
Scaling High-Order Character Language Models to Gigabytes

Bob Carpenter
Alias-i, Inc.

181 North 11th St.,#401, Brooklyn, NY 11211
carp@colloquial.com

Abstract

We describe the implementation steps re-
quired to scale high-order character lan-
guage models to gigabytes of training
data without pruning. Our online models
build character-level PAT trie structures on
the fly using heavily data-unfolded imple-
mentations of an mutable daughter maps
with a long integer count interface. Ter-
minal nodes are shared. Character 8-gram
training runs at 200,000 characters per
second and allows online tuning of hy-
perparameters. Our compiled models pre-
compute all probability estimates for ob-
served n-grams and all interpolation pa-
rameters, along with suffix pointers to
speedup context computations from pro-
portional to n-gram length to a constant.
The result is compiled models that are
larger than the training models, but exe-
cute at 2 million characters per second on
a desktop PC. Cross-entropy on held-out
data shows these models to be state of the
art in terms of performance.

1 Introduction

Charactern-gram language models have been ap-
plied to just about every problem amenable to sta-
tistical language modeling. The implementation
we describe here has been integrated as the source
model in a general noisy-channel decoder (with ap-
plications to spelling correction, tokenization and

case normalization) and the class models for sta-
tistical classification (with applications including
spam filtering, topic categorization, sentiment analy-
sis and word-sense disambiguation). In addition to
these human language tasks,n-grams are also popu-
lar as estimators for entropy-based compression and
source models for cryptography. (Teahan, 2000)
and (Peng, 2003) contain excellent overviews of
character-level models and their application from a
compression and HMM perspective, respectively.

Our hypothesis was that language-model smooth-
ing would behave very much like the classifiers ex-
plored in (Banko and Brill, 2001), in that more data
trumps better estimation technique. We managed
to show that the better of the interpolation mod-
els used in (Chen and Goodman, 1996), namely
Dirichlet smoothing with or without update exclu-
sion, Witten-Bell smoothing with or without update
exclusion, and absolute discounting with update ex-
clusion converged for 8-grams after 1 billion charac-
ters to cross entropies of 1.43+/-0.01. The absolute
discounting with update exclusion is what Chen and
Goodman refer to as the Kneser-Ney method, and
it was the clear winner in their evaluation. They
only tested non-parametric Witten-Bell with a sub-
optimal hyperparameter setting (1.0, just as in Wit-
ten and Bell’s original implementation). After a bil-
lion characters, roughly 95 percent of the characters
were being estimated from their highest-order (7)
context. The two best models, parametric Witten-
Bell and absolute discounting with update exclu-
sion (aka Kneser-Ney), were even closer in cross-
entropy, and depending on the precise sample (we
kept rolling samples as described below), and after a

million or so characters, the differences even at the
higher variance 12-grams were typically in the +/-
0.01 range. With a roughly 2.0 bit/character devi-
ation, a 10,000 character sample, which is the size
we used, leads to a 2σ (95.45%) confidence interval
of +/-0.02, and the conclusion that the differences
between these systems was insignificant.

Unlike in the token-based setting, we are not op-
timistic about the possibility of improving these re-
sults dramatically by clustering character contexts.
The lower-order models are very well trained with
existing quantities of data and do a good job of
this kind of smoothing. We do believe that train-
ing hyperparameters for different model orders in-
dependently might improve cross-entropy fraction-
ally; we found that training them hierarchically,
as in (Samuelsson, 1996), actually increased cross-
entropy. We believe this is a direct correlate of the
effectiveness of update exclusion; the lower-order
models do not need to be the best possible models
of those orders, but need to provide good estimates
when heavily weighted, as in smoothing. The global
optimization allows a single setting to balance these
attributes, but optimizing each dimension individu-
ally should do even better. But with the number of
estimates taking place at the highest possible orders,
we do not believe the amount of smoothing will have
that large an impact overall.

These experiments had a practical goal — we
needed to choose a language modeling implemen-
tation for LingPipe and we didn’t want to take the
standard Swiss Army Knife approach because most
of our users are not interested in running experi-
ments on language modeling, but rather using lan-
guage models in applications such as information
retrieval, classification, or clustering. These appli-
cations have actually been shown to perform better
on the basis of character language models than to-
ken models ((Peng, 2003)). In addition, character-
level models require no decisions about tokeniza-
tion, token normalization and subtoken modeling (as
in (Klein et al., 2003)).

We chose to include the Witten-Bell method in
our language modeling API because it is derived
from full corpus counts, which we also use for col-
location and relative frequency statistics within and
across corpora, and thus the overall implementation
effort was simpler. For just language modeling, an

update exclusion implementation of Kneser-Ney is
no more complicated than Witten-Bell.

In this paper, we describe the implementation de-
tails behind storing the model counts, how we sam-
ple the training character stream to provide low-cost,
online leave-one-out style hyperparameter estima-
tion, and how we compile the models and evaluate
them over text inputs to achieve linear performance
that is nearly independent ofn-gram length. We also
describe some of the design patterns used at the in-
terface level for training and execution. As far as
we know, the online leave-one-out analysis is novel,
though there are epoch-based precursors in the com-
pression literature.

