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Abstract

We investigate some pitfalls regarding the
discriminatory power of MT evaluation
metrics and the accuracy of statistical sig-
nificance tests. In a discriminative rerank-
ing experiment for phrase-based SMT we
show that the NIST metric is more sensi-
tive than BLEU or F-score despite their in-
corporation of aspects of fluency or mean-
ing adequacy into MT evaluation. In an
experimental comparison of two statistical
significance tests we show thatvalues
are estimated more conservatively by ap-
proximate randomization than by boot-
strap tests, thus increasing the likelihood
of type-l error for the latter. We point
out a pitfall of randomly assessing signif-
icance in multiple pairwise comparisons,
and conclude with a recommendation to
combine NIST with approximate random-
ization, at more stringent rejection levels
than is currently standard.

Introduction

when benchmarking multiple systems, result differ-
ences may be very small in magnitude. This imposes
strong requirements on both automatic evaluation
measures and statistical significance tests: Evalua-
tion measures are needed that have high discrimi-
native power and yet are sensitive to the interesting
aspects of the evaluation task. Significance tests are
required to be powerful and yet accurate, i.e., if there
are significant differences they should be able to as-
sess them, but not if there are none.

In the area of statistical machine translation
(SMT), recently a combination of the BLEU evalua-
tion metric (Papineni et al., 2001) and the bootstrap
method for statistical significance testing (Efron and
Tibshirani, 1993) has become popular (Och, 2003;
Kumar and Byrne, 2004; Koehn, 2004b; Zhang et
al., 2004). Given the current practice of reporting
result differences as small as .3% in BLEU score,
assessed at confidence levels as low as 70%, ques-
tions arise concerning the sensitivity of the em-
ployed evaluation metrics and the accuracy of the
employed significance tests, especially when result
differences are small. We believe that is important to
accurately detect such small-magnitude differences
in order to understand how to improve systems and

Rapid and accurate detection of result differences f§chnologies, even though such differences may not
crucial in system development and system bencifatter in current applications.

marking. In both situations a multitude of systems In this paper we will investigate some pitfalls that
or system variants has to be evaluated, so it is highBrise in automatic evaluation and statistical signifi-
desirable to employ automatic evaluation measuresance testing in MT research. The first pitfall con-
for detection of result differences, and statistical hyeerns the discriminatory power of automatic eval-
pothesis tests to assess the significance of the deation measures. In the following, we compare the
tected differences. When evaluating subtle differsensitivity of three intrinsic evaluation measures that
ences between system variants in development, differ with respect to their focus on different aspects
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of translation. We consider the well-known BLEU2 The Experimental Setup: Discriminative
score (Papineni et al., 2001) which emphasizes flu- Reranking for Phrase-Based SMT

ency by incorporating matches of high n-grams. Fur-
thermore, we consider an F-score measure that.i.sh

adapted from dependency-based parsing (Crouch ete experimental setup we employed to compare

: ; valuation measures and significance tests is a dis-
al., 2002) and sentence-condensation (Riezler et al vt . g .
criminative reranking experiment di00-best lists

2003). This measure matches grammatical depenf a phrase-based SMT system. Our system is a

dency relations of parses for system output and ref- . .
. . re-implementation of the phrase-based system de-
erence translations, and thus emphasizes semantic. . : )
: : scribed in Koehn (2003), and uses publicly avail-
aspects of translational adequacy. As a third mea-

sure we consider NIST (Doddington, 2002), whic able compone_nts for word alignment (Och and Ney,
: : 003}, decoding (Koehn, 2004%)language mod-
favors lexical choice over word order and does no

. o eling (Stolcke, 2002) and finite-state processin
take structural information into account. On an ex- g ( ?) S P 9

