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Abstract

We investigate some pitfalls regarding the
discriminatory power of MT evaluation
metrics and the accuracy of statistical sig-
nificance tests. In a discriminative rerank-
ing experiment for phrase-based SMT we
show that the NIST metric is more sensi-
tive than BLEU or F-score despite their in-
corporation of aspects of fluency or mean-
ing adequacy into MT evaluation. In an
experimental comparison of two statistical
significance tests we show thatp-values
are estimated more conservatively by ap-
proximate randomization than by boot-
strap tests, thus increasing the likelihood
of type-I error for the latter. We point
out a pitfall of randomly assessing signif-
icance in multiple pairwise comparisons,
and conclude with a recommendation to
combine NIST with approximate random-
ization, at more stringent rejection levels
than is currently standard.

1 Introduction

Rapid and accurate detection of result differences is
crucial in system development and system bench-
marking. In both situations a multitude of systems
or system variants has to be evaluated, so it is highly
desirable to employ automatic evaluation measures
for detection of result differences, and statistical hy-
pothesis tests to assess the significance of the de-
tected differences. When evaluating subtle differ-
ences between system variants in development, or

when benchmarking multiple systems, result differ-
ences may be very small in magnitude. This imposes
strong requirements on both automatic evaluation
measures and statistical significance tests: Evalua-
tion measures are needed that have high discrimi-
native power and yet are sensitive to the interesting
aspects of the evaluation task. Significance tests are
required to be powerful and yet accurate, i.e., if there
are significant differences they should be able to as-
sess them, but not if there are none.

In the area of statistical machine translation
(SMT), recently a combination of the BLEU evalua-
tion metric (Papineni et al., 2001) and the bootstrap
method for statistical significance testing (Efron and
Tibshirani, 1993) has become popular (Och, 2003;
Kumar and Byrne, 2004; Koehn, 2004b; Zhang et
al., 2004). Given the current practice of reporting
result differences as small as .3% in BLEU score,
assessed at confidence levels as low as 70%, ques-
tions arise concerning the sensitivity of the em-
ployed evaluation metrics and the accuracy of the
employed significance tests, especially when result
differences are small. We believe that is important to
accurately detect such small-magnitude differences
in order to understand how to improve systems and
technologies, even though such differences may not
matter in current applications.

In this paper we will investigate some pitfalls that
arise in automatic evaluation and statistical signifi-
cance testing in MT research. The first pitfall con-
cerns the discriminatory power of automatic eval-
uation measures. In the following, we compare the
sensitivity of three intrinsic evaluation measures that
differ with respect to their focus on different aspects
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of translation. We consider the well-known BLEU
score (Papineni et al., 2001) which emphasizes flu-
ency by incorporating matches of high n-grams. Fur-
thermore, we consider an F-score measure that is
adapted from dependency-based parsing (Crouch et
al., 2002) and sentence-condensation (Riezler et al.,
2003). This measure matches grammatical depen-
dency relations of parses for system output and ref-
erence translations, and thus emphasizes semantic
aspects of translational adequacy. As a third mea-
sure we consider NIST (Doddington, 2002), which
favors lexical choice over word order and does not
take structural information into account. On an ex-
perimental evaluation on a reranking experiment we
found that only NIST was sensitive enough to de-
tect small result differences, whereas BLEU and F-
score produced result differences that were statisti-
cally not significant. A second pitfall addressed in
this paper concerns the relation of power and ac-
curacy of significance tests. In situations where the
employed evaluation measure produces small result
differences, the most powerful significance test is
demanded to assess statistical significance of the re-
sults. However, accuracy of the assessments of sig-
nificance is seldom questioned. In the following,
we will take a closer look at the bootstrap test and
compare it with the related technique of approxi-
mate randomization (Noreen (1989)). In an exper-
imental evaluation on our reranking data we found
that approximate randomization estimatedp-values
more conservatively than the bootstrap, thus increas-
ing the likelihood of type-I error for the latter test.
Lastly, we point out a common mistake of randomly
assessing significance in multiple pairwise compar-
isons (Cohen, 1995). This is especially relevant in
k-fold pairwise comparisons of systems or system
variants wherek is high. Taking this multiplicity
problem into account, we conclude with a recom-
mendation of a combination of NIST for evaluation
and the approximate randomization test for signifi-
cance testing, at more stringent rejection levels than
is currently standard in the MT literature. This is es-
pecially important in situations where multiple pair-
wise comparisons are conducted, and small result
differences are expected.

