
Proceedings of the Ninth International Workshop on Parsing Technologies (IWPT), pages 30–41,
Vancouver, October 2005. c©2005 Association for Computational Linguistics

Parsing with Soft and Hard Constraints on Dependency Length∗

Jason Eisner and Noah A. Smith
Department of Computer Science / Center for Language and Speech Processing

Johns Hopkins University, Baltimore, MD 21218 USA
{jason,nasmith }@cs.jhu.edu

Abstract

In lexicalized phrase-structure or dependency parses, a word’s
modifiers tend to fall near it in the string. We show that a crude
way to use dependency length as a parsing feature can sub-
stantially improve parsing speed and accuracy in English and
Chinese, with more mixed results on German. We then show
similar improvements by imposinghard bounds on dependency
length and (additionally) modeling the resulting sequence of
parse fragments. This simple “vine grammar” formalism has
only finite-state power, but a context-free parameterization with
some extra parameters for stringing fragments together. We ex-
hibit a linear-time chart parsing algorithm with a low grammar
constant.

1 Introduction

Many modern parsers identify the head word of
each constituent they find. This makes it possible
to identify the word-to-word dependencies implicit
in a parse.1 (Some parsers, known as dependency
parsers, even return these dependencies as their pri-
mary output.)

Why bother to identify these dependencies? The
typical reason is to model the fact that some word
pairs are more likely than others to engage in a de-
pendency relationship.2 In this paper, we propose a
different reason to identify dependencies in candi-
date parses: to evaluate not the dependency’s word
pair but itslength(i.e., thestring distancebetween
the two words). Dependency lengths differ from

∗ This work was supported by NSF ITR grant IIS-0313193
to the first author and a fellowship from the Fannie and John
Hertz Foundation to the second author. The views expressed
are not necessarily endorsed by the sponsors. The authors thank
Mark Johnson, Eugene Charniak, Charles Schafer, Keith Hall,
and John Hale for helpful discussion and Elliott Drábek and
Markus Dreyer for insights on (respectively) Chinese and Ger-
man parsing. They also thank an anonymous reviewer for sug-
gesting the German experiments.

1In a phrase-structure parse, if phraseX headed by word
tokenx is a subconstituent of phraseY headed by word token
y 6= x, thenx is said to depend ony. In a more powerful
compositional formalism like LTAG or CCG, dependencies can
be extracted from the derivation tree.

2It has recently been questioned whether these “bilexical”
features actually contribute much to parsing performance (Klein
and Manning, 2003; Bikel, 2004), at least when one has only a
million words of training.

typical parsing features in that they cannot be deter-
mined from tree-local information. Though lengths
are not usually considered, we will see that bilexical
dynamic-programming parsing algorithms can eas-
ily consider them as they build the parse.

Soft constraints. Like any other feature of trees,
dependency lengths can be explicitly used as fea-
tures in a probability model that chooses among
trees. Such a model will tend to disfavor long de-
pendencies (at least of some kinds), as these are em-
pirically rare. In the first part of the paper, we show
that such features improve a simple baseline depen-
dency parser.

Hard constraints. If the bias against long de-
pendencies is strengthened into a hard constraint
that absolutely prohibits long dependencies, then the
parser turns into a partial parser with only finite-state
power. In the second part of the paper, we show how
to perform chart parsing in asymptotic linear time
with a low grammar constant. Such a partial parser
does less work than a full parser in practice, and in
many cases recovers a more precise set of dependen-
cies (with little loss in recall).

2 Short Dependencies in Langugage

We assume that correct parses exhibit a “short-
dependency preference”: a word’s dependents tend
to be close to it in the string.3 If the j th word of a sen-
tence depends on theith word, then|i−j| tends to be

3 In this paper, we consider only a crude notion of “close-
ness”: the number of intervening words. Other distance mea-
sures could be substituted or added (following the literature on
heavy-shift and sentence comprehension), including the phono-
logical, morphological, syntactic, or referential (given/new)
complexity of the intervening material (Gibson, 1998). In pars-
ing, the most relevant previous work is due to Collins (1997),
who considered three binary features of the intervening mate-
rial: did it contain (a) any word tokens at all, (b) any verbs,
(c) any commas or colons? Note that (b) is effective because
it measures the length of a dependency in terms of the number
of alternative attachment sites that the dependent skipped over,
a notion that could be generalized. Similarly, McDonald et al.
(2005) separately considered each of the intervening POS tags.

30

small. This implies that neitheri norj is modified by
complex phrases that fall betweeni andj. In terms
of phrase structure, it implies that thephrasesmod-
ifying word i from a given side tend to be (1) few
in number, (2) ordered so that the longer phrases fall
farther fromi, and (3) internally structured so that
the bulk of each phrase falls on the side ofj away
from i.

These principles can be blamed for several lin-
guistic phenomena. (1) helps explain the “late clo-
sure” or “attach low” heuristic (e.g., Frazier, 1979;
Hobbs and Bear, 1990): a modifier such as a PP is
more likely to attach to the closest appropriate head.
(2) helps account for heavy-shift: when an NP is
long and complex,take NP out, put NP on the ta-
ble, andgive NP to Maryare likely to be rephrased
astake out NP, put on the table NP, andgive Mary
NP. (3) explains certain non-canonical word orders:
in English, a noun’s left modifier must become a
right modifier if and only if it is right-heavy (a taller
politician vs.a politician taller than all her rivals4),
and a verb’s left modifier may extrapose its right-
heavy portion (An aardvark walked in who had cir-
cumnavigated the globe5).

Why should sentences prefer short dependencies?
Such sentences may be easier for humans to produce
and comprehend. Each word can quickly “discharge
its responsibilities,” emitting or finding all its depen-
dents soon after it is uttered or heard; then it can
be dropped from working memory (Church, 1980;
Gibson, 1998). Such sentences also succumb nicely
to disambiguation heuristics thatassumeshort de-
pendencies, such as low attachment. Thus, to im-
prove comprehensibility, a speaker can make stylis-
tic choices that shorten dependencies (e.g., heavy-
shift), and a language can categorically prohibit
some structures that lead to long dependencies (*a
taller-than-all-her-rivals politician; *the sentence

4Whereas*a politician taller and *a taller-than-all-her-
rivals politicianare not allowed. The phenomenon is pervasive.

5This actually splits the heavy left dependent[an aardvark
who ...] into two non-adjacent pieces, moving the heavy second
piece. By slightly stretching theaardvark-whodependency in
this way, it greatly shortensaardvark-walked. The same is pos-
sible for heavy, non-final right dependents:I met an aardvark
yesterday who had circumnavigated the globeagain stretches
aardvark-who, which greatly shortensmet-yesterday. These ex-
amples illustrate (3) and (2) respectively. However, the resulting
non-contiguous constituents lead to non-projective parses that
are beyond the scope of this paper.

that another sentence that had center-embedding
was inside was incomprehensible).

