther fromi, and (3) internally structured so thatpendencies. However, where the data exhibit some

the bulk of each phrase falls on the sidejofway short-dependency preference, computer parsers as

from i. well as human parsers can obtain speed and accu-
These principles can be blamed for several linracy benefits by exploiting that fact.

guistic phenomena. (1) helps explain the “late clo-

sure” or “attach low” heuristic (e.g., Frazier, 1979;3 Soft Constraints on Dependency Length

HObbS. and Bear, 1990): a modifier such asa PPy e now enhance simple baseline probabilistic
more likely to attach to the closest appropriate head. . .

. . parsers for English, Chinese, and German so that
(2) helps account for heavy-shift: when an NP i

hey consider dependency lengths. We confine our-
long and complextake NP out put NP on the ta- y ! P yleng ! y

ble, andgive NP to Maryare likely to be rephrased z;e)gle(a(?h ((tggg?t:;:tsg;iepni%ir) 'It'?\isaarllsol\r/]vgs E:r:(—)oifg-’_
astake out NP put on the table NPandgive Mary '

) ) . nore data sparseness, out-of-vocabulary, smoothing,
NP. (3) explains certain non-canonical word orders; L .
. . , . and pruning issues, but it means that our accuracy
in English, a noun’s left modifier must become a

. . R Mmeasures are not state-of-the-art. Our techniques
right modifier if and only if it is right-heavyd taller g

politician vs. a politician taller than all her rival$), could be straightforwardly adapted to (bi)lexicalized

e L arsers on actual word sequences, though not neces-
and a verb’s left modifier may extrapose its rlght—IO a g

: ) ? " sarily with the same success.
heavy portion An aardvark walked in who had cir- y

cumnavigated the gloBp 3.1 Grammar Formalism

Why should sentences prefer short dependencie.?? . . e
; hroughout this paper we will use split bilexical
Such sentences may be easier for humans to produce

) - rammars, or SBGs (Eisner, 2000), a notationally
and comprehend. Each word can quickly “dischargg. : :
. o T - . simpler variant of split head-automaton grammars,
its responsibilities,” emitting or finding all its depen-

- ) ..__or SHAGs (Eisner and Satta, 1999). The formalism
dents soon after it is uttered or heard; then it can . o
IS context-free. We define here a probabilistic ver-

be dropped from working memory (Church, 1980, ion® which we use for the baseline models in our

Gibson, 1998). Such sentences also succumb ”‘CeeX eriments. They are only baselines because the
to disambiguation heuristics thassumeshort de- P ' y y

pendencies, such as low attachment. Thus, to irﬁc’-BG generative process doest take note of de-

prove comprehensibility, a speaker can make stylié)-e:geg;g?gg;:'tu 5 — (5.$.0.R). S is an
tic choices that shorten dependencies (e.g., heav ihabet of word P n _r( )’( ’rir7n )r;t W ;
shift), and a language can categorically prOhibiorE)I apgsci[a Ze Sﬁergcezuﬁgsgitua‘lal zn a? Ez s¢€
some structures that lead to long dependencias (b ty f1 g gi di’tin ish dry i rzb "
taller-than-all-her-rivals politician *the sentence €to ags.)$ ¢ X is a distinguishe oot symoor
let¥ = ¥ U {$}. L andR are functions from>
“Whereas*a politician taller and *a taller-than-all-her- {0 probabilistice-free finite-state automata over

rivals politicianare not allowed. The phenomenon is pervasiveThus, for eachv € ¥, the SBG specifies “left” and
5This actually splits the heavy left dependéam aardvark « ight” probabilistic FSAs,L,, andR

who ...]into two non-adjacent pieces, moving the heavy seconJ _ row wr

piece. By slightly stretching thaardvark-whodependency in e useL.,(§) : ¥* — [0, 1] to denote the prob-

this way, it greatly shortersardvark-walked The same is pos- abilistic context-free language of phrases headed by

sible for heavy, non-final right dependentsnet an aardvark : - . : _
yesterday who had circumnavigated the glammin stretches w. Ly(9) is defined by the following simple top

aardvark-whowhich greatly shortenset-yesterdayThese ex- down stochastic process for sampling from it:
amplesillustrate (3) and (2) respectively. However, theresulting—

non-contiguous constituents lead to non-projective parses that ®There is a straightforward generalization weeighted
are beyond the scope of this paper. SBGs, which need not have a stochastic generative model.
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1. Sample from the finite-state languadéL,,) a tributionsp(go——q1 | g0, ~STOP) andp(q1——q1 |
sequence\ = w_jw_s...w_y, € X* of left ¢,—STOP).
children, and fromL(R,,) a sequencep = Finally, in §3, Lg and Rg are restricted as above,
wiws ... w, € X* of right children. Each se- soR$ gives a probability distribution ovet only.
quence is found by a random walk on its proba-
bilistic FSA. We say the childredependonw. 3.3 Length-Sensitive Models