2 The Experimental Setup: Discriminative
Reranking for Phrase-Based SMT

The experimental setup we employed to compare
evaluation measures and significance tests is a dis-
criminative reranking experiment on1000-best lists
of a phrase-based SMT system. Our system is a
re-implementation of the phrase-based system de-
scribed in Koehn (2003), and uses publicly avail-
able components for word alignment (Och and Ney,
2003)1, decoding (Koehn, 2004a)2, language mod-
eling (Stolcke, 2002)3 and finite-state processing
(Knight and Al-Onaizan, 1999)4. Training and test
data are taken from the Europarl parallel corpus
(Koehn, 2002)5.

Phrase-extraction follows Och et al. (1999) and
was implemented by the authors: First, the word
aligner is applied in both translation directions, and
the intersection of the alignment matrices is built.
Then, the alignment is extended by adding immedi-
ately adjacent alignment points and alignment points
that align previously unaligned words. From this
many-to-many alignment matrix, phrases are ex-
tracted according to a contiguity requirement that
states that words in the source phrase are aligned
only with words in the target phrase, and vice versa.

Discriminative reranking on a 1000-best list of
translations of the SMT system uses an`1 regu-
larized log-linear model that combines a standard
maximum-entropy estimator with an efficient, in-
cremental feature selection technique for`1 regu-
larization (Riezler and Vasserman, 2004). Training
data are defined as pairs{(sj , tj)}m

j=1 of source sen-
tencessj and gold-standard translationstj that are
determined as the translations in the 1000-best list
that best match a given reference translation. The
objective function to be minimized is the conditional
log-likelihoodL(λ) subject to a regularization term
R(λ), whereT (s) is the set of 1000-best translations
for sentences, λ is a vector or log-parameters, and

1http://www.fjoch.com/GIZA++.html
2http://www.isi.edu/licensed-sw/pharaoh/
3http://www.speech.sri.com/projects/srilm/
4http://www.isi.edu/licensed-sw/carmel/
5http://people.csail.mit.edu/people/

koehn/publications/europarl/
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Table 1: NIST, BLEU, F-scores for reranker and baseline on development set

NIST BLEU F
baseline 6.43 .301 .385
reranking 6.58 .298 .383

approxrandp-value < .0001 .158 .424
bootstrapp-value < .0001 .1 -

f is a vector of feature functions:

L(λ) + R(λ) = − log
m∏

j=1

pλ(tj |sj) + R(λ)

= −
m∑

j=1

log
eλ·f(tj)∑

t∈T (sj)

eλ·f(t)
+ R(λ)

The features employed in our experiments con-
sist of 8 features corresponding to system compo-
nents (distortion model, language model, phrase-
translations, lexical weights, phrase penalty, word
penalty) as provided by PHARAOH, together with a
multitude of overlapping phrase features. For exam-
ple, for a phrase-table of phrases consisting of max-
imally 3 words, we allow all 3-word phrases and 2-
word phrases as features. Since bigram features can
overlap, information about trigrams can be gathered
by composing bigram features even if the actual tri-
gram is not seen in the training data.