Such functionalist pressures are not all-powerful.
For example, many languages use SOV basic word
order where SVO (or OVS) would give shorter de-
pendencies. However, where the data exhibit some
short-dependency preference, computer parsers as
well as human parsers can obtain speed and accu-
racy benefits by exploiting that fact.

3 Soft Constraints on Dependency Length

We now enhance simple baseline probabilistic
parsers for English, Chinese, and German so that
they consider dependency lengths. We confine our-
selves (throughout the paper) to parsing part-of-
speech (POS) tag sequences. This allows us to ig-
nore data sparseness, out-of-vocabulary, smoothing,
and pruning issues, but it means that our accuracy
measures are not state-of-the-art. Our techniques
could be straightforwardly adapted to (bi)lexicalized
parsers on actual word sequences, though not neces-
sarily with the same success.

3.1 Grammar Formalism

Throughout this paper we will use split bilexical
grammars, or SBGs (Eisner, 2000), a notationally
simpler variant of split head-automaton grammars,
or SHAGs (Eisner and Satta, 1999). The formalism
is context-free. We define here a probabilistic ver-
sion,6 which we use for the baseline models in our
experiments. They are only baselines because the
SBG generative process doesnot take note of de-
pendency length.

An SBG is an tupleG = (Σ, $, L,R). Σ is an
alphabet of words. (In our experiments, we parse
only POS tag sequences, soΣ is actually an alpha-
bet of tags.)$ 6∈ Σ is a distinguished root symbol;
let Σ̄ = Σ ∪ {$}. L andR are functions fromΣ̄
to probabilisticε-free finite-state automata overΣ.
Thus, for eachw ∈ Σ̄, the SBG specifies “left” and
“right” probabilistic FSAs,Lw andRw.

We useLw(G) : Σ̄∗ → [0, 1] to denote the prob-
abilistic context-free language of phrases headed by
w. Lw(G) is defined by the following simple top-
down stochastic process for sampling from it:

6There is a straightforward generalization toweighted
SBGs, which need not have a stochastic generative model.

31

1. Sample from the finite-state languageL(Lw) a
sequenceλ = w−1w−2 . . . w−` ∈ Σ∗ of left
children, and fromL(Rw) a sequenceρ =
w1w2 . . . wr ∈ Σ∗ of right children. Each se-
quence is found by a random walk on its proba-
bilistic FSA. We say the childrendependonw.

2. For eachi from −` to r with i 6= 0, recursively
sampleαi ∈ Σ∗ from the context-free language
Lwi(G). It is this step that indirectly determines
dependency lengths.

3. Return α−` . . . α−2α−1wα1α2 . . . αr ∈ Σ̄∗, a
concatenation of strings.

Notice thatw’s left childrenλ were generated in
reverse order, sow−1 andw1 are its closest children
while w−` andwr are the farthest.

Given an input sentenceω = w1w2 . . . wn ∈ Σ∗,
a parser attempts to recover the highest-probability
derivation by which$ω could have been generated
from L$(G). Thus,$ plays the role ofw0. A sample
derivation is shown in Fig. 1a. Typically,L$ and
R$ are defined so that$ must have no left children
(` = 0) and at most one right child(r ≤ 1), the
latter serving as the conventional root of the parse.

3.2 Baseline Models

In the experiments reported here, we defined only
very simple automata forLw and Rw (w ∈ Σ).
However, we tried three automaton types, of vary-
ing quality, so as to evaluate the benefit of adding
length-sensitivity at three different levels of baseline
performance.

In model A (the worst), each automaton has topol-
ogy } ���, with a single stateq1, so tokenw’s left
dependents are conditionally independent of one an-
other givenw. In model C (the best), each au-
tomaton }−→} ��� has an extra stateq0 that al-
lows the first (closest) dependent to be chosen dif-
ferently from the rest. Model B is a compromise:7

it is like model A, but each typew ∈ Σ may
have an elevated or reduced probability of having
no dependents at all. This is accomplished by us-
ing automata}−→} ��� as in model C, which al-
lows the stopping probabilitiesp(STOP | q0) and
p(STOP | q1) to differ, but tying the conditional dis-

7It is equivalent to the “dependency model with valence” of
Klein and Manning (2004).

tributionsp(q0
w−→q1 | q0,¬STOP) andp(q1

w−→q1 |
q1,¬STOP).

Finally, in §3, L$ andR$ are restricted as above,
soR$ gives a probability distribution overΣ only.

3.3 Length-Sensitive Models

None of the baseline models A–Cexplicitly model
the distance between a head and child. We enhanced
them by multiplying in some extra length-sensitive
factors when computing a tree’s probability. For
each dependency, an extra factorp(∆ | . . .) is mul-
tiplied in for the probability of the dependency’s
length∆ = |i − j|, wherei andj are the positions
of the head and child in thesurfacestring.8

Again we tried three variants. In one version, this
new probabilityp(∆| . . .) is conditioned only on the
direction d = sign(i − j) of the dependency. In
another version, it is conditioned only on the POS
tagh of the head. In a third version, it is conditioned
ond, h, and the POS tagc of the child.

3.4 Parsing Algorithm

Fig. 2a gives a variant of Eisner and Satta’s (1999)
SHAG parsing algorithm, adapted to SBGs, which
are easier to understand.9 (We will modify this al-
gorithm later in§4.) The algorithm obtainsO(n3)
runtime, despite the need to track the position of
head words, by exploiting the conditional indepen-
dence between a head’s left children and right chil-

dren. It builds “half-constituents” denoted by@@

(a head word together with some modifying phrases

on the right, i.e.,wα1 . . . αr) and �� (a head word
together with some modifying phrases on the left,
i.e., α−` . . . α−1w). A new dependency is intro-

duced when @@ + �� are combined to getH
H

or �� (a pair of linked head words with all the
intervening phrases, i.e.,wα1 . . . αrα

′
−`′ . . . α

′
−1w

′,
wherew is respectively the parent or child ofw′).

One can then combineHH + @@ = @@ , or

8Since the∆ values are fully determined by the tree but ev-
ery p(∆ | . . .) ≤ 1, this crude procedure simply reduces the
probability mass of every legal tree. The resulting model isde-
ficient(does not sum to 1); the remaining probability mass goes
to impossible trees whose putative dependency lengths∆ are
inconsistent with the tree structure. We intend in future work
to explore non-deficient models (log-linear or generative), but
even the present crude approach helps.

9The SHAG notation was designed to highlight the connec-
tion tonon-split HAGs.

32

�� + �� = �� . Only O(n3) combinations
are possible in total when parsing a length-n sen-
tence.