. : . . Knight and Al-Onaizan, 1999) Training and test
perimental evaluation on a reranking experiment w

found that only NIST was sensitive enough to de-zéihirezéaokzgn from the Europarl parallel corpus
tect small result differences, whereas BLEU and F( ' '

score produced result differences that were statisti- Phrase-extraction follows Och et al. (1999) and
cally not significant. A second pitfall addressed ifvas implemented by the authors: First, the word
this paper concerns the relation of power and aligner is applied in both translation directions, and
curacy of significance tests. In situations where thh€ intersection of the alignment matrices is built.
employed evaluation measure produces small resdiben, the alignment is extended by adding immedi-
differences, the most powerful significance test igtely adjacent alignment points and alignment points
demanded to assess statistical significance of the f@at align previously unaligned words. From this
sults. However, accuracy of the assessments of siglany-to-many alignment matrix, phrases are ex-
nificance is seldom questioned. In the following{racted according to a contiguity requirement that
we will take a closer look at the bootstrap test angtates that words in the source phrase are aligned
compare it with the related technique of approxionly with words in the target phrase, and vice versa.

mate randomization (Noreen (1989)). In an exper- pjscriminative reranking on a 1000-best list of
imental evaluation on our reranking data we founganslations of the SMT system uses &nregu-
that approximate randomization estimajetlalues |arized log-linear model that combines a standard
more conservatively than the bootstrap,thusincreamaximum_entropy estimator with an efficient, in-
ing the likelihood of type-I error for the latter test. cremental feature selection technique f@rregu-
Lastly, we point out a common mistake of randomly(arization (Riezler and Vasserman, 2004). Training
assessing significance in multiple pairwise compagata are defined as paifés;, tj)}}":1 of source sen-
isons (Cohen, 1995). This is especially relevant ifencess; and gold-standard translationsthat are
k-fold pairwise comparisons of systems or systemetermined as the translations in the 1000-best list
variants wherek is high. Taking this multiplicity that best match a given reference translation. The
problem into account, we conclude with a recomppjective function to be minimized is the conditional
mendation of a combination of NIST for evaluation|og_|ike|ihoodL()‘> subject to a regularization term
and the approximate randomization test for signifiz( ), whereT'(s) is the set of 1000-best translations

cance teSting, at more Stringent I’ejeCtion levels th%r sentencss, A is a vector or |Og_parameterS’ and
is currently standard in the MT literature. This is es-

pecially important in situations where multiple pair-
wise comparisons are conducted, and small result http:/avww.fioch.com/GIZA++.html

differences are expected. 2http:/iwww.isi.edu/licensed-swipharach/
3http://www.speech.sri.com/projects/srilm/
“http://www.isi.edu/licensed-sw/carmel/
Shttp://people.csail.mit.edu/people/
koehn/publications/europarl/
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Table 1: NIST, BLEU, F-scores for reranker and baseline on development set

NIST | BLEU | F
baseline 6.43 301 | .385
reranking 6.58 .298 | .383
approxrang-value | < .0001| .158 | .424

bootstrap-value | < .0001 A -

f is a vector of feature functions: the model only if adjusting their parameters away
- from zero sufficiently decreases the optimization cri-
L\ + R\ = _long)\(tj|5j) + R(A) terion. _Since every non-zero weight adqled to the
e model incurs a regularizer penalty 9f\;|, it only
AF(t) makes sense to add a feature to the model if this
€

m
= — ZIOgixm) + R(M\) penalty is outweighed by the reduction in negative
At > € log-likelihood. Thus features considered for selec-
tion have to pass the following test:
The features employed in our experiments con-
sist of 8 features corresponding to system compo- ‘
nents (distortion model, language model, phrase-

translations, lexical weights, phrase penalty, Worgis gradient test is applied to each feature and at
penalty) as provided by PHARAOH, together with %ach step the features that pass the test with maxi-

multitude of overlapping phrase feature_s._For exams, m magnitude are added to the model. This pro-
ple, for a phrase-table of phrases consisting of MaX;yes poth efficient and accurate estimation with
imally 3 words, we allow all 3-word phrases and 21arge feature sets.

word phrases as features. Since bigram features C@N\ork on discriminative reranking has been re-

overlap, information about trigrams can be gathere[gorted before by Och and Ney (2002), Och et al
by composing bigram features even if the actual tri(2004), and Shen et al. (2004). The main purpose of

gram is not seen in the training data. our reranking experiments is to have a system that