As far as we know, no one has built a charac-
ter language model implementation that will come
close to the one presented here in terms of scala-
bility. This is largely because they have not been
designed for the task rather than any fundamental
limitation. In fact, we take the main contribution
of this paper to be a presentation of simple data
sharing and data unfolding techniques that would
also apply to token-level language models. Before
starting our presentation, we’ll review some of the
limitations of existing systems. For a start, none
of the systems of which we are aware can scale to
64-bit values for counts, which is necessary for the
size models we are considering without pruning or
count scaling. It’s simply easier to find 4 billion in-
stances of a character than of a token. In fact, the
compression models typically use 16 bits for storing
counts and then just scale downward when neces-
sary, thus not even trying to store a full set of counts
for even modest corpora. The standard implemen-
tations of character models in the compression liter-
ature represent ordinary trie nodes as arrays, which
is hugely wasteful for large sparse implementations;
they represent PAT-trie nodes as pointers into the
original text plus counts, which works well for long
n-gram lengths (32) over small data sets (1 MB) but
does not scale well for reasonablen-gram lengths (8-
12) over larger data sets (100MB-1GB). The stan-
dard token-level language models used to restrict
attention to 64K tokens and thus require 16-bit to-
ken representatives per node just as our character-
based approach; with the advent of large vocabu-
lary speech recognition, they now typically use 32-
bits per node just to represent the token. Arrays of

daughter nodes and lack of sharing of low-count ter-
minal nodes were the biggest space hogs in our ex-
periments, and as far as we know, none of the stan-
dard approaches take the immutable data unfolding
approach we adopt to eliminate this overhead. Thus
we would like to stress again that existing character-
level compression and token-level language model-
ing systems were simply not designed for handling
large character-level models.

We would also like to point out that the stan-
dard finite state machine implementations of lan-
guage models do not save any space over the trie-
based implementations, typically only approximate
smoothing using backoff rather than interpolation,
and further suffer from a huge space explosion when
determinized. The main advantage of finite state ap-
proaches is at the interface level in that they work
well with hand-written constraints and can interface
on either side of a given modeling problem. For
instance, typical language models implemented as
trivial finite state transducers interface neatly with
triphone acoustic models on the one side and with
syntactic grammars on the other. When placed in
that context, the constraints from the grammar can
often create an overall win in space after composi-
tion.

2 Online Character Language Models

For generality, we use the 16-bit subset of unicode as
provided by Java 1.4.2 to represent characters. This
presents an additional scaling problem compared to
ASCII or Latin1, which fit in 7 and 8 bits.

Formally, if Char is a set of characters, alanguage
modelis defined to be a mappingP from the setChar

∗

of character sequences into non-negative real num-
bers. Aprocesslanguage model is normalized over
sequences of lengthn: ∑X∈Char

∗,|X|=nP(X) = 1.0.
We also implement bounded language models which
normalize over all sequences, but their implementa-
tion is close enough to the process models that we
do not discuss them further here. The basic inter-
faces are provided in Figure 1 (with names short-
ened to preserve space). Note that the process and
sequence distribution is represented through marker
interfaces, whereas the cross-cutting dynamic lan-
guage models support training and compilation, as
well as the estimation inherited from the language

interface LM {
double log2Prob(char[] cs,

int start, int end);
}
interface ProcessLM extends LM {
}
interface SequenceLM extends LM {
}
interface DynamicLM extends LM {

double train(char[] cs,
int start, int end);

void compile(ObjectOutput out)
throws IOException;

}

Figure 1: Language Model Interface

model interface.
We now turn to the statistics behind character-

level langauge models. The chain rule factors
P(x0, . . . ,xk−1) = ∏i<k P(xi |x0, . . . ,xi−1). An n-
gram language model estimates a character using
only the lastn− 1 symbols, P̂(xk|x0, . . . ,xk−1) =
P̂(xk|xk−n+1, . . . ,xk−1); we follow convention in de-
noting generic estimators bŷP.

The maximum likelihood estimator forn-grams
is derived from frequency counts for sequenceX
and symbolc, PML(c|X) = count(Xc)/extCount(X),
wherecount(X) is the number of times the sequence
X was observed in the training data andextCount(X)
is the number of single-symbol extensions ofX
observed:extCount(X) = ∑c∈Char count(Xc). When
training over one or more short samples, the dis-
parity betweencount(X) and extCount(X) can be
large: forabracadabra, count(a) = 5, count(bra) =
2, extCount(a) = 4, andextCount(bra) = 1.

We actually provide two implementations of lan-
guage models as part of LingPipe. For language
models as random processes, there is no padding.
They correspond to normalizing over sequences of a
given length in that the sum of probabilities for char-
acter sequences of lengthk will sum to 1.0. With
a model that inserts begin-of-sequence and end-of-
sequence characters and estimates only the end-of-
sequence character, normalization is over all strings.
Statistically, these are very different models. In
practice, they are only going to be distinguishable
if the boundaries are very significant and the to-
tal string length is relatively small. For instance,
they are not going to make much difference in esti-
mating probabilities of abstracts of 1000 characters,

even though the start and ends are significant (e.g.
capitals versus punctuation being preferred at be-
ginning and end of abstracts) because cross-entropy
will be dominated by the other 1000 characters. On
the other hand, for modeling words, for instance
as a smoothing step for token-level part-of-speech,
named-entity or language models, the begin/end of
a word will be significant, representing capitaliza-
tion, prefixes and suffixes in a language. In fact, this
latter motivation is why we provide padded models.
It is straightforward to implement the padded mod-
els on top of the process models, which is why we
discuss the process models here. But note that we
do not pad all the way to maximumn-gram length,
as that would bias the begin/end statistics for short
words.

