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Abstract 

We describe METEOR, an automatic 

metric for machine translation evaluation 

that is based on a generalized concept of 

unigram matching between the machine-

produced translation and human-produced 

reference translations. Unigrams can be 

matched based on their surface forms, 

stemmed forms, and meanings; further-

more, METEOR can be easily extended to 

include more advanced matching strate-

gies.  Once all generalized unigram 

matches between the two strings have 

been found, METEOR computes a score 

for this matching using a combination of 

unigram-precision, unigram-recall, and a 

measure of fragmentation that is designed 

to directly capture how well-ordered the 

matched words in the machine translation 

are in relation to the reference.  We 

evaluate METEOR by measuring the cor-

relation between the metric scores and 

human judgments of translation quality.  

We compute the Pearson R correlation 

value between its scores and human qual-

ity assessments of the LDC TIDES 2003 

Arabic-to-English and Chinese-to-English 

datasets.  We perform segment-by-

segment correlation, and show that 

METEOR gets an R correlation value of 

0.347 on the Arabic data and 0.331 on the 

Chinese data.  This is shown to be an im-

provement on using simply unigram-

precision, unigram-recall and their har-

monic F1 combination. We also perform 

experiments to show the relative contribu-

tions of the various mapping modules. 

 

1 Introduction 

Automatic Metrics for machine translation (MT) 

evaluation have been receiving significant atten-

tion in the past two years, since IBM's BLEU met-

ric was proposed and made available (Papineni et 

al 2002).  BLEU and the closely related NIST met-

ric (Doddington, 2002) have been extensively used 

for comparative evaluation of the various MT sys-

tems developed under the DARPA TIDES research 

program, as well as by other MT researchers.  The 

utility and attractiveness of automatic metrics for 

MT evaluation has consequently been widely rec-

ognized by the MT community.  Evaluating an MT 

system using such automatic metrics is much 

faster, easier and cheaper compared to human 

evaluations, which require trained bilingual evalua-

tors.  In addition to their utility for comparing the 

performance of different systems on a common 

translation task, automatic metrics can be applied 

on a frequent and ongoing basis during system de-

velopment, in order to guide the development of 

the system based on concrete performance im-

provements. 

Evaluation of Machine Translation has tradi-

tionally been performed by humans.  While the 

main criteria that should be taken into account in 

assessing the quality of MT output are fairly intui-

tive and well established, the overall task of MT 

evaluation is both complex and task dependent.  

MT evaluation has consequently been an area of 

significant research in itself over the years.  A wide 

range of assessment measures have been proposed, 

not all of which are easily quantifiable. Recently 

developed frameworks, such as FEMTI (King et al, 

2003), are attempting to devise effective platforms 

for combining multi-faceted measures for MT 

evaluation in effective and user-adjustable ways.  

While a single one-dimensional numeric metric 

cannot hope to fully capture all aspects of MT 
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evaluation, such metrics are still of great value and 

utility.  

In order to be both effective and useful, an 

automatic metric for MT evaluation has to satisfy 

several basic criteria.  The primary and most intui-

tive requirement is that the metric have very high 

correlation with quantified human notions of MT 

quality.  Furthermore, a good metric should be as 

sensitive as possible to differences in MT quality 

between different systems, and between different 

versions of the same system.  The metric should be 

consistent (same MT system on similar texts 

should produce similar scores), reliable (MT sys-

tems that score similarly can be trusted to perform 

similarly) and general (applicable to different MT 

tasks in a wide range of domains and scenarios).  

Needless to say, satisfying all of the above criteria 

is extremely difficult, and all of the metrics that 

have been proposed so far fall short of adequately 

addressing most if not all of these requirements.  

Nevertheless, when appropriately quantified and 

converted into concrete test measures, such re-

quirements can set an overall standard by which 

different MT evaluation metrics can be compared 

and evaluated.  

