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Introduction

This volume contains the full papers accepted for presentation at the BioLINK 2005 meeting.
This workshop represents the first joint Association for Computational Linguistics (ACL)/Intelligent
Systems for Molecular Biology (ISMB) meeting. Each organization has held a workshop in this area
for the past three to four years; this is the first meeting sponsored jointly by the two parent organizations.
In bringing these two groups together, we have also melded two different traditions of distribution. The
ISMB tradition has been focussed on invited talks and “short papers” describing works in progress. The
ACL tradition has focussed on rigorously peer-reviewed full papers describing compeleted work. This
workshop features works in the three categories of “full paper,” “short paper,” and poster submissions.
Submissions in all three categories underwent an ACL-style peer review process.

Recent years have seen an interesting confluence between the worlds of bioinformatics and natural
language processing. Molecular biologists, confronted with new high-throughput sources of data, have
recognized that language processing can provide them with tools for handling a flood of data that is
unprecedented in the history of the life sciences. The natural language processing community, in turn,
has become aware of the resources that the computational bioscience community has made available,
and there has been growing interest in applying natural language processing techniques to mine the
biological literature to support complex applications in the biological domain, ranging from identifying
relevant literature, to extraction of experimental findings for the population of biological knowledge
bases, to summarization—all in order to present key facts to biologists in succinct form.

This workshop continued the interaction between these communities. We received a total of eighteen
full-paper submissions, from which eight were selected for presentation at the workshop and inclusion
in the ACL BioLINK workshop proceedings. An additional two of the full-paper submissions
were accepted as posters. Overall, eight of the full-paper submissions were concerned with entity
identification. Five of the eighteen dealt with information extraction. In addition, we received
submissions on the important topic of normalizing entity mentions.

BioLINK also solicited short-paper and poster submissions. Twenty-one short-paper submissions were
received, five of which were accepted for oral presentation. Four more were accepted for poster
presentation. All nine of these short papers are being distributed by ISMB as part of its SIG materials.
The meeting also featured a poster session.

K. Bretonnel Cohen
Lynette Hirschman
Hagit Shatkay
Christian Blaschke
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Abstract 

A pervasive problem facing many bio-
medical text mining applications is that of 
correctly associating mentions of entities 
in the literature with corresponding con-
cepts in a database or ontology.  Attempts 
to build systems for automating this proc-
ess have shown promise as demonstrated 
by the recent BioCreAtIvE Task 1B 
evaluation.  A significant obstacle to im-
proved performance for this task, how-
ever, is a lack of high quality training 
data. In this work, we explore methods for 
improving the quality of (noisy) Task 1B 
training data using variants of weakly su-
pervised learning methods. We present 
positive results demonstrating that these 
methods result in an improvement in 
training data quality as measured by im-
proved system performance over the same 
system using the originally labeled data. 

1 Introduction 

A primary set of tasks facing biomedical text proc-
essing systems is that of categorizing, identifying 
and classifying entities within the literature.  A key 
step in this process involves grouping mentions of 
entities together into equivalence classes that de-
note some underlying entity.  In the biomedical 
domain, however, we are fortunate to have struc-
tured data resources such as databases and ontolo-
gies with entries denoting these equivalence 

classes.  In biomedical text mining, then, this proc-
ess involves associating mentions of entities with 
known, existing unique identifiers for those entities 
in databases or ontologies – a process referred to as 
normalization.  This ability is required for text 
processing systems to associate descriptions of 
concepts in free text with a grounded, organized 
system of knowledge more readily amenable to 
machine processing. 

The recent BioCreAtIvE Task 1B evaluation 
challenged a number of systems to identify genes 
associated with abstracts for three different organ-
isms: mouse, fly and yeast.  The participants were 
provided with a large set of noisy training data and 
a smaller set of higher quality development test 
data.  They were also provided with a lexicon con-
taining all the potential gene identifiers that might 
occur and a list of known, though incomplete, 
names and synonyms that refer to each of them.   

To prepare the training data, the list of unique 
gene identifiers associated with each full text arti-
cle was obtained from the appropriate model or-
ganism database.  However, the list had to be 
pruned to correspond to the genes mentioned in the 
abstract.  This was done by searching the abstract 
for each gene on the list or its synonyms, using 
exact string matching. This process has the poten-
tial to miss genes that were referred to in the ab-
stract using a phrase that does not appear in the 
synonym list.  Additionally, the list may be incom-
plete, because not all genes mentioned in the arti-
cle were curated, so there are mentions of genes in 
an abstract that did not have a corresponding iden-
tifier on the gene list. 

This paper explores a series of methods for at-
tempting to recover some of these missing gene 
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identifiers from the Task 1B training data abstracts.  
We start with a robust, machine learning-based 
baseline system: a reimplementation of the system 
in [1].  Briefly, this system utilizes a classifier to 
select or filter matches made against the synonym 
list with a loose matching criterion.  From this 
baseline, we explore various methods for re-
labeling the noisy training data, resulting in im-
proved scores on the overall Task 1B development 
test and evaluation data.  Our methods are based on 
weakly supervised learning techniques such as co-
training [2] and self-training [3, 4] for learning 
with both labeled and unlabeled data.   

The setting here is different than the typical set-
ting for weakly supervised learning, however, in 
that we have a large amount of noisily labeled data, 
as opposed to completely unlabeled data.  The 
main contribution of this work is a framework for 
applying weakly supervised methods to this prob-
lem of re-labeling noisy training data.   

Our approach is based on partitioning the train-
ing data into two sets and viewing the problem as 
two mutually supporting weakly supervised learn-
ing problems. Experimental results demonstrate 
that these methods, carefully tuned, improve per-
formance for the gene name normalization task 
over those previously reported using machine 
learning-based techniques. 

2 Background and Related Work 

2.1 Gene Name Normalization and Extrac-
tion 

The task of normalizing and identifying biological 
entities, genes in particular, has received consider-
able attention in the biological text mining com-
munity.  The recent Task 1B from BioCreAtIvE 
[5] challenged systems to identify unique gene 
identifiers associated with paper abstracts from the 
literature for three organisms: mouse, fly and 
yeast.  Task 1A from the same workshop focused 
on identifying (i.e. tagging) mentions of genes in 
biomedical journal abstracts.  

2.2 NLP with Noisy and Un-labeled Training 
Data 

Within biomedical text processing, a number of 
approaches for both identification and normaliza-
tion of entities have attempted to make use of the 

many available structured biological resources to 
“bootstrap”  systems by deriving noisy training data 
for the task at hand.  A novel method for using  
noisy (or “weakly labeled”) training data from bio-
logical databases to learn to identify relations in 
biomedical texts is presented in [6].  Noisy training 
data was created in [7] to identify gene name men-
tions in text.  Similarly, [8] employed essentially 
the same approach using the FlyBase database to 
identify normalized genes within articles.   

2.3 Weakly Supervised Learning 

Weakly supervised learning remains an active area 
of research in machine learning.  Such methods are 
very appealing: they offer a way for a learning sys-
tem provided with only a small amount of labeled 
training data and a large amount of un-labeled data 
to perform better than using the labeled data alone.  
In certain situations (see [2]) the improvement can 
be substantial.   

Situations with small amounts of labeled data 
and large amounts of unlabeled data are very 
common in real-world applications where labeling 
large quantities of data is prohibitively expensive.  
Weakly supervised learning approaches can be 
broken down into multi-view and single-view 
methods.   

Multi-view methods [2] incrementally label 
unlabeled data as follows.  Two classifiers are 
trained on the training data with different “views” 
of the data.  The different views are realized by 
splitting the set of features in such a way that the 
features for one classifier are conditionally inde-
pendent of features for the other given the class 
label.  Each classifier then selects the most confi-
dently classified instances from the unlabeled data 
(or some random subset thereof) and adds them to 
the training set.  The process is repeated until all 
data has been labeled or some other stopping crite-
rion is met.  The intuition behind the approach is 
that since the two classifiers have different views 
of the data, a new training instance that was classi-
fied with high confidence by one classifier (and 
thus is “ redundant”  from that classifier’s point of 
view) will serve as an informative, novel, new 
training instance for the other classifier and vice-
versa.      

Single-view methods avoid the problem of find-
ing an appropriate feature split which is not possi-
ble or appropriate in many domains.  One common 
approach here [4] involves learning an ensemble of 
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classifiers using bagging.  With bagging, the train-
ing data is randomly sampled, with replacement, 
with a separate classifier trained on each sample.  
Un-labeled instances are then labeled if all of the 
separate classifiers agree on the label for that in-
stance.  Other approaches are based on the expec-
tation maximization algorithm (EM) [9]. 

3 System Descr iption 

The baseline version of our system is essentially a 
reproduction of the system described in [1] with a 
few modifications.   The great appeal of this sys-
tem is that, being machine learning based, it has no 
organism-specific aspects hard-coded in; moving 
to a new organism involves only re-training (as-
suming there is training data) and setting one or 
two parameters using a held-out data set or cross-
validation.   

The system is given a set of abstracts (and asso-
ciated gene identifiers at training time) and a lexi-
con.  The system first proposes candidate phrases 
based on all possible phrases up to 8 words in len-
gth with some constraints based on part-of-
speech1.  Matches against the lexicon are then car-
ried out by performing exact matching but ignoring 
case and removing punctuation from the both the 
lexical entries and candidate mentions.  Only maxi-
mal matching strings were used – i.e. sub-strings of 
matching strings that match the same id are re-
moved.  

The resulting set of matches of candidate men-
tions with their matched identifiers results in a set 
of instances.  These instances are then provided 
with a label - “ yes”  or “no”  depending on whether 
the match in the abstract is correct (i.e. if the gene 
identifier associated with the match was annotated 
with the abstract).  These instances are used to 
train a binary maximum entropy classifier that ul-
timately decides if a match is valid or not.   

Maximum entropy classifiers model the condi-
tional probability of a class, y, (in our setting, 
y=“yes”  or y=“no”) given some observed data, x. 
The conditional probability has the following form 
in the binary case (where it is equivalent to logistic 
regression): 

                                                           
1 Specifically, we excluded phrases that began with verbs 
prepositions, adverbs or determiners; we found this constraint 
did not affect recall while reducing the number of candidate 
mentions by more than 50%. 
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normalization function, the iλ are real-valued 

model parameters and the if  are arbitrary real-

valued feature functions. 
One advantage of maximum entropy classifiers 

is the freedom to use large numbers of statistically 
non-independent features.  We used a number of 
different feature types in the classifier:  

 
• the matching phrase  
• the matched gene identifier  
• the previous and subsequent two words of the 

phrase 
• the number of words in the matching phrase  
• the total number of genes that matched against 

the phrase 
• all character prefixes and suffixes up to length 4 

for words within the phrase  
 
An example is shown below in Figure 1 below. 

 
Abstract Excerpt: 
 
“ Thi s new r ecept or ,  TOR ( t hymus or -
phan r ecept or ) …”  
 
Feature Class Specific Feature 
Phr ase TOR 
GENEI D MGI 104856 
Pr evi ous- 1 ,  
Pr evi ous- 2 r ecept or  
Subsequent - 1 (  
Subsequent - 2 t hymus 
Number  of  Mat ches 2 
Number  of  Wor ds 1 
Pr ef i x- 1 T 
Pr ef i x- 2 TO 
Pr ef i x- 3 TOR 
Suf f i x- 1 R 
Suf f i x- 2 OR 
Suf f i x- 3 TOR 
 

Figure 1.  An abstract excerpt with the matching 
phrase “ TOR” .  The resulting features for  the match 
are detailed in the table. 

 
In addition to these features we created addi-

tional features constituting conjunctions of some of 
these “atomic”  features.  For example, the con-
joined feature Phrase=TOR AND GE-
NEID=MGI104856 is “on”  when both conjuncts 
are true of the instance.   

To assign identifiers to a new abstract a set fea-
tures are extracted for each matching phrase and 
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gene id pair just as in training (this constitutes an 
instance) and presented to the classifier for classi-
fication. As the classifier returns a probability for 
each instance, the gene id associated with the in-
stance with highest probability is returned as a 
gene id associated with the abstract, except in the 
case where the probability is less than some 
threshold 10, ≤≤ TT  in which case no gene id is 
returned for that phrase. 

Training the model involves finding the pa-
rameters that maximize the log-likelihood of the 
training data.  As is standard with maximum en-
tropy models we employ a Gaussian prior over the 
parameters which bias them towards zero to reduce 
overfitting. 

Our model thus has just two parameters which 
need to be tuned to different datasets (i.e. different 
organisms): the Gaussian prior and the threshold, 
T .  Tuning the parameters can be done on a held 
out set (we used the Task 1B development data) or 
by cross validation:  

4 Weakly Supervised Methods for  Re-
labeling Noisy Normalization Data 

The primary contribution of this work is a novel 
method for re-labeling the noisy training instances 
within the Task 1B training data sets.  Recall that 
the Task 1B training data were constructed by 
matching phrases in the abstract against the syno-
nym lists for the gene ids curated for the full text 
article for which the abstract was written.  In many 
cases, mentions of the gene in the abstract do not 
appear exactly as they do in the synonym list, 
which would result in a missed association of that 
gene id with the abstract.  In other cases, the data-
base curators simply did not curate a gene id men-
tioned in the abstract as it was not relevant to their 
particular line of interest.   

Our method for re-labeling potentially misla-
beled instances draws upon existing methods for 
weakly supervised learning.  We describe here the 
generic algorithm and include specific variations 
below in the experimental setup.   

The first step is to partition the training data 
into two disjoint sets, D1 and D2.

2 We then create 
two instances of the weakly supervised learning 

                                                           
2 Note that instances in D1 and D2 are also derived form dis-
joint sets of abstracts.  This helps ensure that very similar 
instances are unlikely to appear in different partitions. 

problem where in one instance, D1 is viewed as the 
labeled training data and D2 is viewed as the unla-
beled data, and in the other instance their roles are 
reversed.  Re-labeling of instances in D1 is carried 
out by a classifier or ensemble of classifiers, C2 
trained on D2.  Similarly, instances in D2 are re-
labeled by C1 trained on D1.  Those instances for 
which the classifier assigns high confidence (i.e. 
for which )|""( xyesyP = is high) but for which 
the existing label disagrees with the classifier are 
candidates for re-labeling.   Figure 2 diagrams this 
process below. 

 

 
 
Figure 2.  Diagram illustrating the method for  re-
labeling instances.  The solid ar rows indicate the 
training of a classifier  from some set of data, while 
block ar rows descr ibe the data flow and re-labeling 
of instances. 

 
One assumption behind this approach is that not 

all of the errors in the training data labels are corre-
lated.  As such, we would expect that for a particu-
lar mislabeled instance in D1, there may be similar 
positive instances in D2 that provide evidence for 
re-labeling the mislabeled in D1.  

Initial experiments using this approach met 
with failure or negligible gains in performance.  
We initially attributed this to too many correlated 
errors.  Detailed error analysis revealed, however, 
that a significant portion of training instances be-
ing re-labeled were derived from matches against 
the lexicon that were not, in fact, references to 
genes – i.e. they were other more common English 
words that happened to appear in the synonym lists 
for which the classifier mistakenly assigned them 
high probability.  

   D1     D2 

C2 C1 

   D2’     D1’  

  Final Classifier 

Original 
Training Data 

Modified Train-
ing Data 

Re-labeling 
classifiers 

4



Our solution to this problem was to impose a 
constraint on instances to be re-labeled:  The 
phrase in the abstract associated with the instance 
is required to have been tagged as a gene name by 
a gene name tagger in addition to the instance re-
ceiving a high probability by the re-labeling classi-
fier.  Use of a gene name tagger introduces a check 
against the classifier (trained on the noisy training 
data) and helps to reduce the chance of introducing 
false positives into the labeled data.   

We trained our entity tagger, Carafe, on a the 
Genia corpus [10] together with the BioCreative 
Task 1A gene name training corpus.  Not all of the 
entity types annotated in the Genia corpus are 
genes, however. Therefore we used an appropriate 
subset of the entity types found in the corpus.  Ca-
rafe is based on Conditional Random Fields [11] 
(CRFs) which, for this task, employed a similar set 
of features to the CRF described in [12].   

5 Exper iments and Results 

The main goal of our experiments was to demon-
strate the benefits of re-labeling potentially noisy 
training instances in the task 1B training data.  In 
this work we focus the weakly supervised re-
labeling experiments on the mouse data set.  In the 
mouse data there is a strong bias towards false 
negatives in the training data – i.e. many training 
instances have a negative label and should have a 
positive one.  Our reasons for focusing on this data 
are twofold: 1) we believe this situation is likely to 
be more common in practice since an organism 
may have impoverished synonym lists or “gaps”  in 
the curated databases and 2) the experiments and 
resulting analyses are made clearer by focusing on 
re-labeling instances in one direction only (i.e. 
from negative to positive). 

In this section, we first describe an initial ex-
periment comparing the baseline system (described 
above) using the original training data with a ver-
sion trained with an augmented data set where la-
bels changed based on a simple heuristic.  We then 
describe our main body of experiments using vari-
ous weakly supervised learning methods for re-
labeling the data.  Finally, we report our overall 
scores on the evaluation data for all three organ-
isms using the best system configurations derived 
from the development test data. 

5.1 Data and Methodology 

We used the BioCreative Task 1B data for all our 
experiments.  For the three data sets, there were 
5000 abstracts of training data and 250, 110 and 
108 abstracts of development test data for mouse, 
fly and yeast, respectively.  The final evaluation 
data consisted of 250 abstracts for each organism.  
In the training data, the ratios of positive to nega-
tive instances are the following: for mouse: 
40279/111967, for fly: 75677/493959 and for 
yeast: 25108/3856.  The number of features in each 
trained model range from 322110 for mouse,  
881398 for fly and 108948 for yeast.  

Given a classifier able to rank all the test in-
stances (in our case, the ranks derive from the 
probabilities output by the maximum entropy clas-
sifier), we return only the top n gene identifiers, 
where n is the number of correct identifiers in the 
development test data – this results in a balanced 
F-measure score.  We use this metric for all ex-
periments on the development test data as it allows 
better comparison between systems by factoring 
out the need to tune the threshold.   

On the evaluation data, we do not know n. The 
system returns a number of identifiers based on the 
threshold, T.  For these experiments, we set T on 
the development test data and choose three appro-
priate values for three different evaluation “sub-
missions” . 

5.2 Exper iment Set 1: Effect of match-based 
re-labeling 

Our first set of experiments uses the baseline sys-
tem described earlier.  We compare the results of 
this system using the Task 1B training data “as 
provided”  with the results obtained by re-labeling 
some of the negative instances provided to the 
classifier as positive instances.   We re-labeled any 
instances as positive that matched a gene identifier 
associated with the abstract regardless of the (po-
tentially incorrect) label associated with the identi-
fier. The Task 1B dataset creators marked an 
identifier “no”  if an exact lexicon match wasn’ t 
found in the abstract.  As our system matching 
phase is a bit different (i.e. we remove punctuation 
and ignore case), this amounts to re-labeling the 
training data using this looser criterion. The results 
of this match-based re-labeling are shown in Table 
1 below. 
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 Baseline Re-labeled 
Mouse 68.8 72.0 

Fly 70.8 75.3 
Yeast 89.7 90.0 
 

Table 1 Balanced F-measure scores compar ing the 
baseline vs. a system trained with the match-based 
re-labeled instances on the development test data. 

5.3 Exper iment Set 2: Effect of Weakly Su-
pervised Re-labeling 

In our next set of experiments we tested a number 
of different weakly supervised learning configura-
tions.  These different methods simply amount to 
different rankings of the instances to re-label 
(based on confidence and the gene name tags).  
The basic algorithm (outlined in Figure 1) remains 
the same in all cases. Specifically, we investigated 
three methods for ranking the instances to re-label: 
1) naïve self-training, 2) self-training with bagging, 
and 3) co-training.  

Naïve self-training consisted of training a single 
maximum entropy classifier with the full feature 
set on each partition and using it to re-label in-
stances from the other partition based on confi-
dence.   

Self training with bagging followed the same 
idea but used bagging.  For each partition, we 
trained 20 separate classifiers on random subsets of 
the training data using the full feature set. The con-
fidence assigned to a test instance was then defined 
as the product of the confidences of the individual 
classifiers.   

Co-training involved training two classifiers for 
each partition with feature split.  We split the fea-
tures into context-based features such as the sur-
rounding words and the number of gene ids 
matching the current phrase, and lexically-based 
features that included the phrase itself, affixes, the 
number of tokens in the phrase, etc.  We computed 
the aggregated confidences for each instance as the 
product of the confidences assigned by the result-
ing context-based and lexically-based classifiers. 

We ran experiments for each of these three op-
tions both with the gene tagger and without the 
gene tagger.  The systems that included the gene 
tagger ranked all instances derived from tagged 
phrases above all instances derived from phrases 
that were not tagged regardless of the classifier 
confidence.  

A final experimental condition we explored was 
comparing batch re-labeling vs. incremental re-
labeling.  Batch re-labeling involved training the 
classifiers once and re-labeling all k instances us-
ing the same classifier.  Incremental re-labeling 
consisted of iteratively re-labeling n instances over 
k/n epochs where the classifiers were re-trained on 
each epoch with the newly re-labeled training data. 
Interestingly, incremental re-labeling did not per-
form better than batch re-labeling in our experi-
ments.  All results reported here, therefore, used 
batch re-labeling. 

After the training data was re-labeled, a single 
maximum entropy classifier was trained on the 
entire (now re-labeled) training set.  This resulting 
classifier was then applied to the development set 
in the manner described in Section 3. 

 
MAX With Tagger  Without Tagger  
Self-Naïve 74.4 (4000) 72.3 (5000) 
Self-Bagging 74.8 (4000) 73.5 (6000) 
Co-Training 74.6 (4000) 72.7 (6000) 

 
AVG With Tagger  Without Tagger  
Self-Naïve 72.2 71.2 
Self-Bagging 72.2 71.5 
Co-Training 71.9 71.2 

 
Table 2.  Maximum and average balanced f-measure 
scores on the mouse data set for  each of the six sys-
tem configurations for  all values of k – the number  of 
instances re-labeled.  The numbers in parentheses 
indicate for  which value of k the maximum value was 
achieved. 

 
We tested each of these six configurations for 

different values of k, where k is the total number of 
instances re-labeled3.  Table 2 highlights the maxi-
mum and average balanced f-measure scores 
across all values of k for the different system con-
figurations. Both the maximum and averaged 
scores appear noticeably higher when constraining 
the instances to re-label with the tagger.  The three 
weakly supervised methods perform comparably 
with bagging performing slightly better.  

                                                           
3 The values of k considered here were: 0, 10, 20, 50, 100, 
200, 300, 500, 800, 1000, 2000, 3000, 4000, 5000, 6000, 
7000, 8000, 9000, 10000, 12000 and 15000. 
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Figure 3.  The top graph shows balanced F-measure 
scores against the number  of instances re-labeled 
when using the tagger  as a constraint.  The bottom 
graph compares the re-labeling of instances with the 
gene tagger as a constraint and without.  