We use linear interpolation to form a mixture
model of all orders of maximum likelihood es-
timates down to the uniform estimatePU(c) =
1/|Char|. The interpolation ratioλ (dX) ranges be-
tween 0 and 1 depending on the contextdX.

P̂(c|dX) = λ (dX)PML(c|dX)

+ (1−λ (dX))P̂(c|X)

P̂(c) = λ ()PML(c)

+ (1−λ ())(1/|Char|)

The Witten-Bell estimator computed the interpo-
lation parameterλ (X) using only overall training
counts. The best performing model that we evalu-
ated is parameterized Witten-Bell interpolation with
hyperparameterK, for which the interpolation ratio
is defined to be:

λ (X) =
extCount(X)

extCount(X)+K · numExts(X)

We takenumExts(X) = |{c|count(Xc) > 0}| to be the
number of different symbols observed following the
sequenceX in the training data. The original Witten-
Bell estimator setK = 1. We optimize the hyperpa-
rameterK online (see the next section).

3 Online Models and Hyperparameter
Estimation

A language model isonline if it can be estimated
from symbols as they arrive. An advantage of online
models is that they are easy to use for adaptation to

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 100000 1e+006 1e+007 1e+008

O
pt

im
al

 H
yp

er
pa

ra
m

et
er

 S
et

tin
g

Amount of Data (characters)

2-gram
4-gram
8-gram

12-gram

Figure 2: Optimal Hyperparameter Settings for
Witten-Bell

documents or styles, hence their inclusion in com-
mercial dictation packages such as DragonDictate
and ViaVoice. Another advantage is that they are
easy to integrate into tag-a-little/learn-a-little sys-
tems such as MITRE’s Alembic Workbench.

With online models, we are able to estimate hy-
perparameters using an online form of leave-one-out
analysis (Ney et al., 1995). This can be performed
in a number of ways as long as the model efficiently
estimates likelihoods given a set of hyperparameter
settings. We opted for the simplest technique we
could muster to find the right settings. This was
made easier because we only have a single hyperpa-
rameter whose behavior is fairly flat around the op-
timal setting and because the optimal setting didn’t
change quickly with increasing data. The optimal
settings are shown in Figure 2. Also note that the op-
timal value is rarely at 1 except for very low-ordern-
grams. To save the complexity of maintaining an in-
terval around the best estimate do do true hill climb-
ing, we simply kept rolling averages of values log-
arithmically spaced from 1/4 to 32. We also imple-
mented a training method that kept track of the last
10,000 character estimates (made before the charac-
ters were used for training, of course). We used a cir-
cular queue for this data structure because its size is
fixed and it allowed a constant time insert of the last
recorded value. We used one circular queue for each
hyperparameter setting, thus storing around 5MB or
so worth of samples. These samples can be used
to provide an estimate of the best hyperparameter

at any given point in the algorithm’s execution. We
used this explicit method rather than the much less
costly rolling average method so that results would
be easier to report. We actually believe just keep-
ing a rolling average of measured cross-entropies on
online held-out samples is sufficient.

We also sampled the character stream rather than
estimating each character before training. With a gi-
gabyte of characters, we only needed to sample 1
in 100,000 characters to find enough data for esti-
mates. At this rate, online hyperparameter estimate
did not measurably affect training time, which was
dominated by simply constructing the trie.

We only estimated a single hyperparameter rather
than one for each order to avoid having to solve a
multivariate estimation problem; although we can
collect the data online, we would either have to im-
plement an EM-like solution or spend a lot time per
estimate iterating to find optimal parameters. This
may be worthwhile for cases where less data is avail-
able. As the training data increased, the sensitivity to
training parameters decreased. Counterintuitively,
we found that recursively estimating each order from
low to high, as implemented in (Samuelsson, 1996),
actually increased entropy considerably. Clearly the
estimator is using the fact that lower-order estimates
should not necessarily be optimal for use on their
own. This is a running theme of the discounting
methods of smoothing such as absolute discounting
or Kneser-Ney.

Rather than computing each estimate for hyperpa-
rameter andn-gram length separately, we first gather
the counts for each suffix and each context and the
number of outcomes for that context. This is the ex-
pensive step, as it require looking up counts in the
trie structure. Extension counts require a loop over
all the daughters of a context node in the trie be-
cause we did not have enough space to store them on
nodes. With all of these counts, then-gram etimates
for eachn and each hyperparameter setting can be
computed from shortest to longest, with the lower
order estimates contributing the smoothed estimate
for the next higher order.

4 Substring Counters

Our n-gram language models derive estimates from
counts of substrings of lengthn or less in the training

interface Node {
Node increment(char[] cs,

int start, int end);
long count(char[] cs,

int start, int end);
long extCount(char[] cs,

int start, int end);
int numExts(char[] cs,

int start, int end);
Node prune(long minCount);

}

Figure 3: Trie Node Interface

corpus. Our counter implementation was the trick-
iest component to scale as it essentially holds the
statistics derived from the training data. It contains
statistics sufficient to implement all of the estimators
defined above. The only non-trivial case is Kneser-
Ney, which is typically implemented using the tech-
nique known in the compression literature as “up-
date exclusion” (Moffat, 1990). Under update ex-
clusion, if a count “abc” is updated and the context
“ab” was known, then counts for “a” and “ab” are
excluded from the update process. We actually com-
pute these counts from the total counts by noting that
the update exclusion count is equal to the number of
unique characters found following a shorter context.
That is, the count for “ab” for smoothing is equal to
the number of characters “x” such that “xab” has a
non-zero count, because these are the situations in
which the count of “ab” is not excluded. This is not
an efficient way to implement update exclusion, but
merely an expedient so we could share implementa-
tions for experimental purposes. Straight update ex-
clusion is actually more efficient to implement than
full counts, but we wanted the full set of character
substring counts for other purposes, as well as lan-
guage modeling.