In this paper, we describe METEOR
1
, an auto-

matic metric for MT evaluation which we have 

been developing.  METEOR was designed to ex-

plicitly address several observed weaknesses in 

IBM's BLEU metric.   It is based on an explicit 

word-to-word matching between the MT output 

being evaluated and one or more reference transla-

tions.  Our current matching supports not only 

matching between words that are identical in the 

two strings being compared, but can also match 

words that are simple morphological variants of 

each other (i.e. they have an identical stem), and 

words that are synonyms of each other.  We envi-

sion ways in which this strict matching can be fur-

ther expanded in the future, and describe these at 

the end of the paper.  Each possible matching is 

scored based on a combination of several features.  

These currently include unigram-precision, uni-

gram-recall, and a direct measure of how out-of-

order the words of the MT output are with respect 

to the reference.   The score assigned to each indi-

vidual sentence of MT output is derived from the 

best scoring match among all matches over all ref-

erence translations.  The maximal-scoring match-

                                                           
1 METEOR: Metric for Evaluation of Translation with Explicit ORdering 

ing is then also used in order to calculate an aggre-

gate score for the MT system over the entire test 

set.  Section 2 describes the metric in detail, and 

provides a full example of the matching and scor-

ing.  

In previous work (Lavie et al., 2004), we com-

pared METEOR with IBM's BLEU metric and it’s 

derived NIST metric, using several empirical 

evaluation methods that have been proposed in the 

recent literature as concrete means to assess the 

level of correlation of automatic metrics and hu-

man judgments.  We demonstrated that METEOR 

has significantly improved correlation with human 

judgments.  Furthermore, our results demonstrated 

that recall plays a more important role than preci-

sion in obtaining high-levels of correlation with 

human judgments.  The previous analysis focused 

on correlation with human judgments at the system 

level.  In this paper, we focus our attention on im-

proving correlation between METEOR score and 

human judgments at the segment level. High-levels 

of correlation at the segment level are important 

because they are likely to yield a metric that is sen-

sitive to minor differences between systems and to 

minor differences between different versions of the 

same system.  Furthermore, current levels of corre-

lation at the sentence level are still rather low, of-

fering a very significant space for improvement.  

The results reported in this paper demonstrate that 

all of the individual components included within 

METEOR contribute to improved correlation with 

human judgments.  In particular, METEOR is 

shown to have statistically significant better corre-

lation compared to unigram-precision, unigram-

recall and the harmonic F1 combination of the two. 

We are currently in the process of exploring 

several further enhancements to the current 

METEOR metric, which we believe have the po-

tential to significantly further improve the sensitiv-

ity of the metric and its level of correlation with 

human judgments.  Our work on these directions is 

described in further detail in Section 4. 

 

2 The METEOR Metric 

2.1 Weaknesses in BLEU Addressed in 

METEOR 

The main principle behind IBM’s BLEU metric 

(Papineni et al, 2002) is the measurement of the 
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overlap in unigrams (single words) and higher or-

der n-grams of words, between a translation being 

evaluated and a set of one or more reference trans-

lations.  The main component of BLEU is n-gram 

precision: the proportion of the matched n-grams 

out of the total number of n-grams in the evaluated 

translation.  Precision is calculated separately for 

each n-gram order, and the precisions are com-

bined via a geometric averaging.  BLEU does not 

take recall into account directly.  Recall – the pro-

portion of the matched n-grams out of the total 

number of n-grams in the reference translation, is 

extremely important for assessing the quality of 

MT output, as it reflects to what degree the transla-

tion covers the entire content of the translated sen-

tence.  BLEU does not use recall because the 

notion of recall is unclear when matching simulta-

neously against a set of reference translations 

(rather than a single reference).  To compensate for 

recall, BLEU uses a Brevity Penalty, which penal-

izes translations for being “too short”.  The NIST 

metric is conceptually similar to BLEU in most 

aspects, including the weaknesses discussed below. 