Fleature slelectlon mzkes 'ft ]E)ossmle to (_err?ploy arlgaln easily be adjusted to yield system variants that
evaluate a large number of features, WIthout Cofitar ot controllable amounts. For quick experimen-

Cerns abouj[ re(_jundant orirrelevant feature§ hampefg-l turnaround we selected the training and test data
ing generalization performance. Theregularizer is from sentences with 5 to 15 words, resulting in a

defined by the weighteé -norm of the parameters

7= teT(s;)

AL(N)
N

>

training set of 160,000 sentences, and a development
n set of 2,000 sentences. The phrase-table employed

RA) =~9||All1 =~ Z Y was restricted to phrases of maximally 3 words, re-
i=1 sulting in 200,000 phrases.

wherey is a regularization coefficient, amds num- Detecting Small Result Differences by
ber of parameters. This regularizer penalizes overly Intrinsic Evaluations Metrics

large parameter values in their absolute values, and

tends to force a subset of the parameters to be ekhe intrinsic evaluation measures used in our ex-
actly zero at the optimum. This fact leads to a naturagleriments are the well-known BLEU (Papineni et
integration of regularization into incremental featureal., 2001) and NIST (Doddington, 2002) metrics,
selection as follows: Assuming a tendency of the and an F-score measure that adapts evaluation tech-
regularizer to produce a large number of zero-valuegiques from dependency-based parsing (Crouch et
parameters at the function’s optimum, we start witkal., 2002) and sentence-condensation (Riezler et al.,
all-zero weights, and incrementally add features t8003) to machine translation. All of these measures
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Setc=0
Compute actual statistic of score differen¢gg — Sv| on test data
For random shuffles =0,... , R
For sentences in test set
Shuffle variable tuples between system X and Y with probabilisy
Compute pseudo-statisti§x, — Sy, | on shuffled data
If [Sx, — Sy, | = [Sx — Sy
c++
p=(c+1)/(R+1)
Reject null hypothesis if is less than or equal to specified rejection level

Figure 1: Approximate Randomization Test for Statistical Significance Testing

evaluate document similarity of SMT output againsples of length 5-15. The reranking model achieves
manually created reference translations. The mean increase in NIST score of .15 units, whereas
sures differ in their focus on different entities inBLEU and F-score decrease by .3% and .2% respec-
matching, corresponding to a focus on different adively. However, as measured by the statistical sig-
pects of translation quality. nificance tests described below, the differences in

BLEU and NIST both consider n-grams in sourcdBLEU and F-scores are not statistically significant
and reference strings as matching entities. BLEWith p-values exceeding the standard rejection level
weighs all n-grams equally whereas NIST puts moref .05. In contrast, the differences in NIST score
weight on n-grams that are more informative, i.e.are highly significant. These findings correspond to
occur less frequently. This results in BLEU favor-results reported in Zhang et al. (2004) showing a
ing matches in larger n-grams, corresponding to givhigher sensitivity of NIST versus BLEU to small re-
ing more credit to correct word order. NIST weighssult differences. Taking also the results from F-score
lower n-grams more highly, thus it gives more creditmatching in account, we can conclude that similar-
to correct lexical choice than to word order. ity measures that are based on matching more com-

F-score is computed by parsing reference sefplex entities (such as BLEU’s higher n-grams or F’s
tences and SMT outputs, and matching grammaticgrammatical relations) are not as sensitive to small
dependency relations. The reported value is the haesult differences as scoring techniques that are able
monic mean of precision and recall, which is defineto distinguish models by matching simpler entities
as(2 x precisionx recall)/( precision+ recall). (such as NIST’s focus on lexical choice). Further-
Precision is the ratio of matching dependency remore, we get an indication that differences of .3%
lations to the total number of dependency relation& BLEU score or .2% in F-score might not be large
in the parse for the system translation, and recall @1ough to conclude statistical significance of result
the ratio of matches to the total number of deperdifferences. This leads to questions of power and ac-
dency relations in the parse for the reference transuracy of the employed statistical significance tests
lation. The goal of this measure is to focus on aswhich will be addressed in the next section.
pects of meaning in measuring similarity of system
translations to reference translations, and to allo4 Assessing Statistical Significance of
for meaning-preserving word order variation. Small Result Differences