None of the baseline models A-&xplicitly model

the distance between a head and child. We enhanced

them by multiplying in some extra length-sensitive

factors when computing a tree’s probability. For
_ each dependency, an extra fagioA | .. .) is mul-

3. Returna_y ... sa_jwojay...ap, € ¥*, @ tiplied in for the probability of the dependency’s
concatenation of strings. lengthA = |i — j|, wherei and; are the positions
Notice thatw’s left children\ were generated in of the head and child in theurfacestring?®

reverse order, so_; andw; are its closest children  Again we tried three variants. In one version, this

while w_, andw, are the farthest. new probabilityp(A| .. .) is conditioned only on the
Given an input sentence = wiws ... w, € ¥*, directiond = sign(i — j) of the dependency. In

a parser attempts to recover the highest-probabilignother version, it is conditioned only on the POS

derivation by which$w could have been generatedtagh of the head. In a third version, itis conditioned

from L$(9). Thus,$ plays the role ofvy. A sample ond, h, and the POS tagof the child.

derivation is shown in Fig. 1a. Typically}$ and

Rg are defined so th& must have no left children

(¢ = 0) and at most one right chil¢- < 1), the Fig. 2a gives a variant of Eisner and Satta’s (1999)

latter serving as the conventional root of the parse.SHAG parsing algorithm, adapted to SBGs, which

are easier to understafid(We will modify this al-

3.2 Baseline Models gorithm later in§4.) The algorithm obtain®(n?)

In the experiments reported here, we defined onf/Ntime, despite the need to track the position of
very simple automata fol,, and R, (w € X). ead words, by exploiting the c_ondltlonal mdeper.]-
However, we tried three automaton types, of Varyc_ience between a head’s left children and right chil-
ing quality, so as to evaluate the benefit of addingren. It builds “half-constituents” denoted b
length-sensitivity at three different levels of baselind@ head word together with some modifying phrases
performance. on theright, i.e.was ... «;) and /] (a head word

In model A (the worst), each automaton has topoltogether with some modifying phrases on the left,
ogy @, with a single statey;, so tokenw’s left i.€., a—¢...a_jw). A new dependency is intro-
dependents are conditionally independent of one aduced when[\. + /] are combined to geb
other givenw. In model C (the best), each au-or (] (a pair of linked head words with all the
tomaton ©@—@©> has an extra statg, that al- intervening phrases, i.ega; ... o0/ ... a0/,
lows the first (closest) dependent to be chosen difvherew is respectively the parent or child af).
ferently from the rest. Model B is a compromiSe: ope can then combind > + [N = N\ or
it is like model A, but each typav € X may

have an elevated or reduced probability of havin 8Since theA values are fully determined by the tree but ev-
ryp(A | ...) < 1, this crude procedure simply reduces the

no dependents at all. This is accomplished by U$iobability mass of every legal tree. The resulting modeleis
ing automatas—®© as in model C, which al- ficient(does not sum to 1); the remaining probability mass goes

; i to impossible trees whose putative dependency lengtlzse
lows the stopping prObablhtleﬁ(STop | qO) and inconsistent with the tree structure. We intend in future work

p(sToP| ¢1) to differ, but tying the conditional dis- to explore non-deficient models (log-linear or generative), but
- even the present crude approach helps.

"It is equivalent to the “dependency model with valence” of  ®The SHAG notation was designed to highlight the connec-
Klein and Manning (2004). tion to non-split HAGs.

2. For eachi from —/ to r with 7 = 0, recursively
samplea; € ¥* from the context-free language
L, (9). Itis this step that indirectly determines
dependency lengths.

3.4 Parsing Algorithm
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A + 1 = . onlyOn?) combinations dency labels (Eisner, 2000). For example, the in-
are possible in total when parsing a lengtlsen- put tokenW; = {bank,/N/NP, banky/N/NP,

tence. banks/V/ VP, banks/V/S} < X allows four
“senses” of bank, namely two nominal meanings,
3.5 A Note on Word Senses and twosyntactically differenversions of the verbal

[This section may be skipped by the casual reader/neaning, whose automata require them to expand
A remark is necessary about and ' in Fig. 2a, into VP and S phrases respectively.
which represensensesof the words at positions ~ The cubic runtime is proportional to the num-
h andh/. Like past algorithms for SBGs (Eisner,ber of ways of instantiating the inference rules in
2000), Fig. 2a is designed to be a bit more gener&ig. 2a: O(n*(n + t')tg?), wheren = |Q] is the
and integrate sense disambiguation into parsing. iput length,g = max}’_, |IW;| bounds the size of
formally runs on an inpuf2 = W, ... W, C x*, a confusion set{ bounds the number of states per
where each¥; C ¥ is a “confusion set” over pos- automaton, and’ < t bounds the number of au-
sible values of thet word w;. The algorithm re- tomaton transitions from a state that emit the same
covers the highest-probability derivation that geneword. For deterministic automaté,= 1.1
ates$w for somew € Q (i.e.,w = wy ... w, with o _
(Vi)w; € Wy). 3.6 Probabilistic Parsing
This extra level of generality is not needed for anyt is easy to make the algorithm of Fig. 2a length-
of our experiments, but it is needed for SBG parsersensitive. When a new dependency is added by an