 
In order to gain further insight into re-labeling in-
stances, we have plotted the balanced F-measure 
performance on the development test for various 
values of k.  The upper graph indicates that the 
three different methods correlate strongly.  The 
bottom graph makes apparent the benefits of tag-
ging as a constraint.  It also points to the weakness 
of the tagger, however.  At k=7000 and k=8000, 
the system tends to perform worse when using the 
tags as a constraint.  This indicates that tagger re-
call errors have the potential to filter out good can-
didates for re-labeling. 

Another observation from the graphs is that per-
formance actually drops for small values of k.  This 
would imply that many of the instances the classi-
fiers are most confident about re-labeling are in 
fact spurious.  To support this hypothesis, we 
trained the baseline system on the entire training 
set and computed its calibration error on the de-
velopment test data. The calibration error measures 
how “ realistic”  the probabilities output by the clas-
sifier are.  See [13] for details. 

 
Figure 4.  Classifier  calibration er ror  on the devel-
opment test data. 

 
Figure 4 illustrates the estimated calibration er-

ror at different thresholds.  As can be seen, the er-
ror is greatest for high confidence values indicating 
that the classifier is indeed very confidently pre-
dicting an instance as positive when it is negative.  
Extrapolating this calibration error to the re-labling 
classifiers (each trained on one half of the training 
data) offers some explanation as to why re-labeling 
starts off so poorly.  The error mass is exactly 
where we do not want it - at the highest confidence 
values.  This also offers an explanation as to why 
incremental re-labeling did not help. Fortunately, 
introducing a gene tagger as a constraint mitigates 
this problem. 

5.4 Exper iment Set 3: Final Evaluation 

We report our results using the best overall system 
configurations on the Task 1B evaluation data.  We 
“submitted”  3 runs for two different mouse con-
figurations and one for both fly and yeast.  The 
highest scores over the 3 runs are reported in Table 
3.  MouseWS used the best weakly supervised 
method as determined on the development test 
data: bagging with k=4000.  MouseMBR, Ye-
astMBR and FlyMBR used match-based re-labeling 
described in Section 5.2. The Gaussian prior was 
set to 2.0 for all runs and the 3 submissions for 
each configuration only varied in the threshold 
value T.  

 
 F-measure Precision Recall 

MouseWS 0.784 0.81 0.759 
MouseMBR 0.768 0.795 0.743 

FlyMBR 0.767 0.767 0.767 
YeastMBR 0.902 0.945 0.902 

 
Table 3.  Final evaluation results.  
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These results are competitive compared with 
the BioCreAtIvE Task 1B results where the highest 
F-measures for mouse, fly and yeast were 79.1, 
81.5 and 92.1 with the medians at 73.8, 66.1 and 
85.8, respectively.  The results for mouse and fly 
improve upon previous best reported results with 
an organism invariant, automatic system [1]. 

6 Conclusions 

The quality of training data is paramount to the 
success of fully automatic, organism invariant ap-
proaches to the normalization problem.  In this pa-
per we have demonstrated the utility of weakly 
supervised learning methods in conjunction with a 
gene name tagger for re-labeling noisy training 
data for gene name normalization.  The result be-
ing higher quality data with corresponding higher 
performance on the BioCreAtIvE Task 1B gene 
name normalization task.   

Future work includes applying method outlined 
here for correcting noisy data to other classifica-
tion problems. Doing so generally requires an in-
dependent “ filter”  to restrict re-labeling – the 
equivalent of the gene tagger used here.  We also 
have plans to improve classifier calibration. Inte-
grating confidence estimates produced by the gene 
name tagger, following [14], is another avenue for 
investigation. 
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Abstract

In this paper we present the evaluation
of a set of string similarity metrics used
to resolve the mapping from strings to
concepts in the UMLS MetaThesaurus.
String similarity is conceived as a single
component in a full Reference Resolution
System that would resolve such a map-
ping. Given this qualification, we obtain
positive results achieving 73.6 F-measure
(76.1 precision and 71.4 recall) for the
task of assigning the correct UMLS con-
cept to a given string. Our results demon-
strate that adaptive string similarity meth-
ods based on Conditional Random Fields
outperform standard metrics in this do-
main.

1 Introduction

1.1 String Similarity and Reference Resolution

String similarity/matching algorithms are used as a
component in reference resolution algorithms. We
use reference resolution in a broad sense, which in-
cludes any of the following aspects:

a. Intra-document noun phrase reference resolu-
tion.

b. Cross-document or corpus reference resolution.

c. Resolution of entities found in a corpus with
databases, dictionaries or other external knowl-
edge sources. This is also called semantic inte-

gration, e.g., (Li et al., 2005), reference ground-
ing, e.g., (Kim and Park, 2004) or normaliza-
tion, e.g., (Pustejovsky et al., 2002; Morgan et
al., 2004).

The last two aspects of reference resolution are
particularly important for information extraction,
and the interaction of reference resolution with in-
formation extraction techniques (see for example
Bagga (1998)). The extraction of a particular set of
entities from a corpus requires reference resolution
for the set of entities extracted (e.g., the EDT task in
ACE1), and it is apparent that there is more variation
in the cross-document naming conventions than in a
single document.

The importance of edit distance algorithms has
already been noticed, (Müller et al., 2002) and the
importance of string similarity techniques in the
biomedical domain has also been acknowledged,
e.g., (Yang et al., 2004).

String similarity/matching algorithms have also
been used extensively in related problems such as
Name databases and similar problems in structured
data, see (Li et al., 2005) and references mentioned
therein.

The problem of determining whether two similar
strings may denotate the same entity is particularly
challenging in the biomedical literature. It has al-
ready been noticed (Cohen et al., 2002) that there
is great variation in the naming conventions, and
noun phrase constructions in the literature. It has
also been noticed that bio-databases are hardly ever
updated with the names in the literature (Blaschke

1http://www.nist.gov/speech/tests/ace/
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et al., 2003). A further complication is that the ac-
tual mentions found in text are more complex than
just names - including descriptors, in particular. Fi-
nally, ambiguity (where multiple entities have the
same name) is very pervasive in biomedicine.

In this paper we investigate the use of several
string similarity methods to group together string
mentions that might refer to the same entity or con-
cept. Specifically, we consider the sub-problem of
assigning an unseen mention to one of a set of exist-
ing unique entities or concepts, each with an associ-
ated set of known synonyms. As our aim here is fo-
cusing on improving string matching, we have pur-
posely factored out the problem of ambiguity (to the
extent possible) by using the UMLS MetaThesaurus
as our data source, which is largly free of strings that
refer to multiple entities. Thus, our work here can be
viewed an important piece in a larger normalization
or reference resolution system that resolves ambigu-
ity (which includes filtering out mentions that don’t
refer to any entity of interest).

The experiments reported on in this paper evalu-
ate a suite of robust string similarity techniques. Our
results demonstrate considerable improvement to be
gained by using adaptive string similarity metrics
based on Conditional Random Fields customized to
the domain at hand. The resulting best metric, we
term SoftTFIDF-CRF, achieves 73.6 F-measure on
the task of assigning a given string to the correct
concept. Additionally, our experiments demonstrate
a tradeoff between efficiency and recall based on � -
gram indexing.

2 Background

2.1 Entity Extraction and Reference
Resolution in the Biomedical Domain

Most of the work related to reference resolution in
this domain has been done in the following areas: a)
Intra-document Reference resolution, e.g (Castaño
et al., 2002; Lin and Liang, 2004) b) Intra-document
Named entity recognition (e.g Biocreative Task 1A
(Blaschke et al., 2003), and others), also called clas-
sification of biological names (Torii et al., 2004) c)
Intra-document alias extraction d) cross-document
Acronym-expansion extraction, e.g., (Pustejovsky
et al., 2001). e) Protein names resolution against
database entries in SwissProt, protein name ground-

ing, in the context of a relation extraction task
(Kim and Park, 2004). One constraint in these ap-
proaches is that they use several patterns for the
string matching problem. The results of the protein
name grounding are 59% precision and 40% recall.
The Biocreative Task 1B task challenged systems
to ground entities found in article abstracts which
contain mentions of genes in Fly, Mouse and Yeast
databases. A central component in this task was re-
solving ambiguity as many gene names refer to mul-
tiple genes.

2.2 String Similarity and Ambiguity

In this subsection consider the string similarity is-
sues that are present in the biology domain in par-
ticular. The task we consider is to associate a string
with an existing entity, represented by a set of known
strings. Although the issue of ambiguity is present
in the examples we give, it cannot be resolved by
using string similarity methods alone, but instead by
methods that take into account the context in which
those strings occur.

The protein name p21 is ambiguous at least
between two entities, mentioned as p21-ras and
p21/Waf in the literature. A biologist can look at
a set of descriptions and decide whether the strings
are ambiguous or correspond to any of these two (or
any other entity).

The following is an example of such a mapping,
where R corresponds to p21-ras, W to p21(Waf) and
G to another entity (the gene). Also it can be noticed
that some of the mappings include subcases (e.g.,
R.1).2

String Form Entity
ras-p21 protein R
p21 R/W
p21(Waf1/Cip1) W
cyclin-dependent kinase-I p21(Waf-1) W
normal ras p21 protein R
pure v-Kirsten (Ki)-ras p21 R.1
wild type p21 R/W
synthetic peptide P21 R/W.2
p21 promoter G
transforming protein v-p21 R.3
v-p21 R.3
p21CIP1/WAF1 W
protein p21 WAF1/CIP1/Sd:1 W

Table 1: A possible mapping from strings to entities.

2All the examples were taken from the MEDLINE corpus.
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If we want to use an external knowlege source to
produce such a mapping, we can try to map it to con-
cepts in the UMLS Methatesaurus and entries in the
SwissProt database.

These two entities correspond to the concepts
C0029007 (p21-Ras) and C0288472 (p21-Waf) in
the UMLS Methathesaurus. There are 27 strings or
names in the UMLS that map to C0288472 (Table
2):

oncoprotein p21 CAP20
CDK2-associated protein 20 kDa MDA 6
Cdk2 inhibitor WAF1 CIP1
Cdk-interacting protein cdn1 protein
CDK-Interacting Protein 1 CDKN1A
CDKN1 protein Cip1 protein
Cip-1 protein mda-6 protein
Cyclin-Dependent Kinase Inhibitor 1A p21
p21 cell cycle regulator p21(cip1)
p21 cyclin kinase inhibitor p21(waf1-cip1)
Pic-1 protein (cyclin) p21-WAF1
senescent cell-derived inhibitor protein 1 protein p21
CDKN1A protein WAF1 protein
WAF-1 Protein

Table 2: UMLS strings corresponding to C0288472

There are 8 strings that map to concept C0029007
(Table 3).

Proto-Oncogene Protein p21(ras) p21(c-ras)
p21 RAS Family Protein p21 RAS Protein
Proto-Oncogene Protein ras c-ras Protein
ras Proto-Oncogene Product p21 p21(ras)

Table 3: UMLS strings corresponding to C0029007

It can be observed that there is only one exact
match: p21 in C0288472 and Table 1. It should
be noted that p21, is not present in the UMLS as a
possible string for C0029007. There are other close
matches like p21(Waf1/Cip1) (which seems very
frequent) and p21(waf1-cip1).

An expression like The inhibitor of cyclin-
dependent kinases WAF1 gene product p21 has
a high similarity with Cyclin-Dependent Kinase
Inhibitor 1 A and The cyclin-dependent kinase-I
p21(Waf-1) partially matches Cyclin-Dependent Ki-
nase

However there are other mappings which look
quite difficult unless some context is given to pro-
vide additional clues (e.g., v-p21).

The SwissProt entries CDN1A FELCA,
CDN1A HUMAN and CDN1A MOUSE are

related to p21(Waf). They have the following set of
common description names:

Cyclin-dependent kinase inhibitor 1, p21, CDK-
interacting protein 1.3

There is only one entry in SwissProt related to p21-
ras: Q9PSS8 PLAFE: with the description name
P21-ras protein and a related gene name: Ki-ras.

It should be noted that SwissProt classifies, as dif-
ferent entities, the proteins that refer to different or-
ganisms. The UMLS MetaThesaurus, on the other
hand, does not make this distinction. Neither is this
distinction always present in the literature.

3 Methods for Computing String
Similarity

A central component in the process of normaliza-
tion or reference resolution is computing string sim-
ilarity between two strings. Methods for measuring
string similarity can generally be broken down into
character-based and token-based approaches.

Character-based approaches typically consist of
the edit-distance metric and variants thereof. Edit
distance considers the number of edit operations (ad-
dition, substitution and deletion) required to trans-
form a string ��� into another string �
	 . The Leven-
stein distance assigns unit cost to all edit operations.
Other variations allow arbitrary costs or special costs
for starting and continuing a “gap” (i.e., a long se-
quence of adds or deletes).

Token-based approaches include the Jaccard sim-
ilarity metric and the TF/IDF metric. The meth-
ods consider the (possibly weighted) overlap be-
tween the tokens of two strings. Hybrid token and
character-based are best represented by SoftTFIDF,
which includes not only exact token matches but
also close matches (using edit-distance, for exam-
ple). Another approach is to perform the Jaccard
similarity (or TF/IDF) between the � -grams of the
two strings instead of the tokens. See Cohen et
al. (2003) for a detailed overview and comparison
of some of these methods on different data sets.

3There are two more description names for the human and
mouse entries. The SwissProt database has also associated
Gene names to those entries which are related to some of the
possible names that we find in the literature. Those gene names
are: CDKN1A, CAP20, CDKN1, CIP1, MDA6, PIC1, SDI1,
WAF1, Cdkn1a, Cip1, Waf1. It can be seen that those names are
incorporated in the UMLS as protein names.
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Recent work has also focused on automatic meth-
ods for adapting these string similarity measures
to specific data sets using machine learning. Such
approaches include using classifiers to weight var-
ious fields for matching database records (Cohen
and Richman, 2001). (Belenko and Mooney, 2003)
presents a generative, Hidden Markov Model for
string similarity.

4 An Adaptive String Similarity Model

Conditional Random Fields (CRF) are a recent, in-
creasingly popular approach to sequence labeling
problems. Informally, a CRF bears resemblance to
a Hidden Markov Model (HMM) in which, for each
input position in a sequence, there is an observed
variable and a corresponding hidden variable. Like
HMMs, CRFs are able to model (Markov) depen-
dencies between the hidden (predicted) variables.
However, because CRFs are conditional, discrimina-
tively trained models, they can incorporate arbitrary
overlapping (non-independent) features over the en-
tire input space — just like a discriminative classi-
fier.

CRFs are log-linear models that compute the
probability of a state sequence, ��
����� ��� � 	
��������� ����� ,
given an observed sequence, �� ��� � � � � 	 ��������� � � � as:� ��������� ��� � "!#%$'&)( * �+,.- �0/+1 - �32 1
4
1 ��� ,65 � � � , � �� �87 �:9

where the 4;1 are arbitrary feature functions, the2 1 are the model parameters and
 <!# is a normaliza-

tion function.
Training a CRF amounts to finding the 2 1 that

maximize the conditional log-likelihood of the data.
Given a trained CRF, the inference problem in-

volves finding the most likely state sequence given
a sequence of observations. This is done using a
slightly modified version of the Viterbi algorithm
(See Lafferty et al. (2001) more for details on
CRFs).

4.1 CRFs for String Similarity

CRFs can be used to measure string similarity by
viewing the observed sequence, �� , and the state se-
quence, �� , as sequences of characters. In practice
we are presented with two strings, �3� , and �=	 of pos-
sibly differing lengths. A necessary first step is to

align the two strings by applying the Levenstein dis-
tance procedure as described earlier. This produces
a series of edit operations where each operation has
one of three possible forms: 1) >@? �BA (addition), 2)�DCE? � A (substitution) and 3) �BCF?G> (deletion). The
observed and hidden sequences are then derived by
reading off the terms on the right and left-hand sides
of the operations, respectively. Thus, the possible
state values include all the characters in our domain
plus the special null character, > .

Feature Description Variables
State uni-gram H.IKJ.L
State bi-gram H.I J�M�N8O I J L
Obs. uni-gram; state uni-gram H�PQJ O IKJ.L
Obs. bi-gram; state uni-gram H�P J�M�N8O P J�O I J L
Obs. is punctuation and state uni-gram H�PQJ O IKJ.L
Obs. is a number and state uni-gram H�PQJ O IKJ.L

Table 4: Features used for string similarity

We employ a set of relatively simple features in
our string similarity model described in Table 4. One
motivation for keeping the set of features simple was
to determine the utility of string similarity CRFs
without spending effort designing domain-specific
features; this is a primary motivation for taking a
machine learning approach in the first place. Addi-
tionally, we have found that more specific, discrimi-
nating features (e.g., observation tri-grams with state
bi-grams) tend to reduce the performance of the
CRF on this domain - in some cases considerably.

4.2 Practical Considerations

We discuss a few practical concerns with using
CRFs for string similarity.

The first issue is how to scale CRFs to this task.
The inference complexity for CRFs is RS��� 	 7 � where� is the size of the vocabulary of states and 7 is the
number of input positions. In our setting, the num-
ber of state variable values is very large - one for
each character in our alphabet (which is on the or-
der of 40 or more including digits and punctuation).
Moreover, we typically have very large training sets
largely due to the fact that T.U 	�V training pairs are
derivable from an equivalence class of size W .

Given this situation, standard training for CRFs
becomes unwieldy, since it involves performing in-
ference over the entire data set repeatedly (typically
a few hundred iterations are required to converge).
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As such, we resort to an approximation: Voted Per-
ceptron training (Collins, 2002). Voted Perceptron
training does not involve maximizing log-likelihood,
but instead updates parameters via stochastic gradi-
ent descent with a small number of passes over the
data.

Another consideration that arises is given a pair
of strings, which one should be considered the “ob-
served” sequence and which one the “hidden” se-
quence.

Another consideration that arises is given a pair
of strings, which string should be considered the
“observed” sequence and which the “hidden” se-
quence?4 We have taken to always selecting the
longest string as the “observed” string, as it appears
most natural, though that decision is somewhat arbi-
trary.

A last observation is that the probability assigned
to a pair of strings by the model will be reduced ge-
ometrically for longer string pairs (since the prob-
ability is computed as a product of 7 terms, where7 is the length of the sequence). We have taken to
normalizing the probabilities by the length of the se-
quence roughly following the approach of (Belenko
and Mooney, 2003).

A final point here is that it is possible to use
Viterbi decoding to find the W -best hidden strings
given only the observed string. This provides a
mechanism to generate domain-specific string alter-
ations for a given string ranked by their probability.
The advantage of this approach is that such alter-
ations can be used to expand a synonym list; exact
matching can then be used greatly increasing effi-
ciency. Work is ongoing in this area.

5 Matching Procedure

Our matching procedure in this paper is set in the
context of finding the concept or entity (each with
some existing set of known strings) that a given
string, � , is referring to. In many settings, such as the
BioCreative Task 1B task mentioned above, it is nec-
essary to match large numbers of strings against the
lexicon - potentially every possible phrase in a large

4Note that a standard use for models such as this is to find the
most likely hidden sequence given only the observed sequence.
In our setting here we are provided the hidden sequence and
wish to compute it’s (log-)probability given the observed se-
quence.

number of documents. As such, very fast matching
times (typically on the order of milliseconds) are re-
quired.

Our method can be broken down into two steps.
We first select a reasonable candidate set of strings
(associated with a concept or lexical entry), XY��Z� � �B	 ��������� � U , reasonably similar to the given string� using an efficient method. We then use one of a
number of string similarity metrics on all the pairs:[ � � � �]\]� [ � � � 	B\]������� [ � � � U \

The set of candidate strings, �3� � �D	 ��������� � U is deter-
mined by the � -gram match ratio, which we define
as: �
^`_ 7ba � ��� � �=C���� �dc � Wfef���g�FhiWfef��� C ���� Wfef���g�FjiWfef��� C ���

where Wfek��lf�m�on=pE� such that p is a � -gram of lrq .
This set is retrieved very quickly by creating a � -
gram index: a mapping between each � -gram and
the strings (entries) in which it occurs. At query
time, the given string is broken into � -grams and
the sets corresonding to each � -gram are retrieved
from the index. A straightforward computation finds
those entries that have a certain number of � -grams
in common with the query string � from which the
ratio can be readily computed.

Depending on the setting, three options are possi-
ble given the returned set of candidates for a string� :

1. Consider � and �BC equivalent where �BC is the
most similar string

2. Consider � and � C equivalent where � C is the
most similar string and � ats ��� � � C �vuxw , for
some threshold w

3. Consider � and � C equivalent for all � C where� a�s ��� � � C �%uyw , for some threshold w
In the experiments in this paper, we use the first

criterion since for a given string, we know that it
should be assigned to exactly one concept (see be-
low).

6 Experiments and Results

6.1 Data and Experimental Setup

We used the UMLS MetaThesaurus for all our ex-
periments for three reasons: 1) the UMLS repre-
sents a wide-range of important biomedical concepts
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for many applications and 2) the size of the UMLS
(compared with BioCreative Task 1B, for example)
promotes statistically significant results as well as
sufficient training data 3) the problem of ambiguity
(multiple concepts with the same name) is largely
absent in the UMLS.

The UMLS is a taxonomy of medical and clini-
cal concepts consisting of 1,938,701 lexical entries
(phrase strings) where each entry belongs to one (or,
in very rarely, more than one) of 887,688 concepts.
We prepared the data by first selecting only those
lexical entries belonging to a concept containing 12
or more entries. This resulted in a total of 129,463
entries belonging to 7,993 concepts. We then di-
vided this data into a training set of 95,167 entries
and test set of 34,296 entries where roughly 70% of
the entries for each concept were placed in the train-
ing set and 30% in the test set. Thus, the training
set and test set both contained some string entries
for each of the 7,993 concepts. While restricting the
number of entries to 12 or more was somewhat arbi-
trary, this allowed for at least 7 (70% of 12) entries
in the training data for each concept, providing suf-
ficient training data.

The task was to assign the correct concept identi-
fier to each of the lexical entries in the test set. This
was carried out by finding the most similar string
entry in the training data and returning the con-
cept identifier associated with that entry. Since each
test instance must be assigned to exactly one con-
cept, our system simply ranked the candidate strings� �'� � 	
������� � U based on the string similarity metric
used. We compared the results for different maxi-
mum � -gram match ratios. Recall that the � -gram
match mechanism is essentially a filter; higher val-
ues correspond to larger candidate pools of strings
considered by the string similarity metrics.

We used six different string similarity metrics
that were applied to the same set of candidate re-
sults returned by the � -gram matching procedure
for each test string. These were TFIDF, Lev-
enstein, q-gram-Best, CRF, SoftTFIDF-Lev and
SoftTFIDF-CRF. TFIDF and Levenstein were de-
scribed earlier. The q-gram-Best metric simply se-
lects the match with the lowest � -gram match ratio
returned by the � -gram match procedure described

Precision Recall F-measure
SoftTFIDF-CRF( z={ | ) 0.761 0.714 0.736
SoftTFIDF-Lev( zD{ | ) 0.742 0.697 0.718
CRF( zD{ } ) 0.729 0.705 0.717~ -gram Best( zD{ �'�Q| ) 0.714 0.658 0.685
Levenstein( zD{ � ) 0.710 0.622 0.663
TFIDF( z={ �'�Q| ) 0.730 0.576 0.644

Table 5: Maximum F-measure attained for each
string similarity metric, with corresponding preci-
sion and recall values. The numbers in parentheses
indicate the � -gram match value for which the high-
est F-measure was attained.

above5. The SoftTFIDF-Lev model is the Soft-
TFIDF metric described earlier where the secondary
metric for similarity between pairs of tokens is the
Levenstein distance.