3.5 A Note on Word Senses

[This section may be skipped by the casual reader.]
A remark is necessary about :w and :w′ in Fig. 2a,

which representsensesof the words at positions
h and h′. Like past algorithms for SBGs (Eisner,
2000), Fig. 2a is designed to be a bit more general
and integrate sense disambiguation into parsing. It
formally runs on an inputΩ = W1 . . .Wn ⊆ Σ∗,
where eachWi ⊆ Σ is a “confusion set” over pos-
sible values of theith word wi. The algorithm re-
covers the highest-probability derivation that gener-
ates$ω for someω ∈ Ω (i.e., ω = w1 . . . wn with
(∀i)wi ∈Wi).

This extra level of generality is not needed for any
of our experiments, but it is needed for SBG parsers
to be as flexible as SHAG parsers. We include it in
this paper to broaden the applicability of both Fig. 2a
and our extension of it in§4.

The “senses” can be used in an SBG to pass a
finite amount of information between the left and
right children of a word, just as SHAGs allow.10 For
example, to model the fronting of a direct object, an
SBG might use a special sense of a verb, whose au-
tomata tend to generate both one more noun inλ and
one fewer noun inρ.

Senses can also be used to pass information be-
tween parents and children. Important uses are
to encode lexical senses, or to enrich the de-
pendency parse with constituent labels or depen-

10Fig. 2a enhances the Eisner-Satta version with explicit
senses while matching its asymptotic performance. On this
point, see (Eisner and Satta, 1999,§8 and footnote 6). How-
ever, it does have a practical slowdown, in that START-LEFT
nondeterministically guesses every possible sense ofWi, and
these senses are pursued separately. To match the Eisner-Satta
algorithm, we should not need to commit to a word’s sense un-
til we have seen all its left children. That is, left triangles and
left trapezoids should not carry a sense :w at all, except for the
completed left triangle (marked F) that is produced by FINISH-
LEFT. FINISH-LEFT should choose a sensew of Wh accord-
ing to the final stateq, which reflects knowledge ofWh’s left
children. For this strategy to work, the transitions inLw (used
by ATTACH-LEFT) must not depend on the particular sensew
but only onW . In other words, allLw : w ∈ Wh are really
copies of a sharedLWh , except that they may have different fi-
nal states. This requirement involves no loss of generality, since
the nondeterministic sharedLWh is free to branch as soon as it
likes onto paths that commit to the various sensesw.

dency labels (Eisner, 2000). For example, the in-
put tokenWi = {bank1/N/NP , bank2/N/NP ,
bank3/V/VP , bank3/V/S} ⊂ Σ allows four
“senses” of bank, namely two nominal meanings,
and twosyntactically differentversions of the verbal
meaning, whose automata require them to expand
into VP and S phrases respectively.

The cubic runtime is proportional to the num-
ber of ways of instantiating the inference rules in
Fig. 2a: O(n2(n + t′)tg2), wheren = |Ω| is the
input length,g = maxn

i=1 |Wi| bounds the size of
a confusion set,t bounds the number of states per
automaton, andt′ ≤ t bounds the number of au-
tomaton transitions from a state that emit the same
word. For deterministic automata,t′ = 1.11

3.6 Probabilistic Parsing

It is easy to make the algorithm of Fig. 2a length-
sensitive. When a new dependency is added by an

ATTACH rule that combines @@ + �� , the an-
notations on @@ and �� suffice to determine
the dependency’s length∆ = |h − h′|, direction
d = sign(h − h′), head wordw, and child word
w′.12 So the additional cost of such a dependency,
e.g. p(∆ | d,w,w′), can be included as the weight
of an extra antecedent to the rule, and so included in
the weight of the resulting�� or HH .

To execute the inference rules in Fig. 2a, we
use a prioritized agenda. Derived items such as

@@ , �� , �� , and HH are prioritized by
their Viterbi-inside probabilities. This is known
asuniform-cost searchor shortest-hyperpath search
(Nederhof, 2003). We halt as soon as a full parse
(the accept item) pops from the agenda, since
uniform-cost search (as a special case of the A∗

algorithm) guarantees this to be the maximum-
probability parse. No other pruning is done.

11Confusion-set parsing may be regarded as parsing a par-
ticular lattice withn states andng arcs. The algorithm can
be generalized to lattice parsing, in which case it has runtime
O(m2(n + t′)t) for a lattice ofn states andm arcs. Roughly,
h : w is replaced by an arc, whilei is replaced by a state and
i− 1 is replaced by the same state.

12For general lattice parsing, it is not possible to determine∆
while applying this rule. Thereh andh′ are arcs in the lattice,
not integers, and different paths fromh to h′ might cover dif-
ferent numbers of words. Thus, if one still wanted to measure
dependency length in words (rather than in, say, milliseconds
of speech), each item would have to record its width explicitly,
leading in general to more items and increased runtime.

33

With a prioritized agenda, a probability model
that more sharply discriminates among parses will
typically lead to a faster parser. (Low-probability
constituents languish at the back of the agenda and
are never pursued.) We will see that the length-
sensitive models do run faster for this reason.

3.7 Experiments with Soft Constraints

We trained models A–C, using unsmoothed maxi-
mum likelihood estimation, on three treebanks: the
Penn (English) Treebank (split in the standard way,
§2–21 train/§23 test, or 950K/57K words), the Penn
Chinese Treebank (80% train/10% test or 508K/55K
words), and the German TIGER corpus (80%/10%
or 539K/68K words).13 Estimation was a simple
matter of counting automaton events and normaliz-
ing counts into probabilities. For each model, we
also trained the three length-sensitive versions de-
scribed in§3.3.

The German corpus contains non-projective trees.
None of our parsers can recover non-projective de-
pendencies (nor can our models produce them). This
fact was ignored when counting events for maxi-
mum likelihood estimation: in particular, we always
trainedLw andRw on the sequence ofw’s immedi-
ate children, even in non-projective trees.

Our results (Tab. 1) show that sharpening the
probabilities with the most sophisticated distance
factors p(∆ | d, h, c), consistently improved the
speedof all parsers.14 The change to the code is
trivial. The only overhead is the cost of looking up
and multiplying in the extra distance factors.

Accuracyalso improved over the baseline mod-
els of English and Chinese, as well as the simpler
baseline models of German. Again, the most so-
phisticated distance factors helped most, but even
the simplest distance factor usually obtained most
of the accuracy benefit.

German model C fell slightly in accuracy. The
speedup here suggests that the probabilities were
sharpened, but often in favor of the wrong parses.
We did not analyze the errors on German; it may

13Heads were extracted for English using Michael Collins’
rules and Chinese using Fei Xia’s rules (defaulting in both cases
to right-most heads where the rules fail). German heads were
extracted using the TIGER Java API; we discarded all resulting
dependency structures that were cyclic or unconnected (6%).

14We measure speed abstractly by the number of items built
and pushed on the agenda.

be relevant that 25% of the German sentences con-
tained a non-projective dependency between non-
punctuation tokens.