Evaluation results for a comparison of rerank-
ing against a baseline model that only includes fedrhe bootstrap method is an example for a computer-
tures corresponding to the 8 system components drgensive statistical hypothesis test (see, e.g., Noreen
shown in Table 1. Since the task is a comparisofl989)). Such tests are designed to assess result
of system variants for development, all results ardifferences with respect to a test statistic in cases
reported on the development set of 2,000 examwhere the sampling distribution of the test statistic
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Setc =0
Compute actual statistic of score differen¢gg — Sy| on test data
Calculate sample meam = % 25:0 |Sx, — SY, | over bootstrap samplés= 0, ... , B
For bootstrap samplés=0,... , B
Sample with replacement from variable tuples for systems X and Y for test sentences
Compute pseudo-statistifx, — Sy, | on bootstrap data
If |Sx, — Sy, | — 7B (+7) > |Sx — SY|
c+ +
p=(c+1)/(B+1)
Reject null hypothesis if is less than or equal to specified rejection level.

Figure 2: Bootstrap Test for Statistical Significance Testing

is unknown. Comparative evaluations of outputs o$trap] method is that the null hypothesis may be re-
SMT systems according to test statistics such as diected because the shape of the sampling distribution
ferences in BLEU, NIST, or F-score are exampless not well-approximated by the shape of the boot-
of this situation. The attractiveness of computerstrap sampling distribution rather than because the
intensive significance tests such as the bootstraxpected value of the test statistic differs from the
or the approximate randomization method lies ivalue that is hypothesized.”(Noreen (1989), p. 89).
their power and simplicity. As noted in standardBelow we describe these two test procedures in more
textbooks such as Cohen (1995) or Noreen (198@etail, and compare them in our experimental setup.
such tests are as powerful as parametric tests when _ o

parametric assumptions are met and they outpef:1 Approximate Randomization

form them when parametric assumptions are vicAn excellent introduction to the approximate ran-
lated. Because of their generality and simplicity thegomization test is Noreen (1989). Applications of
are also attractive alternatives to conventional nonhis test to natural language processing problems can
parametric tests (see, e.g., Siegel (1988)). The powlee found in Chinchor et al. (1993).

of these tests lies in the fact that they answer only a In our case of assessing statistical significance of
very simple question without making too many asresult differences between SMT systems, the test
sumptions that may not be met in the experimerstatistic of interest is the absolute value of the differ-
tal situation. In case of the approximate randomence in BLEU, NIST, or F-scores produced by two
ization test, only the question whether two samsystems on the same test set. These test statistics are
ples are related to each other is answered, witltomputed by accumulating certain count variables
out assuming that the samples are representative®@fer the sentences in the test set. For example, in
the populations from which they were drawn. Thecase of BLEU and NIST, variables for the length of
bootstrap method makes exactly this one assumgeference translations and system translations, and
tion. This makes it formally possible to draw in-for n-gram matches and n-gram counts are accumu-
ferences about population parameters for the bodated over the test corpus. In case of F-score, vari-
strap, but not for approximate randomization. Howable tuples consisting of the number of dependency-
ever, if the goal is to assess statistical significanaelations in the parse for the system translation, the
of a result difference between two systems the amumber of dependency-relations in the parse for the
proximate randomization test provides the desiregference translation, and the number of matching
power and accuracy whereas the bootstrap’s advagiependency-relations between system and reference
tage to draw inferences about population parameteparse, are accumulated over the test set.

comes at the price of reduced accuracy. Noreen sum-Under the null hypothesis, the compared systems
marizes this shortcoming of the bootstrap techniguare not different, thus any variable tuple produced by
as follows: “The principal disadvantage of [the bootone of the systems could have been produced just as
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Table 2: NIST scores for equivalent systems under bootstrap and approximate randomization tests.