to be as flexible as SHAG parsers. We include it ilntTacH rule that combinesl. + /] . the an-
this paper to broaden the applicability of both Fig. 2&otations on B and A suffice to determine
and our extension of it i§4. the dependency’s length = |h — &/|, direction
The “senses” can be used in an SBG to pass® = sign(h — /'), head wordw, and child word
finite amount of information between the left and,’ 1?2 So the additional cost of such a dependency;,
right children of a word, just as SHAGs alld®.For e.g. p(A | d,w,w"), can be included as the weight

example, to model the fronting of a direct object, af an extra antecedent to the rule, and so included in
SBG might use a special sense of a verb, whose atire weight of the resultingﬁ or

tomata tend to generate both one more nounand  To execute the inference rules in Fig. 2a, we

one fewer noun imp. use a prioritized agenda. Derived items such as

Senses can also be used to pass information bé~ ] ] and [ are prioritized by
tween parents and children.  Important uses afieir Viterbi-inside probabilities. This is known
to encode lexical senses, or to enrich the degsyniform-cost searchor shortest-hyperpath search
pendency parse with constituent labels or deper@Nederhof, 2003). We halt as soon as a full parse

Fig. 2a enhances the Eisner-Satta version with explici(th_e accept item) pops from th_e agenda, since
senses while matching its asymptotic performance. On thighiform-cost search (as a special case of the A

point, see (Eisner and Satta, 1998, and footnote 6). How- z|gorithm) guarantees this to be the maximum-
ever, it does have a practical slowdown, in thanrSr-LEFT

nondeterministically guesses every possible sens&ofand Probability parse. No other pruning is done.

these senses are pursued separately. To match the Eisner-Satta—————

algorithm, we should not need to commit to a word’s sense un- Confusion-set parsing may be regarded as parsing a par-
til we have seen all its left children. That is, left triangles andicular lattice withn states anchg arcs. The algorithm can
left trapezoids should not carry a senseat all, except for the be generalized to lattice parsing, in which case it has runtime
completed left triangle (marked F) that is produced loyi5H- ~ O(m?(n + t')t) for a lattice ofn states andn arcs. Roughly,
LEFT. FINISH-LEFT should choose a senseof W, accord- & : w is replaced by an arc, whileis replaced by a state and
ing to the final state, which reflects knowledge di’;,’'s left ¢ — 1 is replaced by the same state.

children. For this strategy to work, the transitions/in (used 12For general lattice parsing, it is not possible to deterrdine
by ATTACH-LEFT) must not depend on the particular semse while applying this rule. Theré andh’ are arcs in the lattice,
but only onW. In other words, all,, : w € W), are really not integers, and different paths framto 4’ might cover dif-
copies of a sharedly, , except that they may have different fi- ferent numbers of words. Thus, if one still wanted to measure
nal states. This requirement involves no loss of generality, sinaéependency length in words (rather than in, say, milliseconds
the nondeterministic sharddy, is free to branch as soon as it of speech), each item would have to record its width explicitly,
likes onto paths that commit to the various senses leading in general to more items and increased runtime.
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With a prioritized agenda, a probability modelbe relevant that 25% of the German sentences con-
that more sharply discriminates among parses withined a non-projective dependency between non-
typically lead to a faster parser. (Low-probabilitypunctuation tokens.
constituents languish at the back of the agenda andStudying the parser output for English, we found
are never pursued.) We will see that the lengththat the length-sensitive models preferred closer at-
sensitive models do run faster for this reason. tachments, with 19.7% of tags having a nearer parent
in the best parse under model C withA | d, h, ¢)
than in the original model C, 77.7% having a par-
We trained models A—C, using unsmoothed maxient at the same distance, and only 2.5% having a
mum likelihood estimation, on three treebanks: théarther parent. The surviving long dependencies (at
Penn (English) Treebank (split in the standard wawgny length> 1) tended to be much more accurate,
§2—21 train§23 test, or 950K/57K words), the Pennwhile the (now more numerous) length-1 dependen-
Chinese Treebank (80% train/10% test or 508K/55I€ies were slightly less accurate than before.
words), and the German TIGER corpus (80%/10% We caution that length sensitivity’s most dramatic
or 539K/68K words):® Estimation was a simple improvements to accuracy were on the worse base-
matter of counting automaton events and normalizine models, which had more room to improve. The
ing counts into probabilities. For each model, wéetter baseline models (B and C) were already able
also trained the three length-sensitive versions dés indirectly capture some preference for short de-
scribed ing3.3. pendencies, by learning that some parts of speech