Studying the parser output for English, we found
that the length-sensitive models preferred closer at-
tachments, with 19.7% of tags having a nearer parent
in the best parse under model C withp(∆ | d, h, c)
than in the original model C, 77.7% having a par-
ent at the same distance, and only 2.5% having a
farther parent. The surviving long dependencies (at
any length> 1) tended to be much more accurate,
while the (now more numerous) length-1 dependen-
cies were slightly less accurate than before.

We caution that length sensitivity’s most dramatic
improvements to accuracy were on the worse base-
line models, which had more room to improve. The
better baseline models (B and C) were already able
to indirectly capture some preference for short de-
pendencies, by learning that some parts of speech
were unlikely to have multiple left or multiple right
dependents. Enhancing B and C therefore con-
tributed less, and indeed may have had some harmful
effect by over-penalizing some structures that were
already appropriately penalized.15 It remains to
be seen, therefore, whether distance features would
help state-of-the art parsers that are already much
better than model C. Such parsers may already in-
corporate features that indirectly impose a good
model of distance, though perhaps not as cheaply.

4 Hard Dependency-Length Constraints

We have seen how an explicit model of distance can
improve the speed and accuracy of a simple proba-
bilistic dependency parser. Another way to capital-
ize on the fact that most dependencies are local is
to impose ahard constraintthat simply forbids long
dependencies.

The dependency trees that satisfy this constraint
yield a regular string language.16 The constraint pre-
vents arbitrarily deep center-embedding, as well as
arbitrarily many direct dependents on a given head,

15Owing to our deficient model. A log-linear or discrimina-
tive model would be trained to correct for overlapping penalties
and would avoid this risk. Non-deficient generative models are
also possible to design, along lines similar to footnote 16.

16One proof is to construct a strongly equivalent CFG without
center-embedding (Nederhof, 2000). Each nonterminal has the
form 〈w, q, i, j〉, wherew ∈ Σ, q is a state ofLw or Rw, and
i, j ∈ {0, 1, . . . k−1,≥ k}. We leave the details as an exercise.

34

English (Penn Treebank) Chinese (Chinese Treebank) German (TIGER Corpus)
recall (%) runtime model recall (%) runtime model recall (%) runtime model

model train test test size train test test size train test test size
A (1 state) 62.0 62.2 93.6 1,878 50.7 49.3 146.7 782 70.9 72.0 53.4 1,598
+ p(∆ | d) 70.1 70.6 97.0 2,032 59.0 58.0 161.9 1,037 72.3 73.0 53.2 1,763
+ p(∆ | h) 70.5 71.0 94.7 3,091 60.5 59.1 148.3 1,759 73.1 74.0 48.3 2,575
+ p(∆ | d, h, c) 72.8 73.1 70.4 16,305 62.2 60.6 106.7 7,828 75.0 75.1 31.6 12,325
B (2 states, tied arcs) 69.7 70.4 93.5 2,106 56.7 56.2 151.4 928 73.7 75.1 52.9 1,845
+ p(∆ | d) 72.6 73.2 95.3 2,260 60.2 59.5 156.9 1,183 72.9 73.9 52.6 2,010
+ p(∆ | h) 73.1 73.7 92.1 3,319 61.6 60.7 144.2 1,905 74.1 75.3 47.6 2,822
+ p(∆ | d, h, c) 75.3 75.6 67.7 16,533 62.9 61.6 104.0 7,974 75.2 75.5 31.5 12,572
C (2 states) 72.7 73.1 90.3 3,233 61.8 61.0 148.3 1,314 75.6 76.9 48.5 2,638
+ p(∆ | d) 73.9 74.5 91.7 3,387 61.5 60.6 154.7 1,569 74.3 75.0 48.9 2,803
+ p(∆ | h) 74.3 75.0 88.6 4,446 63.1 61.9 141.9 2,291 75.2 76.3 44.3 3,615
+ p(∆ | d, h, c) 75.3 75.5 66.6 17,660 63.4 61.8 103.4 8,360 75.1 75.2 31.0 13,365

Table 1: Dependency parsing of POS tag sequences with simple probabilistic split bilexical grammars. The models differ only
in how they weight the same candidate parse trees. Length-sensitive models are larger but can improve dependency accuracy
and speed. (Recall is measured as the fraction of non-punctuation tags whose correct parent (if not the$ symbol) was correctly
recovered by the parser; it equals precision, unless the parser left some sentences unparsed (or incompletely parsed, as in§4), in

which case precision is higher.Runtime is measured abstractly as the average number of items (i.e.,@@ , �� ,
��

,
HH

)
built per word.Model sizeis measured as the number of nonzero parameters.)

either of which would allow the non-regular lan-
guage{anbcn : 0 < n < ∞}. It doesallow ar-
bitrarily deep right- or left-branching structures.

4.1 Vine Grammars

The tighter the bound on dependency length, the
fewer parse trees we allow and the faster we can find
them using the algorithm of Fig. 2a. If the bound
is too tight to allow the correct parse of some sen-
tence, we would still like to allow an accurate partial
parse: a sequence of accurate parse fragments (Hin-
dle, 1990; Abney, 1991; Appelt et al., 1993; Chen,
1995; Grefenstette, 1996). Furthermore, we would
like to use the fact that some fragment sequences are
presumably more likely than others.

Our partial parses will look like the one in Fig. 1b.
where 4 subtrees rather than 1 are dependent on$.
This is easy to arrange in the SBG formalism. We
merely need to construct our SBG so that the au-
tomatonR$ is now permitted to generate multiple
children—the roots of parse fragments.

This R$ is a probabilistic finite-state automaton
that describes legal or likely root sequences inΣ∗.
In our experiments in this section, we will train it
to be a first-order (bigram) Markov model. (Thus
we constructR$ in the usual way to have|Σ| + 1
states, and train it on data like the other left and right
automata. During generation, its state remembers
the previously generated root, if any. Recall that we
are working with POS tag sequences, so the roots,

like all other words, are tags inΣ.)
The 4 subtrees in Fig. 1b appear as so many

bunches of grapes hanging off a vine. We refer to
the dotted dependencies upon$ asvine dependen-
cies, and the remaining, bilexical dependencies as
tree dependencies.

One might informally use the term “vine gram-
mar” (VG) for any generative formalism, intended
for partial parsing, in which a parse is a constrained
sequence of trees that cover the sentence. In gen-
eral, a VG might use a two-part generative process:
first generate a finite-state sequence of roots, then
expand the roots according to some more powerful
formalism. Conveniently, however, SBGs and other
dependency grammars can integrate these two steps
into a single formalism.

4.2 Feasible Parsing

Now, for both speed and accuracy, we will restrict
the trees that may hang from the vine. We define a
feasibleparse under our SBG to be one in which all
tree dependencies are short, i.e., their length never
exceeds some hard boundk. The vine dependencies
may have unbounded length, of course, as in Fig. 1b.