Feature selection makes it possible to employ and
evaluate a large number of features, without con-
cerns about redundant or irrelevant features hamper-
ing generalization performance. The`1 regularizer is
defined by the weighted̀1-norm of the parameters

R(λ) = γ||λ||1 = γ
n∑

i=1

|λi|

whereγ is a regularization coefficient, andn is num-
ber of parameters. This regularizer penalizes overly
large parameter values in their absolute values, and
tends to force a subset of the parameters to be ex-
actly zero at the optimum. This fact leads to a natural
integration of regularization into incremental feature
selection as follows: Assuming a tendency of the`1

regularizer to produce a large number of zero-valued
parameters at the function’s optimum, we start with
all-zero weights, and incrementally add features to

the model only if adjusting their parameters away
from zero sufficiently decreases the optimization cri-
terion. Since every non-zero weight added to the
model incurs a regularizer penalty ofγ|λi|, it only
makes sense to add a feature to the model if this
penalty is outweighed by the reduction in negative
log-likelihood. Thus features considered for selec-
tion have to pass the following test:∣∣∣∣∂L(λ)

∂λi

∣∣∣∣ > γ

This gradient test is applied to each feature and at
each step the features that pass the test with maxi-
mum magnitude are added to the model. This pro-
vides both efficient and accurate estimation with
large feature sets.

Work on discriminative reranking has been re-
ported before by Och and Ney (2002), Och et al.
(2004), and Shen et al. (2004). The main purpose of
our reranking experiments is to have a system that
can easily be adjusted to yield system variants that
differ at controllable amounts. For quick experimen-
tal turnaround we selected the training and test data
from sentences with 5 to 15 words, resulting in a
training set of 160,000 sentences, and a development
set of 2,000 sentences. The phrase-table employed
was restricted to phrases of maximally 3 words, re-
sulting in 200,000 phrases.

3 Detecting Small Result Differences by
Intrinsic Evaluations Metrics

The intrinsic evaluation measures used in our ex-
periments are the well-known BLEU (Papineni et
al., 2001) and NIST (Doddington, 2002) metrics,
and an F-score measure that adapts evaluation tech-
niques from dependency-based parsing (Crouch et
al., 2002) and sentence-condensation (Riezler et al.,
2003) to machine translation. All of these measures
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Setc = 0
Compute actual statistic of score differences|SX − SY| on test data
For random shufflesr = 0, . . . , R

For sentences in test set
Shuffle variable tuples between system X and Y with probability0.5

Compute pseudo-statistic|SXr − SYr | on shuffled data
If |SXr − SYr | ≥ |SX − SY|

c + +
p = (c + 1)/(R + 1)
Reject null hypothesis ifp is less than or equal to specified rejection level.

Figure 1: Approximate Randomization Test for Statistical Significance Testing

evaluate document similarity of SMT output against
manually created reference translations. The mea-
sures differ in their focus on different entities in
matching, corresponding to a focus on different as-
pects of translation quality.

BLEU and NIST both consider n-grams in source
and reference strings as matching entities. BLEU
weighs all n-grams equally whereas NIST puts more
weight on n-grams that are more informative, i.e.,
occur less frequently. This results in BLEU favor-
ing matches in larger n-grams, corresponding to giv-
ing more credit to correct word order. NIST weighs
lower n-grams more highly, thus it gives more credit
to correct lexical choice than to word order.

F-score is computed by parsing reference sen-
tences and SMT outputs, and matching grammatical
dependency relations. The reported value is the har-
monic mean of precision and recall, which is defined
as(2× precision× recall)/( precision+ recall).
Precision is the ratio of matching dependency re-
lations to the total number of dependency relations
in the parse for the system translation, and recall is
the ratio of matches to the total number of depen-
dency relations in the parse for the reference trans-
lation. The goal of this measure is to focus on as-
pects of meaning in measuring similarity of system
translations to reference translations, and to allow
for meaning-preserving word order variation.