The CRF metric is the CRF string similarity
model applied to the entire strings. This model was
trained on pairs of strings that belonged to the same
concept in the training data, resulting in 130,504
string pair training instances. The SoftTFIDF-CRF
metric is the SoftTFIDF method where the sec-
ondary metric is the CRF string similarity model.
This CRF model was trained on pairs of tokens (not
entire phrases). We derived pairs of tokens by find-
ing the most similar pairs of tokens (similarity was
determined here by Levenstein distance) between
strings belonging to the same concept in the training
data. This resulted in 336,930 string pairs as training
instances.

6.2 Results

We computed the precision, recall and F-measure
for each of the string similarity metrics across dif-
ferent � -gram match ratios shown in Fig. 1. Both
a precision and recall error is introduced when the
top-returned concept id is incorrect; just a recall er-
ror occurs when no concept id is returned at all - i.e.
when the � -gram match procedure returns the empty
set of candidate strings. This is more likely to occur
when for lower � values and explains the poor recall
in those cases. In addition, we computed the mean
reciprocal rank of each of the methods. This is com-
puted using the ranked, ordered list of the concepts
returned by each method. This scoring method as-

5This is essentially the Jaccard similarity metric over ~ -
grams instead of tokens
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Figure 1: Precision, Recall, F-measure and Mean
Reciprocal Rank comparisions for each string simi-
larity metric across different � -gram match ratios.

signs a score of �D� ^ for each test instance where ^
is the position in the ranked list at which the correct
concept is found. For example, by returning the cor-
rect concept as the 4th element in the ranked list, a
method is awarded �D�B� �Y� ���;� . The mean recip-
rocal rank is just the average score over all the test
elements.

As can be seen, the SoftTFIDF-CRF string-
similarity metric out-performs all the other meth-
ods on this data set. This approach is robust to
both word order variations and character-level dif-
ferences, the latter with the benefit of being adapted
to the domain. Word order is clearly a critical fac-
tor in this domain6 though the CRF metric, entirely
character-based, does surprisingly well - much bet-
ter than the Levenstein distance. The q-gram-Best
metric, being able to handle word order variations
and character-level differences, performs fairly.

The graphs illustrate a tradeoff between efficiency
and accuracy (recall). Lower � -gram match ratios
return fewer candidates with correspondingly fewer
pairwise string similarities to compute. Precision ac-
tually peaks with a � -gram match ratio of around
0.2. Recall tapers off even up to high q-gram lev-
els for all metrics, indicating that nearly 30% of
the test instances are probably too difficult for any
string similarity metric. Error analysis indicates that
these cases tend to be entries involving synonymous
“nicknames”. Acquiring such synonyms requires
other machinery, e.g., (Yu and Agichtein, 2003).

7 Conclusions

We have explored a set of string similarity metrics
in the biological domain in the service of reference
resolution. String similarity is only one parameter to
be considered in this task. We presented encourag-
ing results for assigning strings to UMLS concepts
based solely on string similarity metrics — demon-
strating that adaptive string similarity metrics show
significant promise for biomedical text processing.
Further progress will require a system that 1) uti-
lizes context of occurrence of respective strings for
handling ambiguity and 2) further improves recall

6Inspection of the data indicates that the purely character-
based methods are more robust than one might think. There are
at least 8 strings to match against for a concept and it is likely
that at least one of them will have similar word order to the test
string.
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through expanded synonyms.
Future work should also consider the depen-

dent nature (via transitivity) of reference resolution.
Comparing a test string against all (current) mem-
bers of an equivalence class and considering multi-
ple, similar test instances simultaneously (McCal-
lum and Wellner, 2003) are two directions to pursue
in this vein.

8 Acknowledgements

We thank Dave Harris, Alex Morgan, Lynette Hirschman and
Marc Colosimo for useful discussions and comments. This
work was supported in part by MITRE Sponsored Research
51MSR123-A5.

References
A. Bagga. 1998. Coreference, cross-document coreference,

and information extraction methodologies. Ph.D. thesis,
Duke University. Supervisor-Alan W. Biermann.

M. Belenko and R. Mooney. 2003. Adaptive duplicate detec-
tion using learnable string similarity measures. In Proceed-
ings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Datamining, pages 39–48, Wash-
ington D.C.

C. Blaschke, L. Hirschman, A. Yeh, and A. Valencia. 2003.
Critical assessment of information extraction systems in bi-
ology. Comparative and Functional Genomics, pages 674–
677.

J. Castaño, J. Zhang, and J. Pustejovsky. 2002. Anaphora reso-
lution in biomedical literature. In International Symposium
on Reference Resolution, Alicante, Spain.

William Cohen and Jacob Richman. 2001. Learning to match
and cluster entity names. In ACM SIGIR-2001 Workshop
on Mathematical/Formal Methods in Information Retrieval,
New Orleans, LA, September.

K. Bretonnel Cohen, Andrew Dolbey, George Acquaah-
Mensah, and Lawrence Hunter. 2002. Contrast and vari-
ability in gene names. In Proceedings of the Workshop on
Natural Language Processing in the Biomedical Domain,
pages 14–20, Philadelphia, July. Association for Computa-
tional Linguistics.

W. Cohen, P. Ravikumar, and S. Fienburg. 2003. A comparison
of string metrics for matching names and records. In KDD
Workshop on Data Cleaning and Object Consolidation.

Michael Collins. 2002. Discriminative training methods for
hidden markove models: Theory and experiments with per-
ceptron algorithms. In EMNLP 2002.

Yu H, Hatzivassiloglou V, Friedman C, Rzhetsky A, and Wilbur
W. 2002. Automatic extraction of gene and protein syn-
onyms from medline and journal articles. In Proc AMIA
Symposium, pages 919–23.

Jung-Jae Kim and Jong C. Park. 2004. Bioar: Anaphora res-
olution for relating protein names to proteome database en-
tries. In Sanda Harabagiu and David Farwell, editors, ACL
2004: Workshop on Reference Resolution and its Applica-
tions, pages 79–86, Barcelona, Spain, July. Association for
Computational Linguistics.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. 18th Interna-
tional Conf. on Machine Learning, pages 282–289. Morgan
Kaufmann, San Francisco, CA.

X. Li, P. Morie, and D. Roth. 2005. Semantic integration
in text: From ambiguous names to identifiable entities. AI
Magazine. Special Issue on Semantic Integration.

Y. Lin and T. Liang. 2004. Pronominal and sortal anaphora
resolution for biomedical literature. In Proceedings of RO-
CLING XVI: Conference on Computational Linguistics and
Speech Processing, Taipei, Taiwan.

Andrew McCallum and Ben Wellner. 2003. Toward con-
ditional models of identity uncertainty with application to
proper noun coreference. In Proceedings of the IJCAI-2003
Workshop on Information Integration on the Web, pages 79–
86, Acapulco, Mexico, August.

A. Morgan, L. Hirschman, M. Colosimo, A. Yeh, and
J. Colombe. 2004. Gene name identification and normaliza-
tion using a model organism database. Journal of Biomedi-
cal Informatics, (6):396–410.

Christoph Müller, Stefan Rapp, and Michael Strube. 2002. Ap-
plying co-training to reference resolution. In ACL, pages
352–359.

J. Pustejovsky, J. Castaño, B. Cochran, M. Kotecki, and
M. Morrell. 2001. Automatic extraction of acronym-
meaning pairs from medline databases. In Proceedings of
Medinfo, London.

J. Pustejovsky, J. Castaño, J. Zhang, R. Sauri, and W. Luo.
2002. Medstract: creating large-scale information servers
from biomedical texts. In Proceedings of the Workshop on
Natural Language Processing in the Biomedical Domain,
pages 85–92, Philadelphia, July. Association for Computa-
tional Linguistics.

M. Torii, S. Kamboj, and K. Vijay-Shanker. 2004. Using name-
internal and contextual features to classify biological terms.
Journal of Biomedical Informatics, pages 498–511.

X. Yang, G. Zhou, J. Su, and C. L. Tan. 2004. Improving
noun phrase coreference resolution by matching strings. In
Proceedings of 1st Internation Joint Conference of Natural
Language Processing, pages 326–333.

H. Yu and E. Agichtein. 2003. Extracting synonymous gene
and protein terms from biological literature. Bioinformatics,
pages 340–349.

16



Proceedings of the ACL-ISMB Workshop on Linking Biological Literature, Ontologies and Databases: Mining
Biological Semantics, pages 17–24, Detroit, June 2005.c©2005 Association for Computational Linguistics

 
  

Abstract 
Gene and protein named-entity recognition (NER) and 
normalization is often treated as a two-step process. 
While the first step, NER, has received considerable 
attention over the last few years, normalization has 
received much less attention. We have built a dictionary 
based gene and protein NER and normalization system 
that requires no supervised training and no human 
intervention to build the dictionaries from online 
genomics resources. We have tested our system on the 
Genia corpus and the BioCreative Task 1B mouse and 
yeast corpora and achieved a level of performance 
comparable to state-of-the-art systems that require 
supervised learning and manual dictionary creation. Our 
technique should also work for organisms following 
similar naming conventions as mouse, such as human. 
Further evaluation and improvement of gene/protein 
NER and normalization systems is somewhat hampered 
by the lack of larger test collections and collections for 
additional organisms, such as human. 

1 Introduction 
In the genomics era, the field of biomedical research 
finds itself in the ironic situation of generating new 
information more rapidly than ever before, while at the 
same time individual researchers are having more 
difficulty getting the specific information they need. 
This hampers their productivity and efficiency. Text 
mining has been proposed as a means to assist 
researchers in handling the current expansion of the 
biomedical knowledge base (Hirschman et al., 2002). 
Fundamental tasks in text mining are named entity 
recognition (NER) and normalization. NER is the 
identification of text terms referring to items of interest, 
and normalization is the mapping of these terms to the 
unique concept to which they refer. Once the concepts 
of interest are identified, text mining can proceed to 
extract facts and other relationships of interest that 
involve these recognized entities. With the current 
research focus on genomics, identifying genes and 
proteins in biomedical text has become a fundamental 
problem in biomedical text mining research (Cohen and 
Hersh, 2005). The goal of our work here is to explore 
the potential of using curated genomics databases for 
dictionary-based NER and normalization. These 
databases contain a large number of the names, 
symbols, and synonyms and would likely enable 

recognition of a wide range of genes on a wide range of 
literature without corpus-specific training. 

Unsupervised gene/protein named entity normalization using automatically 
extracted dictionaries 

Aaron M. Cohen 
Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA

cohenaa@ohsu.edu 

Gene and protein NER and normalization can be 
viewed as a two-step process. The first step, NER, 
identifies the strings within a sample of text that refer to 
genes and proteins. The second step, normalization, 
determines the specific genes and proteins referred to by 
the text strings. 

Many investigators have examined the initial step of 
gene and protein NER. One of the most successful 
rules-based approaches to gene and protein NER in 
biomedical texts has been the AbGene system (Tanabe 
and Wilbur, 2002), which has been used by several 
other researchers. After training on hand-tagged 
sentences from biomedical text, it applies a Brill-style 
tagger (Brill, 1992) and manually generated post-
processing rules. AbGene achieves a precision of 85.7% 
at a recall of 66.7% (F1 = 75%). Another successful 
system is GAPSCORE (Chang et al., 2004). It assigns a 
numeric score to each word in a sentence based on 
appearance, morphology, and context of the word and 
then applies a classifier trained on these features. After 
training on the Yapex corpus (Franzen et al., 2002), the 
system achieved a precision of 81.5% at a recall of 
83.3% for partial matches. 

For many applications of text mining, the second step, 
normalization is as important as the first step. Many 
biomedical concepts, including genes and proteins, have 
large numbers of synonymous terms (Yu and Agichtein, 
2003, Tuason et al., 2004). Without normalization, 
different terms for the same concept are treated as 
distinct items, which can distort statistical and other 
analysis. Normalization can aggregate references a 
given gene or protein and can therefore increase the 
sample size for concepts with common synonyms. 
However, normalization of gene and protein references 
has not received as much attention as the NER step. 

One recent conference, the BioCreative Critical 
Assessment for Information Extraction in Biology 
(Krallinger, 2004), had a challenge task that addressed 
gene and protein normalization. The task was to identify 
the specific genes mentioned in a set of abstracts given 
that the organism of interest was mouse, fly, or yeast. 
Training and test collections of about 250 abstracts were 
manually prepared and made available to the 
participants along with synonym lists. Seven groups 
participated in this challenge task (Hirschman et al., 
2004),  with the best F-measures ranging from 92.1% on 
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yeast to 79.1% on mouse. The overall best performing 
system used a combination of hand built dictionaries, 
approximate string matching, and parameter tuning 
based on the training data, and performed match 
disambiguation using a collection of biomedical 
abbreviations combined with approximate string match 
scoring and preferring concepts with a high count of 
occurring terms (Hanisch et al., 2004). 

 One thing that almost all of these systems have in 
common is that they need to be trained on a text corpus 
and/or use manually built dictionaries based on the 
training corpus. Since the training corpus may be a 
small sample of the total relevant biomedical literature, 
it is uncertain how the performance of these systems 
will change over time or when applied to other sources 
of biomedical text. Also, since new genes and proteins 
are being described all the time, it is unclear how these 
systems will handle genes discovered after system 
training is complete. This is may especially be a 
problem for normalization. 

Dictionary-based approaches to gene and protein NER 
and normalization that require no training have several 
advantages over orthographic, lexical, and contextual 
based approaches. Currently there are few test 
collections for gene and protein normalization, and they 
are relatively small (Hirschman et al., 2004). 
Unsupervised systems therefore may perform more 
uniformly over different data sets and over time for the 
near future. Since they are not dependent upon training 
to discover local orthographic or lexigraphic clues, they 
can recognize long multi-word names as easily as short 
forms. Dictionary-based approaches can also normalize 
gene and protein names, reducing many synonyms and 
phrases representing the same concept to a single 
identifier for that gene or protein.  

In addition, dictionary-based approaches can make 
use of the huge amount of information in curated 
genomics databases. Currently, there is an enormous 
amount of manual curation activity related to gene and 
protein function. Several genomics databases contain 
large amounts of curated gene and protein name 
symbols as well as full names. Groups such as the 
Human Genome Organisation (HUGO), Mouse Genome 
Institute (MGI), UniProt, and the National Center for 
Biotechnology Information (NCBI) collect and organize 
information on gene and proteins, much of it from the 
biomedical literature, including gene names, symbols, 
and synonyms. Dictionary-based approaches provide a 
way to make use of this information for gene and 
protein NER and normalization. As the databases are 
updated by the curating organization, a NER system 
based on these databases can automatically incorporate 
additional new names and symbols. These approaches 
can also be very fast. Much of the computation can be 

performed during the construction of the dictionary. 
This can leave the actual searching for dictionary terms 
a simple and rapid process. 

Tsuruoka and Tsujii recently studied the use of 
dictionary-based approaches for protein name 
recognition (Tsuruoka and Tsujii, 2004), although they 
did not evaluate the normalization performance. They 
applied a probabilistic term variant generator to expand 
the dictionary, and a Bayesian contextual filter with a 
sub-sentence window size to classify the terms in the 
GENIA corpus as likely to represent protein names. 
Overall they obtained a precision of 71.1%, at a recall of 
62.3% and an F-measure of 66.6%. Tsuruoka and Tsujii 
did not make use of curated database information, and 
instead split the GENIA corpus into training and test 
data sets of 1800 and 200 abstracts respectively, and 
extracted the tagged protein names from the training set 
to use as a dictionary. These results compare well to, 
being a bit below, other non-dictionary based methods 
applied to the GENIA corpus (Lee et al., 2004, Zhou et 
al., 2004).  

In this work we attempt to answer several questions 
pertaining to dictionary-based gene/protein NER: 

• What curated databases provide the best collection 
of names and symbols? 

• Can simple rules generate sufficient orthographic 
variants? 

• Can common English word lists be used to decrease 
false positives? 

• What is the overall normalization performance of 
an unsupervised dictionary-based approach? 

2 Methods 
A dictionary-based NER system starts out with a list, 

potentially very large, of text strings, called terms, 
which represent concepts of interest. In our system, the 
terms are organized by concept, in this case a unique 
identifier for the gene or protein. All terms for a given 
concept are kept together. The combination of terms 
indexed by concept is similar to a traditional thesaurus, 
and when used for NER and normalization is usually 
called a dictionary. When a term is found in a sample of 
text, it is a simple process to map the term to the unique 
gene or protein that it represents. There are several 
unique identifiers in use by the gene curation 
organizations, we chose to use the official symbol as a 
default, but it is easy to use other database identifiers as 
needed. 

2.1 Building the dictionary 
Building the initial dictionary is an essential first step 

in dictionary-based NER. The dictionaries we used in 
this study were built automatically from five databases 
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available for download: MGI, Saccharomyces, UniProt 
(the curated SwissProt portion only), LocusLink, and 
the Entrez Gene database. For each of these databases, 
the official symbol, unique identifiers, name, symbol, 
synonym, and alias fields were extracted. Symbols, 
synonyms, and aliases corresponding to the same 
official symbol were combined into a single list. At this 
stage in dictionary generation, any leading or trailing 
white space characters are removed. The original 
capitalization of each term is kept. This will be 
important in a later step 

Like several other investigators (Tanabe and Wilbur, 
2002, Chang et al., 2004), we do not discriminate 
between the names of genes and the proteins that they 
code for. For many text mining purposes, recognizing a 
mention of a gene or the coded protein has been treated 
as equivalent (Cohen and Hersh, 2005). Therefore, 
combining terms corresponding to the same official 
symbol is justified, even if one database is composed of 
genes and the other proteins. 

2.2 Generating orthographic variants 
Our previous work on gene and protein name synonyms 
(Cohen et al., 2005) led us to make the observation that 
many name synonyms are simple orthographic variants 
of each other, and that most of these variants can be 
generated with a few simple rules. The next step in 
dictionary generation is to generate variant terms for 
each term extracted from the downloaded databases. 

Our system uses seven simple rules to generate 
variants: 

(1) If the original term includes internal spaces, 
these can be replaced by hyphens (e.g., “IL 10” 
to “IL-10”). 

(2) If the original term includes internal hyphens, 
these can be replaced by spaces (e.g., “mmac-1” 
to “mmac 1”). 

(3) If the original term includes internal spaces or 
hyphens, these can be removed (e.g., “nf-kappa 
b” to “nfkappab”). 

(4) If the original term ends in a letter followed by 
single digit, or a letter followed by single digit 
and then a single letter, a hyphen can be added 
before the digit (e.g., “NFXL1” to “NFXL-1”). 

(5) If the original term ends in a digit, followed by 
the single letter ‘a’ or ‘b’, we can add a hyphen 
before the ‘a’ or ‘b’ and also expand ‘a’ to 
‘alpha’ and ‘b’ to ‘beta’ (e.g., “epm2b” to 
“epm2-beta”). 

(6) If the original term ends in ‘-1’ or a ‘-2’, replace 
this ending with the Roman numeral equivalent, 
‘-i’ or ‘-ii’ respectively. 

(7) For yeast only, if the original term consists of 
one space-delimited token, append a “p” (see 
(Cherry, 1995)). 

These rules are applied iteratively until no new terms 
are generated. 

2.3 Separating common English words 
The next step aids in discriminating mentions of gene 
and protein names from common English words. The 
dictionary now contains a large number of terms 
extracted from the databases along with generated 
variants. At this point the dictionary is split into two 
parts. Terms that case-insensitively match a list of 
common English words are put into the one dictionary, 
and other terms are put into a separate dictionary.  

In practice, this creates a small dictionary of terms 
easy to confuse with common English words (the 
confusion dictionary) and a much larger dictionary of 
terms that are not confused with English words (the 
main dictionary). When searching text for gene and 
protein names, the terms in the smaller dictionary will 
be handled differently than the terms in the larger 
dictionary. 

For the work presented here, a file of 74,550 common 
English words was used to filter the terms. This file is 
available as part of the Moby lexical resource, and is 
available at (Ward, 2000).  

2.4 Screening out the most common English 
words 

Some English words are so common that when they 
occur they are rarely references to gene and protein 
names. Our approach includes a list of about 300 
English words that is used as a “stop” list. In our system 
these words are never recognized as gene or protein 
terms, even if those terms appear in one of the curated 
databases. 

We obtained our list of the 300 most common words 
in the English language (Carroll et al., 1971). To this 
list we added a few terms that are commonly found in 
the biomedical literature that should not be confused 
with specific gene names. These include “gene”, 
“genes”, “protein”, “proteins”, ”locus”, ”site”, “alpha”, 
“beta”, and “as a”. 

Terms appearing in this most common word list are 
removed from both of the dictionaries. The final product 
of the four preceding steps are two dictionaries, a main 
dictionary and a confusion dictionary, each which map 
terms to the unique identifier for the gene/protein 
symbol corresponding to that term. 

2.5 Searching the text 
With the two dictionaries complete it is straightforward 
to search input text for mentions of gene and protein 
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names.  While the algorithm can handle practically any 
size input text, in practice the input will usually be 
individual sentences or abstracts, and this is the input 
size to which we have tuned our system. 

For speed and accuracy, we first search the input text 
for the terms within the dictionary, and if a term is 
found, we then check to ensure that the matching text is 
bounded by characters that are acceptable delimiters for 
gene and protein names. In our system this includes 
white space characters as well as these characters: 
.,/\\(){}[]=;?*!". Note that our approach does not 
prohibit these characters from appearing within the 
name, only that the matching sequence of characters is 
bounded by these delimiters. Also, the approach does 
not require tokenization of the input string. We consider 
this more flexible than delimiter-based tokenization, 
which would not allow delimiters to appear within the 
terms.  

This method of searching and checking delimiters is 
applied for every term in both the main and confusion 
dictionaries with one essential difference. Case-
insensitive search is performed on the terms in the main 
dictionary. Strict case-sensitive search is performed on 
terms in the confusion dictionary. This requires terms in 
the confusion dictionary to exactly match the 
capitalization of the input text. The observation here is 
that a string like “dark” appearing in biomedical text is 
most often being used as a normal English word, while 
a string like “DARK”, is likely being used as a gene 
name. 

Finally, the algorithm examines all matching terms on 
the input text. Overlaps are resolved with a combination 
of criteria based on comparing the confidence and 
length of each recognized entity. In the current 
implementation, the confidence of the dictionary-based 
NER is always 1.0, so in practice the system resolves 
overlap by keeping the entity recognized by the longest 
overlapping term and discarding any shorter 
overlapping entities. 

