1

Scaling High-Order Character Language M odelsto Gigabytes

Bob Carpenter
Alias-i, Inc.
181 North 11th St#401, Brooklyn, NY 11211
carp@colloquial.com

Abstract

We describe the implementation steps re-
quired to scale high-order character lan-
guage models to gigabytes of training
data without pruning. Our online models
build character-level PAT trie structures on
the fly using heavily data-unfolded imple-
mentations of an mutable daughter maps
with a long integer count interface. Ter-
minal nodes are shared. Character 8-gram
training runs at 200,000 characters per
second and allows online tuning of hy-
perparameters. Our compiled models pre-
compute all probability estimates for ob-
served n-grams and all interpolation pa-
rameters, along with suffix pointers to
speedup context computations from pro-
portional to n-gram length to a constant.
The result is compiled models that are
larger than the training models, but exe-
cute at 2 million characters per second on
a desktop PC. Cross-entropy on held-out
data shows these models to be state of the
art in terms of performance.

Introduction

case normalization) and the class models for sta-
tistical classification (with applications including
spam filtering, topic categorization, sentiment analy-
sis and word-sense disambiguation). In addition to
these human language taskggrams are also popu-
lar as estimators for entropy-based compression and
source models for cryptography. (Teahan, 2000)
and (Peng, 2003) contain excellent overviews of
character-level models and their application from a
compression and HMM perspective, respectively.

Our hypothesis was that language-model smooth-
ing would behave very much like the classifiers ex-
plored in (Banko and Brill, 2001), in that more data
trumps better estimation technique. We managed
to show that the better of the interpolation mod-
els used in (Chen and Goodman, 1996), namely
Dirichlet smoothing with or without update exclu-
sion, Witten-Bell smoothing with or without update
exclusion, and absolute discounting with update ex-
clusion converged for 8-grams after 1 billion charac-
ters to cross entropies of 1.43+/-0.01. The absolute
discounting with update exclusion is what Chen and
Goodman refer to as the Kneser-Ney method, and
it was the clear winner in their evaluation. They
only tested non-parametric Witten-Bell with a sub-
optimal hyperparameter setting (1.0, just as in Wit-
ten and Bell’s original implementation). After a bil-
lion characters, roughly 95 percent of the characters

Charactem-gram language models have been apwere being estimated from their highest-order (7)
plied to just about every problem amenable to stazontext. The two best models, parametric Witten-

tistical language modeling.

The implementatiorBell and absolute discounting with update exclu-

we describe here has been integrated as the sousien (aka Kneser-Ney), were even closer in cross-
model in a general noisy-channel decoder (with apentropy, and depending on the precise sample (we
plications to spelling correction, tokenization andkept rolling samples as described below), and after a

million or so characters, the differences even at thepdate exclusion implementation of Kneser-Ney is
higher variance 12-grams were typically in the +/©10 more complicated than Witten-Bell.
0.01 range. With a roughly 2.0 bit/character devi- In this paper, we describe the implementation de-
ation, a 10,000 character sample, which is the sizails behind storing the model counts, how we sam-
we used, leads to ac2(95.45%) confidence interval ple the training character stream to provide low-cost,
of +/-0.02, and the conclusion that the differencesnline leave-one-out style hyperparameter estima-
between these systems was insignificant. tion, and how we compile the models and evaluate
Unlike in the token-based setting, we are not opthem over text inputs to achieve linear performance
timistic about the possibility of improving these re-that is nearly independent ofgram length. We also
sults dramatically by clustering character contextslescribe some of the design patterns used at the in-
The lower-order models are very well trained withterface level for training and execution. As far as
existing quantities of data and do a good job ofve know, the online leave-one-out analysis is novel,
this kind of smoothing. We do believe that train-though there are epoch-based precursors in the com-
ing hyperparameters for different model orders inpression literature.
dependently might improve cross-entropy fraction- As far as we know, no one has built a charac-
ally; we found that training them hierarchically,ter language model implementation that will come
as in (Samuelsson, 1996), actually increased crosdese to the one presented here in terms of scala-
entropy. We believe this is a direct correlate of théility. This is largely because they have not been
effectiveness of update exclusion; the lower-ordestesigned for the task rather than any fundamental
models do not need to be the best possible moddimitation. In fact, we take the main contribution
of those orders, but need to provide good estimates this paper to be a presentation of simple data
when heavily weighted, as in smoothing. The globagharing and data unfolding techniques that would
optimization allows a single setting to balance thesalso apply to token-level language models. Before
attributes, but optimizing each dimension individustarting our presentation, we’ll review some of the
ally should do even better. But with the number ofimitations of existing systems. For a start, none
estimates taking place at the highest possible orders, the systems of which we are aware can scale to
we do not believe the amount of smoothing will haves4-bit values for counts, which is necessary for the
that large an impact overall. size models we are considering without pruning or
These experiments had a practical goal — weount scaling. It's simply easier to find 4 billion in-
needed to choose a language modeling implemestances of a character than of a token. In fact, the
tation for LingPipe and we didn’t want to take thecompression models typically use 16 bits for storing
standard Swiss Army Knife approach because mosbunts and then just scale downward when neces-
of our users are not interested in running experisary, thus not even trying to store a full set of counts
ments on language modeling, but rather using larfer even modest corpora. The standard implemen-
guage models in applications such as informatiotations of character models in the compression liter-
retrieval, classification, or clustering. These appliature represent ordinary trie nodes as arrays, which
cations have actually been shown to perform bettés hugely wasteful for large sparse implementations;
on the basis of character language models than tthey represent PAT-trie nhodes as pointers into the
ken models ((Peng, 2003)). In addition, charactewriginal text plus counts, which works well for long
level models require no decisions about tokenizai-gram lengths (32) over small data sets (1 MB) but
tion, token normalization and subtoken modeling (adoes not scale well for reasonablgram lengths (8-
in (Klein et al., 2003)). 12) over larger data sets (100MB-1GB). The stan-
We chose to include the Witten-Bell method indard token-level language models used to restrict
our language modeling API because it is derivedttention to 64K tokens and thus require 16-bit to-
from full corpus counts, which we also use for colken representatives per node just as our character-
location and relative frequency statistics within andbased approach; with the advent of large vocabu-
across corpora, and thus the overall implementatidary speech recognition, they now typically use 32-
effort was simpler. For just language modeling, afits per node just to represent the token. Arrays of