Our implementation relies heavily on a data un-
folded object-oriented implementation of Patricia
tries. Unlike the standard suffix tree algorithms for
constructing this trie for all substrings as in (Cleary
and Teahan, 1997), we limit the length and make
copies of characters rather than pointing back into
the original source. This is more space efficient than
the suffix-tree approach for our data set sizes andn-
gram lengths.

The basic node interface is as shown in Figure 3.
Note that the interface is in terms of long integer val-

ues. This was necessary to avoid integer overflow in
our root count when data size exceeded 2 GB and
our 1-gram counts when data sizes exceeded 5 or
6GB. A widely used alternative used for compres-
sion is to just scale all the counts by dividing by
two (and typically pruning those that go to zero);
this allows PPM to use 8-bit counters at the cost of
arithmetic precision ((Moffat, 1990)). We eschew
pruning because we also use the counts to find sig-
nificant collocations. Although most collocation and
significance statistics are not affected by global scal-
ing, cross-entropy suffers tremendously if scaling is
done globally rather than only on the nodes that need
it.

Next note that the interface is defined in terms
of indexed character slices. This obviates a huge
amount of otherwise unnecessary object creation
and garbage collection. It is simply not efficient
enough, even with the newer generational garbage
collectors, to create strings or even lighter character
sequences where needed on the heap; slice indices
can be maintained in local variables.

Theincrement method increments the count for
each prefix of the specified character slice. The
count method returns the count of a given character
sequence,extensionCount the count of all one-
character extensions,numExtensions the number
of extensions. Theextensions method returns
all the observed extensions of a character sequence,
which is useful for enumerating over all the nodes in
the trie.

Global pruning is implemented, but was not nec-
essary for our scalability experiments. Itis neces-
sary for compilation; we could not compile models
nearly as large as those kept online. Just the size
of the floating point numbers (two per node for es-
timate and interpolation) lead to 8 bytes per node.
In just about every study every undertaken, includ-
ing our informal ones, unpruned models have out-
performed pruned ones. Unfortunately, applications
will typically not have a gigabyte of memory avail-
able for models. The best performing models for a
given size are those trained on as much data avail-
able and pruned to the specified size. Our prun-
ing is simply a minimum count approach, because
the other methods have not been shown to improve
much on this baseline.

Finally, note that both the increment and prune

ArrayDtrNode

B, S, I, L

OneDtrNode

B, S, I, L

Node

AbstractNode

DtrNode
 PatNode

TerminalNode

B, S, I, L

TwoDtrNode

B, S, I, L

ThreeDtrNode

B, S, I, L

Pat1Node

1, 2, 3, B, S, I, L

Pat2Node

1, 2, 3, B, S, I, L

Pat3Node

1, 2, 3, B, S, I, L

Pat4Node

1, 2, 3, B, S, I, L

PatArrayNode

1, 2, 3, B, S, I, L

Figure 4: Unfolded Trie Classes

methods return nodes themselves. This is to sup-
port the key implementation technique for scalabil-
ity – replacing immutable objects during increments.
Rather than having a fixed mutable node representa-
tion, nodes can return results that are essentially re-
placements for themselves. For instance, there is an
implementation ofNode that provides a count as a
byte (8 bits) and a single daughter. If that class gets
incremented above the byte range, it returns a node
with a short-based counter (16 bits) and a daughter
that’s the result of incrementing the daughter. If the
class gets incremented for a different daughter path,
then it returns a two-daughter implementation. Of
course, both of these can happen, with a new daugh-
ter that pushes counts beyond the byte range. This
strategy may be familiar to readers with experience
in Prolog (O’Keefe, 1990) or Lisp (Norvig, 1991),
where many standard algorithms are implemented
this way.

A diagram of the implementations ofNode is pro-
vided in Figure 4. At the top of the diagram is the
Node interface itself. The other boxes all represent
abstract classes, with the top class,AbstractNode,
forming an abstract adapter for most of the utility
methods inNode (which were not listed in the inter-
face).

The abstract subclassDtrNode is used for nodes
with zero or more daughters. It requires its exten-
sions to return parallel arrays of daughters and char-
acters and counts from which it implements all the
update methods at a generic level.

abstract class TwoDtrNode
extends DtrNode {

final char mC1; final Node mDtr1
final char mC2; final node mDtr2;

TwoDtrNode(char c1, Node dtr1,
char c2, Node dtr2,

mC1 = c1; mDtr1 = dtr1;
mC2 = c2; mDtr2 = dtr2;

}

Node getDtr(char c) {
return c == mC1

? mDaughter1
: (c == mC2

? mDaughter2
: null);

}

[] chars() {
return new char[] { mC1, mC2 };

}

Node[] dtrs() {
return new Node[] { mDaughter1,

mDaughter2 };
}

int numDtrs() { return 2; }
}

Figure 5: Two Daughter Node Implementation

The subclassTerminalNode is used for nodes
with no daughters. Its implementation is particu-
larly simple because the extension count, the num-
ber of extensions and the count for any non-empty
sequence starting at this node are zero. The nodes
with non-empty daughters are not much more com-
plex. For instance, the two-daughter node abstract
class is shown in Figure 5.