2.6 Disambiguation 
It has been shown that a large number of gene and 
protein terms refer to more than one actual concept with 
over 5% of terms being ambiguous intra-species and 
85% being ambiguous with gene names for other 
organisms (Tuason et al., 2004, Chen et al., 2005). For 
normalization, occurrences of these ambiguous terms 
need to be resolved to the correct concept. This is called 
disambiguation. 

Various disambiguation approaches have been 
proposed, including the method of Hanisch previously 
described, as well as simply ignoring ambiguous terms. 
Ignoring all ambiguous terms can be wasteful, since 
context may allow disambiguation to a unique concept. 

This can helpful for increasing the sample size for 
further text mining. For example NER and 
normalization can be performed on abstracts, and 
further processing (e.g., co-occurrence detection) 
performed at the sentence level. Our approach to 
disambiguation makes two assumptions about the 
biomedical literature. First, ambiguous terms are often 
synonyms for other, non-ambiguous terms within the 
same text sample, and second, authors usually explicitly 
provide sufficient context for readers to resolve 
ambiguous terms. 

For each ambiguous term, we collect the potential 
normalized concepts. If any of those concepts appears in 
the text sample using an unambiguous term for that 
concept, we assign the ambiguous term to the concept 
with the unambiguous term. If there is more than one 
concept with an unambiguous term (this occurs 
infrequently), we select one of these concepts at 
random. We ignore terms that cannot be resolved in this 
manner. Notice that this is a general dictionary 
disambiguation algorithm and does not require any 
information specific to genes and proteins. 

2.7 Optimization 
One of the benefits of the dictionary-based approach is 
that it is simple and amenable to code optimization. In 
our case we were able to gain almost a thousand-fold 
speed improvement over brute force searching against 
every term in the database. We accomplished this using 
an approach based on indexing the term prefixes, taking 
each unique sequence of n initial term characters as the 
index for all terms with that initial sequence. In our 
system we chose an n of 6 as a good balance between 
performance and memory requirements. 

Searching for gene and protein terms then becomes an 
efficient matter of only searching for the terms that 
correspond to 6 character sequences (prefixed by a 
delimiter) that actually exist in the input text. This 
greatly reduces the number of searching operations 
necessary. While other more complex optimization 
algorithms are possible, such as organizing the terms 
character-by-character into an n-way tree, or completely 
grouping the terms into a complete prefix tree, our 
approach is simple, very fast, and has modest memory 
needs.   

3 Evaluation 
We based our evaluation on two test corpora that have 
been previous used to evaluate gene and protein NER 
and normalization. We used the GENIA corpus, version 
3.02 (Kim et al., 2003), to evaluate the utility of each 
online database as a source of terms for gene and 
protein NER, and we used the BioCreative Task1B 
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mouse and yeast collections to evaluate the performance 
of our system for normalized gene and protein 
identification. 

The GENIA corpus is a key resource in biomedical 
text mining, and has been used by many investigators 
(e.g., (Collier and Takeuchi, 2004, Lee et al., 2004, 
Tsuruoka and Tsujii, 2004)). However, some system-
dependent decisions still need to be made in order to use 
it as a gold standard for gene and protein NER. First, 
GENIA marks genes separately from proteins. While 
the “protein_molecule” attribute appears to be used in a 
manner that tightly and specifically delimits mentions of 
proteins, other attributes such as the 
“DNA_domain_or_region” attribute and the 
“protein_family_or_group” attribute are used more 
loosely.  “DNA_domain_or_region” can be used to 
mark a specific gene (e.g., “IL-2 gene”, “peri kappa-B 
site”), sometimes including words such as “gene” and 
“site”. At other times the attribute marks a non-specific 
gene concept (e.g., “viral gene”). Similar observations 
are true about the “protein_family_or_group” attributes 
(e.g., “CD28”, “transcription factor”). Clearly when 
evaluating dictionary-based (possibly as opposed to 
corpus trained) gene/protein NER, many of the concepts 
marked with the  “DNA_domain_or_region”, 
“protein_family_or_group” and other similar attributes 
should be treated as correct for the purposes of 
precision. However, the large number of more generic 
concepts that these attributes mark should not be 
included in the calculation of recall. 

Because of these issues, here we have used a hybrid 
technique in order to produce the most meaningful 
results in choosing a database for wide coverage of gene 
and protein names and symbols. Entities marked with 
the “protein_molecule” attribute are included for 
computation of both precision and recall. The text 
marked with the DNA and protein family attributes are 
only used for the computation of precision. This method 
is different from that applied by others using the 
GENIA corpus for both training and testing and 
therefore our NER results here are not directly 
comparable to prior work using GENIA. 

In the first set of experiments we are primarily 
concerned with evaluating the richness of each database 
and combination of databases as a source of names for 
gene and protein NER. Therefore, we use the weak 
match criteria of Chang et al., to evaluate performance 
(Chang et al., 2004). The weak match criteria treats any 
overlap of identified text with the gold standard as a 
positive. 

In the second set of experiments we use the 
BioCreative mouse and yeast test collections to evaluate 
the performance of our unsupervised dictionary-based 
method of gene and protein NER and normalization. For 

mouse, the more challenging organism, we evaluate the 
effect of each system feature separately and in 
combination. We also evaluate the effect of using just 
the organism-specific database to populate the 
dictionary, along with the organism-specific database in 
combination with the richest database determined in the 
first set of experiments. Table 1 shows information on 
the databases that were used to generate the dictionaries 
and the fields taken from each database. 

4 Results 
Table 2 presents the results of applying our dictionary-
based NER to the GENIA 3.02 corpus using the three 
multi-organism databases individually. The Entrez Gene 
database performs the best, having both the highest F-
measure of 75.5% at a precision of 73.5% and a recall 
of 77.6%. The LocusLink database is next, and not 
significantly different in performance (LocusLink is 
being phased out and replaced with Entrez Gene as of 
March 2005). The UniProt database performs much 
worse overall. This is surprising, performing well on 
precision at 78.5%, but having recall of 59.1%, poorer 
than we expected for a multi-species database. 

Table 1. Databases used to create protein/gene NER dictionaries. 
Fields marked with an asterisk were used as the unique identifier. 

Table 2. Results of creating dictionary from a single database for 
NER of GENIA genes and proteins. 

Dictionary 

Database & 

Precision Recall F-measure 
Entrez 0.735 0.776 0.755 
LocusLink 0.723 0.773 0.747 
UniProt 0.785 0.474 0.591 

Organism 
Fields used Dictionary 

Size 
Entrez 
multi-organism 
 

SYMBOL*, SYNONYMS, 59 Mbytes 
DESCRIPTION 

LocusLink 
multi-organism 

PRODUCT, 
OFFICIAL_SYMBOL*, 

PREFERRED_SYMBOL, 
OFFICIAL_GENE_NAME, 
PREFERRED_GENE_NAME, 
PREFERRED_PRODUCT, 
ALIAS_SYMBOL, 

ALIAS_PROT 

14 Mbytes 

MGI  
mouse only 

MGI MARKER ACCESSION 
ID*, 

MGI GENE TERM, 
STATUS 

7 Mbytes 

UniProt 
multi-organism 

Name*, Synonyms, 
OrderedLocusNames, 

ORFNames 

5 MBytes 

Saccharomyces 
yeast only 

Locus, ORF, SGID*, alias, 
standard name, feature name 

1.5 MBytes 
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Table 3. Results of creating dictionary from a combination of two 
databases for NER of GENIA genes and proteins. 

Dictionaries Precision Recall F-measure 
Entrez 0.735 0.776 0.755 
Entrez+UniProt 0.707 0.792 0.747 
Entrez+LocusLink 0.734 0.780 0.756 

Table 4. Results of using dictionary created from databases for NER 
and normalization for mouse. 

Dictionary Precision Recall F-measure 
Entrez/MGI 0.775 0.726 0.750 
MGI 0.710 0.535 0.610 

 
Having found that Entrez Gene was the single best 

online database for dictionary creation, we tried 
combining it with the other databases. As can be seen 
from Table 3, this did not result in any meaningful 
performance improvement.  

For the remainder of our experiments we used the 
BioCreative mouse and yeast test collections and gold 
standard files to evaluate the performance of our system 
for gene/protein NER and normalization. The gold 
standard required the unique identifiers to be MGI or 
SGD accession numbers. To accomplish this, we 
performed a join between the Entrez database and the 
MGI (or Saccharomyces) database using a mapping 
identifier between the MGI (or SGI) database entries 
and the Entrez Gene ids while extracting dictionary 
terms. 

Table 4 shows the results of using the joined 
Entrez/MGI dictionary for mouse NER and 
normalization compared to using the dictionary created 
from the MGI database alone. Using the MGI database 
alone has much worse recall than using the dictionary 
created with a combination of Entrez and MGI 
databases, with recall falling almost 20%. Restricting 
the dictionary to the MGI database also results in a 
6.5% decrease in precision. 

Table 5 shows the results of individually removing 
each of the three main dictionary pre-processing 
features and the disambiguation algorithm and 
evaluating the NER and normalization performance for 
mouse. All four of these variations perform worse than 
our full system. Variant generation made the smallest 
difference, giving an F-measure improvement of 2.0%. 
Ambiguity resolution improves the F-measure 2.8%. 
The 300 most common word stop list contributed an 
improvement of 6.8%. Lastly, separation into case-
sensitive and case-insensitive dictionaries made the 
largest improvement of 15.6%. Removing all of the pre-
processing features at once and using the combined 
Entrez/MGI database as a “raw” term list performs very 
badly, with good recall but a precision of only 30.1%. 

Table 6 compares the results of our system to the 
participants of BioCreative Task 1B for the mouse and 
yeast corpora. On both mouse and yeast, our system 
performs above the median F-measure. On mouse the 
difference in F-measure between our system and the top 
scoring system is less than 5%. On the yeast corpus, our 
approach has among the highest precision, with recall 
slightly below the median, and F-measure about 3% 
below the highest scoring system.  

While ambiguity resolution resulted in a modest 
improvement, we wanted to get an idea of the 
magnitude of the ambiguity within our automatically 
created dictionaries. Table 7 shows the number and 
percentage of ambiguous terms and genes with at least 
one ambiguous term in the dictionaries that we created 
using Entrez in combination with the MGI database, as 
well as MGI alone. 

The system runs very rapidly. On a 1.7GHz Pentium 
4m laptop with 512M RAM, the 18,000 sentences in the 
GENIA corpus were processed in about 30 seconds. The 
250 abstracts in the BioCreative corpora were processed 
in less than 5 seconds. 

5 Discussion 
The Entrez Gene database was identified as the best 
general-purpose source of gene and protein terms for 
use in a dictionary-based NER and normalization. 
Including data from other databases did not improve 
NER performance. It appears that the producers of 
Entrez Gene are doing an excellent job in finding and 
curating this information from the available sources. 
One of the most common difficulties cited in 
recognizing gene and protein names is that the 
vocabulary of terms is continuously expanding 
(Hirschman et al., 2002). Online databases, such as 
Entrez Gene provide a curated central repository for 
these terms, making the task of keeping gene/protein 
NER and normalization systems up to date on new 
genes and proteins somewhat easier. 

All three of our dictionary pre-processing 
enhancements improved performance, as did the 
ambiguity resolution algorithm. Surprisingly, variant 
generation made the smallest difference in F-measure. 
This may be due to the tendency for genes to be 
mentioned multiple times within an abstract, or that 
authors are keeping to the forms collected in the 
genomics databases, or that the database curators are 
doing a good job in keeping up with the terms used by 
authors. The BioCreative test collection scores 
normalization at the level of an entire abstract. It is 
possible that variant generation might have made a 
larger difference if the test collection was scored at a 
sentence level. On the other hand, it may be that the 
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Entrez database itself contains sufficient variants. In 
either case, the small improvement gained from variant 
generation suggests that computationally expensive 
approximate string matching techniques may not be 
worth the effort. 

The next largest improvement was made by ambiguity 
resolution. Precision increased almost 8%, while recall 
dropped only about 2%. While an F-measure 
improvement of 2.8% is small, this figure is highly 
dependent upon the make up of the test corpus. 

 Certainly, as seen in Table 7, there are a large 
proportion of mouse genes with ambiguous terms in our 
dictionary. How often these ambiguous terms actually 
appear in the literature is an open question. Additional 
and larger test collections may be necessary to 
accurately measure the overall importance of ambiguity 
resolution.  

Table 5. NER and normalization performance results when removing 
dictionary pre-processing features and ambiguity resolution for 
mouse. 

System Precision Recall F-measure Difference 
full system 0.775 0.726 0.750 - 
- case 0.493 0.746 0.594 -15.6% 
- stop 0.643 0.726 0.682 -6.8% 
- variant 0.771 0.693 0.730 -2.0% 
- ambiguity 0.697 0.748 0.722 -2.8% 
- all 0.301 0.713 0.423 -32.7% 

Table 6. Comparison with results from BioCreative on mouse and 
yeast corpora. 

Organism System Precision Recall F-measure 
biocreative-

highest 0.765 0.819 0.791 
cohen 0.775 0.726 0.750 
biocreative-

median 0.765 0.730 0.738 

Mouse 

biocreative-
lowest 0.418 0.898 0.571 

biocreative-
highest 0.950 0.894 0.921 

cohen 0.950 0.837 0.890 
biocreative-

median 0.940 0.848 0.858 

Yeast 

biocreative-
lowest 0.661 0.902 0.763 

Table 7. Term ambiguity measurements for mouse genes. 

 Entrez/MGI MGI 
# All Distinct Genes 57185 57180 
# All Distinct Terms 336353 250435 
# Ambiguous Terms 6585 (1.96%) 2104 (0.84%) 
# Genes w/ Ambiguous 

Terms 8036 (14.05%) 2619 (4.58%) 

The stop-list made the next largest improvement in F-
measure, 6.8%. Use of the stop list improved precision 
greatly and did not change recall. Case-sensitivity using 
the common word file made the largest improvement of 
15.6%. While making a large, almost 30% difference in 
precision, case sensitivity decreased recall by only 2%.  

Overall, all three of the dictionary pre-processing 
methods we applied worked well, as did ambiguity 
resolution. Each method resulted in improvement in 
either precision or recall, and did not greatly degrade the 
other measure. Together the three techniques gave an F-
measure improvement of over 30% as compared to 
using a plain unprocessed dictionary. 

Chen et al. investigated the ambiguity of official gene 
names within and across organisms and found the level 
of shared official names within an organism to be low 
(~0.02%) but the level of ambiguity when considering 
all terms associated with a gene to be higher, about 5% 
(Chen et al., 2005). Our results are similar, with about 
5% of genes in the MGI database having terms also 
associated with other genes. This rises to 14% when 
combined with the information in the Entrez database. 
As previously noted, inter-organism ambiguity is much 
higher. Further work is needed to determine the extent 
of the problem present within in the actual literature. 

We did not apply our method to fly, the other 
organism in the BioCreative Task 1B test collection. We 
were unable to find direct mappings between identifiers 
in the fly database and Entrez Gene. Moreover, the fly 
corpus would present special problems for our method. 
Unlike for mouse and yeast, the fly genome contains 
many genes that have the same names as common 
English words, and the use of these words as gene 
names are not commonly delineated using capitalization 
as they are with mouse. For fly at least, methods such as 
ours are at a disadvantage compared to trained systems. 

However, the literature of one of the most important 
and interesting genomes (at least to us), human, does 
appear to follow the practice of differentiating common 
English words from gene and protein names by 
uppercase or initial capitalization similar to the mouse 
literature (Chen et al., 2005). Therefore we expect that 
our unsupervised approach will be useful for human 
genomics literature as well. 

Unfortunately at the present time we are unable to test 
this hypothesis. We are unaware of any human gene 
NER and normalization test collection. While there are 
several test collections widely available for NER alone 
(Franzen et al., 2002, Kim et al., 2003, Hu et al., 2004), 
the same cannot be said for the essential normalization 
step. More and larger collections, covering additional 
organisms such as human and rat, are necessary to 
measure and motivate progress in gene and protein NER 
and normalization.  
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6 Conclusions and Future Work 
These results demonstrate that an unsupervised 

dictionary-based approach to gene and protein NER and 
normalization can be effective. The dictionaries can be 
created automatically without human intervention or 
review. Dictionary-based systems such as ours can be 
set up to automatically update themselves by 
downloading the database files on the Internet and pre-
processing the files into updated dictionaries. This could 
be done on a nightly basis if necessary, since the entire 
dictionary creation process only takes a few minutes. 
One general database, combined with an organism-
specific database for each species, is sufficient. 

Our work is distinguished from other dictionary-based 
work such as Tsurukoka and Tsujii, and Hanisch et al. 
in several ways. Unlike both of these prior investigators, 
we use on-line curated information as our primary 
source of terms, instead of deriving them from a training 
set, and have shown both which databases to use and 
how to process them into effective sources of terms for 
NER. Our textual variants are generated by simple rules 
determined by domain knowledge instead of machine 
learning on training data. Lastly, the disambiguation 
algorithm presented here is unique and has been shown 
to have a positive impact on performance. 

The system is as accurate as other more complex 
approaches. It does not require training, and so may be 
less sensitive to specific characteristics of a given text 
corpus. It may also be applied to organisms for which 
there do not exist sufficient training and test collections. 
In addition, the system is very fast. This may enable 
some text mining tasks to be done for users in real time, 
rather than the batch processing mode that is currently 
most common in biomedical text mining research. 

Dictionary-based approaches are likely to remain an 
essential part of gene and protein normalization, even if 
the NER step is handled by other methods. Further work 
is necessary to determine the best manner to combine 
automatically created dictionaries with trained NER 
systems. It may be the case that different approaches 
work best for different organisms, depending upon the 
specific naming conventions of scientists working on 
that species.  
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Abstract

This paper presents a machine learning
approach to acronym generation. We for-
malize the generation process as a se-
quence labeling problem on the letters in
the definition (expanded form) so that a
variety of Markov modeling approaches
can be applied to this task. To con-
struct the data for training and testing, we
extracted acronym-definition pairs from
MEDLINE abstracts and manually anno-
tated each pair with positional informa-
tion about the letters in the acronym. We
have built an MEMM-based tagger using
this training data set and evaluated the
performance of acronym generation. Ex-
perimental results show that our machine
learning method gives significantly bet-
ter performance than that achieved by the
standard heuristic rule for acronym gen-
eration and enables us to obtain multi-
ple candidate acronyms together with their
likelihoods represented in probability val-
ues.

1 Introduction

Technical terms and named-entities play important
roles in knowledge integration and information re-
trieval in the biomedical domain. However, spelling
variations make it difficult to identify the terms con-
veying the same concept because they are written
in different manners. Acronyms constitute a major

part of spelling variations (Nenadic et al., 2002), so
proper management of acronyms leads to improved
performance of the information systems in this do-
main.

As for the methods for recognizing acronym-
definition pairs from running text, there are many
studies reporting high performance (e.g. over 96%
accuracy and 82% recall) (Yoshida et al., 2000; Ne-
nadic et al., 2002; Schwartz and Hearst, 2003; Za-
hariev, 2003; Adar, 2004). However, another aspect
that we have to consider for efficient acronym man-
agement is to generate acronyms from the given def-
inition (expanded form).

One obvious application of acronym generation
is to expand the keywords in information retrieval.
As reported in (Wren et al., 2005), for example,
you can retrieve only 25% of the documents con-
cerning the concept of “JNK” by using the key-
word “c-jun N-terminal kinase”. In more than 33%
of the documents the concept is written with its
acronym “JNK”. To alleviate this problem, some
research efforts have been devoted to constructing
a database containing a large number of acronym-
definition pairs from running text of biomedical doc-
uments (Adar, 2004).

However, the major problem of this database-
building approach is that building the database offer-
ing complete coverage is nearly impossible because
not all the biomedical documents are publicly avail-
able. Although most of the abstracts of biomedical
papers are publicly available on MEDLINE, there
is still a large number of full-papers which are not
available.

In this paper, we propose an alternative approach
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to providing acronyms from their definitions so
that we can obtain acronyms without consulting
acronym-definition databases.

One of the simplest way to generate acronyms
from definitions would be to choose the letters at the
beginning of each word and capitalize them. How-
ever, there are a lot of exceptions in the acronyms
appearing in biomedical documents. The followings
are some real examples of the definition-acronym
pairs that cannot be created with the simple heuristic
method.

RNA polymerase (RNAP)
antithrombin (AT)
melanoma cell adhesion molecule (Mel-CAM)
the xenoestrogen 4-tert-octylphenol (t-OP)

In this paper we present a machine learning ap-
proach to automatic generation of acronyms in order
to capture a variety of mechanisms of acronym gen-
eration. We formalize this problem as a sequence
labeling task such as part-of-speech tagging, chunk-
ing and other natural language tagging tasks so that
common Markov modeling approaches can be ap-
plied to this task.

2 Acronym Generation as a Sequence
Labeling Problem

Given the definition (expanded form), the mecha-
nism of acronym generation can be regarded as the
task of selecting the appropriate action on each letter
in the definition.

Figure 1 illustrates an example, where the defini-
tion is “Duck interferon gamma” and the generated
acronym is “DuIFN-gamma”. The generation pro-
ceeds as follows:

The acronym generator outputs the first
two letters unchanged and skips the fol-
lowing three letters. Then the generator
capitalizes ‘i’ and skip the following four
letters...

By assuming that an acronym is made up of alpha-
numeric letters, spaces and hyphens, the actions be-
ing taken by the generator are classified into the fol-
lowing five classes.

� SKIP

The generator skips the letter.

� UPPER

If the target letter is uppercase, the generator
outputs the same letter. If the target letter is
lowercase, the generator coverts the letter into
the corresponding upper letter.

� LOWER

If the target letter is lowercase, the generator
outputs the same letter. If the target letter is
uppercase, the generator coverts the letter into
the corresponding lowercase letter.

� SPACE

The generator convert the letter into a space.

� HYPHEN

The generator convert the letter into a hyphen.

From the probabilistic modeling point of view,
this task is to find the sequence of actions

�������������
that maximizes the following probability given the
observation 	�
�	 ������� 	 �
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Observations are the letters in the definition and
various types of features derived from them. We de-
compose the probability in a left-to-right manner.
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By making a first-order markov assumption, the
equation becomes
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� � � � � �$� � 	�� � (3)

If we have the training data containing a large
number of definition-acronym pairs where the defi-
nition is annotated with the labels for actions, we can
estimate the parameters of this probabilistic model
and the best action sequence can be efficiently com-
puted by using a Viterbi decoding algorithm.

In this paper we adopt a maximum entropy model
(Berger et al., 1996) to estimate the local probabili-
ties � � � � � � ��� � 	�� since it can incorporate diverse types
of features with reasonable computational cost. This
modeling, as a whole, is called Maximum Entropy
Markov Modeling (MEMM).
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Figure 1: Acronym generation as a sequence labeling problem. The definition is “Duck interferon gamma”
and the acronym is “DuIFN-gamma”. Each letter in the acronym is generated from a letter in the definition
following the action for the letter.