The German corpus contains non-projective treesiere unlikely to have multiple left or multiple right
None of our parsers can recover non-projective delependents. Enhancing B and C therefore con-
pendencies (nor can our models produce them). Thigbuted less, and indeed may have had some harmful
fact was ignored when counting events for maxieffect by over-penalizing some structures that were
mum likelihood estimation: in particular, we alwaysalready appropriately penalizéd. It remains to
trainedL,, and R,, on the sequence af’'s immedi- be seen, therefore, whether distance features would
ate children, even in non-projective trees. help state-of-the art parsers that are already much

Our results (Tab. 1) show that sharpening theetter than model C. Such parsers may already in-
probabilities with the most sophisticated distanceorporate features that indirectly impose a good
factorsp(A | d,h,c), consistently improved the model of distance, though perhaps not as cheaply.

speedof all parsers? The change to the code is .
trivial. The only overhead is the cost of looking up? Hard Dependency-Length Constraints

and multiplying in the extra distance factors. We have seen how an explicit model of distance can

Accuracyalso improved over the baseline modmrove the speed and accuracy of a simple proba-
els of English and Chinese, as well as the simplejjjistic dependency parser. Another way to capital-
baseline models of German. Again, the most SGz¢ on the fact that most dependencies are local is

phisticated distance factors helped most, but eveg jmpose shard constrainthat simply forbids long
the simplest distance factor usually obtained mo%tependencies.

of the accuracy benefit. . The dependency trees that satisfy this constraint
German model C fell slightly in accuracy. They;e|q a regular string languad€.The constraint pre-
speedup here suggests that the probabilities wefignts arbitrarily deep center-embedding, as well as

sharpened, but often in favor of the wrong parsegypitrarily many direct dependents on a given head,

We did not analyze the errors on German; itmay -~

- 150wing to our deficient model. A log-linear or discrimina-
3Heads were extracted for English using Michael Collinstive model would be trained to correct for overlapping penalties

rules and Chinese using Fei Xia’s rules (defaulting in both casemd would avoid this risk. Non-deficient generative models are

to right-most heads where the rules fail). German heads weedso possible to design, along lines similar to footnote 16.

extracted using the TIGER Java API; we discarded all resulting *6One proof is to construct a strongly equivalent CFG without

dependency structures that were cyclic or unconnected (6%).center-embedding (Nederhof, 2000). Each nonterminal has the
4we measure speed abstractly by the number of items buibrm (w, g, 4, j), wherew € X, ¢ is a state ofL,, or R,,, and

and pushed on the agenda. 1,7 € {0,1,...k—1,> k}. We leave the details as an exercise.

3.7 Experiments with Soft Constraints

34



English (Penn Treebank) Chinese (Chinese Treebank) German (TIGER Corpus)

recall (%) runtime  model recall (%) runtime  model recall (%) runtime  model

model train  test test size | train  test test size | train  test test size

A (1state) 62.0 62.2 936| 1,878 50.7 49.3| 146.7| 7821 70.9 72.0 53.4| 1,598
+p(A|d) 70.1 70.6 97.0| 2,032 59.0 58.0/ 161.9| 1,037 72.3 73.0 53.2| 1,763
+p(A | h) 705 71.0 94.7| 3,091| 60.5 59.1| 1483 1,759 73.1 74.0 48.3| 2,575
+p(A|d,h,c) | 728 73.1 70.4| 16,305 62.2 60.6| 106.7| 7,828| 75.0 75.1 31.6 | 12,325
B (2states, tiedarcs) | 69.7 70.4 935| 2,106| 56.7 56.2| 151.4| 928| 73.7 75.1 529 | 1,845
+p(A|d) 72.6 73.2 95.3| 2,260 60.2 59.5| 156.9| 1,183 72.9 73.9 52.6 | 2,010
+p(A | h) 731 737 92.1| 3,319 61.6 60.7| 144.2| 1905 741 753 476 | 2,822
+p(A|d,h,c) | 75.3 75.6 67.7 | 16,533 62.9 61.6| 104.0| 7,974| 752 755 31.5| 12,572
C (2 states) 727 731 90.3| 3,233 61.8 61.0/ 148.3| 1,314 75.6 76.9 485] 2,638
+p(A|d) 73.9 745 91.7| 3,387 615 60.6| 154.7| 1,569 | 743 75.0 48.9 | 2,803
+p(A|h) 74.3 75.0 88.6 | 4,446 63.1 61.9| 1419 2,291 752 76.3 44.3| 3,615

+p(A|d,h,c) | 75.3 755 66.6 | 17,660| 63.4 61.8| 103.4| 8,360| 751 75.2 31.0 | 13,365

Table 1: Dependency parsing of POS tag sequences with simple probabilistic split bilexical grammars. The models differ only
in how they weight the same candidate parse trees. Length-sensitive models are larger but can improve dependency accuracy
and speed. Recall is measured as the fraction of non-punctuation tags whose correct parent (if $osythdol) was correctly
recovered by the parser; it equals precision, unless the parser left some sentences unparsed (or incompletely p§dged as in

which case precision is highéRuntime is measured abstractly as the average number of items EE A , , )
built per word.Model sizeis measured as the number of honzero parameters.)