All daughter nodes come with four concrete im-
plementations, based on the size of storage allocated
for counts:byte (8 bits),short (16 bits),int (32
bits), orlong (64 bits). The space savings from only
allocating bytes or shorts is huge. These concrete
implementations do nothing more than return their
own counts as long values. For instance, theshort

implementation of three-daughter nodes is shown in
Figure 6. Note that because these nodes are not pub-
lic, the factory can be guaranteed to only call the
constructor with a count that can be cast to a short
value and stored.

Increments are performed by the superclass

final class ThreeDtrNodeShort
extends ThreeDtrNode {

final short mCount;

ThreeDtrNodeShort(char c1, Node dtr1,
char c2, Node dtr2,
char c3, Node dtr3,
long count) {

super(c1,dtr1,c2,dtr2,c3,dtr3);
mCount = (short) count;

}

long count() { return mCount; }
}

Figure 6: Three Daughter Short Node

and will call constructors of the appropriate
size. The increment method as defined in
AbstractDtrNode is given in Figure 7. This
method increments all the suffixes of a string.

The first line just increments the local node if the
array slice is empty; this involves taking its charac-
ters, its daughters and calling the factory with one
plus its count to generate a new node. This gener-
ates a new immutable node. If the first character in
the slice is an existing daughter, then the daughter is
incremented and the result is used to increment the
entire node. Note the assignment todtrs[k] after
the increment; this is to deal with the immutability.
The majority of the code is just dealing with the case
where a new daughter needs to be inserted. Of spe-
cial note here is the factory instance called on the
remaining slice; this will create a PAT node. This
appears prohibitively expensive, but we refactored to
this approach from a binary-tree based method with
almost no noticeable hit in speed; most of the arrays
stabilize after very few characters and the resizings
of big arrays later on is quite rare. We even replaced
the root node implementation which was formerly
a map because it was not providing a measurable
speed boost.

Once the daughter characters and daughters are
marshalled, the factory calls the appropriate con-
structor based on the number of the character and
daughters. The factory then just calls the appropri-
ately sized constructor as shown in Figure 8.

Unlike other nodes, low count terminal nodes are
stored in an array and reused. Thus if the result of
an increment is within the cache bound, the stored

Node increment(char[] cs,
int start, int end) {

// empty slice; incr this node
if (start == end)
return NodeFactory

.createNode(chars(),dtrs(),
count()+1l);

char[] dtrCs = chars();
// search for dtr
int k = Arrays.binarySearch(dtrCs,

cs[start]);
Node[] dtrs = dtrs();
if (k >= 0) { // found dtr
dtrs[k] = dtrs[k]

.increment(cs,start+1,end);
return NodeFactory

.createNode(dtrCs,dtrs,
count()+1l);

}
// insert new dtr
char[] newCs = new char[dtrs.length+1];
Node[] newDtrs = new Node[dtrs.length+1];
int i = 0;
for (; i < dtrs.length

&& dtrCs[i] < cs[start];
++i) {

newCs[i] = dtrCs[i];
newDtrs[i] = dtrs[i];

}
newCs[i] = cs[start];
newDtrs[i] = NodeFactory

.createNode(cs,start+1,
end,1);

for (; i < dtrCs.length; ++i) {
newCs[i+1] = dtrCs[i];
newDtrs[i+1] = dtrs[i];

}
return NodeFactory

.createNode(newCs,newDtrs,
count()+1l);

}

Figure 7: Increment inAbstractDtrNode

version is returned. Because terminal nodes are im-
mutable, this does not cause problems with consis-
tency. In practice, terminal nodes are far and away
the most common type of node, and the greatest sav-
ing in space came from carefully coding terminal
nodes.

The abstract classPatNode implements a so-
called “Patricia” trie node, which has a single chain
of descendants each of which has the same count.
There are four fixed-length implementations for the
one, two, three and four daughter case. For these
implementations, the daughter characters are stored
in member variables. For the array implementa-
tion, PatArrayNode, the daughter chain is stored

static Node createNode(char c, Node dtr,
long n) {

if (n <= Byte.MAX_VALUE)
return new OneDtrNodeByte(c,dtr,n);

if (n <= Short.MAX_VALUE)
return new OneDtrNodeShort(c,dtr,n);

if (n <= Integer.MAX_VALUE)
return new OneDtrNodeInt(c,dtr,n);

return new OneDtrNodeLong(c,dtr,n);
}

Figure 8: One Daughter Factory Method

as an array. Like the generic daughter nodes, PAT
nodes contain implementations for byte, short, int
and long counters. They also contain constant im-
plementations for one, two and three counts. We
found in profiling that the majority of PAT nodes
had counts below four. By providing constant imple-
mentations, no memory at all is used for the counts
(other than a single static component per class). Pat
nodes themselves are actually more common that
regular daughter nodes in high-order character tries,
because most long contexts are deterministic. As
n-gram order increases, so does the proportion of
PAT nodes. Implementing increments for PAT nodes
is only done once in the abstract classPatNode.
Each PAT node implementation supplied an array in
a standardized interface to the implementations in
PatNode. That array is created as needed and only
lives long enough to carry out the required increment
or lookup. Java’s new generational garbage collector
is fairly efficient at dealing with garbage collection
for short-lived objects such as the trie nodes.

5 Compilation

Our online models are tuned primarily for scalabil-
ity, and secondarily for speed of substring counts.
Even the simplest model, Witten-Bell, requires for
each context length that exists, summing over exten-
sion counts and doing arithmetic including several
divisions and multiplications per order a logarithm
at the end. Thus straightforward estimation from
models is unsuitable for static, high throughput ap-
plications. Instead, models may be compiled to a
less compact but more efficient static representation.