Sentences with feasible parses form a regular lan-
guage. This would also be true under other defini-
tions of feasibility, e.g., we could have limited the
depth or width of each tree on the vine. However,
that would have ruled out deeply right-branching
trees, which are very common in language, and

35

(a) $ would
```````````````````````````````````````aaaaaaaaaaaaaaaaaaaaeeeee YYYYY

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

According
YYYYY , changes

bbbbbbbbbbeeeee cut
\\\\\\\\\\ ]]]]]]]]]]]]]]]

to
\\\\\\\\\\ the rule filings

eeeee by
YYYYY .

estimates
eeeee insider more

YYYYY

some than
\\\\\\\\\\

third
eeeee

a
(b) $ According

WWWW , would
gggg WWWW

to
[[[[[[[[ changes

ccccccccgggg
cut

[[[[[[[[ \\\\\\\\\\\

estimates
gggg

the rule filings
gggg

by
WWWW .

some insider more
WWWW

than
[[[[[[[[

third
gggg

a

Figure 1: (a) A dependency tree on words. (Our experiments use only POS tags.) (b) A partial
parse for the same sentence retaining only tree dependencies of length≤ k = 3. The roots of the
4 resulting parse fragments are now connected only by their dotted-line “vine dependencies” on$.
Transforming (a) into (b) involves grafting subtrees rooted at “According”, “ ,”, and “.” onto the vine.

are also the traditional way to describe finite-state
sublanguages within a context-free grammar. By
contrast, our limitation on dependency length en-
sures regularity while still allowing (for any bound
k ≥ 1) arbitrarily wide and deep trees, such as
a→ b→ . . .→ root← . . .← y ← z.

Our goal is to find thebest feasibleparse (if
any). Rather than transform the grammar as in foot-
note 16, our strategy is to modify the parser so that it
only considers feasible parses. The interesting prob-
lem is to achieve linear-time parsing with a grammar
constant that is as small as for ordinary parsing.

We also correspondingly modify the training data
so that we only train on feasible parses. That is, we
break any long dependencies and thereby fragment
each training parse (a single tree) into a vine of one
or more restricted trees. When we break a child-
to-parent dependency, we reattach the child to$.17

This process,grafting, is illustrated in Fig. 1. Al-
though this new parse may score less than 100% re-
call of the original dependencies, it is the best feasi-
ble parse, so we would like to train the parser to find
it.18 By training on the modified data, we learn more

17Any dependencycoveringthe child must also be broken to
preserve projectivity. This case arises later; see footnote 25.

18Although the parser will still not be able to find it if it is
non-projective (possible in German). Arguably we should have
defined “feasible” to also require projectivity, but we did not.

appropriate statistics for bothR$ and the other au-
tomata. If we trained on the original trees, we would
inaptly learn thatR$ always generates a single root
rather than a certain kind of sequence of roots.

For evaluation, we score tree dependencies in our
feasible parses against the tree dependencies in the
unmodifiedgold standard parses, which are not nec-
essarily feasible. We also show oracle performance.

4.3 Approach #1: FSA Parsing

Since we are now dealing with a regular language,
it is possible in principle to use a weighted finite-
state automaton (FSA) to search for the best feasible
parse. The idea is to find the highest-weighted path
that accepts the input stringω = w1w2 . . . wn. Us-
ing the Viterbi algorithm, this takes timeO(n).

The trouble is that this linear runtime hides a con-
stant factor, which depends on the size of the rele-
vant part of the FSA and may be enormous for any
correct FSA.19

Consider an example from Fig 1b. Af-
ter nondeterministically readingw1 . . . w11 =
According. . . insideralong thecorrectpath, the FSA
state must record (at least) thatinsiderhas no parent
yet and thatR$ andRcut are in particular states that

19The full runtime isO(nE), whereE is the number of FSA
edges, or for a tighter estimate, the number of FSA edges that
can be traversed by readingω.

36



may still accept more children. Else the FSA cannot
know whether to accept a continuationw12 . . . wn.

In general, after parsing a prefixw1 . . . wj , the
FSA state must somehow record information about
all incompletely linked words in the past. It must
record the sequence of past wordswi (i ≤ j) that
still need a parent or child in the future; ifwi still
needs a child, it must also record the state ofRwi .

Our restriction to dependency length≤ k is what
allows us to build afinite-state machine (as opposed
to some kind of pushdown automaton with an un-
bounded number of configurations). We need only
build thefinitelymany states where the incompletely
linked words are limited to at mostw0 = $ and thek
most recent words,wj−k+1 . . . wj . Other states can-
not extend into a feasible parse, and can be pruned.

However, this still allows the FSA to be in
O(2ktk+1) different states after readingw1 . . . wj .
Then the runtime of the Viterbi algorithm, though
linear inn, is exponential ink.

4.4 Approach #2: Ordinary Chart Parsing

A much better idea for most purposes is to use a
chart parser. This allows the usual dynamic pro-
gramming techniques for reusing computation. (The
FSA in the previous section failed to exploit many
such opportunities: exponentially many states would
have proceeded redundantly by building the same
wj+1wj+2wj+3 constituent.)

It is simple to restrict our algorithm of Fig. 2a to
find only feasible parses. It is the ATTACH rules

@@ + �� that add dependencies: simply use a
side condition to block them from applying unless
|h− h′| ≤ k (short tree dependency) orh = 0 (vine

dependency). This ensures that allH
H

and ��

will have width≤ k or have their left edge at 0.
One might now incorrectly expect runtime linear

in n: the number of possible ATTACH combinations
is reduced fromO(n3) to O(nk2), becausei andh′

are now restricted to a narrow range givenh.

Unfortunately, the half-constituents@@ and

�� may still be arbitrarily wide, thanks to arbi-
trary right- and left-branching: a feasible vine parse

may be a sequence of wide trees�� @@ . Thus there
areO(n2k) possible COMPLETE combinations, not
to mention O(n2) ATTACH-RIGHT combinations
for whichh = 0. So the runtime remains quadratic.

4.5 Approach #3: Specialized Chart Parsing