Regularization is important in maximum entropy
modeling to avoid overfitting to the training data.
For this purpose, we use the maximum entropy
modeling with inequality constraints (Kazama and
Tsujii, 2003). The model gives equally good per-
formance as the maximum entropy modeling with
Gaussian priors (Chen and Rosenfeld, 1999), and
the size of the resulting model is much smaller than
that of Gaussian priors because most of the param-
eters become zero. This characteristic enables us
to easily handle the model data and carry out quick
decoding, which is convenient when we repetitively
perform experiments. This modeling has one param-
eter to tune, which is called width factor. We set this
parameter to be 1.0 throughout the experiments.

3 The Data for Training and Testing

Since there is no training data available for the ma-
chine learning task described in the previous section,
we manually created the data. First, we extracted
definition-acronym pairs from MEDLINE abstracts
using the acronym acquisition method proposed by

(Schwartz and Hearst, 2003). The abstracts used for
constructing the data were randomly selected from
the abstracts published in the year of 2001. Dupli-
cated pairs were removed from the set.

In acquiring the pairs from the documents, we fo-
cused only on the pairs that appear in the form of

... expanded form (acronym) ...

We then manually removed misrecognized pairs
and annotated each pair with positional informa-
tion. The positional information tells which letter
in the definition should correspond to a letter in the
acronym. Table 1 lists a portion of the data. For
example, the positional information in the first pair
indicates that the first letter ‘i’ in the definition cor-
responds to ‘I’ in the acronym, and the 12th letter
‘m’ corresponds to ‘M’.

With this positional information, we can create
the training data for the sequence labeling task be-
cause there is one-to-one correspondence between
the sequence labels and the data with positional in-
formation. In other words, we can determine the ap-
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Positional
Definition Acronym Information

intestinal metaplasia IM 1, 12
lactate dehydrogenase LDH 1, 9, 11

cytokeratin CK 1, 5
cytokeratins CKs 1, 5, 12

Epstein-Barr virus EBV 1, 9, 14
30-base pairs bp 4, 9

in-situ hybridization ISH 1, 4, 9
: : :

Table 1: Curated data containing definitions, their
acronyms and the positional information.

propriate action for each letter in the definition by
comparing the letter with the corresponding letter in
the acronym.

4 Features

Maximum entropy modeling allows us to incorpo-
rate diverse types of features. In this paper we use
the following types of features in local classification.
As an example, consider the situation where we are
going to determine the action at the letter ‘f’ in the
definition “Duck interferon gamma”.

� Letter unigram (UNI)

The unigrams of the neighboring letters. (i.e.
“ ��� � � � r”, “ ��� ��� f”, and “ ��� ��� � e”)

� Letter bigram (BI)

The bigrams of the neighboring letters. (i.e.
“ 	 � ��
 er”, “ 	 � � � rf”, “ 	 ��� fe”, and “ 	 ��� � er”)

� Letter trigram (TRI)

The trigrams of the neighboring letters. (i.e.
“
��� � ��
 ter”, “

��� � � � erf”, “
��� ���

rfe”, “
��� ��� �

fer”,
and “

��� ��� 
 ero”)

� Action history (HIS)

The preceding action (i.e. SKIP)

� Orthographic features (ORT)

Whether the target letter is uppercase or not
(i.e. false)

� Definition Length (LEN)

Rank Probability String
1 0.779 TBI
2 0.062 TUBI
3 0.028 TB
4 0.019 TbI
5 0.015 TB-I
6 0.009 tBI
7 0.008 TI
8 0.007 TBi
9 0.002 TUB
10 0.002 TUbI

ANSWER TBI

Table 2: Generated acronyms for “traumatic brain
injury”.

The number of the words in the definition (i.e.
“len=3”)

� Letter sequence (SEQ)

1. The sequence of the letters ranging from
the beginning of the word to the target let-
ter. (i.e. “ 
������������ interf”)

2. The sequence of the letters ranging from
the target letter to the end of the word. (i.e.
“ 
������ ����� � feron”)

3. The word containing the target letter. (i.e.
“ 
����� "!��$# interferon”)

� Distance (DIS)

1. The distance between the target letter and
the beginning of the word. (i.e. “ % � 
 �������
6”)

2. The distance between the target letter and
the tail of the word. (i.e. “ % � 
 � ����� � 5”)

5 Experiments

To evaluate the performance of the acronym gener-
ation method presented in the previous section, we
ran five-fold cross validation experiments using the
manually curated data set. The data set consists of
1,901 definition-acronym pairs.

For comparison, we also tested the performance
of the popular heuristics for acronym generation in
which we choose the letters at the beginning of each
word in the definition and capitalize them.
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Rank Probability String
1 0.423 ORF1
2 0.096 OR1
3 0.085 ORF-1
4 0.070 RF1
5 0.047 OrF1
6 0.036 OF1
7 0.025 ORf1
8 0.019 OR-1
9 0.016 R1

10 0.014 RF-1
ANSWER ORF-1

Table 3: Generated acronyms for “open reading
frame 1”.

Rank Probability String
1 0.163 RNA-P
2 0.147 RP
3 0.118 RNP
4 0.110 RNAP
5 0.064 RA-P
6 0.051 R-P
7 0.043 RAP
8 0.041 RN-P
9 0.034 RNA-PM
10 0.030 RPM

ANSWER RNAP

Table 4: Generated acronyms for “RNA
polymerase”.

5.1 Generated Acronyms

Tables 2 to 5 show some examples of generated
acronyms together with their probabilities. They
are sorted with their probabilities and the top ten
acronyms are shown. The correct acronym given in
the training data is described in the bottom row in
each table.

In Table 2, the definition is “traumatic brain in-
jury” and the correct acronym is “TBI”. This is the
simplest case in acronym generation, where the first
letter of each word in the definition is to be capital-
ized. Our acronym generator gives a high probabil-
ity to the correct acronym and it is ranked at the top.

Table 3 shows a slightly more complex case,
where the generator needs to convert the space be-

Rank Probability String
1 0.405 MCPP
2 0.149 MCP
3 0.056 MCP
4 0.031 MPP
5 0.028 McPP
6 0.024 MchPP
7 0.020 MC
8 0.011 MP
9 0.011 mCPP

10 0.010 MCRPP
ANSWER mCPP

Table 5: Generated acronyms for
“meta-chlorophenylpiperazine”.

Rank Probability String
1 0.811 TV
2 0.034 TSV
3 0.030 TCV
4 0.021 Tv
5 0.019 TVs
6 0.013 T-V
7 0.008 TOV
8 0.004 TSCV
9 0.002 T-v

10 0.001 TOSV
ANSWER TOSV

Table 6: Generated acronyms for “Toscana virus”.

Rank Coverage (%)
1 55.2
2 65.8
3 70.4
4 73.2
5 75.4
6 76.7
7 78.3
8 79.8
9 81.1

10 82.2
BASELINE 47.3

Table 7: Coverage achieved with the Top N Candi-
dates.
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tween ‘F’ and ‘1’ into a hyphen. The correct answer
is located at the third rank.

The definition in Table 4 is “RNA polymerase”
and the correct acronym is “RNAP”, so the gener-
ator needs to the first three letters unchanged. The
correct answer is located at the fourth rank, and the
probability given the correct answer does not have a
large gap with the top-ranked acronym.

Table 5 shows a more difficult case, where you
need to output the first letter in lowercase and choose
appropriate letters from the string having no delim-
iters (e.g. spaces and hyphens). Our acronym gener-
ator outputs the correct acronym at the nine-th rank
but the probability given this acronym is very low
compared to that given to the top-ranked string.

Table 6 shows a similar case. The probability
given to the correct acronym is very low.

5.2 Coverage

Table 7 shows how much percentage of the cor-
rect acronyms are covered if we take top N can-
didates from the outputs of the acronym generator.
The bottom line (BASELINE) shows the coverage
achieved by generating one acronym using the stan-
dard heuristic rule for acronym generation. Note that
the coverage achieved with a single candidate (Rank
1) is better that of BASELINE.

If we take top five candidates, we can have a cov-
erage of 75.4%, which is considerably better than
that achieved by the heuristic rule. This suggests
that the acronym generator could be used to signif-
icantly improve the performance of the systems for
information retrieval and information integration.

5.3 Features

To evaluate how much individual types of features
affect the generation performance, we ran experi-
ments using different feature types. Table 8 shows
the results. Overall, the results show that various
types of features have been successfully incorpo-
rated in the MEMM modeling and individual types
of features contribute to improving performance.

The performance achieved with only unigram fea-
tures is almost the same as that achieved by the
heuristic rule. Note that the features on the previous
state improve the performance, which suggests that
our selection of the states in the Markov modeling is
a reasonable choice for this task.
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Figure 2: Learning curve.

5.4 Learning Curve

Figure 2 shows a learning curve of our acronym
generator, which shows the relationship between the
number of the training samples and the performance
of the system. The graph clearly indicates that the
performance consistently improves as the training
data increases and still continues to improve even
when the size of the training data reaches the max-
imum. This suggests that we can achieve improved
performance by increasing the annotated data for
training.

6 Conclusion

We presented a machine learning approach to
acronym generation. In this approach, we regarded
the generation process as a sequence labeling prob-
lem, and we manually created the data for training
and testing.

Experimental results using 1901 definition-
acronym pairs, we achieved a coverage of 55.1%,
which is significantly bettern than that achieved by
the standard heuristic rule for acronym generation.
The algorithm also enables us to have other acronym
candidates together with the probabilities represent-
ing their likelihood.

6.1 Future work

In this paper we did not consider the generation
mechanisms where the letters in the acronym appear
in a different order in the definition. Since about 3%
of acronyms reportedly involve this types of gener-
ation mechanism (Schwartz and Hearst, 2003), we
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Top 1 Top 5 Top 10
Feature Templates Coverage (%) Coverage (%) Coverage (%)
UNI 48.2 66.2 74.2
UNI, BI 50.1 71.2 78.3
UNI, BI, TRI 50.4 72.3 80.1
UNI, BI, TRI, HIS 50.6 73.6 81.2
UNI, BI, TRI, HIS, ORT 51.0 73.9 80.9
UNI, BI, TRI, HIS, ORT, LEN 53.9 74.6 81.3
UNI, BI, TRI, HIS, ORT, LEN, DIS 54.4 75.0 81.8
UNI, BI, TRI, HIS, ORT, LEN, DIS, SEQ 55.1 75.4 82.2

Table 8: Performance with Different Feature Sets.

might further improve performance by considering
such permutation of letters.

As the learning curve (Fig 2) suggested, one ob-
vious way to improve the performance is to increase
the training data. The size of the training data used
in the experiments is fairly small compared to those
in other sequence tagging tasks such POS tagging
and chunking. We plan to increase the size of the
training data with a semi-automatic way that could
reduce the human effort for annotation.
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Abstract

We present a database of annotated
biomedical text corpora merged into a
portable data structure with uniform con-
ventions. MedTag combines three cor-
pora, MedPost, ABGene and GENETAG,
within a common relational database data
model. The GENETAG corpus has been
modified to reflect new definitions of
genes and proteins. The MedPost cor-
pus has been updated to include 1,000
additional sentences from the clinical
medicine domain. All data have been up-
dated with original MEDLINE text ex-
cerpts, PubMed identifiers, and tokeniza-
tion independence to facilitate data accu-
racy, consistency and usability.

The data are available in flat files along
with software to facilitate loading the
data into a relational SQL database
from ftp://ftp.ncbi.nlm.nih.gov/pub/lsmith
/MedTag/medtag.tar.gz.

1 Introduction

Annotated text corpora are used in modern computa-
tional linguistics research and development to fine-
tune computer algorithms for analyzing and classi-
fying texts and textual components. Two important
factors for useful text corpora are 1) accuracy and
consistency of the annotations, and 2) usability of
the data. We have recently updated the text corpora
we use in our research with respect to these criteria.

Three different corpora were combined. The AB-
Gene corpus consists of over 4 000 sentences anno-
tated with gene and protein named entities. It was
originally used to train the ABGene tagger to recog-
nize gene/protein names in MEDLINE records, and
recall and precision rates in the lower 70 percentile
range were achieved (Tanabe and Wilbur, 2002).
The MedPost corpus consists of 6 700 sentences,
and is annotated with parts of speech, and gerund
arguments. The MedPost tagger was trained on
3 700 of these sentences and achieved an accuracy
of 97.4% on the remaining sentences (Smith et. al.,
2004). The GENETAG corpus for gene/protein
named entity identification, consists of 20 000 sen-
tences and was used in the BioCreative 2004 Work-
shop (Yeh et. al., 2005; Tanabe et. al., 2005) (only
15 000 sentences are currently released, the remain-
ing 5 000 are being retained for possible use in a fu-
ture workshop). Training on a portion of the data,
the top performing systems achieved recall and pre-
cision rates in the lower 80 percentile range. Be-
cause of the scarcity of good annotated data in the
realm of biomedicine, and because good perfor-
mance has been obtained using this data, we feel
there is utility in presenting it to a wider audience.

All of the MedTag corpora are based on MED-
LINE abstracts. However, they were queried at dif-
ferent times, and used different (but similar) algo-
rithms to perform tokenization and sentence seg-
mentation. The original annotations were assigned
to tokens, or sequences of tokens, and extensively
reviewed by the authors at different times for the dif-
ferent research projects.

The main goals in combining and updating these
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Figure 1: Component corpora, common data model
and main record types of the MedTag collection.

corpora into a single corpus were to

1. update the text for all corpora to that currently
found in MEDLINE, storing a correct citation
and the original, untokenized text for each ex-
cerpt

2. eliminate tokenization dependence

3. put all text and annotations into a common
database format

4. provide programs to convert from the new cor-
pus format to the data formats used in previous
research

2 Merging the Corpora

We describe what was done to merge the original
corpora, locating original sources and modifying the
text where needed. An overview is given in Figure
1. Some basic statistics are given in Table 1.

2.1 Identifying Source Data

The original data of the three corpora were assem-
bled and the text was used to search MEDLINE to

Corpus sentences tokens most frequent tag
GENETAG-05 15,000 418,246 insulin GENE(112)

MedPost 6,700 181,626 the DD(8,507)
AbGene 4,265 123,208 cyclin GENE(165)

MedPost

Adj Adv Aux Noun Punct Verb
14,648 4,553 56,262 60,732 21,806 23,625

GENETAG-05

GENE ALTGENE
24,562 19,216

ABGene

GENE ALTGENE
8,185 0

Table 1: MedTag Corpora. GENE = gene and pro-
tein names, ALTGENE = acceptable alternatives for
gene and protein names. MedPost tagset contains
60 parts of speech which have been binned here for
brevity.

find the closest match. An exact or near exact match
was found for all but a few excerpts. For only a
few excerpts, the MEDLINE record from which the
excerpt was originally taken had been removed or
modified and an alternative sentence was selected.
Thus, each excerpt in the database is taken from a
MEDLINE record as it existed at one time in 2004.
In order to preserve the reference for future work,
the PubMed ID and citation data were also retrieved
and stored with each excerpt. Each excerpt in the
current database roughly corresponds to a sentence,
although the procedure that extracted the sentence is
not specified.

2.2 Eliminating Tokenization Dependence

In the original ABGene and GENETAG corpora, the
gene and protein phrases were specified by the to-
kens contained in the phrase, and this introduced
a dependence on the tokenization algorithm. This
created problems for researchers who wished to use
a different tokenization. To overcome this depen-
dence, we developed an alternative way of specify-
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ing phrases. Given the original text of an excerpt,
the number of non-whitespace characters to the start
of the phrase does not depend on the tokenization.
Therefore, all annotations now refer to the first and
last character of the phrase that is annotated. For
example the protein serum LH in the excerpt

There was no correlation between serum
LH and chronological or bone age in this
age group, which suggests that the corre-
lation found is not due to age-related par-
allel phenomena.

is specified as characters 28 to 34 (the first character
is 0).

2.3 Data Model

There are two main record types in the database,
EXCERPT and ANNOTATION. Each EXCERPT
record stores an identifier and the original corpus
code (abgene, medpost, and genetag) as well as sub-
corpus codes that were defined in the original cor-
pora. The original text, as it was obtained from
MEDLINE, is also stored, and a human readable ci-
tation to the article containing the reference.

Each ANNOTATION record contains a reference
to the excerpt (by identifier and corpus), the char-
acter offset of the first and last characters of the
phrase being annotated (only non-whitespace char-
acters are counted, starting with 0), and the corre-
sponding annotation. The annotated text is stored
for convenience, though it can be obtained from
the corresponding excerpt record by counting non-
whitespace characters.

The data is provided as an ASCII file in a standard
format that can be read and loaded into a relational
database. Each record in the file begins with a line
of the form ��� table name where table name is the
name of the table for that record. Following the table
name is a series of lines with the form field: value
where field is the name of the field and value is the
value stored in that field.

Scripts are provided for loading the data into a re-
lational database, such as mysql or ORACLE. SQL
queries can then be applied to retrieve excerpts and
annotations satisfying any desired condition. For
example, here is an SQL query to retrieve excerpts
from the MedPost corpus containing the token p53
and signaling or signalling

Figure 2: A screen capture of the annotator’s inter-
face and the GENETAG-05 annotations for a sen-
tence.

select text from excerpt
where text like ’%p53%’
and text rlike ’signa[l]*ing’;

2.4 Web Interface

A web-based corpus editor was used to enter and
review annotations. The code is being made avail-
able, as is, and requires that the data are loaded into a
mysql database that can be accessed by a web server.
The interface supports two annotation types: Med-
Post tags and arbitrary phrase annotations. MedPost
tags are selectable from a pull-down menu of pre-
programmed likely tags. For entering phrase anno-
tations, the user highlights the desired phrase, and
pressing the enter key computes and saves the first
and last character offsets. The user can then enter
the annotation code and an optional comment be-
fore saving it in the database. A screen dump of the
phrase annotations for a sentence in the genetag cor-
pus is shown in figure 2.

The data from the database was dumped to the flat
file format for this release. We have also included
some files to accommodate previous users of the
corpora. A perl program, alt eval.perl is in-
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cluded that replaces the GENETAG evaluation pro-
gram using non-whitespace character numbers in-
stead of token numbers. Copies of the ABGene and
MedPost corpora, in the original formats, are also
included.

3 Updates of Component Corpora

3.1 MedPost Update

The MedPost corpus (Smith et. al., 2004) originally
contained 5 700 tokenized sentences. An additional
1 000 annotated sentences have been added for this
release. Each sentence in the MedPost corpus is
fully tokenized, that is, divided into non-overlapping
annotated portions, and each token is annotated with
one of 60 part of speech tags (see Table 1). Minor
corrections to the annotations have been made since
the original release.

Since most of the original corpus, and all of the
sentences used for training the MedPost tagger, were
in the area of molecular biology, we added an addi-
tional 1 000 sentences selected from random MED-
LINE abstracts on the subject of clinical medicine.
As a preliminary result, the trained MedPost tag-
ger achieves approximately 96.9% accuracy, which
is comparable to the 97.4% accuracy achieved on the
subset of 1 000 sentences selected randomly from all
of MEDLINE. An example of a sentence from the
clinical medicine collection is

EvidenceNN isVBZ nowRR availableJJ

toTO showVVI aDD beneficialJJ effectNN

ofII bezafibrateNN onII retardingVVGN

atheroscleroticJJ processesNNS andCC inII

reducingVVGN riskNN ofII coronaryJJ heartNN

diseaseNN .

In addition to the token-level annotations, all
of the gerunds in the MedPost corpus (these are
tagged VVGN) were also examined and it was noted
whether the gerund had an explicit subject, direct
object, or adjective complement. This annotation
is stored with an annotation of type gerund. To il-
lustrate, the two gerunds in the previous example,
retarding and reducing both have direct objects (re-
tarding processes and reducing risk), and the gerund
tag is entered as “o”. The gerund annotations have
been used to improve a noun phrase bracketer able
to recognize gerundive phrases.

3.2 GENETAG Update

GENETAG is a corpus of MEDLINE sentences that
have been annotated with gene and protein names.
The closest related work is the GENIA corpus (Kim
et. al., 2003). GENIA provides detailed coverage of
a large number of semantic entities related to a spe-
cific subset of human molecular biology, whereas
GENETAG provides gene and protein name anno-
tations only, for a wide range of organisms and
biomedical contexts (molecular biology, genetics,
biochemistry, clinical medicine, etc.)

We are including a new version of GENE-
TAG, GENETAG-05, as part of the MedTag sys-
tem. GENETAG-05 differs from GENETAG in
four ways: 1) the definition of a gene/protein en-
tity has been modified, 2) significant annotation er-
rors in GENETAG have been corrected, 3) the con-
cept of a non-specific entity has been refined, and 4)
character-based indices have been introduced to re-
duce tokenization problems. We believe that these
changes result in a more accurate and robust corpus.

GENETAG-05 maintains a wide definition of a
gene/protein entity including genes, proteins, do-
mains, sites, sequences, and elements, but exclud-
ing plasmids and vectors. The specificity con-
straint requires that a gene/protein name must be
included in the tagged entity. This constraint has
been applied more consistently in GENETAG-05.
Additionally, plain sequences like ATTGGCCTT-
TAAC are no longer tagged, embedded names are
tagged (ras-mediated), and significantly more terms
have been judged to violate the specificity constraint
(growth factor, proteases, protein kinase, ribonu-
clease, snoRNA, rRNA, tissue factor, tumor anti-
gen, complement, hormone receptors, nuclear fac-
tors, etc.).

The original GENETAG corpus contains some en-
tities that were erroneously tagged as gene/proteins.
Many of these errors have been corrected in the up-
dated corpus. Examples include camp-responsive
elements, mu element, VDRE, melanin, dentin,
myelin, auxin, BARBIE box, carotenoids, and cel-
lulose. Error analysis resulted in the updated anno-
tation conventions given in Table 1.

Enzymes are a special class of proteins that cat-
alyze biochemical reactions. Enzyme names have
varying degrees of specificity, so the line drawn for
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tagging purposes is based on online resources1 as
well as background knowledge. In general, tagged
enzymes refer to more specific entities than un-
tagged enzymes (tyrosine kinase vs. protein kinase,
ATPase vs. protease). Enzymes that can refer to
either DNA or RNA are tagged if the reference is
specified (DNA endonuclease vs. endonuclease).
Enzymes that do not require DNA/RNA distinction
are tagged (lipase vs. ligase, cyclooxygenase vs.
methylase). Non-specific enzymes are tagged if they
clearly refer to a gene or protein, as in (1).

1) The structural gene for hydrogenase en-
codes a protein product of molecular mass
45820 Da.

Semantic constraints in GENETAG-05 are the
same as those for GENETAG. To illustrate, the name
in (2) requires rabies because RIG implies that the
gene mentioned in this sentence refers to the rabies
immunoglobulin, and not just any immunoglobulin.
In (3), the word receptor is necessary to differen-
tiate IGG receptor from IGG, a crucial biological
distinction. In (4), the number 1 is needed to ac-
curately describe a specific type of tumor necrosis
factor, although tumor necrosis factor alone might
be adequate in a different context.

2) rabies immunoglobulin (RIG)
3) IGG receptor
4) Tumor necrosis factor 1

Application of the semantic constraint can result in
apparent inconsistencies in the corpus (immunoglob-
ulin is sufficient on its own in some sentences in the
corpus, but is insufficient in (2)). However, we be-
lieve it is important that the tagged entity retain its
true meaning in the sentence context.