We number trie nodes breadth-first in unicode or-
der beginning from the root and use this indexing for
four parallel arrays following (Whittaker and Raj,
2001). The main difference is that we have not

char int float float int
Idx Ctx C Suf logP log(1-λ) Dtr

0 n/a n/a n/a n/a -0.63 1
1 a 0 -2.60 -0.41 6
2 b 0 -3.89 -0.58 9
3 c 0 -4.84 -0.32 10
4 d 0 -4.84 -0.32 11
5 r 0 -3.89 -0.58 12
6 a b 2 -2.51 -0.58 13
7 a c 3 -3.49 -0.32 14
8 a d 4 -3.49 -0.32 15
9 b r 5 -1.40 -0.58 16

10 c a 1 -1.59 -0.32 17
11 d a 1 -1.59 -0.32 18
12 r a 1 -1.17 -0.32 19
13 ab r 9 -0.77 n/a n/a
14 ac a 10 -1.10 n/a n/a
15 ad a 11 -1.10 n/a n/a
16 br a 12 -0.67 n/a n/a
17 ca d 8 -1.88 n/a n/a
18 da b 6 -1.55 n/a n/a
19 ra c 7 -1.88 n/a n/a

Figure 9: Compiled Representation of 3-grams for
“abracadabra”

coded to a fixedn-gram length, costing us a bit of
space in general, and also that we included context
suffix pointers, costing us more space but saving
lookups for all suffixes during smoothing.

The arrays are (1) the character leading to the
node, (2) the log estimate of the last character in the
path of characters leading to this node given the pre-
vious characters in the path, (3) the log of one mi-
nus the interpolation parameter for the context rep-
resented by the full path of characters leading to this
node, (4) the index of the first daughter of the node,
and (5) index of the suffix of this node. Note that the
daughters of a given node will be contiguous and in
unicode order given the breadth-first nature of the in-
dexing, ranging from the daughter index of the node
to the daughter index of the next node.

We show the full set of parallel arrays for trigram
counts for the string “abracadabra” in Figure 9. The
first column is for the array index, and is not explic-
itly represented. The second column, labeled “Ctx”,

is the context, and this is also not explicitly repre-
sented. The remaining columns are explicitly repre-
sented. The third column is for the character. The
fourth column is an integer backoff suffix pointer;
for instance, in the row with index 13, the context
is “ab”, and the character is “r”, meaning it repre-
sents “abr” in the trie. The suffix index is 9, which
is for “br”, the suffix of “abr”. The fifth and sixth
columns are 32-bit floating point estimates, the fifth
of log2P(r|ab), and the sixth is empty because there
is no context for “abr”, just an outcome. The value
of log2(1− λ (ab)) is found in the row indexed 6,
and equal to -0.58. The seventh and final column
is the integer index of the first daughter of a given
node. The value of the daughter pointer for the fol-
lowing node provides an upper bound. For instance,
in the row index 1 for the string “a”, the daughter in-
dex is 6, and the next row’s daughter index is 9, thus
the daughters of “a” fall between 6 and 8 inclusively
— these are “ab”, “ac” and “ad” respectively. Note
that the daughter characters are always in alphabeti-
cal order, allowing for a binary search for daughters.

For n-gram estimators, we need to compute
logP(cn|c0 · · ·cn−1). We start with the longest se-
quenceck, . . . ,cn−1 that exists in the trie. If binary
search finds the outcomecn among the daughters of
this node, we return its log probability estimate; this
happens in over 90 percent of estimates with rea-
sonably sized training sets. If the outcome character
is not found, we continue with shorter and shorter
contexts, adding log interpolation values from the
context nodes until we find the result or reach the
uniform estimate at the root, at which point we add
its estimate and return it. For instance, the estimate
of log2P(r|ab) = −0.77 can be read directly off the
row indexed 13 in Figure 9. But log2P(a|ab) =
−0.58+ log2P(a|b) =−0.58+−0.58+ log2P(a) =
−0.58+−0.58+−2.60, requiring two interpolation
steps.

For implementation purposes, it is significant that
we keep track of where we backed off from. The
row for “a”, where the final estimate was made, will
be the starting point for lookup next time. This is
the main property of the fast string algorithms — we
know that the context “ba” does not exist, so we do
not need to go back to the root and start our search
all over again at the next character. The result is
a linear bound on lookup time because each back-

off of n characters guarantees at leastn steps to get
back to the same context length, thus there can’t be
more backoff steps than characters input. The main
bottleneck in run time is memory bandwidth due to
cache misses.

The log estimates can be compressed using as
much precision as needed (Whittaker and Raj,
2001), or even reduced to integral values and integer
arithmetic used for computing log estimates. We use
floats and full characters for simplicity and speed.

6 Corpora and Parsers

Our first corpus is 7 billion characters from theNew
York Timessection of the Linguistic Data Consor-
tium’s Gigaword corpus. Only the body of docu-
ments of type story were used. Paragraphs indi-
cated by XML markup were begun with a single
tab character. All newlines were converted to single
whitepspaces, and all other data was left unmodi-
fied. The data is problematic in at least two ways.
First, the document set includes repeats of earlier
documents. Language models provide a good way
of filtering these repeated documents out, but we did
not do so for our measurements because there were
few enough of them that it made little difference
and we wanted to simplify other comparative eval-
uations. Second, the document set includes numer-
ical list data with formatting such as stock market
reports. TheTimesdata uses 87 ASCII characters.