daughter nodes and lack of sharing of low-count teri—ntegizgie”fo{me (char[] cs
minal nodes were the biggest space hogs in our ex- int S%art, int end); ’
periments, and as far as we know, none of the stah-
dard approaches take the immutable data unfoldirigtertace ProcessLit extends LM {
approach we adopt to eliminate this overhead. Thu$terface SequencelM extends LM {
we would like to stress again that existing characte?- .
level compression and token-level language model™*®3 207 "V ot <rencs L {
ing systems were simply not designed for handling int start, int end);
large character-level models. void compile(Gbjectlutput out)
We would also like to point out that the stan-; P ’
dard finite state machine implementations of lan-
guage models do not save any space over the trie- Figure 1: Language Model Interface
based implementations, typically only approximate
smoothing using backoff rather than interpolation,
and further suffer from a huge space explosion whefodel interface.
determinized. The main advantage of finite state ap- We now turn to the statistics behind character-
proaches is at the interface level in that they workevel langauge models. The chain rule factors
well with hand-written constraints and can interfac®(Xo, - --:%-1) = [li<kP(Xi[X0,...,Xi-1). An n-
on either side of a given modeling problem. Fo@ram language model estimates a character using
instance, typical language models implemented &ly the lastn — 1 symbols, P(x|Xo, ..., X-1) =
trivial finite state transducers interface neatly witf?(XX«-n+1,-..,X1); we follow convention in de-
triphone acoustic models on the one side and withoting generic estimators
syntactic grammars on the other. When placed in The maximum likelihood estimator far-grams
that context, the constraints from the grammar cai® derived from frequency counts for sequernXe
often create an overall win in space after composRnd symbolc, By (C[X) = count(Xc)/extCount(X),

tion. wherecount(X) is the number of times the sequence
X was observed in the training data afeCount(X)
2 OnlineCharacter Language Models is the number of single-symbol extensions Xf

observed:extCount(X) = ¥ ccCharcount(Xc). When
For generality, we use the 16-bit subset of unicode asaining over one or more short samples, the dis-
provided by Java 1.4.2 to represent characters. Thigrity betweencount(X) and extCount(X) can be
presents an additional scaling problem compared targe: forabracadabra count(a) = 5, count(bra) =
ASCII or Latinl1, which fit in 7 and 8 bits. 2, extCount(@) = 4, andextCount(bra) = 1.

Formally, if Char is a set of characters language We actually provide two implementations of lan-
modelis defined to be a mappiifrom the sethar* guage models as part of LingPipe. For language
of character sequences into non-negative real nuimodels as random processes, there is no padding.
bers. Aprocesdanguage model is normalized overThey correspond to normalizing over sequences of a
sequences of lengtht 3y char xj—nP(X) = 1.0. given length in that the sum of probabilities for char-
We also implement bounded language models whidicter sequences of lengkhwill sum to 1.0. With
normalize over all sequences, but their implementa model that inserts begin-of-sequence and end-of-
tion is close enough to the process models that weequence characters and estimates only the end-of-
do not discuss them further here. The basic intesequence character, normalization is over all strings.
faces are provided in Figure 1 (with names shortStatistically, these are very different models. In
ened to preserve space). Note that the process gmectice, they are only going to be distinguishable
sequence distribution is represented through markirthe boundaries are very significant and the to-
interfaces, whereas the cross-cutting dynamic lamal string length is relatively small. For instance,
guage models support training and compilation, abey are not going to make much difference in esti-
well as the estimation inherited from the languagenating probabilities of abstracts of 1000 characters,

even though the start and ends are significant (e.g.
capitals versus punctuation being preferred at be- * ‘ ‘ T
ginning and end of abstracts) because cross-entropy:r T reeeeses 0T
will be dominated by the other 1000 characters. On .| o
the other hand, for modeling words, for instances ,,|
as a smoothing step for token-level part-of-speecl‘lé
named-entity or language models, the begin/end of
a word will be significant, representing capitaliza-z
tion, prefixes and suffixes in a language. In fact, thig °f < ¢ =
latter motivation is why we provide padded models. *f Ry
It is straightforward to implement the padded mod- A A4 :
els on top of the process models, which is why we ol - - -
discuss the process models here. But note that we ’ Amounto s sty)
do not pad all the way to maximumgram length, Figyre 2: Optimal Hyperparameter Settings for
as that would bias the begin/end statistics for shoiitten-Bell
words.