Evaluation results for a comparison of rerank-
ing against a baseline model that only includes fea-
tures corresponding to the 8 system components are
shown in Table 1. Since the task is a comparison
of system variants for development, all results are
reported on the development set of 2,000 exam-

ples of length 5-15. The reranking model achieves
an increase in NIST score of .15 units, whereas
BLEU and F-score decrease by .3% and .2% respec-
tively. However, as measured by the statistical sig-
nificance tests described below, the differences in
BLEU and F-scores are not statistically significant
with p-values exceeding the standard rejection level
of .05. In contrast, the differences in NIST score
are highly significant. These findings correspond to
results reported in Zhang et al. (2004) showing a
higher sensitivity of NIST versus BLEU to small re-
sult differences. Taking also the results from F-score
matching in account, we can conclude that similar-
ity measures that are based on matching more com-
plex entities (such as BLEU’s higher n-grams or F’s
grammatical relations) are not as sensitive to small
result differences as scoring techniques that are able
to distinguish models by matching simpler entities
(such as NIST’s focus on lexical choice). Further-
more, we get an indication that differences of .3%
in BLEU score or .2% in F-score might not be large
enough to conclude statistical significance of result
differences. This leads to questions of power and ac-
curacy of the employed statistical significance tests
which will be addressed in the next section.

4 Assessing Statistical Significance of
Small Result Differences

The bootstrap method is an example for a computer-
intensive statistical hypothesis test (see, e.g., Noreen
(1989)). Such tests are designed to assess result
differences with respect to a test statistic in cases
where the sampling distribution of the test statistic
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Setc = 0
Compute actual statistic of score differences|SX − SY| on test data
Calculate sample meanτB = 1

B

∑B
b=0 |SXb

− SYb
| over bootstrap samplesb = 0, . . . , B

For bootstrap samplesb = 0, . . . , B
Sample with replacement from variable tuples for systems X and Y for test sentences
Compute pseudo-statistic|SXb

− SYb
| on bootstrap data

If |SXb
− SYb

| − τB (+τ) ≥ |SX − SY|
c + +

p = (c + 1)/(B + 1)
Reject null hypothesis ifp is less than or equal to specified rejection level.

Figure 2: Bootstrap Test for Statistical Significance Testing

is unknown. Comparative evaluations of outputs of
SMT systems according to test statistics such as dif-
ferences in BLEU, NIST, or F-score are examples
of this situation. The attractiveness of computer-
intensive significance tests such as the bootstrap
or the approximate randomization method lies in
their power and simplicity. As noted in standard
textbooks such as Cohen (1995) or Noreen (1989)
such tests are as powerful as parametric tests when
parametric assumptions are met and they outper-
form them when parametric assumptions are vio-
lated. Because of their generality and simplicity they
are also attractive alternatives to conventional non-
parametric tests (see, e.g., Siegel (1988)). The power
of these tests lies in the fact that they answer only a
very simple question without making too many as-
sumptions that may not be met in the experimen-
tal situation. In case of the approximate random-
ization test, only the question whether two sam-
ples are related to each other is answered, with-
out assuming that the samples are representative of
the populations from which they were drawn. The
bootstrap method makes exactly this one assump-
tion. This makes it formally possible to draw in-
ferences about population parameters for the boot-
strap, but not for approximate randomization. How-
ever, if the goal is to assess statistical significance
of a result difference between two systems the ap-
proximate randomization test provides the desired
power and accuracy whereas the bootstrap’s advan-
tage to draw inferences about population parameters
comes at the price of reduced accuracy. Noreen sum-
marizes this shortcoming of the bootstrap technique
as follows: “The principal disadvantage of [the boot-

strap] method is that the null hypothesis may be re-
jected because the shape of the sampling distribution
is not well-approximated by the shape of the boot-
strap sampling distribution rather than because the
expected value of the test statistic differs from the
value that is hypothesized.”(Noreen (1989), p. 89).
Below we describe these two test procedures in more
detail, and compare them in our experimental setup.

4.1 Approximate Randomization

An excellent introduction to the approximate ran-
domization test is Noreen (1989). Applications of
this test to natural language processing problems can
be found in Chinchor et al. (1993).