Our second corpus is the 5 billion characters
drawn from abstracts in the United States’ National
Library of Medicine’s 2004 MEDLINE baseline ci-
tation set. Abstract truncation markers were re-
moved. MEDLINE uses a larger character set of 161
characters, primarily extending ASCII with diacrit-
ics on names and Greek letters.

By comparison, (Banko and Brill, 2001) used one
billion tokens for a disambiguation task, (Brown et
al., 1991) used 583 million tokens for a language
model task, and (Chen and Goodman, 1996) cleverly
sampled from 250 million tokens to evaluate higher-
order models by only training on sequences used in
the held-out and test sets.

Our implementation is based a generic text parser
and text handler interface, much like a simplified
version of XML’s SAX content handler and XML
parser. A text parser is implemented for the various

data sets, including decompressing their zipped and
gzipped forms and parsing their XML, SGML and
tokenized form. A handler is then implemented that
adds data to the online models and polls the model
for results intermittently for generating graphs.

7 Results

We used a 1.4GB Java heap (unfortunately, the max-
imum allowable with Java on 32-bit Intel hardware
without taking drastic measures), which allowed us
to train 6-grams on up to 7 billion characters with
room to spare. Roughly, 8-grams ran out of mem-
ory at 1 billion characters, 12 grams at 100 million
characters, and 32 grams at 10 million characters.
We did not experiment with pruning for this paper,
though our API supports both thresholded and pdi-
visive scaling pruning. Training the counters de-
pends heavily on the length ofn-gram, with 5-grams
training at 431,000 characters per second, 8-grams
at 204,000 char/s, 12-grams at 88,000 char/s and 32-
grams at 46,000 char/s, including online hyperpara-
meter estimation (using a $2000 PC running Win-
dows XP and Sun’s 1.4.2 JDK, with a 3.0GHz Pen-
tium 4, 2GB of ECC memory at 800MHz, and two
10K SATA drives in RAID 0).

Our primary results are displayed in Figure 11
and Figure 10, which plot sample cross-entropy
rates against amount of text used to build the mod-
els for variousn-gram lengths. Sample cross en-
tropy is simply the average log (base 2) probabil-
ity estimate per character. All entropies are re-
ported for the best hyperparameter settings through
online leave-one-out estimation for parameterized
Witten-Bell smoothing. Each data point in the plot
uses the average entropy rate over a sample size
of up to 10,000 for MEDLINE and 100,000 for
the Times, with the samples being drawn evenly
over the data arriving since the last plot point.
For instance, the point plotted at 200,000 charac-
ters for MEDLINE uses a sample of every 10th
character between character 100,000 and 200,000
whereas the sample at 2,000,000,000 characters
uses every 100,000th character between characters
1,000,000,000 and 2,000,000,000.

Like the Tipster data used by (Chen and Good-
man, 1996), the immediately noticeable feature of
the plots is the jaggedness early on, including some

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 10000 100000 1e+006 1e+007 1e+008 1e+009 1e+010

S
am

pl
e

C
ro

ss
-E

nt
ro

py
 R

at
e

(b
its

 p
er

 c
ha

ra
ct

er
)

Amount of Data (characters)

 Entropy=1.495
 Entropy=1.570

4-gram
6-gram
8-gram

12-gram
16-gram

Figure 10:NY TimesSample Cross-Entropy Rates

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009 1e+010

S
am

pl
e

C
ro

ss
 E

nt
ro

py
 R

at
e

(b
its

 p
er

 c
ha

ra
ct

er
)

Amount of Data (characters)

 Entropy=1.36
 Entropy=1.435

2-gram
4-gram
6-gram
8-gram

12-gram

Figure 11: MEDLINE Sample Cross-Entropy Rates

ridiculously low cross-entropy rates reported for the
Times data. This is largely due to low training
data count, highn-gram models being very good
at matching repeated passages coupled with the fact
that a 2000 word article repeated out of 10,000 sam-

ple characters provides quite a cross-entropy reduc-
tion. For later data points, samples are sparser and
thus less subject to variance.

For applications other than cross-entropy bake-
offs, 5-grams to 8-grams seem to provide the right

 2

 3

 4

 5

 6

 7

 8

 100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009 1e+010

S
am

pl
e

V
ar

ia
nc

e
(s

qu
ar

ed
 b

its
 p

er
 c

ha
ra

ct
er

)

Amount of Data (characters)

2-gram
4-gram
8-gram

Figure 12: MEDLINE Sample Variances

compromise between accuracy and efficiency.

We were surprised that MEDLINE had lower
n-gram entropy bounds than theTimes, especially
given the occurrence of duplication within theTimes
data (MEDLINE does not contain duplicates in the
baseline). The best MEDLINE operating point is in-
dicated in the figure, with a sample cross-entropy
rate of 1.36 for 12-grams trained on 100 million
characters of data; 8-gram entropy is 1.435 at nearly
1 billion characters. The best performance for the
Times corpus was also for 12-grams at 100 mil-
lion characters, but the sample cross-entropy was
1.49; with 8-gram sample cross-entropy as low as
1.570 at 1 billion characters. Although MEDLINE
may be full of jargon and mixed-case alphanumeric
acronyms, the way in which they are used is highly
predictable given enough training data. Data in the
Timessuch as five and six digit stock reports, sports
scores, etc., seem to provide a challenge.