We use linear interpolation to form a mixture
model of all orders of maximum likelihood es-documents or styles, hence their inclusion in com-

N

timates down to the uniform estimat@;(c) = mercial dictation packages such as DragonDictate
1/|char|. The interpolation ratio\ (dX) ranges be- and ViaVoice. Another advantage is that they are
tween 0 and 1 depending on the conteXt easy to integrate into tag-a-little/learn-a-little sys-
R tems such as MITRE’s Alembic Workbench.
P(cldX) = A(dX)R(cldX) With online models, we are able to estimate hy-
+ (1-A(dX)P(c|X) perparameters using an online form of leave-one-out
p(c) = A0P.(c) analysis (Ney et al., 1995). This can be performed

in a number of ways as long as the model efficiently
estimates likelihoods given a set of hyperparameter
The Witten-Bell estimator computed the interpoS€ttings. We opted for the simplest technique we
lation parameten (X) using only overall training could mugter to find the right settmgs_. This was
counts. The best performing model that we evalyhade easier because we only have a single hyperpa-
ated is parameterized Witten-Bell interpolation witH @Meter whose behavior is fairly flat around the.opi-
hyperparamete, for which the interpolation ratio timal setting and because the optimal setting didn’t

+ (1=A(0)(1/|Char|)

is defined to be: char\ge quickly With inpreasing data. The optimal
settings are shown in Figure 2. Also note that the op-
A(X) = extCount(X) timal value is rarely at 1 except for very low-order
extCount(X) + K - numExts(X) grams. To save the complexity of maintaining an in-

terval around the best estimate do do true hill climb-
We takenumExts(X) = [{C|count(XC) > O}| tobe the i, \ve simply kept rolling averages of values log-
number of different symbols observed following the, i mically spaced from 1/4 to 32. We also imple-
sequenc& in the training data. The original WItten- 1o yta 4 training method that kept track of the last
Bell estimator seK = 1. We optimize the hyperpa- 14 goq character estimates (made before the charac-
rameterk online (see the next section). ters were used for training, of course). We used a cir-
cular queue for this data structure because its size is
fixed and it allowed a constant time insert of the last
recorded value. We used one circular queue for each
A language model i®nlineif it can be estimated hyperparameter setting, thus storing around 5MB or
from symbols as they arrive. An advantage of onlingo worth of samples. These samples can be used
models is that they are easy to use for adaptation to provide an estimate of the best hyperparameter

3 Online Models and Hyper parameter
Estimation

. P ; , ; interface Node {
at any given point in the algorithm’s execution. We***¢ ~%¢ increment (char[] cs,

used this explicit method rather than the much less int start, int end);
costly rolling average method so that results would long count(char[] cs,

be easier to report. We actually believe just keep- extCount (chonl] car end);

ing a rolling average of measured cross-entropies on int start, int end);

online held-out samples is sufficient. int numExts(char[] cs,
int start, int end);

We also sampled the character stream rather than yoge prune(iong minCount);
estimating each character before training. With a gi+
gabyte of characters, we only needed to sample 1
in 100,000 characters to find enough data for esti- Figure 3: Trie Node Interface
mates. At this rate, online hyperparameter estimate

did not measurably affect training time, which was _ . _
dominated by simply constructing the trie. corpus. Our counter implementation was the trick-

We only estimated a single hyperparameter rathdgSt component to scale as it essentially holds the

than one for each order to avoid having to solve gtatistics derived from the training data. It contains

multivariate estimation problem; although we carotatistics sufficient to implement all of the estimators

collect the data online, we would either have to imdefined above. The only non-trivial case is Kneser-

plement an EM-like solution or spend a lot time perNey’ which is typically implemented using the tech-

estimate iterating to find optimal parameters. Thi§idué known n the compression literature as “up-
may be worthwhile for cases where less data is avaflj-""te exclusion” (Moffat, 1990). Under update ex-

able. As the training data increased, the sensitivity {USIon. if a count "abc” is updated and the context

training parameters decreased. Counterintuitively?IIO was known, then counts for “a” and “ab” are

we found that recursively estimating each order frorff*cluded from the update process. We actually com-
ute these counts from the total counts by noting that

low to high, as implemented in (Samuelsson, 1996&1 _ ;
actually increased entropy considerably. Clearly thi€ UPdate exclusion count is equal to the number of
ique characters found following a shorter context.

estimator is using the fact that lower-order estimated!

should not necessarily be optimal for use on thei-lrhat is, the count for *ab” for smoothing is equal to

own. This is a running theme of the discountingthe number of characters “x” such that “xab” has a

methods of smoothing such as absolute discountiﬁb%n'zero count, because these are the situations in

or Kneser-Ney. which the count of “ab” is not excluded. This is not

Rather than computing each estimate for hyperpg-n efficient way to implement update exclusion, but

. merely an expedient so we could share implementa-
rameter ang-gram length separately, we first gatherﬁ ns for experimental our Straight undate ex
the counts for each suffix and each context and th(?o s for experimental purposes. straight upaate
o clusion is actually more efficient to implement than
number of outcomes for that context. This is the exfull counts. but we wanted the full set of character
pensive step, as it require looking up counts in the o

. . . substring counts for other purposes, as well as lan-
trie structure. Extension counts require a loop over :

uage modeling.