either of which would allow the non-regular lan-like all other words, are tags in.)

guage{a"bc” : 0 < n < oo}. It doesallow ar- The 4 subtrees in Fig. 1b appear as so many

bitrarily deep right- or left-branching structures.  bunches of grapes hanging off a vine. We refer to
the dotted dependencies up®rasvine dependen-

4.1 Vine Grammars cies and the remaining, bilexical dependencies as

The tighter the bound on dependency length, thee depe.nder?mes o

fewer parse trees we allow and the faster we can find On€ might informally use the term “vine gram-
them using the algorithm of Fig. 2a. If the bound™ar" (VG) for any generative formalism, intended
is too tight to allow the correct parse of some ser©" Partial parsing, in which a parse is a constrained
tence, we would still like to allow an accurate partiaPeduence of trees that cover the sentence. In gen-
parse: a sequence of accurate parse fragments (Hff@l @ VG might use a two-part generative process:
dle, 1990; Abney, 1991; Appelt et al., 1993; chenfirst generate a finite-state sequence of roots, then
1995 Grefenstette, 1996). Furthermore, we woulf*Pand the roots according to some more powerful

like to use the fact that some fragment sequences dRsmalism. Conveniently, however, SBGs and other
presumably more likely than others. dependency grammars can integrate these two steps

Our partial parses will look like the one in Fig. 1b.'m0 a single formalism.
where 4 subtrees rather than 1 are dependert O, 5 Feasible Parsing
This is easy to arrange in the SBG formalism. We”*
merely need to construct our SBG so that the alNow, for both speed and accuracy, we will restrict
tomaton g is now permitted to generate multiplethe trees that may hang from the vine. We define a
children—the roots of parse fragments. feasibleparse under our SBG to be one in which all

This Re is a probabilistic finite-state automatontree dependencies are short, i.e., their length never
that describes legal or likely root sequencesiin  exceeds some hard bouhdThe vine dependencies
In our experiments in this section, we will train it may have unbounded length, of course, as in Fig. 1b.
to be a first-order (bigram) Markov model. (Thus Sentences with feasible parses form a regular lan-
we constructRg in the usual way to havéZ| + 1 guage. This would also be true under other defini-
states, and train it on data like the other left and righttons of feasibility, e.g., we could have limited the
automata. During generation, its state remembedgpth or width of each tree on the vine. However,
the previously generated root, if any. Recall that wéhat would have ruled out deeply right-branching
are working with POS tag sequences, so the rootsees, which are very common in language, and
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o P S
some insider more
—_
than

Figure 1: (a) A dependency tree on words. (Our experiments use only POS tags.) (b) A partial
parse for the same sentence retaining only tree dependencies of ferigts 3. The roots of the third
4 resulting parse fragments are now connected only by their dotted-line “vine dependencks” on —

“won

Transforming (a) into (b) involves grafting subtrees rootedfaicbrding, “,”, and “.” onto the vine. a

are also the traditional way to describe finite-statappropriate statistics for botR$ and the other au-
sublanguages within a context-free grammar. Btomata. If we trained on the original trees, we would
contrast, our limitation on dependency length eniaptly learn thatR$ always generates a single root
sures regularity while still allowing (for any bound rather than a certain kind of sequence of roots.

k > 1) arbitrarily wide and deep trees, such as For evaluation, we score tree dependencies in our
— root« ... feasible parses against the tree dependencies in the
Our goal is to find thebest feasibleparse (if unmodifiedyold standard parses, which are not nec-
any). Rather than transform the grammar as in foogssarily feasible. We also show oracle performance.

note 16, our strategy is to modify the_parser so that%{.3 Approach #1: FSA Parsing

only considers feasible parses. The interesting prob-

lem is to achieve linear-time parsing with a grammapince we are now dealing with a regular language,

constant that is as small as for ordinary parsing. it is possible in principle to use a weighted finite-
We also correspondingly modify the training datsState automaton (FSA) to search for the best feasible

so that we only train on feasible parses. That is, waarse. The idea is to find the highest-weighted path

break any long dependencies and thereby fragmeigt accepts the input string = wiws ... wy. Us-

each training parse (a single tree) into a vine of on®d the Viterbi algorithm, this takes tim@(n).

or more restricted trees. When we break a child- The trouble is that this linear runtime hides a con-

to-parent dependency, we reattach the chilg.i stant factor, which depends on the size of the rele-

This processgrafting, is illustrated in Fig. 1. Al- vant part of the FSA and may be enormous for any

though this new parse may score less than 100% rgarrect FSAY

call of the original dependencies, it is the best feasi- Consider an example from Fig 1b.

ble parse, so we would like to train the parser to fin8e" nondeterministically readingu; ... w11

it.18 By training on the modified data, we learn moreAccording. . . insidealong thecorrectpath, the FSA
state must record (at least) thasiderhas no parent

yet and thatR$ and R, are in particular states that

a—b— ... — Y — z.