4 Recommended Uses

We have found the component corpora of MedTag
to be useful for the following functions:

1) Training and evaluating part-of-speech
taggers
2) Training and evaluating gene/protein
named entity taggers

1http://cancerweb.ncl.ac.uk/omd/copyleft.html
http://www.onelook.com/

3) Developing and evaluating a noun
phrase bracketer for PubMed phrase
indexing
4) Statistical analysis of grammatical
usage in medical text
5) Feature generation for machine learn-
ing

The MedPost tagger was recently ported to Java
and is currently being employed in MetaMap, a pro-
gram that maps natural language text into the UMLS
(Aronson,A.R., 2001).

5 Conclusion

We have merged three biomedical corpora into a col-
lection of annotations called MedTag. MedTag uses
a common relational database format along with a
web interface to facilitate annotation consistency.
We have identified the MEDLINE excerpts for each
sentence and eliminated tokenization dependence,
increasing the usability of the data. In GENETAG-
05, we have clarified many grey areas for annotation,
providing better guidelines for tagging these cases.
For users of previous versions of the component cor-
pora, we have included programs to convert from the
new standardized format to the formats used in the
older versions.
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Entity Type Problem GENETAG-05
Convention

Positive Examples Negative
Examples

Protein
Families

Some are named after
structural motifs.

Do not tag
structures alone,
but tag structurally
related gene and
protein families.

Zinc finger protein,
bZIP transcription
factor, homeobox
gene, TATA binding
protein

Zinc finger,
helix-turn-helix
motif, leucine
zipper, homeobox,
TATA box

Domains Name can refer to 1) the
amino acid content of a
sequence (PEST), 2) the
protein that binds the
sequence (TFIIIA DNA
binding domain), 3) a
homologous gene (SH2 - Src
homology domain 2), 4) the
first proteins in which the
domain was discovered (LIM,
PDZ), or 5) structural entities
(POZ, zinc finger domain).

Tag only if the
domain refers to a
gene or protein.
Immuno-globulin
regions are tagged.
(VH refers to the
Immuno-globulin
heavy chain V
region).

BTB domain, LIM
domain, HECT
domain, VH
domain, SH2
domain, TFIIIA
DNA binding
domain,
Krüppel-associated
box (KRAB)
domains, NF-IL6
beta leucine zipper
domain

PEST domain, SR
domain, zinc finger
domain, b-Zip
domain, POZ
domain, GATA
domain, RS
domain, GAR
domain

Boxes,
Response
Elements and
Sites

Name can refer to 1) the
sequence or site itself
(TAAG), 2) a non-protein that
binds to it (Glucocorticoid
Response Element), 3) a
protein that binds to it (Sp1),
or 4) to homologous genes
(VL30).

Tag only if the
sequence or site
refers to a gene or
protein.

VL30 element, Zta
response elements,
activating protein 1
(AP-1) site, Ets
binding site, SP1
site, AP-2 box

GRE, TRE, cyclic
AMP response
element ( CRE),
TAAG sites, TGn
motif, TAR element,
UP element

Hormones Some are peptide hormones. Tag only peptide
hormones.

Insulin, Glucagon,
growth hormone

Estrogen,
Progesterone,
thyroid hormone

“and”
constructs

Some conjuncts require the
entire construct.

Unless both
conjuncts can stand
alone, tag them
together.

TCR alpha and
beta, D-lactate and
D-glycerate
dehydrogenase

TCR alpha, beta,
D-lactate,
D-glycerate
dehydrogenase

Viral
Sequences

Promoters, enhancers, repeats
are distinguished by
organism.

Tag only if the
organism is present.

Viral LTR, HIV
long terminal
repeat, SV40
promoter

LTR, long terminal
repeat

Sequences Some sequences lack gene or
protein names.

Tag only if a gene
name is included.

NF kappa B
enhancer
(TGGAAATTCC)

TCTTAT, TTGGGG
repeats

Embedded
Names

Some names are embedded in
non-gene text.

Tag only the gene
part.

P-47-deficient,
ras-transformed

P-47-deficient,
ras-transformed

Transposons,
Satellites

Often repetitive sequences. Tag if specific. L1 element, TN44,
copia
retrotransposon

non-LTR
retrotransposon

Antibodies Often use organism or disease
name.

Tag if specific. anti-SF group
rickettsiae (SFGR)

antinuclear
antibody

Alternative
Transcripts

Names differ from primary
transcript.

Tag if primary
transcript named.

I kappa B
gamma,VEGF20

Exon 2, IIA

Table 2: Some problematic gene/protein annotations and conventions followed in GENETAG-05.
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Abstract

This paper classifies six publicly avail-
able biomedical corpora according to var-
ious corpus design features and charac-
teristics. We then present usage data for
the six corpora. We show that corpora
that are carefully annotated with respect
to structural and linguistic characteristics
and that are distributed in standard for-
mats are more widely used than corpora
that are not. These findings have implica-
tions for the design of the next generation
of biomedical corpora.

1 Introduction

A small number of data sets for evaluating the per-
formance of biomedical language processing (BLP)
systems on a small number of task types have been
made publicly available by their creators (Blaschke
et al. 19991, Craven and Kumlein 19992, Puste-
jovsky et al. 20023, Franzén et al. 20024, Collier
et al. 19995, Tanabe et al. 20056). From a biolog-
ical perspective, a number of these corpora (PDG,
GENIA, Medstract, Yapex, GENETAG) are excep-
tionally well curated. From the perspective of sys-

1We refer to this corpus as the Protein Design Group (PDG)
corpus.

2We refer to this as the University of Wisconsin corpus.
3The Medstract corpus.
4The Yapex corpus.
5The GENIA corpus.
6Originally the BioCreative Task 1A data set, now known as

the GENETAG corpus.

tem evaluation, a number of these corpora (Wiscon-
sin, GENETAG) are very well designed, with large
numbers of both positive and negative examples for
system training and testing. Despite the positive at-
tributes of all of these corpora, they vary widely in
their external usage rates: some of them have been
found very useful in the natural language process-
ing community outside of the labs that created them,
as evinced by their high rates of usage in system
construction and evaluation in the years since they
have been released. In contrast, others have seen lit-
tle or no use in the community at large. These data
sets provide us with an opportunity to evaluate the
consequences of a variety of approaches to biomed-
ical corpus construction. We examine these corpora
with respect to a number of design features and other
characteristics, and look for features that character-
ize widely used—and infrequently used—corpora.
Our findings have implications for how the next gen-
eration of biomedical corpora should be constructed,
and for how the existing corpora can be modified to
make them more widely useful.

2 Materials and methods

Table 1 lists the publicly available biomedical cor-
pora of which we are aware. We omit discussion
here of the corpus currently in production by the
University of Pennsylvania and the Children’s Hos-
pital of Philadelphia (Kulick et al. 2004), since it is
not yet available in finished form. We also omit text
collections from our discussion. By text collection
we mean textual data sets that may include metadata
about documents, but do not contain mark-up of the
document contents. So, the OHSUMED text collec-
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Table 1: Name, date, genre, and size for the six cor-
pora. Size is in words.

Name date genre size

PDG 1999 Sentences 10,291
Wisconsin 1999 Sentences 1,529,731
GENIA 1999 Abstracts 432,560
MEDSTRACT 2001 Abstracts 49,138
Yapex 2002 Abstracts 45,143
GENETAG 2004 Sentences 342,574

Table 2: Low- and high-level tasks to which the six
corpora are applicable. SS is sentence segmentation,
T is tokenization, and POS is part-of-speech tagging.
EI is entity identification, IE is information extrac-
tion, A is acronym/abbreviation definition, and C is
coreference resolution.

Name SS T POS EI IE A C

PDG � �

Wisconsin � �

GENIA � � � �

Medstract � � �

Yapex �

GENETAG �

tion (Hersh et al. 1994) and the TREC Genomics
track data sets (Hersh and Bhupatiraju 2003, Hersh
et al. 2004) are excluded from this work, although
their utility in information retrieval is clear.

Table 1 lists the corpora, and for each corpus,
gives its release date (or the year of the correspond-
ing publication), the genre of the contents of the cor-
pus, and the size of the corpus7 .

The left-hand side of Table 2 lists the data sets
and, for each one, indicates the lower-level general
language processing problems that it could be ap-
plied to, either as a source of training data or for
evaluating systems that perform these tasks. We
considered here sentence segmentation, word tok-
enization, and part-of-speech (POS) tagging.

The right-hand side of Table 2 shows the higher-

7Sizes are given in words. Published descriptions of
the corpora don’t generally give size in words, so this
data is based on our own counts. See the web site at
http://compbio.uchsc.edu/corpora for details on how we did the
count for each corpus.

level tasks to which the various corpora can be
applied. We considered here entity identifica-
tion, information (relation) extraction, abbrevia-
tion/acronym definition, and coreference resolution.
(Information retrieval is approached via text collec-
tions, versus corpora.) These tasks are directly re-
lated to the types of semantic annotation present
in each corpus. The three EI-only corpora (GE-
NIA, Yapex, GENETAG) are annotated with seman-
tic classes of relevance to the molecular biology do-
main. In the case of the Yapex and GENETAG cor-
pora, this annotation uses a single semantic class,
roughly equivalent to the gene or gene product. In
the case of the GENIA corpus, the annotation re-
flects a more sophisticated, if not widely used, on-
tology. The Medstract corpus uses multiple seman-
tic classes, including gene, protein, cell type, and
molecular process. In all of these cases, the se-
mantic annotation was carefully curated, and in one
(GENETAG) it includes alternative analyses. Two
of the corpora (PDG, Wisconsin) are indicated in Ta-
ble 2 as being applicable to both entity identification
and information extraction tasks. From a biologi-
cal perspective, the PDG corpus has exceptionally
well-curated positive examples. From a linguistic
perspective, it is almost unannotated. For each sen-
tence, the entities are listed, but their locations in
the text are not indicated, making them applicable
to some definitions of the entity identification task
but not others. The Wisconsin corpus contains both
positive and negative examples. For each example,
entities are listed in a normalized form, but without
clear pointers to their locations in the text, making
this corpus similarly difficult to apply to many defi-
nitions of the entity identification task.

The Medstract corpus is unique among these in
being annotated with coreferential equivalence sets,
and also with acronym expansions.

All six corpora draw on the same subject matter
domain—molecular biology—but they vary widely
with respect to their level of semantic restriction
within that relatively broad category. One (GE-
NIA) is restricted to the subdomain of human
blood cell transcription factors. Another (Yapex)
combines data from this domain with abstracts
on protein binding in humans. The GENETAG
corpus is considerably broader in topic, with all
of PubMed/MEDLINE serving as a potential data
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Table 3: External usage rates. The systems column
gives the count of the number of systems that actu-
ally used the dataset, as opposed to publications that
cited the paper but did not use the data itself. Age is
in years as of 2005.

Name age systems

GENIA 6 21
GENETAG 1 8
Yapex 3 6
Medstract 4 3
Wisconsin 6 1
PDG 6 0

source. The Medstract corpus contains biomedical
material not apparently related to molecular biology.
The PDG corpus is drawn from a very narrow subdo-
main on protein-protein interactions. The Wiscon-
sin corpus is composed of data from three separate
sub-domains: protein-protein interactions, subcellu-
lar localization of proteins, and gene/disease associ-
ations.

Table 3 shows the number of systems built out-
side of the lab that created the corpus that used each
of the data sets described in Tables 1 and 2. The
counts in this table reflect work that actually used
the datasets, versus work that cites the publication
that describes the data set but doesn’t actually use
the data set. We assembled the data for these counts
by consulting with the creators of the data sets and
by doing our own literature searches8 . If a system is
described in multiple publications, we count it only
once, so the number of systems is slightly smaller
than the number of publications.

3 Results

Even without examining the external usage data, two
points are immediately evident from Tables 1 and 2:

� Only one of the currently publicly available
corpora (GENIA) is suitable for evaluating per-
formance on basic preprocessing tasks.

8In the cases of the two corpora for which we found only
zero or one external usage, this search was repeated by an expe-
rienced medical librarian, and included reviewing 67 abstracts
or full papers that cite Blaschke et al. (1999) and 37 that cite
Craven and Kumlein (1999).

� These corpora include only a very limited range
of genres: only abstracts and roughly sentence-
sized inputs are represented.

Examination of Table 3 makes another point im-
mediately clear. The currently publicly available
corpora fall into two groups: ones that have had a
number of external applications (GENIA, GENE-
TAG, and Yapex), and ones that have not (Medstract,
Wisconsin, and PDG). We now consider a number
of design features and other characteristics of these
corpora that might explain these groupings9 .

3.1 Effect of age

We considered the very obvious hypothesis that it
might be length of time that a corpus has been avail-
able that determines the amount of use to which it
has been put. (Note that we use the terms “hypothe-
sis” and “effect” in a non-statistical sense, and there
is no significance-testing in the work reported here.)
Tables 1 and 3 show clearly that this is not the case.
The age of the PDG, Wisconsin, and GENIA data
is the same, but the usage rates are considerably
different—the GENIA corpus has been much more
widely used. The GENETAG corpus is the newest,
but has a relatively high usage rate. Usage of a cor-
pus is determined by factors other than the length of
time that it has been available.

3.2 Effect of size

We considered the hypothesis that size might be the
determinant of the amount of use to which a corpus
is put—perhaps smaller corpora simply do not pro-
vide enough data to be helpful in the development
and validation of learning-based systems. We can

9Three points should be kept in mind with respect to this
data. First, although the sample includes all of the corpora that
we are aware of, it is small. Second, there is a variety of po-
tential confounds related to sociological factors which we are
aware of, but do not know how to quantify. One of these is the
effect of association between a corpus and a shared task. This
would tend to increase the usage of the corpus, and could ex-
plain the usage rates of GENIA and GENETAG, although not
that of Yapex. Another is the effect of association between a
corpus and an influential scientist. This might tend to increase
the usage of the corpus, and could explain the usage rate of
GENIA, although not that of GENETAG. Finally, there may
be interactions between any of these factors, or as a reviewer
pointed out, there may be a separate explanation for the usage
rate of each corpus in this study. Nevertheless, the analysis of
the quantifiable factors presented above clearly provides useful
information about the design of successful corpora.
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reject this hypothesis: the Yapex corpus is one of
the smallest (a fraction of the size of the largest, and
only roughly a tenth of the size of GENIA), but has
achieved fairly wide usage. The Wisconsin corpus
is the largest, but has a very low usage rate.

3.3 Effect of structural and linguistic
annotation

We expected a priori that the corpus with the most
extensive structural and linguistic annotation would
have the highest usage rate. (In this context, by
structural annotation we mean tokenization and sen-
tence segmentation, and by linguistic annotation we
mean POS tagging and shallow parsing.) There isn’t
a clear-cut answer to this.

The GENIA corpus is the only one with curated
structural and POS annotation, and it has the highest
usage rate. This is consistent with our initial hypoth-
esis.

On the other hand, the Wisconsin corpus could
be considered the most “deeply” linguistically an-
notated, since it has both POS annotation and—
unique among the various corpora—shallow pars-
ing. It nevertheless has a very low usage rate. How-
ever, the comparison is not clearcut, since both the
POS tagging and the shallow parsing are fully au-
tomatic and not manually corrected. (Additionally,
the shallow parsing and the tokenization on which
it is based are somewhat idiosyncratic.) It is clear
that the Yapex corpus has relatively high usage de-
spite the fact that it is, from a linguistic perspective,
very lightly annotated (it is marked up for entities
only, and nothing else). To our surprise, structural
and linguistic annotation do not appear to uniquely
determine usage rate.

3.4 Effect of format

Annotation format has a large effect on usage. It
bears repeating that these six corpora are distributed
in six different formats—even the presumably sim-
ple task of populating the Size column in Table 1
required writing six scripts to parse the various data
files. The two lowest-usage corpora are annotated in
remarkably unique formats. In contrast, the three
more widely used corpora are distributed in rela-
tively more common formats. Two of them (GENIA
and Yapex) are distributed in XML, and one of them
(GENIA) offers a choice for POS tagging informa-

tion between XML and the whitespace-separated,
one-token-followed-by-tags-per-line format that is
common to a number of POS taggers and parsers.
The third (GENETAG) is distributed in the widely
used slash-attached format (e.g. sense/NN).

3.5 Effect of semantic annotation

The data in Table 2 and Table 3 are consistent with
the hypothesis that semantic annotation predicts us-
age. The claim would be that corpora that are
built specifically for entity identification purposes
are more widely used than corpora of other types,
presumably due to a combination of the importance
of the entity identification task as a prerequisite to
a number of other important applications (e.g. in-
formation extraction and retrieval) and the fact that
it is still an unsolved problem. There may be some
truth to this, but we doubt that this is the full story:
there are large differences in the usage rates of the
three EI corpora, suggesting that semantic annota-
tion is not the only relevant design feature. If this
analysis is in fact correct, then certainly we should
see a reduction in the use of all three of these corpora
once the EI problem is solved, unless their semantic
annotations are extended in new directions.

3.6 Effect of semantic domain

Both the advantages and the disadvantages of re-
stricted domains as targets for language processing
systems are well known, and they seem to balance
out here. The scope of the domain does not affect
usage: both the low-use and higher-use groups of
corpora contain at least one highly restricted domain
(GENIA in the high-use group, and PDG in the low-
use group) and one broader domain (GENETAG in
the high-use group, and Wisconsin in the lower-use
group).

4 Discussion

The data presented in this paper show clearly that ex-
ternal usage rates vary widely for publicly available
biomedical corpora. This variability is not related
to the biological relevance of the corpora—the PDG
and Wisconsin corpora are clearly of high biologi-
cal relevance as evinced by the number of systems
that have tackled the information extraction tasks
that they are meant to support. Additionally, from a
biological perspective, the quality of the data in the
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PDG corpus is exceptionally high. Rather, our data
suggest that basic issues of distribution format and
of structural and linguistic annotation seem to be the
strongest predictors of how widely used a biomed-
ical corpus will be. This means that as builders of
of data sources for BLP, we can benefit from the ex-
tensive experience of the corpus linguistics world.
Based on that experience, and on the data that we
have presented in this paper, we offer a number of
suggestions for the design of the next generation of
biomedical corpora.

We also suggest that the considerable invest-
ments already made in the construction of the less-
frequently-used corpora can be protected by modify-
ing those corpora in accordance with these sugges-
tions.

Leech (1993) and McEnery and Wilson (2001),
coming from the perspective of corpus linguistics,
identify a number of definitional issues and design
maxims for corpus construction. Some of these are
quite relevant to the current state of biomedical cor-
pus construction. We frame the remainder of our
discussion in terms of these issues and maxims.

4.1 Level of annotation

From a definitional point of view, annotation is one
of the distinguishing points of a corpus, as opposed
to a text collection. Perhaps the most salient char-
acteristic of the currently publicly available corpora
is that from a linguistic or language processing per-
spective, with the exception of GENIA and GENE-
TAG, they are barely annotated at all. For example,
although POS tagging has possibly been the sine qua
non of the usable corpus since the earliest days of
the modern corpus linguistic age, five of the six cor-
pora listed in Table 2 either have no POS tagging
or have only automatically generated, uncorrected
POS tags. The GENIA corpus, with its carefully cu-
rated annotation of sentence segmentation, tokeniza-
tion, and part-of-speech tagging, should serve as a
model for future biomedical corpora in this respect.
It is remarkable that with just these levels of anno-
tation (in addition to its semantic mark-up), the GE-
NIA corpus has been applied to a wide range of task
types other than the one that it was originally de-
signed for. Eight papers from COLING 2004 (Kim
et al. 2004) used it for evaluating entity identifica-
tion tasks. Yang et al. (2002) adapted a subset of

the corpus for use in developing and testing a coref-
erence resolution system. Rinaldi et al. (2004) used
it to develop and test a question-answering system.
Locally, it has been used in teaching computational
corpus linguistics for the past two years. We do not
claim that it has not required extension for some of
these tasks—our claim is that it is its annotation on
these structural and linguistic levels, in combination
with its format, that has made these extensions prac-
tical.

4.1.1 Formatting choices and formatting
standardization

A basic desideratum for a corpus is recoverabil-
ity: it should be possible to map from the annotation
to the raw text. A related principle is that it should
be easy for the corpus user to extract all annotation
information from the corpus, e.g. for external stor-
age and processing: “in other words, the annotated
corpus should allow the maximum flexibility for ma-
nipulation by the user” (McEnery and Wilson, p.
33). The extent to which these principles are met
is a function of the annotation format. The currently
available corpora are distributed in a variety of one-
off formats. Working with any one of them requires
learning a new format, and typically writing code
to access it. At a minimum, none of the non-XML
corpora meet the recoverability criterion. None10 of
these corpora are distributed in a standoff annotation
format. Standoff annotation is the strategy of stor-
ing annotation and raw text separately (Leech 1993).
Table 4 contrasts the two. Non-standoff annota-
tion at least obscures—more frequently, destroys—
important aspects of the structure of the text itself,
such as which textual items are and are not imme-
diately adjacent. Using standoff annotation, there is
no information loss whatsoever. Furthermore, in the
standoff annotation strategy, the original input text
is immediately available in its raw form. In contrast,
in the non-standoff annotation strategy, the original
must be retrieved independently or recovered from
the annotation (if it is recoverable at all). The stand-
off annotation strategy was relatively new at the time
that most of the corpora in Table 1 were designed,
but by now has become easy to implement, in part

10The semantic annotation of the GENETAG corpus is in a
standoff format, but neither the tokenization nor the POS tag-
ging is.
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Table 4: Contrasting standoff and non-standoff an-
notation

Raw text

MLK2 has a role in vesicle formation

Non-standoff annotation

MLK2/NN has/VBZ a/DT role/NN in/IN
vesicle/NN formation/NN

Standoff annotation
� POS=“NN” start=0 end=3 �
� POS=“VBZ” start=5 end=7 �
� POS=“DT” start=9 end=9 �
� POS=“NN” start=11 end=14 �
� POS=“IN” start=16 end=17 �
� POS=“NN” start=19 end=25 �
� POS=“NN” start=27 end=35 �

due to the availability of tools such as the University
of Pennsylvania’s WordFreak (Morton and LaCivita
2003).

Crucially, this annotation should be based on
character offsets, avoiding a priori assumptions
about tokenization. See Smith et al. (2005) for an
approach to refactoring a corpus to use character off-
sets.

4.1.2 Guidelines

The maxim of documentation suggests that anno-
tation guidelines should be published. Further, ba-
sic data on who did the annotations and on their
level of agreement should be available. The cur-
rently available datasets mostly lack assessments of
inter-annotator agreement, utilize a small or unspec-
ified number of annotators, and do not provide pub-
lished annotation guidelines. (We note the Yang et
al. (2002) coreference annotation guidelines, which
are excellent, but the corresponding corpus is not
publicly available.) This situation can be remedied
by editors, who should insist on publication of all
of these. The GENETAG corpus is notable for the
detailed documentation of its annotation guidelines.
We suspect that the level of detail of these guidelines
contributed greatly to the success of some rule-based
approaches to the EI task in the BioCreative compe-
tition, which utilized an early version of this corpus.