all the daughters of a context node in the trie be?)))]
cause we did not have enough space to store them orOUr implementation relies heavily on a data un-
nodes. With all of these counts, thegram etimates folded object-oriented implementation of Patricia

for eachn and each hyperparameter setting can btéies. UnI.ike th_e st_andard suffix tr_ee algo_rithms for
computed from shortest to longest, with the lowefonstructing this trie for all substrings as in (Cleary

order estimates contributing the smoothed estimafé!d Téahan, 1997), we limit the length and make
for the next higher order. copies of characters rather than pointing back into

the original source. This is more space efficient than
4 Substring Counters the suffix-tree approach for our data set sizesrand
gram lengths.
Our n-gram language models derive estimates from The basic node interface is as shown in Figure 3.
counts of substrings of lengthor less in the training Note that the interface is in terms of long integer val-

ues. This was necessary to avoid integer overflow in ————

our root count when data size exceeded 2 GB and L :
our 1-gram counts when data sizes exceeded 5 or B S
6GB. A widely used alternative used for compres- AbstractNode
sion is to just scale all the counts by dividing by [[} l
two (and typically pruning those that go to zero);
this allows PPM to use 8-bit counters at the cost of oo petode
arithmetic precision ((MOﬁat’ 1990))' We eschew TerminalNode ThreeDtrNode Pat1Node Patd4Node
pruning because we also use the counts to find sig| =s:* 5S4t 1238551 1238551
nificant collocations. Although most collocation and [o..ornoge ArrayDirNode PatZNode PatArrayNode
significance statistics are not affected by global scal{__**"" BeLt bbbl LEaBSLE
ing, cross-entropy suffers tremendously if scaling iS| TwobtrNode Pat3Node

B, S, I L 1,2,3,B,S,I,L
done globally rather than only on the nodes that need
it.

Next note that the interface is defined in terms Figure 4: Unfolded Trie Classes

of indexed character slices. This obviates a huge
amount of otherwise unnecessary object creation
and garbage collection. It is simply not efficientmethods return nodes themselves. This is to sup-
enough, even with the newer generational garbagmrt the key implementation technique for scalabil-
collectors, to create strings or even lighter charactdly — replacing immutable objects during increments.
sequences where needed on the heap; slice indideather than having a fixed mutable node representa-
can be maintained in local variables. tion, nodes can return results that are essentially re-
Theincrement method increments the count for placements for themselves. For instance, there is an
each prefix of the specified character slice. Thanplementation ofNode that provides a count as a
count method returns the count of a given charactevyte (8 bits) and a single daughter. If that class gets
sequenceextensionCount the count of all one- incremented above the byte range, it returns a node
character extensiongaumExtensions the number with a short-based counter (16 bits) and a daughter
of extensions. Thesxtensions method returns that’s the result of incrementing the daughter. If the
all the observed extensions of a character sequencigss gets incremented for a different daughter path,
which is useful for enumerating over all the nodes itthen it returns a two-daughter implementation. Of
the trie. course, both of these can happen, with a new daugh-
Global pruning is implemented, but was not necter that pushes counts beyond the byte range. This
essary for our scalability experiments. idtneces- strategy may be familiar to readers with experience
sary for compilation; we could not compile modelsin Prolog (O’Keefe, 1990) or Lisp (Norvig, 1991),
nearly as large as those kept online. Just the siméhere many standard algorithms are implemented
of the floating point numbers (two per node for esthis way.
timate and interpolation) lead to 8 bytes per node. A diagram of the implementations Béde is pro-
In just about every study every undertaken, includvided in Figure 4. At the top of the diagram is the
ing our informal ones, unpruned models have outiode interface itself. The other boxes all represent
performed pruned ones. Unfortunately, applicationgbstract classes, with the top classstractNode,
will typically not have a gigabyte of memory avail- forming an abstract adapter for most of the utility
able for models. The best performing models for anethods iNode (which were not listed in the inter-
given size are those trained on as much data avaf&ce).
able and pruned to the specified size. Our prun- The abstract subclagsrNode is used for nodes
ing is simply a minimum count approach, becauswith zero or more daughters. It requires its exten-
the other methods have not been shown to improwaons to return parallel arrays of daughters and char-
much on this baseline. acters and counts from which it implements all the
Finally, note that both the increment and pruneipdate methods at a generic level.

abstract class TwoDtrNode final class ThreeDtrNodeShort
extends DtrNode { extends ThreeDtrNode {

final char mC1l; final Node mDtrl final short mCount;
final char mC2; final node mDtr2;
ThreeDtrNodeShort (char c1, Node dtril,

TwoDtrNode (char c1, Node dtri, char c2, Node dtr2,
char c2, Node dtr2, char c3, Node dtr3,
mCl = c1; mDtrl = dtri; long count) {
mC2 = c2; mDtr2 = dtr2; super(cl1,dtrl,c2,dtr2,c3,dtr3);
} mCount = (short) count;
}
Node getDtr(char c) {
return ¢ == mCl long count() { return mCount; }
7 mDaughterl }
: (¢ ==mC2
? mDaughter2 .
s null); Figure 6: Three Daughter Short Node

}

[1 chars() { . .
return mew char[] { mCi, mC2 }: and will call constructors of the appropriate

} size. The increment method as defined in
AbstractDtrNode is given in Figure 7. This

Node[] dtrsO { method increments all the suffixes of a string.