BLEU and NIST suffer from several weak-

nesses, which we attempt to address explicitly in 

our proposed METEOR metric: 

The Lack of Recall:  We believe that the fixed 

brevity penalty in BLEU does not adequately com-

pensate for the lack of recall.  Our experimental 

results strongly support this claim. 

Use of Higher Order N-grams: Higher order 

N-grams are used in BLEU as an indirect measure 

of a translation’s level of grammatical well-

formedness.  We believe an explicit measure for 

the level of grammaticality (or word order) can 

better account for the importance of grammatical-

ity as a factor in the MT metric, and result in better 

correlation with human judgments of translation 

quality. 

Lack of Explicit Word-matching Between 

Translation and Reference:  N-gram counts don’t 

require an explicit word-to-word matching, but this 

can result in counting incorrect “matches”, particu-

larly for common function words. 

Use of Geometric Averaging of N-grams: 
Geometric averaging results in a score of “zero” 

whenever one of the component n-gram scores is 

zero.  Consequently, BLEU scores at the sentence 

(or segment) level can be meaningless.  Although 

BLEU was intended to be used only for aggregate 

counts over an entire test-set (and not at the sen-

tence level), scores at the sentence level can be 

useful indicators of the quality of the metric.  In 

experiments we conducted, a modified version of 

BLEU that uses equal-weight arithmetic averaging 

of n-gram scores was found to have better correla-

tion with human judgments. 

2.2 The METEOR Metric 

METEOR was designed to explicitly address the 

weaknesses in BLEU identified above.  It evaluates 

a translation by computing a score based on ex-

plicit word-to-word matches between the transla-

tion and a reference translation. If more than one 

reference translation is available, the given transla-

tion is scored against each reference independ-

ently, and the best score is reported. This is 

discussed in more detail later in this section.   

Given a pair of translations to be compared (a 

system translation and a reference translation), 

METEOR creates an alignment between the two 

strings. We define an alignment as a mapping be-

tween unigrams, such that every unigram in each 

string maps to zero or one unigram in the other 

string, and to no unigrams in the same string. Thus 

in a given alignment, a single unigram in one string 

cannot map to more than one unigram in the other 

string. This alignment is incrementally produced 

through a series of stages, each stage consisting of 

two distinct phases. 

In the first phase an external module lists all the 

possible unigram mappings between the two 

strings. Thus, for example, if the word “computer” 

occurs once in the system translation and twice in 

the reference translation, the external module lists 

two possible unigram mappings, one mapping the 

occurrence of “computer” in the system translation 

to the first occurrence of “computer” in the refer-

ence translation, and another mapping it to the sec-

ond occurrence. Different modules map unigrams 

based on different criteria. The “exact” module 

maps two unigrams if they are exactly the same 

(e.g. “computers” maps to “computers” but not 

“computer”). The “porter stem” module maps two 

unigrams if they are the same after they are 

stemmed using the Porter stemmer (e.g.: “com-

puters” maps to both “computers” and to “com-

puter”). The “WN synonymy” module maps two 

unigrams if they are synonyms of each other.  

In the second phase of each stage, the largest 

subset of these unigram mappings is selected such 
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that the resulting set constitutes an alignment as 

defined above (that is, each unigram must map to 

at most one unigram in the other string). If more 

than one subset constitutes an alignment, and also 

has the same cardinality as the largest set, 

METEOR selects that set that has the least number 

of unigram mapping crosses. Intuitively, if the two 

strings are typed out on two rows one above the 

other, and lines are drawn connecting unigrams 

that are mapped to each other, each line crossing is 

counted as a “unigram mapping cross”. Formally, 

two unigram mappings (ti, rj) and (tk, rl) (where ti 

and tk are unigrams in the system translation 

mapped to unigrams rj and rl in the reference trans-

lation respectively) are said to cross if and only if 

the following formula evaluates to a negative 

number:  

(pos(ti) – pos(tk)) * (pos(rj) – pos(rl)) 

where pos(tx) is the numeric position of the uni-

gram tx in the system translation string, and pos(ry) 

is the numeric position of the unigram ry in the ref-

erence string. For a given alignment, every pair of 

unigram mappings is evaluated as a cross or not, 

and the alignment with the least total crosses is 

selected in this second phase. Note that these two 

phases together constitute a variation of the algo-

rithm presented in (Turian et al, 2003). 