4.1.3 Balance and representativeness

Corpus linguists generally strive for a well-
structured stratified sample of language, seeking to
“balance” in their data the representation of text
types, different sorts of authors, and so on. Within
the semantic domain of molecular biology texts,
an important dimension on which to balance is the
genre or text type.

As is evident from Table 1, the extant datasets
draw on a very small subset of the types of genres
that are relevant to BLP: we have not done a good
job yet of observing the principle of balance or rep-
resentativeness. The range of genres that exist in the
research (as opposed to clinical) domain alone in-
cludes abstracts, full-text articles, GeneRIFs, defini-
tions, and books. We suggest that all of these should
be included in future corpus development efforts.

Some of these genres have been shown to have
distinguishing characteristics that are relevant to
BLP. Abstracts and isolated sentences from them
are inadequate, and also unsuited to the opportuni-
ties that are now available to us for text data mining
with the recent announcement of the NIH’s new pol-
icy on availability of full-text articles (NIH 2005).
This policy will result in the public availability of
a large and constantly growing archive of current,
full-text publications. Abstracts and sentences are
inadequate in that experience has shown that signifi-
cant amounts of data are not found in abstracts at all,
but are present only in the full texts of articles, some-
times not even in the body of the text itself, but rather
in tables and figure captions (Shatkay and Feldman
2003). They are not suited to the upcoming opportu-
nities in that it is not clear that practicing on abstracts
will let us build the necessary skills for dealing with
the flood of full-text articles that PubMedCentral
is poised to deliver to us. Furthermore, there are
other types of data—GeneRIFs and domain-specific
dictionary definitions, for instance—that are fruit-
ful sources of biological knowledge, and which may
actually be easier to process automatically than ab-
stracts. Space does not permit justifying the impor-
tance of all of these genres, but we discuss the ratio-
nale for including full text at some length due to the
recent NIH announcement and due to the large body
of evidence that can currently be brought to bear on
the issue. A growing body of recent research makes
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two points clear: full-text articles are different from
abstracts, and full-text articles must be tapped if we
are to build high-recall text data mining systems.

Corney et al. (2004) looked directly at the effec-
tiveness of information extraction from full-text ar-
ticles versus abstracts. They found that recall from
full-text articles was more than double that from ab-
stracts. Analyzing the relative contributions of the
abstracts and the full articles, they found that more
than half of the interactions that they were able to
extract were found in the full text and were absent in
the abstract.

Tanabe and Wilbur (2002) looked at the perfor-
mance on full-text articles of an entity identification
system that had originally been developed and tested
using abstracts. They found different false positive
rates in the Methods sections compared to other sec-
tions of full-text articles. This suggests that full-text
articles, unlike abstracts, will require parsing of doc-
ument structure. They also noted a range of prob-
lems related to the wider range of characters (includ-
ing, e.g., superscripts and Greek letters) that occurs
in full-text articles, as opposed to abstracts.

Schuemie et al. (2004) examined a set of 3902
full-text articles from Nature Genetics and BioMed
Central, along with their abstracts. They found that
about twice as many MeSH concepts were men-
tioned in the full-text articles as in the abstracts.
They also found that full texts contained a larger
number of unique gene names than did abstracts,
with an average of 2.35 unique gene names in the
full-text articles, but an average of only 0.61 unique
gene names in the abstracts.

It seems clear that for biomedical text data min-
ing systems to reach anything like their full poten-
tial, they will need to be able to handle full-text in-
puts. However, as Table 1 shows, no publicly avail-
able corpus contains full-text articles. This is a defi-
ciency that should be remedied.

5 Conclusion

5.1 Best practices in biomedical corpus
construction

We have discussed the importance of recoverabil-
ity, publication of guidelines, balance and represen-
tativeness, and linguistic annotation. Corpus main-
tenance is also important. Bada et al. (2004) point

out the role that an organized and responsive main-
tenance plan has played in the success of the Gene
Ontology. It seems likely that the continued devel-
opment and maintenance reflected in the three ma-
jor releases of GENIA (Ohta et al. 2002, Kim et al.
2003) have contributed to its improved quality and
continued use over the years.

5.2 A testable prediction

We have interpreted the data on the characteristics
and usage rates of the various datasets discussed in
this paper as suggesting that datasets that are devel-
oped in accordance with basic principles of corpus
linguistics are more useful, and therefore more used,
than datasets that are not.

A current project at the University of Pennsyl-
vania and the Children’s Hospital of Philadelphia
(Kulick et al. 2004) is producing a corpus that fol-
lows many of these basic principles. We predict that
this corpus will see wide use by groups other than
the one that created it.

5.3 The next step: grounded references

The logical next step for BLP corpus construction
efforts is the production of corpora in which entities
and concepts are grounded with respect to external
models of the world (Morgan et al. 2004).

The BioCreative Task 1B data set construction ef-
fort provides a proof-of-concept of the plausibility
of building BLP corpora that are grounded with re-
spect to external models of the world, and in partic-
ular, biological databases. These will be crucial in
taking us beyond the stage of extracting information
about text strings, and towards mining knowledge
about known, biologically relevant entities.
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Abstract

This paper presents the results of a large-
scale effort to construct a comprehensive
database of known human protein inter-
actions by combining and linking known
interactions from existing databases and
then adding to them by automatically min-
ing additional interactions from 750,000
Medline abstracts. The end result is a
network of 31,609 interactions amongst
7,748 proteins. The text mining sys-
tem first identifies protein names in the
text using a trained Conditional Random
Field (CRF) and then identifies interac-
tions through a filtered co-citation anal-
ysis. We also report two new strategies
for mining interactions, either by finding
explicit statements of interactions in the
text using learned pattern-based rules or
a Support-Vector Machine using a string
kernel. Using information in existing on-
tologies, the automatically extracted data
is shown to be of equivalent accuracy to
manually curated data sets.

1 Introduction

Proteins are often considered in terms of their net-
works of interactions, a view that has spurred con-
siderable effort in mapping large-scale protein in-
teraction networks. Thus far, the most complete
protein networks are measured for yeast and de-
rive from the synthesis of varied large scale experi-

mental interaction data and in-silico interaction pre-
dictions (summarized in (von Mering et al., 2002;
Lee et al., 2004; Jansen et al., 2003)). Unlike the
case of yeast, only minimal progress has been made
with respect to the human proteome. While some
moderate-scale interaction maps have been created,
such as for the purified TNFa/NFKB protein com-
plex (Bouwmeester et al., 2004) and the proteins in-
volved in the human Smad signaling pathway (Col-
land et al., 2004), the bulk of known human pro-
tein interaction data derives from individual, small-
scale experiments reported in Medline. Many of
these interactions have been collected in the Reac-
tome (Joshi-Tope et al., 2005), BIND (Bader et al.,
2003), DIP (Xenarios et al., 2002), and HPRD (Peri
et al., 2004) databases, with Reactome contributing
11,000 interactions that have been manually entered
from articles focusing on interactions in core cellular
pathways, and HPRD contributing a set of 12,000
interactions recovered by manual curation of Med-
line articles using teams of readers. Additional inter-
actions have been transferred from other organisms
based on orthology (Lehner and Fraser, 2004).

A comparison of these existing interaction data
sets is enlightening. Although the interactions from
these data sets are in principle derived from the same
source (Medline), the sets are quite disjoint (Fig-
ure 1) implying either that the sets are biased for
different classes of interactions, or that the actual
number of interactions in Medline is quite large.
We suspect both reasons. It is clear that each data
set has a different explicit focus (Reactome towards
core cellular machinery, HPRD towards disease-
linked genes, and DIP and BIND more randomly
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distributed). Due to these biases, it is likely that
many interactions from Medline are still excluded
from these data sets. The maximal overlap between
interaction data sets is seen for BIND: 25% of these
interactions are also in HPRD or Reactome; only 1%
of Reactome interactions are in HPRD or BIND.

Figure 1: Overlap diagram for known datasets.

Medline now has records from more than 4,800
journals accounting for around 15 million articles.
These citations contain thousands of experimentally
recorded protein interactions, and even a cursory in-
vestigation of Medline reveals human protein inter-
actions not present in the current databases. How-
ever, retrieving these data manually is made diffi-
cult by the large number of articles, all lacking for-
mal structure. Automated extraction of informa-
tion would be preferable, and therefore, mining data
from Medline abstracts is a growing field (Jenssen
et al., 2001; Rzhetsky et al., 2004; Liu and Wong,
2003; Hirschman et al., 2002).

In this paper, we describe a framework for
automatic extraction of protein interactions from
biomedical literature. We focus in particular on the
difficult and important problem of identifying inter-
actions concerning human proteins. We describe a
system for first accurately identifying the names of
human proteins in the documents, then on identify-
ing pairs of interacting human proteins, and demon-
strate that the extracted protein interactions are com-
parable to those extracted manually. In the pro-
cess, we consolidate the existing set of publically-
available human protein interactions into a network
of 31,609 interactions between 7,748 proteins.

2 Assembling existing protein interaction
data

We previously gathered the existing human protein
interaction data sets ((Ramani et al., 2005); sum-
marized in Table 1), representing the current sta-
tus of the publically-available human interactome.
This required unification of the interactions under
a shared naming and annotation convention. For
this purpose, we mapped each interacting protein
to LocusLink (now EntrezGene) identification num-
bers and retained only unique interactions (i.e., for
two proteins A and B, we retain only A–B or B–A,
not both). We have chosen to omit self-interactions,
A–A or B–B, for technical reasons, as their qual-
ity cannot be assessed on the functional benchmark
that we describe in Section 3. In most cases, a small
loss of proteins occurred in the conversion between
the different gene identifiers (e.g., converting from
the NCBI ’gi’ codes in BIND to LocusLink iden-
tifiers). In the case of Human Protein Reference
Database (HPRD), this processing resulted in a sig-
nificant reduction in the number of interactions from
12,013 total interactions to 6,054 unique, non-self
interactions, largely due to the fact that HPRD often
records both A-B and B-A interactions, as well as a
large number of self interactions, and indexes genes
by their common names rather than conventional
database entries, often resulting in multiple entries
for different synonyms. An additional 9,283 (or
60,000 at lower confidence) interactions are avail-
able from orthologous transfer of interactions from
large-scale screens in other organisms (orthology-
core and orthology-all) (Lehner and Fraser, 2004).

3 Two benchmark tests of accuracy for
interaction data

To measure the relative accuracy of each protein in-
teraction data set, we established two benchmarks
of interaction accuracy, one based on shared protein
function and the other based on previously known
interactions. First, we constructed a benchmark in
which we tested the extent to which interaction part-
ners in a data set shared annotation, a measure previ-
ously shown to correlate with the accuracy of func-
tional genomics data sets (von Mering et al., 2002;
Lee et al., 2004; Lehner and Fraser, 2004). We
used the functional annotations listed in the KEGG
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Dataset Version Total Is (Ps) Self (A-A) Is (Ps) Unique (A-B) Is (Ps)

Reactome 08/03/04 12,497 (6,257) 160 (160) 12,336 (807)
BIND 08/03/04 6,212 (5,412) 549 (549) 5,663 (4,762)
HPRD* 04/12/04 12,013 (4,122) 3,028 (3,028) 6,054 (2,747)
Orthology (all) 03/31/04 71,497 (6,257) 373 (373) 71,124 (6,228)
Orthology (core) 03/31/04 11,488 (3,918) 206 (206) 11,282 (3,863)

Table 1:Is = Interactions, Ps= Proteins.

(Kanehisa et al., 2004) and Gene Ontology (Ash-
burner et al., 2000) annotation databases. These
databases provide specific pathway and biological
process annotations for approximately 7,500 human
genes, assigning human genes into 155 KEGG path-
ways (at the lowest level of KEGG) and 1,356 GO
pathways (at level 8 of the GO biological process
annotation). KEGG and GO annotations were com-
bined into a single composite functional annotation
set, which was then split into independent testing
and training sets by randomly assigning annotated
genes into the two categories (3,800 and 3,815 anno-
tated genes respectively). For the second benchmark
based on known physical interactions, we assembled
the human protein interactions from Reactome and
BIND, a set of 11,425 interactions between 1,710
proteins. Each benchmark therefore consists of a
set of binary relations between proteins, either based
on proteins sharing annotation or physically inter-
acting. Generally speaking, we expect more accu-
rate protein interaction data sets to be more enriched
in these protein pairs. More specifically, we expect
true physical interactions to score highly on both
tests, while non-physical or indirect associations,
such as genetic associations, should score highly on
the functional, but not physical interaction, test.

For both benchmarks, the scoring scheme for
measuring interaction set accuracy is in the form of
a log odds ratio of gene pairs either sharing anno-
tations or physically interacting. To evaluate a data
set, we calculate a log likelihood ratio (LLR) as:LLR = ln P (DjI)P (Dj:I) = lnP (IjD)P (:I)P (:IjD)P (I) (1)

where P (DjI) and P (Dj:I) are the probability
of observing the dataD conditioned on the genes
sharing benchmark associations (I) and not sharing
benchmark associations (:I). In its expanded form

(obtained by applying Bayes theorem),P (IjD) andP (:IjD) are estimated using the frequencies of in-
teractions observed in the given data setD between
annotated genes sharing benchmark associations and
not sharing associations, respectively, while the pri-
orsP (I) andP (:I) are estimated based on the to-
tal frequencies of all benchmark genes sharing the
same associations and not sharing associations, re-
spectively. A score of zero indicates interaction part-
ners in the data set being tested are no more likely
than random to belong to the same pathway or to in-
teract; higher scores indicate a more accurate data
set.

Among the literature-derived interactions (Reac-
tome, BIND, HPRD), a total of 17,098 unique in-
teractions occur in the public data sets. Testing the
existing protein interaction data on the functional
benchmark reveals that Reactome has the highest
accuracy (LLR = 3.8), followed by BIND (LLR =
2.9), HPRD (LLR = 2.1), core orthology-inferred in-
teractions (LLR = 2.1) and the non-core orthology-
inferred interaction (LLR = 1.1). The two most
accurate data sets, Reactome and BIND, form the
basis of the protein interaction–based benchmark.
Testing the remaining data sets on this benchmark
(i.e., for their consistency with these accurate pro-
tein interaction data sets) reveals a similar ranking in
the remaining data. Core orthology-inferred interac-
tions are the most accurate (LLR = 5.0), followed by
HPRD (LLR = 3.7) and non-core orthology inferred
interactions (LLR = 3.7).

4 Framework for Mining Protein–Protein
Interactions

The extraction of interacting proteins from Medline
abstracts proceeds in two separate steps:

1. First, we automatically identify protein names
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using a CRF system trained on a set of 750
abstracts manually annotated for proteins (see
Section 5 for details).

2. Based on the output of the CRF tagger, we fil-
ter out less confident extractions and then try to
detect which pairs of the remaining extracted
protein names are interaction pairs.

For the second step, we investigate two general
methods:� Use co-citation analysis to score each pair of

proteins based on the assumption that proteins
co-occurring in a large number of abstracts tend
to be interacting proteins. Out of the resulting
protein pairs we keep only those that co-occur
in abstracts likely to discuss interactions, based
on a Naive Bayes classifier (see Section 6 for
details).� Given that we already have a set of 230 Med-
line abstracts manually tagged for both proteins
and interactions, we can use it to train an inter-
action extractor. In Section 7 we discuss two
different methods for learning this interaction
extractor.

5 A CRF Tagger for Protein Names

The task of identifying protein names is made diffi-
cult by the fact that unlike other organisms, such as
yeast or E. coli, the human genes have no standard-
ized naming convention, and thus present one of the
hardest sets of gene/protein names to extract. For
example, human proteins may be named with typ-
ical English words, such as ”light”, ”map”, ”com-
plement”, and ”Sonic Hedgehog”. It is therefore
necessary that an information extraction algorithm
be specifically trained to extract gene and protein
names accurately.

We have previously described (Bunescu et al.,
2005) effective protein and gene name tagging us-
ing a Maximum Entropy based algorithm. Condi-
tional Random Fields (CRF) (Lafferty et al., 2001)
are new types of probabilistic models that preserve
all the advantages of Maximum Entropy models and
at the same time avoid the label bias problem by al-
lowing a sequence of tagging decisions to compete
against each other in a global probabilistic model.

In both training and testing the CRF protein-name
tagger, the corresponding Medline abstracts were
processed as follows. Text was tokenized using
white-space as delimiters and treating all punctua-
tion marks as separate tokens. The text was seg-
mented into sentences, and part-of-speech tags were
assigned to each token using Brill’s tagger (Brill,
1995). For each token in each sentence, a vector of
binary features was generated using the feature tem-
plates employed by the Maximum Entropy approach
described in (Bunescu et al., 2005). Generally, these
features make use of the words occurring before and
after the current position in the text, their POS tags
and capitalization patterns. Each feature occurring
in the training data is associated with a parameter in
the CRF model. We used the CRF implementation
from (McCallum, 2002). To train the CRF’s parame-
ters, we used 750 Medline abstracts manually anno-
tated for protein names (Bunescu et al., 2005). We
then used the trained system to tag protein and gene
names in the entire set of 753,459 Medline abstracts
citing the word “human”.

In Figure 2 we compare the performance of the
CRF tagger with that of the Maximum Entropy tag-
ger from (Bunescu et al., 2005), using the same
set of features, by doing 10-fold cross-validation on
Yapex – a smaller dataset of 200 manually annotated
abstracts (Franzen et al., 2002). Each model assigns
to each extracted protein name a normalized confi-
dence value. The precision–recall curves from Fig-
ure 2 are obtained by varying a threshold on the min-
imum accepted confidence. We also plot the preci-
sion and recall obtained by simply matching textual
phrases against entries from a protein dictionary.

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

P
re

ci
si

on
 (

%
)

Recall (%)

CRF
MaxEnt

Dict

Figure 2: Protein Tagging Performance.
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The dictionary of human protein names was
assembled from the LocusLink and Swissprot
databases by manually curating the gene names
and synonyms (87,723 synonyms between 18,879
unique gene names) to remove genes that were re-
ferred to as ’hypothetical’ or ’probable’ and also to
omit entries that referred to more than one protein
identifier.

6 Co-citation Analysis and Bayesian
Classification

In order to establish which interactions occurred
between the proteins identified in the Medline ab-
stracts, we used a 2-step strategy: measure co-
citation of protein names, then enrich these pairs for
physical interactions using a Bayesian filter. First,
we counted the number of abstracts citing a pair of
proteins, and then calculated the probability of co-
citation under a random model based on the hyper-
geometric distribution (Lee et al., 2004; Jenssen et
al., 2001) as:P (kjN;m; n) = � nk �� N � nm� k �� Nm � (2)

whereN equals the total number of abstracts,n of
which cite the first protein,m cite the second pro-
tein, andk cite both.

Empirically, we find the co-citation probability
has a hyperbolic relationship with the accuracy on
the functional annotation benchmark from Section 3,
with protein pairs co–cited with low random proba-
bility scoring high on the benchmark.

With a threshold on the estimated extraction con-
fidence of 80% (as computed by the CRF model)
in the protein name identification, close to 15,000
interactions are extracted with the co-citation ap-
proach that score comparable or better on the func-
tional benchmark than the manually extracted inter-
actions from HPRD, which serves to establish a min-
imal threshold for our mined interactions.

However, it is clear that proteins are co-cited for
many reasons other than physical interactions. We
therefore tried to enrich specifically for physical in-
teractions by applying a secondary filter. We applied
a Bayesian classifier (Marcotte et al., 2001) to mea-
sure the likelihood of the abstracts citing the pro-

tein pairs to discuss physical protein–protein inter-
actions. The classifier scores each of the co-citing
abstracts according to the usage frequency of dis-
criminating words relevant to physical protein inter-
actions. For a co-cited protein pair, we calculated
the average score of co-citing Medline abstracts and
used this to re-rank the top-scoring 15,000 co-cited
protein pairs.

Interactions extracted by co-citation and filtered
using the Bayesian estimator compare favorably
with the other interaction data sets on the functional
annotation benchmark (Figure 3). Testing the accu-
racy of these extracted protein pairs on the physi-
cal interaction benchmark (Figure 4) reveals that the
co-cited proteins scored high by this classifier are
indeed strongly enriched for physical interactions.
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Keeping all the interactions that score better than
HPRD, our co-citation / Bayesian classifier analy-
sis yields 6,580 interactions between 3,737 proteins.
By combining these interactions with the 26,280 in-
teractions from the other sources, we obtained a fi-

50



nal set of 31,609 interactions between 7,748 human
proteins.

7 Learning Interaction Extractors

In (Bunescu et al., 2005) we described a dataset of
230 Medline abstracts manually annotated for pro-
teins and their interactions. This can be used as a
training dataset for a method that learns interaction
extractors. Such a method simply classifies a sen-
tence containing two protein names as positive or
negative, where positive means that the sentence as-
serts an interaction between the two proteins. How-
ever a sentence in the training data may contain more
than two proteins and more than one pair of inter-
acting proteins. In order to extract the interacting
pairs, we replicate the sentences havingn proteins
(n � 2) into Cn2 sentences such that each one has
exactly two of the proteins tagged, with the rest of
the protein tags omitted. If the tagged proteins in-
teract, then the replicated sentence is added to the
set of positive sentences, otherwise it is added to the
set of negative sentences. During testing, a sentence
havingn proteins (n � 2) is again replicated intoCn2 sentences in a similar way.

7.1 Extraction using Longest Common
Subsequences (ELCS)

Blaschke et al. (Blaschke and Valencia, 2001;
Blaschke and Valencia, 2002) manually developed
rules for extracting interacting proteins. Each of
their rules (or frames) is a sequence of words (or
POS tags) and two protein-name tokens. Between
every two adjacent words is a number indicating
the maximum number of intervening words allowed
when matching the rule to a sentence. In (Bunescu
et al., 2005) we described a new method ELCS (Ex-
traction using Longest Common Subsequences) that
automatically learns such rules. ELCS’ rule repre-
sentation is similar to that in (Blaschke and Valen-
cia, 2001; Blaschke and Valencia, 2002), except that
it currently does not use POS tags, but allows dis-
junctions of words. Figure 5 shows an example of a
rule learned by ELCS. Words in square brackets sep-
arated by ‘j’ indicate disjunctive lexical constraints,
i.e. one of the given words must match the sen-
tence at that position. The numbers in parentheses
between adjacent constraints indicate the maximum

number of unconstrained words allowed between the
two (called aword gap). The protein names are de-
noted here with PROT. A sentence matches the rule
if and only if it satisfies the word constraints in the
given order and respects the respective word gaps.

- (7) interaction (0) [betweenj of] (5) PROT (9) PROT (17) .

Figure 5: Sample extraction rule learned by ELCS.