return new Node[] { mDaughterl,

mDaughter2 }; The first line just increments the local node if the

¥ array slice is empty; this involves taking its charac-

int numDtrs() { return 2; } ters, its daughters and calling the factory with one
} plus its count to generate a new node. This gener-

ates a new immutable node. If the first character in
Figure 5: Two Daughter Node Implementation the slice is an existing daughter, then the daughter is
incremented and the result is used to increment the
entire node. Note the assignmentdters [k] after
The subclasSerminalNode is used for nodes the increment; this is to deal with the immutability.
with no daughters. Its implementation is particusThe majority of the code is just dealing with the case
larly simple because the extension count, the nunyhere a new daughter needs to be inserted. Of spe-
ber of extensions and the count for any non-emptyjal note here is the factory instance called on the
sequence starting at this node are zero. The nodsnaining slice; this will create a PAT node. This
with non-empty daughters are not much more comgppears prohibitively expensive, but we refactored to
plex. For instance, the two-daughter node abstragijs approach from a binary-tree based method with
class is shown in Figure 5. almost no noticeable hit in speed; most of the arrays
All daughter nodes come with four concrete im-stabilize after very few characters and the resizings
plementations, based on the size of storage allocatetibig arrays later on is quite rare. We even replaced
for counts:byte (8 bits), short (16 bits),int (32 the root node implementation which was formerly
bits), orlong (64 bits). The space savings from onlya map because it was not providing a measurable
allocating bytes or shorts is huge. These concrespeed boost.
implementations do nothing more than return their Once the daughter characters and daughters are
own counts as long values. For instance,dhert marshalled, the factory calls the appropriate con-
implementation of three-daughter nodes is shown istructor based on the number of the character and
Figure 6. Note that because these nodes are not pwWiaughters. The factory then just calls the appropri-

lic, the factory can be guaranteed to only call theitely sized constructor as shown in Figure 8.
constructor with a count that can be cast to a short yn|ike other nodes, low count terminal nodes are

value and stored. stored in an array and reused. Thus if the result of
Increments are performed by the superclassn increment is within the cache bound, the stored

Node increment(char[] cs,

int start, int end) {
// empty slice; incr this node
if (start == end)
return NodeFactory
.createNode(chars() ,dtrs(),
count ()+11);
char[] dtrCs = chars();
// search for dtr
int k = Arrays.binarySearch(dtrCs,
cs[start]);
Node[] dtrs = dtrs();
if (k >= 0) { // found dtr
dtrs[k] = dtrs[k]
.increment (cs,start+1,end);
return NodeFactory
.createNode(dtrCs,dtrs,
count ()+11);
}
// insert new dtr
char[] newCs = new char[dtrs.length+1];
Node[] newDtrs = new Node[dtrs.length+1];
int i = 0;
for (; i < dtrs.length
&& dtrCs[i] < cs[start];
++i) {
newCs[i] = dtrCs[i];
newDtrs[i] = dtrs[i];
}
newCs[i] = cs[start];
newDtrs[i] = NodeFactory
.createNode(cs,start+1,
end,1);
for (; i < dtrCs.length; ++i) {
newCs[i+1] = dtrCs[i];
newDtrs[i+1] = dtrs[i];
}
return NodeFactory
.createNode (newCs,newDtrs,
count ()+11);

static Node createNode(char c, Node dtr,
long n) {

if (n <= Byte.MAX_VALUE)

return new OneDtrNodeByte(c,dtr,n);
if (n <= Short.MAX_VALUE)

return new OneDtrNodeShort(c,dtr,n);
if (n <= Integer.MAX_VALUE)

return new OneDtrNodeInt(c,dtr,n);
return new OneDtrNodeLong(c,dtr,n);

}

Figure 8: One Daughter Factory Method

as an array. Like the generic daughter nodes, PAT
nodes contain implementations for byte, short, int
and long counters. They also contain constant im-
plementations for one, two and three counts. We
found in profiling that the majority of PAT nodes
had counts below four. By providing constantimple-
mentations, no memory at all is used for the counts
(other than a single static component per class). Pat
nodes themselves are actually more common that
regular daughter nodes in high-order character tries,
because most long contexts are deterministic. As
n-gram order increases, so does the proportion of
PAT nodes. Implementing increments for PAT nodes
is only done once in the abstract cla&gstNode.
Each PAT node implementation supplied an array in
a standardized interface to the implementations in
PatNode. That array is created as needed and only
lives long enough to carry out the required increment
or lookup. Java’s new generational garbage collector
is fairly efficient at dealing with garbage collection
for short-lived objects such as the trie nodes.

Figure 7: Increment ilbstractDtrNode
5 Compilation

version is returned. Because terminal nodes are in®ur online models are tuned primarily for scalabil-
mutable, this does not cause problems with consigy, and secondarily for speed of substring counts.
tency. In practice, terminal nodes are far and awagven the simplest model, Witten-Bell, requires for
the most common type of node, and the greatest sayach context length that exists, summing over exten-
ing in space came from carefully coding terminakjon counts and doing arithmetic including several
nodes. divisions and multiplications per order a logarithm
The abstract clas®atNode implements a so- at the end. Thus straightforward estimation from
called “Patricia” trie node, which has a single chaiimodels is unsuitable for static, high throughput ap-
of descendants each of which has the same couptications. Instead, models may be compiled to a
There are four fixed-length implementations for théess compact but more efficient static representation.
one, two, three and four daughter case. For theseWe number trie nodes breadth-first in unicode or-
implementations, the daughter characters are storddr beginning from the root and use this indexing for
in member variables. For the array implementafour parallel arrays following (Whittaker and Raj,
tion, PatArrayNode, the daughter chain is stored2001). The main difference is that we have not