How, then, do we get linear runtimeand a rea-
sonable grammar constant? We give two ways to
achieve runtime ofO(nk2).

First, we observe without details that we can eas-
ily achieve this by starting instead with the algo-
rithm of Eisner (2000),20 rather than Eisner and
Satta (1999), and again refusing to add long tree de-
pendencies. That algorithm effectively concatenates
only trapezoids, not triangles. Each is spanned by a
single dependency and so has width≤ k. The vine
dependencies do lead to wide trapezoids, but these
are constrained to start at 0, where$ is. So the algo-
rithm tries at mostO(nk2) combinations of the form

h i+ i j (like the ATTACH combinations above)
andO(nk) combinations of the form0 i + i j,
wherei− h ≤ k, j − i ≤ k. The precise runtime is
O(nk(k + t′)tg3).

We now propose a hybrid linear-time algorithm
that further improves runtime toO(nk(k + t′)tg2),
saving a factor ofg in the grammar constant.21 We
observe that since within-tree dependencies must
have length≤ k, they can all be captured within
Eisner-Satta trapezoids of width≤ k. So our VG

parse �� @@ ∗ can be assembled by simplyconcate-

natinga sequence( ��
�� ∗ HH ∗ @@ )∗ of these

narrow trapezoids interspersed with width-0 trian-
gles. As this is aregular sequence, we can assem-
ble it in linear time from left to right (rather than in
the order of Eisner and Satta (1999)), multiplying
the items’ probabilities together. Whenever we start

adding the right half HH ∗ @@ of a tree along the
vine, we have discovered that tree’s root, so we mul-
tiply in the probability of a$← root dependency.

Formally, our hybrid parsing algorithm restricts
the original rules of Fig. 2a to build only trapezoids
of width ≤ k and triangles of width< k.22 The
additional inference rules in Fig. 2b then assemble
the final VG parse as just described.

20With a small change that when two items are combined, the
right item (rather than the left) must be simple.

21This savings comes from building the internal structure of
a trapezoid from both ends inward rather than from left to right.
The corresponding unrestricted algorithms (Eisner, 2000; Eis-
ner and Satta, 1999, respectively) have exactly the same run-
times withk replaced byn.

22For the experiments of§4.7, wherek varied by type, we
restricted these rules as tightly as possible givenh andh′.

37



(a
)

S
T

A
R

T
-L

E
F

T:
w
∈

W
h

q
∈

in
it
(L

w
)

��

q

h
h

:w

1
≤

h
≤

n

S
T

A
R

T
-R

IG
H

T
:

q
∈

in
it
(R

w
)

@@q

h
:w

h

��
F

i
h

:w

S
T

A
R

T
-V

IN
E
:

q
∈

in
it
(R

$)

@@q

0
:$

0
F

IN
IS

H
-L

E
F

T:

��

q

i
h

:w
q
∈

fin
a

l(L
w
)

��
F

i
h

:w

F
IN

IS
H

-R
IG

H
T
:

@@q

h
:w

i
q
∈

fin
a

l(R
w
)

@@F

h
:w

i

E
N

D
-V

IN
E
:

@@F

0
:$

n
ac

ce
pt

A
T

T
A

C
H

-L
E

F
T:

 
@@F

h
′ :

w
′

i−
1

��

q

i
h

:w

 
q

w
′
−→

r
∈

L
w

��
r

h
′ :

w
′

h
:w

A
T

T
A

C
H

-R
IG

H
T
:

 
@@q

h
:w

i−
1

��
F

i
h
′ :

w
′ 

q
w

′
−→

r
∈

R
w

HHr

h
′ :

w
′

h
:w

C
O

M
P

L
E

T
E
-L

E
F

T:

��
F

i
h
′ :

w
′

��
q

h
′ :

w
′

h
:w

��

q

i
h

:w

C
O

M
P

L
E

T
E
-R

IG
H

T
:

HHq

h
′ :

w
′

h
:w

@@F

h
′ :

w
′

i

@@q

h
:w

i

F
ig

ur
e

2:
(a

)
A

n
al

go
rit

hm
th

at
pa

rs
esW

1
..

.W
n

in
cu

-
bi

c
tim

e
O

(n
2
(n

+
t′
)t

g
2
).

A
da

pt
ed

w
ith

im
pr

ov
e-

m
en

ts
fr

om
(E

is
ne

r
an

d
S

at
ta

,
19

99
,

F
ig

.
3)

.
T

he
pa

re
nt

he
se

s
in

th
e

ATT
A

C
H

ru
le

s
in

di
ca

te
th

e
de

-
du

ct
io

n
of

an
in

te
rm

ed
ia

te
ite

m
th

at
“f

or
ge

ts
”

i.
(b

)
If

th
e

A
T

T
A

C
H

ru
le

s
ar

e
re

st
ric

te
d

to
ap

pl
y

on
ly

w
he

n
ca

se
|h
−

h
′ |
≤

k
,a

nd
th

e
CO

M
P

L
E

T
E

ru
le

s
on

ly
w

he
n|h

−
i|

<
k

,
th

en
th

e
ad

di
tio

na
l

ru
le

s
in

(b
)

w
ill

as
se

m
bl

e
th

e
re

su
lti

ng
fr

ag
m

en
ts

in
to

a
vi

ne
pa

rs
e.

In
th

is
ca

se
,

A
T

T
A

C
H

-R
IG

H
T

sh
ou

ld
al

so
be

re
st

ric
te

d
toh

>
0
,

to
pr

ev
en

t
du

pl
ic

at
e

de
riv

at
io

ns
.

T
he

ru
nt

im
e

isO
(n

k
(k

+
t′
)t

g
2
),

do
m

in
at

ed
by

th
e

ATT
A

C
H

ru
le

s;
th

e
ru

le
s

in
(b

)
re

qu
ire

on
ly
O

(n
k
tg

2
+

n
g
tt

′ )
tim

e.
E

ac
h

al
go

rit
hm

is
sp

ec
ifi

ed
as

a
co

lle
ct

io
n

of
de

du
ct

iv
e

in
fe

re
nc

e
ru

le
s.

O
nc

e
on

e
ha

s
de

riv
ed

al
l

an
te

ce
de

nt
ite

m
s

ab
ov

e
th

e
ho

riz
on

ta
ll

in
e

an
d

an
y

si
de

co
nd

iti
on

s
to

th
e

rig
ht

of
th

e
lin

e,
on

e
m

ay
de

-
riv

e
th

e
co

ns
eq

ue
nt

ite
m

be
lo

w
th

e
lin

e.
W

ei
gh

te
d

ag
en

da
-b

as
ed

de
du

ct
io

n
is

ha
nd

le
d

in
th

e
us

ua
l

w
ay

(N
ed

er
ho

f,
20

03
;E

is
ne

r
et

al
.,

20
05

).
T

he
pr

ob
ab

ili
tie

s
go

ve
rn

in
g

th
e

au
to

m
at

onL
w

,

na
m

el
y
p
(s

ta
rt

at
q)

,
p
(q

w
′

−→
r
|

q)
,

an
d
p
(s

to
p
|

q)
,

ar
e

re
sp

ec
tiv

el
y

as
so

ci
at

ed
w

ith
th

e
ax

io
m

at
ic

ite
m

s
q
∈

in
it
(L

w
),

q
w

′
−→

r
∈

L
w

,
an

d
q
∈

fin
a

l(
L

w
).

A
n

ac
ou

st
ic

sc
or

ep
(o

bs
er

va
tio

n
ath

|
w

)
co

ul
d

be
as

so
ci

at
ed

w
ith

th
e

ite
mw
∈

W
h
.

(b
)

T
R

E
E
-S

T
A

R
T
:

@@q

0
:$

i
−

1
��

F

i
i:

w

� �
@@q

i:
w

0
:$

T
R

E
E
-L

E
F

T:

� �
@@q

i:
w

0
:$

��
F

i:
w

j
:x

� �
@@q

j
:x

0
:$

G
R

A
F

T-
V

IN
E
:

� �
@@q

i:
w

0
:$

q
w −→

r
∈

R
$

XXy
XXyr

i:
w

0
:$

T
R

E
E
-R

IG
H

T
:

XXy
XXyq

i:
w

0
:$

HHF

j
:x

i:
w

XXy
XXyq

j
:x

0
:$

T
R

E
E
-E

N
D
:

XXy
XXyq

i:
w

0
:$

@@F

i:
w

i

@@q

0
:$

i
S

E
A

L
-L

E
F

T:

��
q

h
′ :

w
′

h
:w

q
∈

fin
a

l(L
w
)

��
F

h
′ :

w
′

h
:w

S
E

A
L
-R

IG
H

T
:

HHq

h
′ :

w
′

h
:w

q
∈

fin
a

l(R
w
)

HHF

h
′ :

w
′

h
:w

38



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3  0.4  0.5  0.6  0.7  0.8  0.9
recall

pr
ec

is
io

n

E

C

G

k = 1

Model C, no bound
single bound (English)

 (Chinese)
 (German)

Figure 3: Trading precision and recall: Imposing bounds can
improve precision at the expense of recall, for English and Chi-
nese. German performance suffers more. Bounds shown are
k = {1, 2, ..., 10, 15, 20}. The dotted lines show constantF -
measure of the unbounded model.

4.6 Experiments with Hard Constraints

Our experiments used the asymptotically fast hybrid
parsing algorithm above. We used the same left and