Af-

Any dependencgoveringthe child must also be broken to
preserve projectivity. This case arises later; see footnote 25.

*®Although the parser will still not be able to find it if itis  2°The full runtime isO(nE), whereE is the number of FSA

non-projective (possible in German). Arguably we should havedges, or for a tighter estimate, the number of FSA edges that
defined “feasible” to also require projectivity, but we did not. can be traversed by reading

36



may still accept more children. Else the FSA cannot.5 Approach #3: Specialized Chart Parsing
know whether to accept a continuation, . . . w,. How, then, do we get linear runtimand a rea-

In general, after parsing a pref_ml S Wi the sonable grammar constant? We give two ways to
FSA state must somehow record information abo%{chieve runtime o6 (nk?)

all incompletely linked words in the past. It must
record the sequence of past words(: < j) that
still need a parent or child in the future;f; still
needs a child, it must also record the statéof.

First, we observe without details that we can eas-
ily achieve this by starting instead with the algo-
rithm of Eisner (2000%¥° rather than Eisner and
. . Satta (1999), and again refusing to add long tree de-
Our restriction to dependency lengthk is what OIpendencies. That algorithm effectively concatenates

allows us tp build dinite-state machine (as_oppose only trapezoids, not triangles. Each is spanned by a
to some kind of pushdown automaton with an un-

bounded b ¢ p i Wi q Isingle dependency and so has wigtht. The vine
ouncdea number of configura lons). Ve need on &ependencies do lead to wide trapezoids, but these
build thefinitely many states where the mcompletelyalre constrained to start at 0, whéis. So the algo-
linked words are limited to at most, = $and thek ’ '

rithm tries at mosO (nk?) combinations of the form
most recent wordsy; 1 ... w;. Other states can- (14 [ i o
not extend into a feasible parse, and can be prunetl: it (I|ke_ the_ ATTACH combinations above)
However, this still allows the FSA to be in @ndO(nk) combinations of theforr@Di - zDJ
O(2F++1) different states after reading; . . W, wherei — h < k,j — i < k. The precise runtime is

' 3
Then the runtime of the Viterbi algorithm, thougho(”k(k +1)tg%).

linear inn, is exponential irk. We now propose a hybrid linear-time algorithm
that further improves runtime t0 (nk(k + t')tg?),
4.4 Approach #2: Ordinary Chart Parsing saving a factor of; in the grammar constaft. We

A much better idea for most purposes is to use gbserve that since within-tree dependencies must

chart parser. This allows the usual dynamic pror—"flve length< &, ‘he¥ can aI_I he captured within
gramming technigues for reusing computation. (Thglsner-Satta trapezoids of width k. _SO our VG
FSA in the previous section failed to exploit manyParS€ /"\.* can be assembled by simpigncate-
such opportunities: exponentially many states woulfiatinga sequence A 3+ I\ ) of these
have proceeded redundantly by building the sanfearrow trapezoids interspersed with width-0 trian-
wj4+1Wj+2wj13 constituent.) gles. As this is aegular sequence, we can assem-
It is simple to restrict our algorithm of Fig. 2a to ble it in linear time from left to right (rather than in

find only feasible parses. It is thetAacH rules the order of Eisner and Satta (1999)), multiplying

N\ + /1 that add dependencies: simply use the items’ probabilities together. Whenever we start

side condition to block them from applying unless2dding the right half(™ * I\ of a tree along the
|h — I'| < k (short tree dependency) br= 0 (vine Vine, we have discovered that tree’s root, so we mul-

dependency). This ensures that & and tiply in the probability of & < root dependency.

will have width < & or have their left edge at 0. Formally, our hybrid parsing algorithm restricts
One might now incorrectly expect runtime linearthe original rules of Fig. 2a to build only trapezoids

in n: the number of possibleAcH combinations Of Width < £ and triangles of width< k.22 The

is reduced fronO(n3) to O(nk?), becausé andh’ additional inference rules in Fig. 2b then assemble

are now restricted to a narrow range given the final VG parse as just described.

Unfortunately, the half'conStituenﬁl and 20jith a small change that when two items are combined, the

/] may still be arbitrarily wide, thanks to arbi- right item (rather than the left) must be simple.