char| int | float float | int | is the context, and this is also not explicitly repre-
ldx | Ctx | C | Suf| logP | log(1-A) | Dtr sented. The remaining columns are explicitly repre-
0l n/al n/a | n/a n/a -0.63 1 sented. The third column is for the character. The
1 a 01 -2.60 -0.41 6 fourth column is an integer backoff suffix pointer;
2 b 0| -3.89 058 9 for instance, in the row with index 13, the context
3 c 0l -4.84 S0.32| 10 is “ab”, and the character is “r", meaning it repre-
4 d 0l -4.84 2032 11| sents“abr”in the trie. The suffix index is 9, which
5 r 0| -3.89 058 12| Isfor“br’, the suffix of “abr”. The fifth and sixth
6 al b 2251 058 13 columns are 32-bit floating point estimates, the fifth
7 al ¢ 3 -3.49 032 14| O©flog,P(rlab), and the sixth is empty because there
3 al d 41 349 032 15 is no context for “abr”, just an outcome. The value
9 bl r 5-1.40 058 16| ©Oflog:(1—A(ab)) is found in the row indexed 6,
10 cl a 11-159 032 17| andequalto-0.58. The seventh and final column
11 d| a 11159 032 18| 'S the integer index of the first daughter of a given
1 T a 11117 032 19 nod_e. The value _of the daughter pointer fo_r the fol-
13 ab| r 9 077 wal nia !owmg noo_le provides an upper bound. For mstance,
121 acl a 10 _1'10 nal a in thg row index 1 for the string “a”, th(_a daughter in-
1 ad a 11 _1'10 T2 T/a dex is 6, and the next row’s daughter index is 9, thus
i the daughters of “a” fall between 6 and 8 inclusively
16| br| a 12| -0.67 na) na| _ these are “ab”, “ac” and “ad” respectively. Note
17] ca) d 8|-188 nfa| nia that the daughter characters are always in alphabeti-
18| da) b 6|-155 nfa| n/a| cqorder, allowing for a binary search for daughters.
19| ra] ¢ 7]-1.88 n/a| nfa For n-gram estimators, we need to compute

_ . _ logP(ch|Co---Ch_1). We start with the longest se-
Figure 9: Compiled Representation of 3-grams foﬁuenceck, ...,Cn_1 that exists in the trie. If binary
abracadabra search finds the outconmg among the daughters of
this node, we return its log probability estimate; this
. . . h ns in over rcent of estim with rea-
coded to a fixedr-gram length, costing us a bit of appens In ove .9.0 percent of estimates with rea
§?nably sized training sets. If the outcome character

spa_ce in general, and also that we included con'_[els not found, we continue with shorter and shorter

lookups for all suffixes during smoothing. context nodes until we find the result or reach the

The arrays are (1) the character leading t0 thgniform estimate at the root, at which point we add
node, (2) the log estimate of the last character in thes estimate and return it. For instance, the estimate
path of characters leading to this node given the pre |og, P(r|ab) = —0.77 can be read directly off the
vious characters in the path, (3) the log of one mirgyy indexed 13 in Figure 9. But lo®(ajab) =
nus the interpolation parameter for the context rep- 58 |og, P(alb) = —0.58+ —0.58+log, P(a) =
resented by the full path of characters leading to thisg 58 0,581 —2.60, requiring two interpolation
node, (4) the index of the first daughter of the nodeyeps,
and (5) index of the suffix of this node. Note thatthe - For jmplementation purposes, it is significant that
daughters of a given node will be contiguous and ifye keep track of where we backed off from. The
unicode order given the breadth-first nature of the ingy for “a”, where the final estimate was made, will
dexing, ranging from the daughter index of the nodge the starting point for lookup next time. This is
to the daughter index of the next node. the main property of the fast string algorithms — we

We show the full set of parallel arrays for trigramknow that the context “ba” does not exist, so we do
counts for the string “abracadabra” in Figure 9. The&ot need to go back to the root and start our search
first column is for the array index, and is not explic-all over again at the next character. The result is
itly represented. The second column, labeled “Ctx"a linear bound on lookup time because each back-

off of n characters guarantees at leasteps to get data sets, including decompressing their zipped and
back to the same context length, thus there can't lgzipped forms and parsing their XML, SGML and
more backoff steps than characters input. The matokenized form. A handler is then implemented that
bottleneck in run time is memory bandwidth due tadds data to the online models and polls the model
cache misses. for results intermittently for generating graphs.

The log estimates can be compressed using as
much precision as needed (Whittaker and Raj Results
2001), or even reduced to integral values and integer

arithmetic used for computing log estimates. We us¥/e used a 1.4GB Java heap (unfortunately, the max-
floats and full characters for simplicity and speed. imum allowable with Java on 32-bit Intel hardware

without taking drastic measures), which allowed us
6 Corporaand Parsers to train 6-grams on up to 7 billion characters with
room to spare. Roughly, 8-grams ran out of mem-