Each stage only maps unigrams that have not 

been mapped to any unigram in any of the preced-

ing stages. Thus the order in which the stages are 

run imposes different priorities on the mapping 

modules employed by the different stages. That is, 

if the first stage employs the “exact” mapping 

module and the second stage employs the “porter 

stem” module, METEOR is effectively preferring 

to first map two unigrams based on their surface 

forms, and performing the stemming only if the 

surface forms do not match (or if the mapping 

based on surface forms was too “costly” in terms 

of the total number of crosses). Note that 

METEOR is flexible in terms of the number of 

stages, the actual external mapping module used 

for each stage, and the order in which the stages 

are run. By default the first stage uses the “exact” 

mapping module, the second the “porter stem” 

module and the third the “WN synonymy” module.  

In section 4 we evaluate each of these configura-

tions of METEOR.  

Once all the stages have been run and a final 

alignment has been produced between the system 

translation and the reference translation, the 

METEOR score for this pair of translations is 

computed as follows.  First unigram precision (P) 

is computed as the ratio of the number of unigrams 

in the system translation that are mapped (to uni-

grams in the reference translation) to the total num-

ber of unigrams in the system translation. 

Similarly, unigram recall (R) is computed as the 

ratio of the number of unigrams in the system 

translation that are mapped (to unigrams in the ref-

erence translation) to the total number of unigrams 

in the reference translation. Next we compute 

Fmean by combining the precision and recall via a 

harmonic-mean (van Rijsbergen, 1979) that places 

most of the weight on recall.  We use a harmonic 

mean of P and 9R.  The resulting formula used is: 

PR

PR
Fmean

9

10

+
=  

Precision, recall and Fmean are based on uni-

gram matches. To take into account longer 

matches, METEOR computes a penalty for a given 

alignment as follows. First, all the unigrams in the 

system translation that are mapped to unigrams in 

the reference translation are grouped into the few-

est possible number of chunks such that the uni-

grams in each chunk are in adjacent positions in 

the system translation, and are also mapped to uni-

grams that are in adjacent positions in the reference 

translation. Thus, the longer the n-grams, the fewer 

the chunks, and in the extreme case where the en-

tire system translation string matches the reference 

translation there is only one chunk. In the other 

extreme, if there are no bigram or longer matches, 

there are as many chunks as there are unigram 

matches. The penalty is then computed through the 

following formula: 
3

_#

#
*5.0 








=

matchedunigrams

chunks
Penalty  

For example, if the system translation was “the 

president spoke to the audience” and the reference 

translation was “the president then spoke to the 

audience”, there are two chunks: “the president” 

and “spoke to the audience”. Observe that the pen-

alty increases as the number of chunks increases to 

a maximum of 0.5. As the number of chunks goes 

to 1, penalty decreases, and its lower bound is de-

cided by the number of unigrams matched. The 

parameters if this penalty function were deter-

mined based on some experimentation with de-
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veopment data, but have not yet been trained to be 

optimal. 

Finally, the METEOR Score for the given 

alignment is computed as follows:  

 

)1(* PenaltyFmeanScore −=  

 

This has the effect of reducing the Fmean by the 

maximum of 50% if there are no bigram or longer 

matches. 

For a single system translation, METEOR com-

putes the above score for each reference transla-

tion, and then reports the best score as the score for 

the translation. The overall METEOR score for a 

system is calculated based on aggregate statistics 

accumulated over the entire test set, similarly to 

the way this is done in BLEU.  We calculate ag-

gregate precision, aggregate recall, an aggregate 

penalty, and then combine them using the same 

formula used for scoring individual segments. 