In our case of assessing statistical significance of
result differences between SMT systems, the test
statistic of interest is the absolute value of the differ-
ence in BLEU, NIST, or F-scores produced by two
systems on the same test set. These test statistics are
computed by accumulating certain count variables
over the sentences in the test set. For example, in
case of BLEU and NIST, variables for the length of
reference translations and system translations, and
for n-gram matches and n-gram counts are accumu-
lated over the test corpus. In case of F-score, vari-
able tuples consisting of the number of dependency-
relations in the parse for the system translation, the
number of dependency-relations in the parse for the
reference translation, and the number of matching
dependency-relations between system and reference
parse, are accumulated over the test set.

Under the null hypothesis, the compared systems
are not different, thus any variable tuple produced by
one of the systems could have been produced just as
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Table 2: NIST scores for equivalent systems under bootstrap and approximate randomization tests.

compared systems 1:2 1:3 1:4 1:5 1:6
NIST difference .031 .032 .029 .028 .036

approxrandp-value .03 .025 .05 .079 .028
bootstrapp-value .014 .013 .028 .039 .013

likely by the other system. So shuffling the variable
tuples between the two systems with equal probabil-
ity, and recomputing the test statistic, creates an ap-
proximate distribution of the test statistic under the
null hypothesis. For a test set ofS sentences there
are2S different ways to shuffle the variable tuples
between the two systems. Approximate randomiza-
tion produce shuffles by random assignments instead
of evaluating all2S possible assignments. Signifi-
cance levels are computed as the percentage of trials
where the pseudo statistic, i.e., the test statistic com-
puted on the shuffled data, is greater than or equal to
the actual statistic, i.e., the test statistic computed on
the test data. A sketch of an algorithm for approxi-
mate randomization testing is given in Fig. 1.

4.2 The Bootstrap

An excellent introduction to the technique is the
textbook by Efron and Tibshirani (1993). In contrast
to approximate randomization, the bootstrap method
makes the assumption that the sample is a repre-
sentative “proxy” for the population. The shape of
the sampling distribution is estimated by repeatedly
sampling (with replacement) from the sample itself.

A sketch of a procedure for bootstrap testing is
given in Fig. 2. First, the test statistic is computed on
the test data. Then, the sample mean of the pseudo
statistic is computed on the bootstrapped data, i.e.,
the test statistic is computed on bootstrap samples
of equal size and averaged over bootstrap samples.

In order to compute significance levels based on
the bootstrap sampling distribution, we employ the
“shift” method described in Noreen (1989). Here it
is assumed that the sampling distribution of the null
hypothesis and the bootstrap sampling distribution
have the same shape but a different location. The
location of the bootstrap sampling distribution is
shifted so that it is centered over the location where
the null hypothesis sampling distribution should be
centered. This is achieved by subtracting from each

value of the pseudo-statistic its expected valueτB

and then adding back the expected valueτ of the
test statistic under the null hypothesis.τB can be es-
timated by the sample mean of the bootstrap sam-
ples;τ is 0 under the null hypothesis. Then, similar
to the approximate randomization test, significance
levels are computed as the percentage of trials where
the (shifted) pseudo statistic is greater than or equal
to the actual statistic.