compared systems 1:2 | 1:3 | 1.4 | 1.5 | 1.6
NIST difference | .031| .032| .029| .028 | .036
approxrang-value | .03 | .025| .05 | .079| .028
bootstrap-value | .014 | .013| .028 | .039| .013

likely by the other system. So shuffling the variablesalue of the pseudo-statistic its expected vaiige
tuples between the two systems with equal probabiand then adding back the expected vatuef the

ity, and recomputing the test statistic, creates an agest statistic under the null hypothesig. can be es-
proximate distribution of the test statistic under theimated by the sample mean of the bootstrap sam-
null hypothesis. For a test set 6f sentences there ples; is 0 under the null hypothesis. Then, similar
are 2 different ways to shuffle the variable tuplesto the approximate randomization test, significance
between the two systems. Approximate randomizadevels are computed as the percentage of trials where
tion produce shuffles by random assignments instedloe (shifted) pseudo statistic is greater than or equal
of evaluating all2® possible assignments. Signifi-to the actual statistic.

cance levels are computed as the percentage of trials

where the pseudo statistic, i.e., the test statistic corft:3 POwer vs. Type | Errors

puted on the shuffled data, is greater than or equal to order to evaluate accuracy of the bootstrap and the
the actual statistic, i.e., the test statistic computed @pproximate randomization test, we conduct an ex-
the test data. A sketch of an algorithm for approxiperimental evaluation of type-I errors of both boot-

mate randomization testing is given in Fig. 1. strap and approximate randomization on real data.
Type-I errors indicate failures to reject the null hy-
4.2 The Bootstrap pothesis when it is true. We construct SMT system

An excellent introduction to the technique is thevariants that are essentially equal but produce su-
textbook by Efron and Tibshirani (1993). In contrasperficially different results. This can be achieved by
to approximate randomization, the bootstrap methacbnstructing reranking variants that differ in the re-
makes the assumption that the sample is a repréundant features that are included in the models, but
sentative “proxy” for the population. The shape ofare similar in the number and kind of selected fea-
the sampling distribution is estimated by repeatedlyures. The results of this experiment are shown in Ta-
sampling (with replacement) from the sample itselfble 2. System 1 does not include irrelevant features,
A sketch of a procedure for bootstrap testing isvhereas systems 2-6 were constructed by adding a
given in Fig. 2. First, the test statistic is computed oslightly different number of features in each step,
the test data. Then, the sample mean of the pseubuot resulted in the same number of selected features.
statistic is computed on the bootstrapped data, i.eLhus competing features bearing the same informa-
the test statistic is computed on bootstrap sampléisn are exchanged in different models, yet overall
of equal size and averaged over bootstrap sampleshe same information is conveyed by slightly dif-
In order to compute significance levels based oferent feature sets. The results of Table 2 show that
the bootstrap sampling distribution, we employ théhe bootstrap method yielgsvalues< .015 in 3
“shift” method described in Noreen (1989). Here itout of 5 pairwise comparisons whereas the approx-
is assumed that the sampling distribution of the nuimate randomization test yielgsvalues> .025 in
hypothesis and the bootstrap sampling distributioall cases. Even if the trug-value is unknown, we
have the same shape but a different location. Thean say that the approximate randomization test es-
location of the bootstrap sampling distribution isimatesp-values more conservatively than the boot-
shifted so that it is centered over the location wherstrap, thus increasing the likelihood of type-I error
the null hypothesis sampling distribution should bdor the bootstrap test. For a restrictive significance
centered. This is achieved by subtracting from eadevel of 0.15, which is motivated below for multiple
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comparisons, the bootstrap would assess statistiaaresult difference has to be unrealistically large to
significance in 3 out of 5 cases whereas statisticlile significant. Here conventional tests for post-hoc
significance would not be assessed under approxiomparisons such as the Scleefir Tukey test have
mate randomization. Assuming equivalence of th&o be employed (see Cohen (1995), p. 185ff.).
compared system variants, these assessments would