The per-character sample variances for 2-grams,
4-grams and 8-grams for MEDLINE are given in
Figure 12. We did not plot results for higher-order
n-grams, as their variance was almost identical to
that of 8-grams. Standard error is the square root of
variance, or about 2.0 in the range of interest. With
10,000 samples, variance should be 4/10,000, with

standard error the square root of this, or 0.02. This
is in line with measurement variances found at the
tail end of the plots, but not at the beginnings.

Most interestingly, it turned out that smoothing
method did not matter oncen-grams were large, thus
bringing the results of (Banko and Brill, 2001) to
bear on those of (Chen and Goodman, 1996). The
comparison for 12-grams and then for the tail of
more data for 8-grams in Figures 13 and 14. Fig-
ure 14 shows the smoothing methods for 8-grams on
an order of magnitude more data.

Conclusions

We have shown that it is possible to use object ori-
ented techniques to scale language model counts to
very high levels without pruning on relatively mod-
est hardware. Even more space could be saved by
unfolding characters to bytes (especially for token
models). Different smoothing models tend to con-
verge to each other after gigabytes of data, making
smoothing much less critical.

Full source with unit tests, javadoc, and applica-
tions is available from the LingPipe web site:

http://www.alias-i.com/lingpipe

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 100000 1e+006 1e+007 1e+008

S
am

pl
e

C
ro

ss
 E

nt
ro

py
 R

at
e

(b
its

 p
er

 c
ha

ra
ct

er
)

Amount of Data (characters)

Absolute Discounting 12-gram
Dirichlet w. Update Exclusion 12-gram

Witten-Bell w. Update Exclusion 12-gram
Dirichlet 12-gram

Absolute Discounting w. Update Exclusion 12-gram
Witten-Bell 12-gram

Figure 13: Comparison of Smoothing for 12-grams

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 1e+009 2e+008

S
am

pl
e

C
ro

ss
 E

nt
ro

py
 R

at
e

(b
its

 p
er

 c
ha

ra
ct

er
)

Amount of Data (characters)

Absolute Discounting 8-gram
Dirichlet w. Update Exclusion 8-gram

Witten-Bell w. Update Exclusion 8-gram
Dirichlet 8-gram

Absolute Discounting w. Update Exclusion 8-gram
Witten-Bell 8-gram

Figure 14: Comparison of Smoothing for 8-grams

References

Michele Banko and Eric Brill. 2001. Scaling to very very
large corpora for natural language disambiguation. In
Proceedings of the 39th Meeting of the ACL.

Eric Brill and Robert C. Moore. 2000. An improved

error model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting of the ACL.

Peter F. Brown, Stephen Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1991. Word-sense dis-
ambiguation using statistical methods. pages 264–
270.

Stanley F. Chen and Joshua Goodman. 1996. An empir-
ical study of smoothing techniques for language mod-
eling. In Proceedings of the 34th Annual Meeting of
the ACL, pages 310–318.

John G. Cleary and William J. Teahan. 1997. Un-
bounded length contexts for PPM.The Computer
Journal, 40(2/3):67–??

Thomas M. Cover and Joy A. Thomas. 1991.Elements
of Information Theory. John Wiley.

Frederick Jelinek and Robert L. Mercer. 1980. Inter-
polated estimation of Markov source parameters from
sparse data. InProceedings of the Workshop on Pat-
tern Recognition in Practice. North-Holland.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christo-
pher D. Manning. 2003. Named entity recognition
with character-level models. InProceedings the 7th
ConNLL, pages 180–183.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing off for n-gram language modeling. InPro-
ceedings of ICASSP, pages 181–184.

Kevin Knight and Vasileios Hatzivassiloglou. 1995.
Two-level, many-paths generation. InProceedings of
the 33rd Annual Meeting of the ACL.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. tRuEcasIng. InProceed-
ings of the 41st Annual Meeting of the ACL, pages
152–159.

David J. C. MacKay and Linda C. Peto. 1995. A hier-
archical Dirichlet language model.Natural Language
Engineering, 1(3):1–19.

Alistair Moffat. 1990. Implementing the PPM data com-
pression scheme.IEEE Transactions on Communica-
tions, 38:1917–1921.

Hermann Ney, U. Essen, and Reinhard Kneser. 1995.
On the estimation of ’small’ probabilities by leaving-
one-out. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17:1202–1212.

Peter Norvig. 1991.Paradigms of Artificial Intelligence
Programming: Case Studies in Common Lisp. Mor-
gan Kaufmann.

Richard O’Keefe. 1990.The Craft of Prolog. MIT Press.

Fuchun Peng. 2003.Building Probabilistic Models for
Language Independent Text Classification. Ph.D. the-
sis.

Gerasimos Potamianos and Frederick Jelinek. 1998. A
study of n-gram and decision tree letter language mod-
eling methods. Speech Communication, 24(3):171–
192.

Christer Samuelsson. 1996. Handling sparse data by suc-
cessive abstraction. InProceedings of COLING-96,
Copenhagen.

William J. Teahan and John G. Cleary. 1996. The en-
tropy of english using PPM-based models. InData
Compression Conference, pages 53–62.

William J. Teahan. 2000. Text classification and segmen-
tation using minimum cross-entropy. InProceeding of
RIAO 2000.

Edward Whittaker and Bhiksha Raj. 2001. Quantization-
based language model compression. InProceedings of
Eurospeech 2001, pages 33–36.

ChengXiang Zhai and John Lafferty. 2004. A study of
smoothing methods for language models applied to in-
formation retrieval.ACM Transactions on Information
Systems, 2(2):179–214.