3 Evaluation of the METEOR Metric 

3.1. Data 

We evaluated the METEOR metric and compared 

its performance with BLEU and NIST on the 

DARPA/TIDES 2003 Arabic-to-English and Chi-

nese-to-English MT evaluation data released 

through the LDC as a part of the workshop on In-

trinsic and Extrinsic Evaluation Measures for MT 

and/or Summarization, at the Annual Meeting of 

the Association of Computational Linguistics 

(2005). The Chinese data set consists of 920 sen-

tences, while the Arabic data set consists of 664 

sentences. Each sentence has four reference trans-

lations.  Furthermore, for 7 systems on the Chinese 

data and 6 on the Arabic data, every sentence 

translation has been assessed by two separate hu-

man judges and assigned an Adequacy and a Flu-

ency Score.  Each such score ranges from one to 

five (with one being the poorest grade and five the 

highest).  For this paper, we computed a Combined 

Score for each translation by averaging the ade-

quacy and fluency scores of the two judges for that 

translation.  We also computed an average System 

Score for each translation system by averaging the 

Combined Score for all the translations produced 

by that system. (Note that although we refer to 

these data sets as the “Chinese” and the “Arabic” 

data sets, the MT evaluation systems analyzed in 

this paper only evaluate English sentences pro-

duced by translation systems by comparing them to 

English reference sentences). 

3.2 Comparison with BLEU and NIST MT 

Evaluation Algorithms  

In this paper, we are interested in evaluating 

METEOR as a metric that can evaluate translations 

on a sentence-by-sentence basis, rather than on a 

coarse grained system-by-system basis. The stan-

dard metrics – BLEU and NIST – were however 

designed for system level scoring, hence comput-

ing sentence level scores using BLEU or the NIST 

evaluation mechanism is unfair to those algo-

rithms. To provide a point of comparison however, 

table 1 shows the system level correlation between 

human judgments and various MT evaluation algo-

rithms and sub components of METEOR over the 

Chinese portion of the Tides 2003 dataset. Specifi-

cally, these correlation figures were obtained as 

follows: Using each algorithm we computed one 

score per Chinese system by calculating the aggre-

gate scores produced by that algorithm for that sys-

tem. We also obtained the overall human judgment 

for each system by averaging all the human scores 

for that system’s translations. We then computed 

the Pearson correlation between these system level 

human judgments and the system level scores for 

each algorithm; these numbers are presented in 

table 1.  
 

System ID Correlation 

BLEU 0.817 

NIST 0.892 

Precision 0.752 

Recall 0.941 

F1 0.948 

Fmean 0.952 

METEOR 0.964 

 

Table 1: Comparison of human/METEOR correlation 

with BLEU and NIST/human correlations 

 

Observe that simply using Recall as the MT 

evaluation metric results in a significant improve-

ment in correlation with human judgment over 

both the BLEU and the NIST algorithms. These 

correlations further improve slightly when preci-

sion is taken into account (in the F1 measure), 
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when the recall is weighed more heavily than pre-

cision (in the Fmean measure) and when a penalty 

is levied for fragmented matches (in the main 

METEOR measure).  

3.3 Evaluation Methodology  

As mentioned in the previous section, our main 

goal in this paper is to evaluate METEOR and its 

components on their translation-by-translation 

level correlation with human judgment. Towards 

this end, in the rest of this paper, our evaluation 

methodology is as follows: For each system, we 

compute the METEOR Score for every translation 

produced by the system, and then compute the cor-

relation between these individual scores and the 

human assessments (average of the adequacy and 

fluency scores) for the same translations. Thus we 

get a single Pearson R value for each system for 

which we have human assessments. Finally we 

average the R values of all the systems for each of 

the two language data sets to arrive at the overall 

average correlation for the Chinese dataset and the 

Arabic dataset. This number ranges between -1.0 

(completely negatively correlated) to +1.0 (com-

pletely positively correlated).  