Our first corpus is 7 billion characters from tNew ory at 1 billion characters, 12 grams at 100 million
York Timessection of the Linguistic Data Consor-characters, and 32 grams at 10 million characters.
tium’s Gigaword corpus. Only the body of docu-We did not experiment with pruning for this paper,
ments of type story were used. Paragraphs indihough our API supports both thresholded and pdi-
cated by XML markup were begun with a singlevisive scaling pruning. Training the counters de-
tab character. All newlines were converted to singleends heavily on the length ofgram, with 5-grams
whitepspaces, and all other data was left unmodiraining at 431,000 characters per second, 8-grams
fied. The data is problematic in at least two waysat 204,000 char/s, 12-grams at 88,000 char/s and 32-
First, the document set includes repeats of earligirams at 46,000 char/s, including online hyperpara-
documents. Language models provide a good wayeter estimation (using a $2000 PC running Win-
of filtering these repeated documents out, but we didows XP and Sun’s 1.4.2 JDK, with a 3.0GHz Pen-
not do so for our measurements because there weiem 4, 2GB of ECC memory at 800MHz, and two
few enough of them that it made little differencelOK SATA drives in RAID 0).
and we wanted to simplify other comparative eval- Our primary results are displayed in Figure 11
uations. Second, the document set includes numeind Figure 10, which plot sample cross-entropy
ical list data with formatting such as stock marketates against amount of text used to build the mod-
reports. Thelimesdata uses 87 ASCII characters. els for variousn-gram lengths. Sample cross en-

Our second corpus is the 5 billion charactersropy is simply the average log (base 2) probabil-
drawn from abstracts in the United States’ Nationaty estimate per character. All entropies are re-
Library of Medicine’s 2004 MEDLINE baseline ci- ported for the best hyperparameter settings through
tation set. Abstract truncation markers were resnline leave-one-out estimation for parameterized
moved. MEDLINE uses a larger character set of 16Witten-Bell smoothing. Each data point in the plot
characters, primarily extending ASCII with diacrit-uses the average entropy rate over a sample size
ics on names and Greek letters. of up to 10,000 for MEDLINE and 100,000 for

By comparison, (Banko and Brill, 2001) used onghe Times with the samples being drawn evenly
billion tokens for a disambiguation task, (Brown etover the data arriving since the last plot point.
al., 1991) used 583 million tokens for a languagé&or instance, the point plotted at 200,000 charac-
model task, and (Chen and Goodman, 1996) clevertgrs for MEDLINE uses a sample of every 10th
sampled from 250 million tokens to evaluate highereharacter between character 100,000 and 200,000
order models by only training on sequences used imhereas the sample at 2,000,000,000 characters
the held-out and test sets. uses every 100,000th character between characters

Our implementation is based a generic text parsd;000,000,000 and 2,000,000,000.
and text handler interface, much like a simplified Like the Tipster data used by (Chen and Good-
version of XML's SAX content handler and XML man, 1996), the immediately noticeable feature of
parser. A text parser is implemented for the variouthe plots is the jaggedness early on, including some

Sample Cross-Entropy Rate (bits per character)

Sample Cross Entropy Rate (bits per character)

6-gram ---x---
2.8 8-gram --->--- -

12-gram —--&--

16-gram ----e- -

2.6

24

2.2

18

1.6

1.4

12 F i L Entropy=1.570 -
Efl Entropy=1.495
1+ ° Eﬂ .
]
08 1 1 1 1 1
10000 100000 1e+006 1e+007 1e+008 1e+009 1e+010

Amount of Data (characters)

Figure 10:NY TimesSample Cross-Entropy Rates

4 T T T T T T T
35 |
3+
25
2 - 2-gram |
4-gram iy e s
6-gram ---%--- Ky
8-gram @ % v g ges g%ﬁ%ﬁi‘ .
12-gram - - 2 '“' g oS st Ko
15 - o 2o .D* - DTDI@ 7
Entropy=1.435
Entropy=1.36
1 " P | " P | " P | " P | " PR | " P | " P | " PR
100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009 1le+010

Amount of Data (characters)

Figure 11: MEDLINE Sample Cross-Entropy Rates

ridiculously low cross-entropy rates reported for theple characters provides quite a cross-entropy reduc-
Times data.

This is largely due to low training tion. For later data points, samples are sparser and

data count, higm-gram models being very good thus less subject to variance.
at matching repeated passages coupled with the fact
that a 2000 word article repeated out of 10,000 sam-

For applications other than cross-entropy bake-
offs, 5-grams to 8-grams seem to provide the right

2—gra'1m —
4-gram ---x---
8-gram -

=

Sample Variance (squared bits per character)
(8]
T

2 1 1 1 1 1 1 1
100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009 1e+010

Amount of Data (characters)

Figure 12: MEDLINE Sample Variances

compromise between accuracy and efficiency. standard error the square root of this, or 0.02. This
We were surprised that MEDLINE had loweriS in line with measurement variances found at the

n-gram entropy bounds than tiiémes especially tail end of the plots, but not at the beginnings.
given the occurrence of duplication within tienes ~ Most interestingly, it turned out that smoothing
data (MEDLINE does not contain duplicates in thénethod did not matter oncegrams were large, thus
baseline). The best MEDLINE operating point is inringing the results of (Banko and Brill, 2001) to
dicated in the figure, with a sample cross-entrop§€ar on those of (Chen and Goodman, 1996). The
rate of 1.36 for 12-grams trained on 100 millioncOmparison for 12-grams and then for the tail of
characters of data; 8-gram entropy is 1.435 at nearfjjore data for 8-grams in Figures 13 and 14. Fig-
1 billion characters. The best performance for theéfe¢ 14 shows the smoothing methods for 8-grams on
Times corpus was also for 12-grams at 100 mil-&n order of magnitude more data.
lion chgracters, but the sample cross-entropy WaSonclusions
1.49; with 8-gram sample cross-entropy as low as
1.570 at 1 billion characters. Although MEDLINE We have shown that it is possible to use object ori-
may be full of jargon and mixed-case alphanumeriented techniques to scale language model counts to
acronyms, the way in which they are used is highlyery high levels without pruning on relatively mod-
predictable given enough training data. Data in thest hardware. Even more space could be saved by
Timessuch as five and six digit stock reports, sportsinfolding characters to bytes (especially for token
scores, etc., seem to provide a challenge. models). Different smoothing models tend to con-
The per-character sample variances for 2-gram¥erge to each other after gigabytes of data, making
4-grams and 8-grams for MEDLINE are given inSMoothing much less critical.
Figure 12. We did not plot results for higher-order Full source with unit tests, javadoc, and applica-
n-grams, as their variance was almost identical tfions is available from the LingPipe web site:
that of 8-grams. Standard error is the square root of
variance, or about 2.0 in the range of interest. With
10,000 samples, variance should be 4/10,000, with