; T ; ; 2This savings comes from building the internal structure of
trary right- and left-branching: a feasible vine pars%‘ltrapezoid from both ends inward rather than from left to right.

may be a sequence of wide tree& . Thusthere The corresponding unrestricted algorithms (Eisner, 2000; Eis-

areO(an) possible @MPLETE combinations, not ner and Satta, 1999, respectively) have exactly the same run-
. 9 N times withk replaced byn.

to mention O(n”) ATTACH-RIGHT combinations  220qr the experiments df4.7, wherek varied by type, we

for which h = 0. So the runtime remains quadratic. restricted these rules as tightly as possible givemdh’'.
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I — boundk(h, ¢, d). We call theseype-specifibounds:
, they create a many-dimensional space of possible
09 1 R " ] parsers. We measured speed and accuracy along a
P T | sensible path through this space, gradually tighten-
E e * G ing the bounds using the following process:
2 071 R S 1. Initialize each bound:(h, ¢, d) to the maximum
& 06 | + di_stance observed in training (or 1 for unseen
gl b (B S triples)**
05 1 (Gomes) - 2. Greedily choose a bounkl(h, c,d) such that, if
04 ‘ ‘ ‘ ‘ ‘ its value is decremented and trees that violate the
03 04 05 06 07 08 09 new bound are accordingly broken, tlegvestde-
recall pendencies will be brokef?.

Figure 3: Trading precision and recall: Imposing bounds c .
improve precision at the expense of recall, for English and Cﬁg- Decrement the bounél(h, c,d) and modify the
nese. German performance suffers more. Bounds shown aretraining data to respect the bound by breaking de-

k = {1,2,...,10,15,20}. The dotted lines show constaht pendencies that violate the bound and “grafting”
measure of the unbounded model. . . .
the loose portion onto the vine. Retrain the parser

4.6 Experiments with Hard Constraints on the training data.

Our experiments used the asymptotically fast hybri# If all bounds are not equal to 1, go to step 2.
parsing algorithm above. We used the same left and The performance of every 20@nodel along the
right automata as in model C, the best-performingajectory of this search is plotted in Fig2%.The
model from§3.2. However, we now defin®s to  graph shows that type-specific bounds can speed up
be a first-order (bigram) Markov modej4.1). We the parser to a given level with less loss in accuracy.
trained and tested on the same headed treebanks as

before §3.7), except that we modified theaining ° Related Work

trees to make them feasiblgd(2). N As discussed in footnote 3, Collins (1997) and Mc-
Results are shown in Figures 3 (precision/recathonald et al. (2005) considered the POS tags inter-
tradeoff) and 4 (accuracy/speed tradeoff), fore  yening between a head and child. These soft con-

{1,2,...,10,15,20}. Dots correspond to different giraints were very helpful, perhaps in part because

values ofk. On English and Chinese, some values ofey helped capture the short dependency preference
k actually achieve bettef-measure accuracy than g2y Collins used them as conditioning variables

the unbounded parser, by eliminating err%fr_s. and McDonald et al. as log-linear features, whereas
We observed that changingg from a bigram oy g3 predicted them directly in a deficient model.
to a unigram model significantly hurt performance, as for hard constraints4), our limitation on de-

§howing that it is in fact useful to empirically mOdelpendency length can be regarded as approximating
likely sequencesf parse fragments. a context-free language by a subset that is a regular

4.7 Finer-Grained Hard Constraints %4n the case of the German TIGER corpus, which contains

. non-projective dependencies, we first make the training trees
The dependency Ier?gth boukcheed not be a sin- into projective vines by raising all non-projective child nodes to
gle value. Substantially better accuracy can be r@ecome heads on the vine.

tained if each dependency type—eadhc,d) = Not counting dependencies that must be broken indirectly

. . . . in order to maintain projectivity. (If word 4 depends on word
(head tag, child tag, direction) tuple—has its OW'%7 which depends on word 2, and tHe— 7 dependency is

roken, making 4 a root, then we must also breakzhe: 7

parser (baseline, soft constraints, single-bound, and typegpendency.)

specific bounds) is known to suffer from different inefficiencies, 2®Note thatk(h, c, right) = 7 bounds the width ofB +
runtimes in milliseconds are not comparable across parsers. T% . ﬂ

give a general idea, 60-word English sentences parsed in arourt -
300ms with no bounds, but at around 200ms with either a distead separately bound the widths &A and A , say by
tance modeb(A|d, h, c) or a generous hard bound b= 10. kr(h, c,right) = 4 andk; (h, ¢, right) = 2.

ZBecause our prototype implementation of each kind OE

. For a finer-grained approach, we could in-
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language. Our “vines” then let us concatenate sev-
eral strings in this subset, which typically yields a

superset of the original context-free language. Sub-
set and superset approximations of (weighted) CFLs
by (weighted) regular languages, usually by pre- 0s |
venting center-embedding, have been widely ex-ko.' ] \

1
0.95 | English
09 r

plored; Nederhof (2000) gives a thorough review. 073 I ”“'”;.3

We limit all dependency lengths (not just center- .

embedding¥’ Further, we derive weights from a 0 | Model C, baseline -
modified treebank rather than by approximating the s | S(;f;;f;;gﬁgg X
true weights. And though regular grammar approxi- s ‘ . type-specific bounds
mations are useful for other purposes, we argue that 0 20 40 60 80 100

runtime (items/word)

for parsing it is more efficient to perform the approx-
imation in the parser, not in the grammar.