count as type-I errors. Conclusion

Situations where a researcher has to deal with subtle

4.4 The Multiplicity Problem : .
differences between systems are common in system

In the experiment on type-I error described abovev&evelopment and large benchmark tests. We have
more stringent rejection level than the usllwas  snown that it is useful in such situations to trade in
assumed. This was necessary to circumvent a co@ressivity of evaluation measures for sensitivity.
mon pitfall in significance testing far-fold pairwise  For MT evaluation this means that recording differ-
comparisons. Following the argumentation given ignces in lexical choice by the NIST measure is more
Cohen (1995), the probability of randomly assesS;jseful than failing to record differences by employ-
ing statistical significance for result differences ir]ng measures such as BLEU or F-score that incorpo-
k-fold pairwise comparisons grows exponentially in¢e aspects of fluency and meaning adequacy into
k. Recall that for a pairwise comparison of systemsy T evaluation. Similarly, in significance testing, it
specifying thap < .05 means that the probability of j5 seful to trade in the possibility to draw inferences
incorrectly rejecting the null hypothesis that the sysspout the sampling distribution for accuracy and
tems are not different be less thds. Caution has power of the test method. We found experimental
to be exercised it-fold pairwise comparisons: For ayidence confirming textbook knowledge about re-
a probabilityp, of incorrectly rejecting the null hy- gyced accuracy of the bootstrap test compared to the
pothesis in a specific pairwise comparison, the proby,roximate randomization test. Lastly, we pointed
ability p. of at least once incorrectly rejecting thisg,t a well-known problem of randomly assessing
null hypothesis in an experiment involvigpair-  sjgnjficance in multiple pairwise comparisons. Tak-
WISe comparisons 1S ing these findings together, we recommend for mul-
perl—(1— pc)k tiple comparisons of subtle differences to combine
the NIST score for evaluation with the approximate
For large values ok, the probability of concluding randomization test for significance testing, at more

result differences incorrectly at least once is undestringent rejection levels than is currently standard
sirably high. For example, in benchmark testing ofn the MT literature.

15 systems]5(15 — 1)/2 = 105 pairwise compar-

isons will have to be conducted. At a per-comparison

rejection levelp, = .05 this results in an experi- References

mentwise errop. = .9954, i.e., the probability of Nancy Chinchor, Lynette Hirschman, and David D.

at least one spurious assessment of significance iskewis. 1993. Evaluating message understanding sys-
1—(1— '05)105 = .9954. One possibility to reduce tems: An analysis of the third message understand-

- ) ing conference (MUC-3)Computational Linguistics
the likelihood that one ore more of differences as- 18(3):409_449.( ) P guIstiG

sessed in pairwise comparisons is spurious is to run 'R, Coh L095Embirical Methods for Artificial

R : _ . u . conen. mpirica ethoas 1or Artrcial
th? Cqmparlsons ata more stringent per (.:ompar.ls r?llntelligence The MIT Press, Cambridge, MA.
rejection level. Reducing the per-comparison rejec- _
tion level p. until an experimentwise error rage  Richard Crouch, Ronald M. Kaplan, Tracy H. King, and

of a standard value, e.g05, is achieved, will favor Stefa_m Riezler. 2002. A comparison of evaluation
metrics for a broad-coverage stochastic parsePrin

Pe OVET pe. I'n the example of 5 pairW.ise compar-  ceedings of the "Beyond PARSEVAL” Workshop at the
isons described above, a per-comparison error rate3rd International Conference on Language Resources

p. = .015 was sufficient to achieve an experimen- and Evaluation (LREC'02)Las Palmas, Spain.

twise error ratep. ~ .07. In many cases this tech- George Doddington. 2002. Automatic evaluation of ma-
nique would require to reduge to the point where  chine translation quality using n-gram co-occurrence

63



statistics. InProceedings of the ARPA Workshop orFranz Josef Och, Daniel Gildea, Sanjeev Khudanpur,
Human Language Technology Anoop Sarkar, Kenji Yamada, Alex Fraser, Shankar
Kumar, Libin Shen, David Smith, Ketherine Eng,
Viren Jain, Zhen Jin, and Dragomir Radev. 2004. A
smorgasbord of features for statistical machine transla-
tion. In Proceedings of the Human Language Technol-
ogy conference / North American chapter of the Asso-
Kevin Knight and Yaser Al-Onaizan. 1999. A primer on  ciation for Computational Linguistics annual meeting
finite-state software for natural language processing. (HLT/NAACL’04) Boston, MA.