http://www.alias-i.com/lingpipe

2.4

Sample Cross Entropy Rate (bits per character)

T T
Absolute Discounting 12-gram —+—
Dirichlet w. Update Exclusion 12-gram ---©--

Witten-Bell w. Update Exclusion 12-gram ---

Dirichlet 12-gram ---

Absolute Discounting w. Update Exclusion 12-gram &

Witten-Bell 12-gram ----e- -

X

100000 1e+006 1e+007 1e+008
Amount of Data (characters)
Figure 13: Comparison of Smoothing for 12-grams
T
Absolute Discounting 8-gram —+—
Dirichlet w. Update Exclusion 8-gram ---o---
152 Witten-Bell w. Update Exclusion 8-gram ---x--- 7
Dirichlet 8-gram --->---
Absolute Discounting w. Update Exclusion 8-gram -
5 Witten-Bell 8-gram ----e- -
g
@ 1.5 4
<
[}
9]
o
2
g
5 148 4
IS
o
>
Q.
g . R o
G 146 N o 1
" . P . RN .
o AN ,
O - oo T
[=% N ‘ .
E 1447 X ¥
& O S
0 ‘. A RN
L X
L oo
& " e
142 1]|] E
2e+008 1e+009

References

Amount of Data (characters)

Figure 14: Comparison of Smoothing for 8-grams

error model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting of the ACL

Michele Banko and Eric Brill. 2001. Scaling to very very
large corpora for natural language disambiguation. IReter F. Brown, Stephen Della Pietra, Vincent J. Della

Proceedings of the 39th Meeting of the ACL

Eric Brill and Robert C. Moore. 2000. An improved

ambiguation using statistical methods.
270.

Pietra, and Robert L. Mercer. 1991. Word-sense dis-

pages 264—

Stanley F. Chen and Joshua Goodman. 1996. An empithrister Samuelsson. 1996. Handling sparse data by suc-
ical study of smoothing techniques for language mod- cessive abstraction. IRroceedings of COLING-96
eling. InProceedings of the 34th Annual Meeting of Copenhagen.

the ACL pages 310-318. o
William J. Teahan and John G. Cleary. 1996. The en-

John G. Cleary and William J. Teahan. 1997. Un- tropy of english using PPM-based models. Data
bounded length contexts for PPM.The Computer Compression Conferencpages 53—-62.
Journal, 40(2/3):67-?7
William J. Teahan. 2000. Text classification and segmen-
Thomas M. Cover and Joy A. Thomas. 19®lements tation using minimum cross-entropy. Rroceeding of
of Information TheoryJohn Wiley. RIAO 2000

Frederick Jelinek and Robert L. Mercer. 1980. InterEdward Whittaker and Bhiksha Raj. 2001. Quantization-
polated estimation of Markov source parameters from based language model compressionPioceedings of
sparse data. IRroceedings of the Workshop on Pat- Eurospeech 20Qpages 33-36.
tern Recognition in PracticeNorth-Holland.

ChengXiang Zhai and John Lafferty. 2004. A study of

Dan Klein, Joseph Smarr, Huy Nguyen, and Christo- smoothing methods for language models applied to in-
pher D. Manning. 2003. Named entity recognition formation retrieval ACM Transactions on Information
with character-level models. IRroceedings the 7th Systems2(2):179-214.

ConNLL pages 180-183.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing off for n-gram language modeling. Rro-
ceedings of ICASSPages 181-184.

Kevin Knight and Vasileios Hatzivassiloglou. 1995.
Two-level, many-paths generation. fioceedings of
the 33rd Annual Meeting of the ACL

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. tRuEcasling. Rroceed-
ings of the 41st Annual Meeting of the AQhages
152-159.

David J. C. MacKay and Linda C. Peto. 1995. A hier-
archical Dirichlet language modeNatural Language
Engineering 1(3):1-19.

Alistair Moffat. 1990. Implementing the PPM data com-
pression schemdEEE Transactions on Communica-
tions 38:1917-1921.

Hermann Ney, U. Essen, and Reinhard Kneser. 1995.
On the estimation of 'small’ probabilities by leaving-
one-out. IEEE Transactions on Pattern Analysis and
Machine Intelligencegl7:1202-1212.

Peter Norvig. 1991 Paradigms of Artificial Intelligence
Programming: Case Studies in Common Liddor-
gan Kaufmann.

Richard O’Keefe. 1990The Craft of Prolog MIT Press.

Fuchun Peng. 2003Building Probabilistic Models for
Language Independent Text Classificatiéth.D. the-
sis.

Gerasimos Potamianos and Frederick Jelinek. 1998. A
study of n-gram and decision tree letter language mod-
eling methods. Speech Communicatip24(3):171-
192.