7.2 Extraction using a Relation Kernel (ERK)

Both Blaschke and ELCS do interaction extraction
based on a limited set of matching rules, where a rule
is simply a sparse (gappy) subsequence of words (or
POS tags) anchored on the two protein-name tokens.
Therefore, the two methods share a common limita-
tion: either through manual selection (Blaschke), or
as a result of the greedy learning procedure (ELCS),
they end up using only a subset of all possible an-
chored sparse subsequences. Ideally, we would want
to use all such anchored sparse subsequences as fea-
tures, with weights reflecting their relative accuracy.
However explicitly creating for each sentence a vec-
tor with a position for each such feature is infeasi-
ble, due to the high dimensionality of the feature
space. Here we can exploit an idea used before in
string kernels (Lodhi et al., 2002): computing the
dot-product between two such vectors amounts to
calculating the number of common anchored sub-
sequences between the two sentences. This can be
done very efficiently by modifying the dynamic pro-
gramming algorithm from (Lodhi et al., 2002) to ac-
count only for anchored subsequences i.e. sparse
subsequences which contain the two protein-name
tokens. Besides restricting the word subsequences
to be anchored on the two protein tokens, we can
further prune down the feature space by utilizing the
following property of natural language statements:
whenever a sentence asserts a relationship between
two entity mentions, it generally does this using one
of the following three patterns:� [FI] F ore–Inter: words before and between the

two entity mentions are simultaneously used to
express the relationship. Examples: ’interac-
tion of hP1i with hP2i’, ’activation of hP1i byhP2i’.
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� [I] I nter: only words between the two entity
mentions are essential for asserting the rela-
tionship. Examples: ’hP1i interacts withhP2i’,
’hP1i is activated byhP2i’.� [IA] I nter–After: words between and after the
two entity mentions are simultaneously used
to express the relationship. Examples:hP1i –hP2i complex’, ’hP1i andhP2i interact’.

Another useful observation is that all these pat-
terns use at most 4 words to express the relationship
(not counting the two entities). Consequently, when
computing the relation kernel, we restrict the count-
ing of common anchored subsequences only to those
having one of the three types described above, with a
maximum word-length of 4. This type of feature se-
lection leads not only to a faster kernel computation,
but also to less overfitting, which results in increased
accuracy (we omit showing here comparative results
supporting this claim, due to lack of space).

We used this kernel in conjunction with Support
Vector Machines (Vapnik, 1998) learning in or-
der to find a decision hyperplane that best separates
the positive examples from negative examples. We
modified thelibsvm package for SVM learning by
plugging in the kernel described above.

7.3 Preliminary experimental results

We compare the following three systems on the task
of retrieving protein interactions from the dataset of
230 Medline abstracts (assuming gold standard pro-
teins):� [Manual] : We report the performance of the

rule-based system of (Blaschke and Valencia,
2001; Blaschke and Valencia, 2002).� [ELCS] : We report the 10-fold cross-validated
results from (Bunescu et al., 2005) as a
precision-recall graph.� [ERK] : Based on the same splits as those
used by ELCS, we compute the corresponding
precision-recall graph.

The results, summarized in Figure 6, show that
the relation kernel outperforms both ELCS and the
manually written rules. In future work, we intend

to analyze the complete Medline with ERK and in-
tegrate the extracted interactions into a larger com-
posite set.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

P
re

ci
si

on
 (

%
)

Recall (%)

ERK
Manual

ELCS

Figure 6: PR curves for interaction extractors.

8 Conclusion

Through a combination of automatic text mining and
consolidation of existing databases, we have con-
structed a large database of known human protein
interactions containing 31,609 interactions amongst
7,748 proteins. By mining 753,459 human-related
abstracts from Medline with a combination of a
CRF-based protein tagger, co-citation analysis, and
automatic text classification, we extracted a set of
6,580 interactions between 3,737 proteins. By uti-
lizing information in existing knowledge bases, this
automatically extracted data was found to have an
accuracy comparable to manually developed data
sets. More details on our interaction database have
been published in the biological literature (Ramani
et al., 2005) and it is available on the web at
http://bioinformatics.icmb.utexas.edu/idserve. We
are currently exploring improvements to this
database by more accurately identifying assertions
of interactions in the text using an SVM that exploits
a relational string kernel.
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Abstract 

In this paper, we present a fully auto-
mated extraction system, named IntEx, to 
identify gene and protein interactions in 
biomedical text. Our approach is based on 
first splitting complex sentences into sim-
ple clausal structures made up of syntactic 
roles. Then, tagging biological entities 
with the help of biomedical and linguistic 
ontologies. Finally, extracting complete 
interactions by analyzing the matching 
contents of syntactic roles and their lin-
guistically significant combinations. Our 
extraction system handles complex sen-
tences and extracts multiple and nested in-
teractions specified in a sentence. 
Experimental evaluations with two other 
state of the art extraction systems indicate 
that the IntEx system achieves better per-
formance without the labor intensive pat-
tern engineering requirement. ∗  

1 Introduction 

Genomic research in the last decade has resulted in 
the production of a large amount of data in the 
form of micro-array experiments, sequence infor-
mation and publications discussing the discoveries. 
The data generated by these experiments is highly 

                                                           
∗ To whom correspondence should be addressed 

connected; the results from sequence analysis and 
micro-arrays depend on functional information and 
signal transduction pathways cited in peer-
reviewed publications for evidence. Though scien-
tists in the field are aided by many online data-
bases of biochemical interactions, currently a 
majority of these are curated labor intensively by 
domain experts. Information extraction from text 
has therefore been pursued actively as an attempt 
to extract knowledge from published material and 
to speed up the curation process significantly.  
In the biomedical context, the first step towards 
information extraction is to recognize the names of 
proteins (Fukuda, Tsunoda et al. 1998), genes, 
drugs and other molecules. The next step is to rec-
ognize interaction events between such entities  
(Blaschke, Andrade et al. 1999; Blaschke, Andrade 
et al. 1999; Hunter 2000; Thomas, Milward et al. 
2000; Thomas, Rajah et al. 2000; Ono, Hishigaki 
et al. 2001; Hahn and Romacker 2002) and then to 
finally recognize the relationship between interac-
tion events. However, several issues make extract-
ing such interactions and relationships difficult 
since (Seymore, McCallum et al.1999) (i) the task 
involves free text – hence there are many ways of 
stating the same fact (ii) the genre of text is not 
grammatically simple (iii) the text includes a lot of 
technical terminology unfamiliar to existing natu-
ral language processing systems (iv) information 
may need to be combined across several sentences, 
and (v) there are many sentences from which noth-
ing should be extracted. 
In this paper, we present a fully automated extrac-
tion approach to identify gene and protein interact- 
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tions in natural language text with the help of bio-
medical and linguistic ontologies. Our approach 
works in three main stages: 
1. Complex Sentence Processor (CSP): First, is 

splitting complex sentences into simple clausal 
structures made of up syntactic roles. 

2. Tagging: Then, tagging biological entities 
with the help of biomedical and linguistic on-
tologies.  

3. Interaction Extractor: Finally, extracting 
complete interactions by analyzing the match-
ing contents of syntactic roles and their lin-
guistically significant combinations.  

The novel aspects of our system are its ability to 
handle complex sentence structures using the 
Complex Sentence Processor (CSP) and to extract 
multiple and nested interactions specified in a sen-
tence using the Interaction Extractor without the 
labor intensive pattern engineering requirement. 
Our approach is based on identification of syntac-
tic roles, such as subject, objects, verb and modifi-
ers, by using the word dependencies. We have used 
a dependency based English grammar parser, the 
Link Grammar (Sleator and Temperley 1993), to 
identify the roles. Syntactic roles are utilized to 
transform complex sentences into their multiple 
clauses each containing a single event. This clausal 
structure enables us to engineer an automated algo-
rithm for the extraction of events thus overcoming 
the burden of labor intensive pattern engineering 
for complex and compound sentences. Pronoun 
resolution module assists Interaction Extractor in 
identifying interactions spread across multiple sen-
tences using pronominal references. We performed 
comparative experimental evaluations with two 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: System Architecture 

state of the art systems.  Our experimental results 
show that the IntEx system presented here achieves 
better performance without the labor intensive rule 
engineering step which is required for these state 
of the art systems.  
 
The rest of the paper is organized as follows. In 
Section 2 we survey the related work. In Section 3 
we present an architectural overview of the IntEx 
system. Sections 4 and 5 explain and illustrate the 
individual modules of the IntEx system. A detailed 
evaluation of our system with the BioRAT 
(Corney, Buxton et al. 2004) and GeneWays 
(Rzhetsky, Iossifov et al. 2004) is presented in Sec-
tion 6. Section 7 concludes the paper.  

  

2 Related Work 

Information extraction is the extraction of salient 
facts about pre-specified types of events, entities 
(Bunescu, Ge et al. 2003) or relationships from 
free text. Information extraction from free-text util-
izes shallow-parsing techniques (Daelemans, 
Buchholz et al. 1999), Parts-of-Speech tag-
ging(Brill 1992), noun and verb phrase chunking 
(Mikheev and Finch 1997), verb subject and object 
relationships (Daelemans, Buchholz et al. 1999), 
and learned (Califf and Mooney 1998; Craven and 
Kumlein 1999; Seymore, McCallum et al. 1999) or 
hand-build patterns to automate the creation of 
specialized databases. 
Manual pattern engineering approaches employ 
shallow parsing with patterns to extract the interac-
tions. In the (Ono, Hishigaki et al. 2001) system, 
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sentences are first tagged using a dictionary based 
protein name identifier and then processed by a 
module which extracts interactions directly from 
complex and compound sentences using regular 
expressions based on part of speech tags. 
 
The SUISEKI system of Blaschke (Blaschke, 
Andrade et al. 1999) also uses regular expressions, 
with probabilities that reflect the experimental ac-
curacy of each pattern to extract interactions into 
predefined frame structures.  
 
GENIES (Friedman, Kra et al. 2001) utilizes a 
grammar based NLP engine for information extrac-
tion. Recently, it has been extended as GeneWays 
(Rzhetsky, Iossifov et al. 2004), which also pro-
vides a Web interface that allows  users to search 
and submit papers of interest for analysis. The 
BioRAT system (Corney, Buxton et al. 2004) uses 
manually engineered  templates that combine lexi-
cal and semantic information to identify protein 
interactions. The GeneScene system(Leroy, Chen 
et al. 2003) extracts interactions using frequent 
preposition-based templates.  
 
Grammar engineering approaches, on the other 
hand use manually generated specialized grammar 
rules (Rinaldi, Schneider et al. 2004) that perform 
a deep parse of the sentences. Temkin (Temkin and 
Gilder 2003) addresses the problem of extracting 
protein interactions by using an extendable but 
manually built Context Free Grammar (CFG) that 
is designed specifically for parsing  biological text. 
The PathwayAssist system uses an NLP system, 
MedScan (Novichkova, Egorov et al. 2003), for the 
biomedical domain that tags the entities in text and 
produces a semantic tree. Slot filler type rules are 
engineered based on the semantic tree representa-
tion to extract relationships from text. Recently, 
extraction systems have also used link grammar 
(Grinberg, Lafferty et al. 1995) to identify interac-
tions between proteins (Ding, Berleant et al. 2003). 
Their approach relies on various linkage paths be-
tween named entities such as gene and protein 
names. Such manual pattern engineering ap-
proaches for information extraction are very hard 
to scale up to large document collections since they 
require labor-intensive and skill-dependent pattern 
engineering. 
Machine learning approaches have also been used 
to learn extraction rules from user tagged training 

data. These approaches represent the rules learnt in 
various formats such as decision trees (Chiang, Yu 
et al. 2004) or grammar rules (Phuong, Lee et al. 
2003). Craven et al (Craven and Kumlien 1999) 
explored an automatic rule-learning approach that 
uses a combination of FOIL (Quinlan 1990) and 
Naïve Bayes Classifier to learn extraction rules.  
  

3 System Architecture 

The sentences in English are classified as either 
simple, complex, compound or complex-
compound based on the number and types of 
clauses present in them. Our extraction system re-
solves the complex, compound and complex-
compound sentence structures (collectively re-
ferred to as complex sentence structures in this 
document) into simple sentence clauses which con-
tain a subject and a predicate. These simple sen-
tence clauses are then processed to obtain the 
interactions between proteins. The architecture of 
the IntEx system is shown in Figure 1, and the fol-
lowing Sections 4 and 5 explain the workings of its 
modules. 

4 Complex Sentence Processing  

4.1 Pronoun Resolution 

Interactions are often specified through pronominal 
references to entities in the discourse, or through 
co references where, a number of phrases are used 
to refer to the same entity. Hence, a complete ap-
proach to extracting information from text should 
also take into account the resolution of these refer-
ences. References to entities are generally catego-
rized as co-references or anaphora and has been 
investigated using various approaches (Castaño, 
Zhang et al. 2002). IntEx anaphora resolution sub-
system currently focuses on third person pronouns 
and reflexives since the first and second person 
pronouns are frequently used to refer to the authors 
of the papers.  
Our pronoun resolution module uses a heuristic 
approach to identify the noun phrases referred by 
the pronouns in a sentence. The heuristic is based 
on the number of the pronoun (singular or plural) 
and the proximity of the noun phrase. The first 
noun phrase that matches the number of the pro-
noun is considered as the referred phrase.   
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4.2 Entity Tagger 

The entity tagging module marks the names of 
genes, and proteins in text. The process of tagging 
is a combination of dictionary look up and heuris-
tics. Regular expressions are also used to mark the 
names that do not have a match in the dictionaries. 
The protein name dictionaries for the entity tagger  
are derived from various biological sources such as 
UMLS1, Gene Ontology2 and Locuslink3 database  
 
 
 

                                                           
1 http://www.nlm.nih.gov/research/umls/ 
2 http://www.geneontology.org/ 
3 http://www.ncbi.nlm.nih.gov/LocusLink/ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.  

 
 Fig. 3 Example - a) A Sentence from an abstract (PMID: 1956405). b) Pronoun ‘it’s’ is resolved 
with ‘The SAC6 gene’. c) Each row represents a simple sentence, d) for each constituent, role type is 
resolved and interaction words are tagged, e) Protein-Protein interaction is extracted. 

4.3 Preprocessor 

The tagged sentences need to be pre-processed to 
replace syntactic constructs, such as parenthesized 
nouns and domain specific terminology that cause 
the Link Grammar Parser to produce an incorrect 
output. This problem is overcome by replacing 
such elements with alternative formats that is rec-
ognizable by the parser.  
 

4.4 Link Grammar and the Link grammar 
parser 

Link grammar (LG)  introduced by  Sleator and 
Temperley (Sleator and Temperley 1991) is a de-
pendency based grammatical system. The basic 
idea of link grammar is to connect pairs of words 
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in a sentence with various syntactically significant 
links.  The LG consists of set of words, each of 
which has various alternative linking requirements.   
 
A linking requirement can be seen as a block with 
connectors above each word. A connector is satis-
fied by matching it with compatible connector. 
Fig.2 below shows how linking requirements can 
be satisfied to produce a parse for the example sen-
tence "The dog chased a cat". 
  
 
 
 
 
 
 
 
Even though LG has no explicit notion of constitu-
ents or categories (Sleator and Temperley 1993), 
they emerge as contiguous connected sequence of 
words attached to the rest of sentence by a particu-
lar types of links, as in the above example where 
‘the dog’  and ‘a cat’ are connected to the main 
verb via ‘S’ and ‘O’ links respectively. Our algo-
rithms utilize this property of LG where certain 
link types allow us to extract the constituents of 
sentences irrespective of the tense. The LG 
parser’s ability to detect multiple verbs and their 
constituent linkage in complex sentences makes it 
particularly well suited for our approach during 
resolving of complex sentences into their multiple 
clauses. The LG parsers’ dictionary can also be 
easily enhanced to produce better parses for bio-
medical text (Szolovits 2003). 

4.5  Complex Sentence Processor Algorithm 

The complex sentence processor (CSP) component 
splitsthe complex sentences into a collection of 
simple sentence clauses which contain a subject 
and a predicate. The CSP follows a verb-based ap-
proach to extract the simple clauses. A sentence is 
identified to be complex it contains more than one 
verb. A simple sentence is identified to be one with 
a subject, a verb, objects and their modifying 
phrases. The example in Figure 3 illustrates the 
major steps involved during complex sentence 
processing. The following schema is used as the 
format to represent simple clauses: 
    Subject | Verb | Object | Modifying phrase to the 
verb 

5 Interaction Extraction 

Interaction Extractor (IE) extracts interactions 
from simple sentence clauses produced by the 
complex sentence processor. The highly technical 
terminology and the complex grammatical con-
structs that are present in the biomedical abstracts 
make the extraction task difficult, Even a simple 
sentence with a single verb can contain multiple 
and/or nested interactions. That’s why our IE sys-
tem is based on a deep parse tree structure pre-
sented by the LG and it considers a thorough case 
based analysis of contents of various syntactic 
roles of the sentences like their subjects (S), verbs 
(V), objects (O) and modifying phrases (M) as well 
as their linguistically significant and meaningful 
combinations like S-V-O, S-O, S-V-M or S-M, il-
lustrated in Figure 4, for finding and extracting 
protein-protein interactions.  

Figure 2: Link grammar representation of a sentence 

 
 
 
 
 
 
 
 

 

 

 

5.1 Role Type Matcher  

For each syntactic constituent of the sentence, the 
role type matcher identifies the type of each role as 
either ‘Elementary’, ‘Partial’ or ‘Complete’ based 
on its matching content, as presented  in Table 1.  

Table 1: Role Type Matcher 

Role  Type Description 

Elementary If the role contains a Protein name or an 
interaction word. 

Partial  If the role has a Protein name and an interac-
tion word.  

Complete If the role has at least two Protein names and 
an interaction word. 

Figure 4: Interaction Extraction: Composition and analysis 
of various syntactic roles.  

S O M

S-O S-M 

Subject (S) Modifying Phrase (M)Object (O) 

S-V-O S-V-M 
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5.2 Interaction Word Tagger 

 The words that match a biologically significant 
action between two gene/protein names are labeled 
as ‘interaction words’. Our gazetteer for interaction 
words is derived from UMLS and WordNet4. Por-
ter Stemmer (Porter 1997) was also used for stem-
ming such words before matching.  
 

5.3 Interaction Extractor (IE) 

IntEx interaction extractor works as follows. The 
input to IE is the preprocessed and typed simple 
clause structures. The IE algorithm progresses bot-
tom up, starting from each syntactic role S, V or 
M, and expanding them using the lattice provided 
in Figure 4 until all ‘Complete’ singleton or com-
posite role types are obtained.  
 
Consider the example shown in Figure 3, for the 
third sentence, the boundaries of the subject and 
the modifying phrase are identified and both are 
role typed as ‘Elementary’ using Table 1. Since the 
main verb is tagged as an interaction word, IE uses 
the S-V-M composite role from Figure 4 to find 
and extract the following complete interaction:    
          
{‘The SAC 6 gene Protein’, ‘colocalizes’, ‘actin’}.  
 
‘Complete’ roles also need to be analyzed in order 
to determine their voice as ‘active’ or ‘passive’. 
Since there are only a small number of preposition 
combinations, such as of-by, from-to etc., that oc-
cur frequently within the clauses, they can be used 
to distinguish the agent and the theme of the inter-
actions.  
 
For example, in the sentence “The kinase phos-
phorylation of pRb by c-Abl in the gland could 
inhibit ku70”, the subject role is “The kinase phos-
phorylation of pRb by c-Abl in the gland”. Since 
the subject has at least two protein names and an 
interaction word it is ‘complete’. By using the ‘of-
by’ pattern (…<Interaction-Word (action)>... of  
...<theme>…by  ...<agent>…) the IE is able to 
extract the correct interaction {c-Abl, phosphoryla-
tion, pRb} from the subject role alone. 

                                                           
                                                          

4 http://www.cogsci.princeton.edu/~wn/ 

6 Evaluation & discussion  

We have evaluated the performance of our system 
with two state of the art systems - BioRAT 
(Corney, Buxton et al. 2004) and GeneWays 
(Rzhetsky, Iossifov et al. 2004).  
 
Blaschke and Valencia (Valencia 2001) recom-
mend DIP (Xenarios, Rice et al. 2000) dataset  as a 
benchmark for evaluating biomedical Information 
Extraction systems. The first evaluation for IntEx 
system was performed on the same dataset 5 that 
was used for the BioRAT evaluation. For BioRAT 
evaluation, authors identified 389 interactions from 
the DIP database such that both proteins participat-
ing in the interaction had SwissProt entries. These 
interactions correspond to 229 abstracts from the 
PubMed. The BioRAT system was evaluated using 
these 229 abstracts. The interactions extracted by 
the system were then manually examined by a do-
main expert for precision and recall. Precision is a 
measure of correctness of the system, and is calcu-
lated as the ratio of true positives to the sum of true 
positives and false positives. The sensitivity of the 
system is given by the recall measure, calculated as 
the ratio of true positives to the sum of true posi-
tives and false negatives.  

 
Table 2: Recall comparison of IntEx and BioRAT from  229 ab-
stracts when compared with DIP database. 

IntEx BioRAT Recall 

Results Cases Percent 
(%) Cases Percent(%) 

Match 142 26.94 79 20.31 

No 
Match 385 73.06 310 79.67 

Totals 527 100.00 389 100.00 

 
We have also limited our protein name dictionary 
to the SwissProt entries. Tables 2 and 3 present the 
evaluation results as compared with the BioRAT 
system. A detailed analysis of the sources of all 
types of errors is shown in Figure 6.  

 
5 Dataset was obtained from Dr. David Corney by personal 
communication. 
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Table 3: Precision comparison of IntEx and BioRAT  from  229 
abstracts.  

 
DIP contains protein interactions from both ab-
stracts and full text. Since our extraction system 
was tested only on the abstracts, the system missed 
out on some interactions that were only present in 
the full text of the abstract.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Second evaluation for the IntEx system was done 
to test its recall performance using an article6 that 
was also used by the GeneWays (Rzhetsky, Iossi-
fov et al. 2004) system. Both systems performance 
was tested using the full text of the article 
(Friedman, Kra et al. 2001). GeneWays system 
achieves a recall of 65% where as IntEx extracted 
a total of 44 interactions corresponding to a recall 
measure of 66 %.  

Conclusion 
In this paper, we present a fully automated extrac-
tion system for identifying gene and protein inter-

                                                           
6 Dataset was obtained from Dr. Andrew Rzhetsky by personal 
communication. 

actions from biomedical text. The source code and 
documentation of the IntEx system, as well as all 
experimental documents and extracted interactions 
are available online at our Web site at 
http://cips.eas.asu.edu/textmining.htm. Our extrac-
tion system handles complex sentences and ex-
tracts multiple nested interactions specified in a 
sentence. Experimental evaluations of the IntEx 
system with the state of the art semi-automated 
systems -- the BioRAT and GeneWays datasets 
indicates that our system performs better without 
the labor intensive rule engineering requirement. 
We have shown that a syntactic role-based ap-
proach compounded with linguistically sound in-
terpretation rules applied on the full sentence’s 
parse can achieve better performance than existing 
systems which are based on manually engineered 
patterns which are both costly to develop and are 
not as scalable as the automated mechanisms pre-
sented in this paper.  

IntEx BioRAT Precision  

Results Cases Percent 
(%) Cases Percent 

(%) 

Correct 262 65.66 239 55.07 

Incorrect 137 34.33 195 44.93 

Totals 399 100.00 434 100.00 
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