Brants (1999) described a parser that encoded the 4 |
grammar as a set of cascaded Markov models. The
decoder was applied iteratively, with each iteration 038 |
transforming the best (on-best) output from the o7 |
previous one until only the root symbol remained. B o0
This is a greedy variant of CFG parsing where the 0.6 i —
grammar is in Backus-Naur form. / °3 Model C, baseline |

soft constraint

Chinese ’-

¥

Bertsch and Nederhof (1999) gave a linear-time ™ [ « e
recognition algorithm for the recognition of the reg- .4 ‘ ‘ . type-specific bounds
ular closure of deterministic context-free languages. 0 20 40 60 80 100 120 140 160
Our result is related; instead of a closuredatter- runtime (items/word)
ministicCFLs, we deal in a closure of CFLs that are ! ‘ ‘ ‘ I
0.95 - German o !

assumed (by the parser) to obey some constraint on
trees (like a maximum dependency length).

0.85

6 Future Work 08 . ‘
% 075 | i Tee 2 ® 201
The simple POS-sequence models we used as an ex- o7 | SRR *
perimental baseline are certainly not among the best o.65
parsers available today. They were chosen to illus- 06 | «/ o2 Model. C, bascline >+<
trate how modeling and exploiting distance in syntax 055 | single bound e
. $k=1 type-specific bounds
can affect various performance measures. Our ap- 05
0 10 20 30 40 50 60

proach may be helpful for other kinds of parsers as
well. First, we hope that our results will generalize

to more expressive grammar formalisms such as lekyure 4: Trading off speed and accuracy by varying the set
icalized CFG, CCG, and TAG, and to more expresof feasible parses: The baseline (no length bound) is shown

. . i s +.  Tighter bounds always improve speed, except for the
Slvely Welghted grammars, such as IOg linear mo ost lax bounds, for which vine construction overhead incurs

els that can include head-child distance among othersiowdown. “Type-specific bounds tend to maintain géed
rich features. The parsing algorithms we presentegeasure at higher speeds than the single-bound approach. The

| dmitnsid tsid iant llowing iterati vertical error bars show the “oracle” accuracy for each experi-
also adminsige-outsideranants, allowing iterativeé e (i.e., thel’-measure if we had recovered the best feasible

estimation methods for log-linear models (see, e.gparse, as constructed from the gold-standard parse by grafting:
Miyao and Tsuijii, 2002). sees4.2). Runtime is measured as the number of items per word

(i.e.,B,A,ﬂ,D,M,E)bum

by the agenda parser. The “soft constraint” point marked with
x represents thg(A | d, h, ¢)-augmented model frorB.

runtime (items/word)

270f course, this still allows right-branching or left-
branching to unbounded depth.
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Second, fast approximate parsing may play a role Our approach might be adapted to richer parsing
in more accurate parsing. It might be used to rapidlformalisms, including synchronous ones, and should
compute approximate outside-probability estimatelse helpful as an approximation to full parsing when
to prioritize best-first search (e.g., Caraballo anéhst, high-precision recovery of syntactic informa-
Charniak, 1998). It might also be used to speed ugon is needed.
the early iterations of training a weighted parsin
model, which for modern training methods tends t eferences
require repeated parsing (either for the best parse, &sP Abney. Parsing by chunks. Rrinciple-Based Parsing:

. Computation and Psycholinguistidsluwer, 1991.
by Taskar et al., 2004, or all parses, as by Mlyao anlg. E. Appelt, J. R. Hobbs, J. Bear, D. Israel, and M. Tyson.

Tsuijii, 2002). FASTUS: A finite-state processor for information extraction

; ; ; ; ith.  from real-world text. InProc. of IJCA| 1993.
Third, it would be useful to Investigate algorlth Bertsch and M.-J. Nederhof. Regular closure of deterministic

mic techniques and empirical benefits for limiting  |anguagesSIAM J. on Computing?9(1):81-102, 1999.
dependency length in more powerful grammar forb. Bikel. A distributional analysis of a lexicalized statistical

; ; ; 3 parsing model. IfProc. of EMNLR 2004.
malisms. Our runtime reduction frOI@(n ) - T. Brants. Cascaded Markov models.Rroc. of EACL,. 1999.

O(nk?) for a lengthk bound applies only to a s.A. Caraballo and E. Charniak. New figures of merit for best-
“split” bilexical gramma@8 Various kinds ofsyn- first probabilistic chart parsingComputational Linguistics

: : — 24(2):275-98, 1998.
ChronOUSgrammars’ n parthUIar’ are becommg Im'S. Chen. Bayesian grammar induction for language modeling.

portant in statistical machine translation. Their high In Proc. of ACL 1995.
runtime complexity might be reduced by limiting K. W. Church. On memory limitations in natural language pro-

l I d d | th (f lated id cessing. Master’s thesis, MIT, 1980.
monolingual dependency leng ( or a related 1aegy coliins. Three generative, lexicalised models for statistical
see Schafer and Yarowsky, 2003). parsing. InProc. of ACL, 1997.
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