We compare the correlation between human as-

sessments and METEOR Scores produced above 

with that between human assessments and preci-

sion, recall and Fmean scores to show the advan-

tage of the various components in the METEOR 

scoring function. Finally we run METEOR using 

different mapping modules, and compute the corre-

lation as described above for each configuration to 

show the effect of each unigram mapping mecha-

nism. 

3.4 Correlation between METEOR Scores 

and Human Assessments 

 
System ID Correlation 

ame 0.331 

ara 0.278 

arb 0.399 

ari 0.363 

arm 0.341 

arp 0.371 

Average 0.347 

 

Table 2: Correlation between METEOR Scores and 

Human Assessments for the Arabic Dataset 

We computed sentence by sentence correlation 

between METEOR Scores and human assessments 

(average of adequacy and fluency scores) for each 

translation for every system. Tables 2 and 3 show 

the Pearson R correlation values for each system, 

as well as the average correlation value per lan-

guage dataset.  
 

System ID Correlation 

E09 0.385 

E11 0.299 

E12 0.278 

E14 0.307 

E15 0.306 

E17 0.385 

E22 0.355 

Average 0.331 

 

Table 3: Correlation between METEOR Scores and 

Human Assessments for the Chinese Dataset 

3.5 Comparison with Other Metrics 

We computed translation by translation correla-

tions between human assessments and other met-

rics besides the METEOR score, namely precision, 

recall and Fmean. Tables 4 and 5 show the correla-

tions for the various scores.  

 
Metric Correlation 

Precision 0.287 

Recall 0.334 

Fmean 0.340 

METEOR 0.347 

 

Table 4: Correlations between human assessments and 

precision, recall, Fmean and METEOR Scores, aver-

aged over systems in the Arabic dataset 

 
 

Metric Correlation 

Precision 0.286 

Recall 0.320 

Fmean 0.327 

METEOR 0.331 

 

Table 5: Correlations between human assessments and 

precision, recall, Fmean and METEOR Scores, aver-

aged over systems in the Chinese dataset 

 

We observe that recall by itself correlates with 

human assessment much better than precision, and 

that combining the two using the Fmean formula 
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described above results in further improvement. By 

penalizing the Fmean score using the chunk count 

we get some further marginal improvement in cor-

relation. 

3.6 Comparison between Different Map-

ping Modules 

To observe the effect of various unigram mapping 

modules on the correlation between the METEOR 

score and human assessments, we ran METEOR 

with different sequences of stages with different 

mapping modules in them. In the first experiment 

we ran METEOR with only one stage that used the 

“exact” mapping module. This module matches 

unigrams only if their surface forms match. (This 

module does not match unigrams that belong to a 

list of “stop words” that consist mainly of function 

words). In the second experiment we ran 

METEOR with two stages, the first using the “ex-

act” mapping module, and the second the “Porter” 

mapping module. The Porter mapping module 

matches two unigrams to each other if they are 

identical after being passed through the Porter 

stemmer. In the third experiment we replaced the 

Porter mapping module with the WN-Stem map-

ping module. This module maps two unigrams to 

each other if they share the same base form in 

WordNet. This can be thought of as a different 

kind of stemmer – the difference from the Porter 

stemmer is that the word stems are actual words 

when stemmed through WordNet in this manner. 

In the last experiment we ran METEOR with three 

stages, the first two using the exact and the Porter 

modules, and the third the WN-Synonymy map-

ping module.  This module maps two unigrams 

together if at least one sense of each word belongs 

to the same synset in WordNet. Intuitively, this 

implies that at least one sense of each of the two 

words represent the same concept. This can be 

thought of as a poor-man’s synonymy detection 

algorithm that does not disambiguate the words 

being tested for synonymy. Note that the 

METEOR scores used to compute correlations in 

the other tables (1 through 4) used exactly this se-

quence of stages.  