4.3 Power vs. Type I Errors

In order to evaluate accuracy of the bootstrap and the
approximate randomization test, we conduct an ex-
perimental evaluation of type-I errors of both boot-
strap and approximate randomization on real data.
Type-I errors indicate failures to reject the null hy-
pothesis when it is true. We construct SMT system
variants that are essentially equal but produce su-
perficially different results. This can be achieved by
constructing reranking variants that differ in the re-
dundant features that are included in the models, but
are similar in the number and kind of selected fea-
tures. The results of this experiment are shown in Ta-
ble 2. System 1 does not include irrelevant features,
whereas systems 2-6 were constructed by adding a
slightly different number of features in each step,
but resulted in the same number of selected features.
Thus competing features bearing the same informa-
tion are exchanged in different models, yet overall
the same information is conveyed by slightly dif-
ferent feature sets. The results of Table 2 show that
the bootstrap method yieldsp-values< .015 in 3
out of 5 pairwise comparisons whereas the approx-
imate randomization test yieldsp-values≥ .025 in
all cases. Even if the truep-value is unknown, we
can say that the approximate randomization test es-
timatesp-values more conservatively than the boot-
strap, thus increasing the likelihood of type-I error
for the bootstrap test. For a restrictive significance
level of0.15, which is motivated below for multiple
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comparisons, the bootstrap would assess statistical
significance in 3 out of 5 cases whereas statistical
significance would not be assessed under approxi-
mate randomization. Assuming equivalence of the
compared system variants, these assessments would
count as type-I errors.

4.4 The Multiplicity Problem

In the experiment on type-I error described above, a
more stringent rejection level than the usual.05 was
assumed. This was necessary to circumvent a com-
mon pitfall in significance testing fork-fold pairwise
comparisons. Following the argumentation given in
Cohen (1995), the probability of randomly assess-
ing statistical significance for result differences in
k-fold pairwise comparisons grows exponentially in
k. Recall that for a pairwise comparison of systems,
specifying thatp < .05 means that the probability of
incorrectly rejecting the null hypothesis that the sys-
tems are not different be less than.05. Caution has
to be exercised ink-fold pairwise comparisons: For
a probabilitypc of incorrectly rejecting the null hy-
pothesis in a specific pairwise comparison, the prob-
ability pe of at least once incorrectly rejecting this
null hypothesis in an experiment involvingk pair-
wise comparisons is

pe ≈ 1− (1− pc)k

For large values ofk, the probability of concluding
result differences incorrectly at least once is unde-
sirably high. For example, in benchmark testing of
15 systems,15(15 − 1)/2 = 105 pairwise compar-
isons will have to be conducted. At a per-comparison
rejection levelpc = .05 this results in an experi-
mentwise errorpe = .9954, i.e., the probability of
at least one spurious assessment of significance is
1− (1− .05)105 = .9954. One possibility to reduce
the likelihood that one ore more of differences as-
sessed in pairwise comparisons is spurious is to run
the comparisons at a more stringent per-comparison
rejection level. Reducing the per-comparison rejec-
tion level pc until an experimentwise error ratepe

of a standard value, e.g.,.05, is achieved, will favor
pe over pc. In the example of 5 pairwise compar-
isons described above, a per-comparison error rate
pc = .015 was sufficient to achieve an experimen-
twise error ratepe ≈ .07. In many cases this tech-
nique would require to reducepc to the point where

a result difference has to be unrealistically large to
be significant. Here conventional tests for post-hoc
comparisons such as the Scheffé or Tukey test have
to be employed (see Cohen (1995), p. 185ff.).

5 Conclusion

Situations where a researcher has to deal with subtle
differences between systems are common in system
development and large benchmark tests. We have
shown that it is useful in such situations to trade in
expressivity of evaluation measures for sensitivity.
For MT evaluation this means that recording differ-
ences in lexical choice by the NIST measure is more
useful than failing to record differences by employ-
ing measures such as BLEU or F-score that incorpo-
rate aspects of fluency and meaning adequacy into
MT evaluation. Similarly, in significance testing, it
is useful to trade in the possibility to draw inferences
about the sampling distribution for accuracy and
power of the test method. We found experimental
evidence confirming textbook knowledge about re-
duced accuracy of the bootstrap test compared to the
approximate randomization test. Lastly, we pointed
out a well-known problem of randomly assessing
significance in multiple pairwise comparisons. Tak-
ing these findings together, we recommend for mul-
tiple comparisons of subtle differences to combine
the NIST score for evaluation with the approximate
randomization test for significance testing, at more
stringent rejection levels than is currently standard
in the MT literature.
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