Technical report, USC Information Sciences Institute,
Marina del Rey, CA. Franz Josef Och. 2003. Minimum error rate train-

ing in statistical machine translation. Rroceedings
Philipp Koehn, Franz Josef Och, and Daniel Marcu. of the Human Language Technology Conference and
2003. Statistical phrase-based translatiorProceed- the 3rd Meeting of the North American Chapter of
ings of the Human Language Technology Conference the Association for Computational Linguistics (HLT-
and the 3rd Meeting of the North American Chapter of NAACL'03) Edmonton, Cananda.
the Association for Computational Linguistics (HLT-
NAACL'03) Edmonton, Cananda.

Bradley Efron and Robert J. Tibshirani. 1992\n In-
troduction to the BootstrapChapman and Hall, New
York.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. Bleu: a method for automatic

Philipp Koehn. 2002. Europarl: A multilingual corpus
for evaluation of machine translation. Technical re-
port, USC Information Sciences Institute, Marina del

evaluation of machine translation. Technical Report
IBM Research Division Technical Report, RC22176
(W0190-022), Yorktown Heights, N.Y.

Rey, CA. Stefan Riezler and Alexander Vasserman. 2004. Incre-

Philipp Koehn. 2004a. PHARAOH. a beam search de- Mental feature selection arfd regularization for re-

coder for phrase-based statistical machine translation 12x€d maximum-entropy modeling. Froceedings of
models. user manual. Technical report, USC Informa- the 2004 Conference on Empirical Methods in Natural

tion Sciences Institute, Marina del Rey, CA.

Philipp Koehn. 2004b. Statistical significance tests fo
machine translation evaluation. Rroceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing (EMNLP’Q8Barcelona, Spain.

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of the Human Language Technol-

Language Processing (EMNLP’Q8Barcelona, Spain.

§tefan Riezler, Tracy H. King, Richard Crouch, and An-

nie Zaenen. 2003. Statistical sentence condensation
using ambiguity packing and stochastic disambigua-
tion methods for lexical-functional grammar. Rro-
ceedings of the Human Language Technology Confer-
ence and the 3rd Meeting of the North American Chap-
ter of the Association for Computational Linguistics
(HLT-NAACL’'03) Edmonton, Cananda.

ogy conference / North American chapter of the ASSCtibin Shen, Anoop Sarkar, and Franz Josef Och. 2004.

ciation for Computational Linguistics annual meeting
(HLT/NAACL'04) Boston, MA.

Eric W. Noreen. 1989. Computer Intensive Methods
for Testing Hypotheses. An IntroductioWwiley, New
York.

Discriminative reranking for machine translation. In
Proceedings of the Human Language Technology con-
ference / North American chapter of the Associa-
tion for Computational Linguistics annual meeting
(HLT/NAACL'04) Boston, MA.

.. . Sidney Siegel. 1988.Nonparametric Statistics for the
Franz Josef Och and Hermann Ney. 2002. Discrimina- gepayioral Sciences. Second EditiddacGraw-Hill,

tive training and maximum entropy models for statis-
tical machine translation. IRroceedings of the 40th

Boston, MA.

Annual Meeting of the Association for ComputationajAndreas Stolcke. 2002. SRILM - an extensible language

Linguistics (ACL’'02) Philadelphia, PA.

Franz Josef Och and Hermann Ney. 2003. A system-

atic comparison of various statistical alignment mod-
els. Computational Linguistic29(1):19-51.

Franz Josef Och, Christoph Tillmann, and Hermann Ney.

1999. Improved alignment models for statistical ma-
chine translation. IfProceedings of the 1999 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP99)

64

Ying Zhang, Stephan Vogel, and Alex Waibel.

modeling toolkit. InProceedings of the International
Conference on Spoken Language Procesdbenver,
Co.

2004.
Interpreting BLEU/NIST scores: How much improve-
ment do we need to have a better systemPrbteed-
ings of the 4th International Conference on Language
Resources and Evaluation (LREC'Q4jsbon, Portu-
gal.