Tables 6 and 7 show the correlations between 

METEOR scores produced in each of these ex-

periments and human assessments for both the 

Arabic and the Chinese datasets. On both data sets, 

adding either stemming modules to simply using 

the exact matching improves correlations. Some 

further improvement in correlation is produced by 

adding the synonymy module.  

 
Mapping module sequence 

used (Arabic) 

Correlation 

Exact 0.312 

Exact, Porter 0.329 

Exact, WN-Stem 0.330 

Exact, Porter, WN-Synonym 0.347 

 

Table 6: Comparing correlations produced by different 

module stages on the Arabic dataset. 

 

Mapping module sequence 

used (Chinese) 

Correlation 

Exact 0.293 

Exact, Porter 0.318 

Exact, WN-Stem 0.312 

Exact, Porter, WN-Synonym 0.331 

 

Table 7: Comparing correlations produced by different 

module stages, on the Chinese dataset 

3.7 Correlation using Normalized Human 

Assessment Scores 

One problem with conducting correlation ex-

periments with human assessment scores at the 

sentence level is that the human scores are noisy – 

that is, the levels of agreement between human 

judges on the actual sentence level assessment 

scores is not extremely high.  To partially address 

this issue, the human assessment scores were nor-

malized by a group at the MITRE Corporation.  To 

see the effect of this noise on the correlation, we 

computed the correlation between the METEOR 

Score (computed using the stages used in the 4th 

experiment in section 7 above) and both the raw 

human assessments as well as the normalized hu-

man assessments.  

 

 
Arabic 

Dataset 

Chinese 

Dataset 

Raw human as-

sessments 
0.347 0.331 

Normalized hu-

man assessments 
0.403 0.365 

 

Table 8: Comparing correlations between METEOR 

Scores and both raw and normalized human assessments 
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Table 8 shows that indeed METEOR Scores cor-

relate better with normalized human assessments. 

In other words, the noise in the human assessments 

hurts the correlations between automatic scores 

and human assessments. 

4 Future Work 

The METEOR metric we described and evaluated 

in this paper, while already demonstrating great 

promise, is still relatively simple and naïve.  We 

are in the process of enhancing the metric and our 

experimentation in several directions: 

Train the Penalty and Score Formulas on 

Data: The formulas for Penalty and METEOR 

score were manually crafted based on empirical 

tests on a separate set of development data. How-

ever, we plan to optimize the formulas by training 

them on a separate data set, and choosing that for-

mula that best correlates with human assessments 

on the training data.  

Use Semantic Relatedness to Map Unigrams:   
So far we have experimented with exact mapping, 

stemmed mapping and synonymy mapping be-

tween unigrams. Our next step is to experiment 

with different measures of semantic relatedness to 

match unigrams that have a related meaning, but 

are not quite synonyms of each other.  

More Effective Use of Multiple Reference 

Translations:  Our current metric uses multiple 

reference translations in a weak way: we compare 

the translation with each reference separately and 

select the reference with the best match.  This was 

necessary in order to incorporate recall in our met-

ric, which we have shown to be highly advanta-

geous.  As our matching approach improves, the 

need for multiple references for the metric may in 

fact diminish.  Nevertheless, we are exploring 

ways in which to improve our matching against 

multiple references.  Recent work by (Pang et al, 

2003) provides the mechanism for producing se-

mantically meaningful additional “synthetic” refer-

ences from a small set of real references.  We plan 

to explore whether using such synthetic references 

can improve the performance of our metric. 

Weigh Matches Produced by Different Mod-

ules Differently: Our current multi-stage approach 

prefers metric imposes a priority on the different 

matching modules. However, once all the stages 

have been run, unigrams mapped through different 

mapping modules are treated the same.  Another 

approach to treating different mappings differently 

is to apply different weights to the mappings pro-

duced by different mapping modules. Thus “com-

puter” may match “computer” with a score of 1, 

“computers” with a score of 0.8 and “workstation” 

with a score of 0.3. As future work we plan to de-

velop a version of METEOR that uses such 

weighting schemes. 
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