right automata as in model C, the best-performing
model from§3.2. However, we now defineR$ to
be a first-order (bigram) Markov model (§4.1). We
trained and tested on the same headed treebanks as
before (§3.7), except that we modified thetraining
trees to make them feasible (§4.2).

Results are shown in Figures 3 (precision/recall
tradeoff) and 4 (accuracy/speed tradeoff), fork ∈
{1, 2, ..., 10, 15, 20}. Dots correspond to different
values ofk. On English and Chinese, some values of
k actually achieve betterF -measure accuracy than
the unbounded parser, by eliminating errors.23

We observed that changingR$ from a bigram
to a unigram model significantly hurt performance,
showing that it is in fact useful to empirically model
likely sequencesof parse fragments.

4.7 Finer-Grained Hard Constraints

The dependency length boundk need not be a sin-
gle value. Substantially better accuracy can be re-
tained if each dependency type—each(h, c, d) =
(head tag, child tag, direction) tuple—has its own

23Because our prototype implementation of each kind of
parser (baseline, soft constraints, single-bound, and type-
specific bounds) is known to suffer from different inefficiencies,
runtimes in milliseconds are not comparable across parsers. To
give a general idea, 60-word English sentences parsed in around
300ms with no bounds, but at around 200ms with either a dis-
tance modelp(∆|d, h, c) or a generous hard bound ofk = 10.

boundk(h, c, d). We call thesetype-specificbounds:
they create a many-dimensional space of possible
parsers. We measured speed and accuracy along a
sensible path through this space, gradually tighten-
ing the bounds using the following process:
1. Initialize each boundk(h, c, d) to the maximum

distance observed in training (or 1 for unseen
triples).24

2. Greedily choose a boundk(h, c, d) such that, if
its value is decremented and trees that violate the
new bound are accordingly broken, thefewestde-
pendencies will be broken.25

3. Decrement the boundk(h, c, d) and modify the
training data to respect the bound by breaking de-
pendencies that violate the bound and “grafting”
the loose portion onto the vine. Retrain the parser
on the training data.

4. If all bounds are not equal to 1, go to step 2.
The performance of every 200th model along the

trajectory of this search is plotted in Fig. 4.26 The
graph shows that type-specific bounds can speed up
the parser to a given level with less loss in accuracy.

5 Related Work

As discussed in footnote 3, Collins (1997) and Mc-
Donald et al. (2005) considered the POS tags inter-
vening between a head and child. These soft con-
straints were very helpful, perhaps in part because
they helped capture the short dependency preference
(§2). Collins used them as conditioning variables
and McDonald et al. as log-linear features, whereas
our §3 predicted them directly in a deficient model.

As for hard constraints (§4), our limitation on de-
pendency length can be regarded as approximating
a context-free language by a subset that is a regular

24In the case of the German TIGER corpus, which contains
non-projective dependencies, we first make the training trees
into projective vines by raising all non-projective child nodes to
become heads on the vine.

25Not counting dependencies that must be broken indirectly
in order to maintain projectivity. (If word 4 depends on word
7 which depends on word 2, and the4 → 7 dependency is
broken, making 4 a root, then we must also break the2 → 7
dependency.)

26Note thatk(h, c, right) = 7 bounds the width of @@ +

�� =
��

. For a finer-grained approach, we could in-

stead separately bound the widths of@@ and �� , say by
kr(h, c, right) = 4 andkl(h, c, right) = 2.

39



language. Our “vines” then let us concatenate sev-
eral strings in this subset, which typically yields a
superset of the original context-free language. Sub-
set and superset approximations of (weighted) CFLs
by (weighted) regular languages, usually by pre-
venting center-embedding, have been widely ex-
plored; Nederhof (2000) gives a thorough review.
We limit all dependency lengths (not just center-
embedding).27 Further, we derive weights from a
modified treebank rather than by approximating the
true weights. And though regular grammar approxi-
mations are useful for other purposes, we argue that
for parsing it is more efficient to perform the approx-
imation in the parser, not in the grammar.

Brants (1999) described a parser that encoded the
grammar as a set of cascaded Markov models. The
decoder was applied iteratively, with each iteration
transforming the best (orn-best) output from the
previous one until only the root symbol remained.
This is a greedy variant of CFG parsing where the
grammar is in Backus-Naur form.

Bertsch and Nederhof (1999) gave a linear-time
recognition algorithm for the recognition of the reg-
ular closure of deterministic context-free languages.
Our result is related; instead of a closure ofdeter-
ministicCFLs, we deal in a closure of CFLs that are
assumed (by the parser) to obey some constraint on
trees (like a maximum dependency length).

6 Future Work

The simple POS-sequence models we used as an ex-
perimental baseline are certainly not among the best
parsers available today. They were chosen to illus-
trate how modeling and exploiting distance in syntax
can affect various performance measures. Our ap-
proach may be helpful for other kinds of parsers as
well. First, we hope that our results will generalize
to more expressive grammar formalisms such as lex-
icalized CFG, CCG, and TAG, and to more expres-
sively weighted grammars, such as log-linear mod-
els that can include head-child distance among other
rich features. The parsing algorithms we presented
also admitinside-outsidevariants, allowing iterative
estimation methods for log-linear models (see, e.g.,
Miyao and Tsujii, 2002).

27Of course, this still allows right-branching or left-
branching to unbounded depth.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100
runtime (items/word)

English

F

k = 1

2

3 15 20

Model C, baseline
soft constraint

single bound
type-specific bounds

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120  140  160
runtime (items/word)

Chinese

F

k = 1

2
3

15
20

Model C, baseline
soft constraint

single bound
type-specific bounds

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50  60
runtime (items/word)

German

F

k = 1

2

3

15
20

Model C, baseline
soft constraint

single bound
type-specific bounds

Figure 4: Trading off speed and accuracy by varying the set
of feasible parses: The baseline (no length bound) is shown
as +. Tighter bounds always improve speed, except for the
most lax bounds, for which vine construction overhead incurs
a slowdown. Type-specific bounds tend to maintain goodF -
measure at higher speeds than the single-bound approach. The
vertical error bars show the “oracle” accuracy for each experi-
ment (i.e., theF -measure if we had recovered the best feasible
parse, as constructed from the gold-standard parse by grafting:
see§4.2). Runtime is measured as the number of items per word

(i.e., @@ , �� ,
��

,
HH

, ��@@ ,
XXyXXy

) built
by the agenda parser. The “soft constraint” point marked with
× represents thep(∆ | d, h, c)-augmented model from§3.

40



Second, fast approximate parsing may play a role
in more accurate parsing. It might be used to rapidly
compute approximate outside-probability estimates
to prioritize best-first search (e.g., Caraballo and
Charniak, 1998). It might also be used to speed up
the early iterations of training a weighted parsing
model, which for modern training methods tends to
require repeated parsing (either for the best parse, as
by Taskar et al., 2004, or all parses, as by Miyao and
Tsujii, 2002).

Third, it would be useful to investigate algorith-
mic techniques and empirical benefits for limiting
dependency length in more powerful grammar for-
malisms. Our runtime reduction fromO(n3) →
O(nk2) for a length-k bound applies only to a
“split” bilexical grammar.28 Various kinds ofsyn-
chronousgrammars, in particular, are becoming im-
portant in statistical machine translation. Their high
runtime complexity might be reduced by limiting
monolingual dependency length (for a related idea
see Schafer and Yarowsky, 2003).

Finally, consider the possibility of limiting depen-
dency length during grammar induction. We reason
that a learner might start with simple structures that
focus on local relationships, and gradually relax this
restriction to allow more complex models.

7 Conclusion

We have described a novel reason for identifying
headword-to-headword dependencies while parsing:
to consider their length. We have demonstrated
that simple bilexical parsers of English, Chinese,
and German can exploit a “short-dependency pref-
erence.” Notably,soft constraints on dependency
length can improve both speed and accuracy, and
hardconstraints allow improved precision and speed
with some loss in recall (on English and Chinese,
remarkably little loss). Further, for the hard con-
straint “length≤ k,” we have given anO(nk2) par-
tial parsing algorithm for split bilexical grammars;
the grammar constant is no worse than for state-of-
the-artO(n3) algorithms. This algorithm strings to-
gether the partial trees’ roots along a “vine.”

28The obvious reduction for unsplit head automaton gram-
mars, say, is onlyO(n4) → O(n3k), following (Eisner and
Satta, 1999). Alternatively, one can convert the unsplit HAG to
a split one that preserves the set of feasible (length≤ k) parses,
but theng becomes prohibitively large in the worst case.

Our approach might be adapted to richer parsing
formalisms, including synchronous ones, and should
be helpful as an approximation to full parsing when
fast, high-precision recovery of syntactic informa-
tion is needed.

References
S. P. Abney. Parsing by chunks. InPrinciple-Based Parsing:

Computation and Psycholinguistics. Kluwer, 1991.
D. E. Appelt, J. R. Hobbs, J. Bear, D. Israel, and M. Tyson.

FASTUS: A finite-state processor for information extraction
from real-world text. InProc. of IJCAI, 1993.

E. Bertsch and M.-J. Nederhof. Regular closure of deterministic
languages.SIAM J. on Computing, 29(1):81–102, 1999.

D. Bikel. A distributional analysis of a lexicalized statistical
parsing model. InProc. of EMNLP, 2004.

T. Brants. Cascaded Markov models. InProc. of EACL, 1999.
S. A. Caraballo and E. Charniak. New figures of merit for best-

first probabilistic chart parsing.Computational Linguistics,
24(2):275–98, 1998.

S. Chen. Bayesian grammar induction for language modeling.
In Proc. of ACL, 1995.

K. W. Church. On memory limitations in natural language pro-
cessing. Master’s thesis, MIT, 1980.

M. Collins. Three generative, lexicalised models for statistical
parsing. InProc. of ACL, 1997.

J. Eisner. Bilexical grammars and their cubic-time parsing al-
gorithms. InAdvances in Probabilistic and Other Parsing
Technologies. Kluwer, 2000.

J. Eisner, E. Goldlust, and N. A. Smith. Compiling Comp Ling:
Practical weighted dynamic programming and the Dyna lan-
guage. InProc. of HLT-EMNLP, 2005.

J. Eisner and G. Satta. Efficient parsing for bilexical cfgs and
head automaton grammars. InProc. of ACL, 1999.

L. Frazier. On Comprehending Sentences: Syntactic Parsing
Strategies. PhD thesis, University of Massachusetts, 1979.

E. Gibson. Linguistic complexity: Locality of syntactic depen-
dencies.Cognition, 68:1–76, 1998.

G. Grefenstette. Light parsing as finite-state filtering. InProc.
of Workshop on Extended FS Models of Language, 1996.

D. Hindle. Noun classification from predicate-argument struc-
ture. InProc. of ACL, 1990.

J. R. Hobbs and J. Bear. Two principles of parse preference. In
Proc. of COLING, 1990.

D. Klein and C. D. Manning. Accurate unlexicalized parsing.
In Proc. of ACL, 2003.

D. Klein and C. D. Manning. Corpus-based induction of syn-
tactic structure: Models of dependency and constituency. In
Proc. of ACL, 2004.

R. McDonald, K. Crammer, and F. Pereira. Online large-margin
training of dependency parsers. InProc. of ACL, 2005.

Y. Miyao and J. Tsujii. Maximum entropy estimation for feature
forests. InProc. of HLT, 2002.

M.-J. Nederhof. Practical experiments with regular approxima-
tion of context-free languages.CL, 26(1):17–44, 2000.

M.-J. Nederhof. Weighted deductive parsing and Knuth’s algo-
rithm. Computational Linguistics, 29(1):135–143, 2003.

C. Schafer and D. Yarowsky. A two-level syntax-based ap-
proach to Arabic-English statistical machine translation. In
Proc. of Workshop on MT for Semitic Languages, 2003.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning.
Max-margin parsing. InProc. of EMNLP, 2004.

41


