
Proceedings of the ACL Workshop on Building and Using Parallel Texts, pages 191–198,
Ann Arbor, June 2005.c©Association for Computational Linguistics, 2005

Word Graphs for Statistical Machine Translation

Richard Zens and Hermann Ney
Chair of Computer Science VI

RWTH Aachen University
{zens,ney}@cs.rwth-aachen.de

Abstract

Word graphs have various applications in
the field of machine translation. Therefore
it is important for machine translation sys-
tems to produce compact word graphs of
high quality. We will describe the gen-
eration of word graphs for state of the
art phrase-based statistical machine trans-
lation. We will use these word graph
to provide an analysis of the search pro-
cess. We will evaluate the quality of the
word graphs using the well-known graph
word error rate. Additionally, we intro-
duce the two novel graph-to-string crite-
ria: the position-independent graph word
error rate and the graph BLEU score.
Experimental results are presented for two
Chinese–English tasks: the small IWSLT
task and the NIST large data track task.
For both tasks, we achieve significant re-
ductions of the graph error rate already
with compact word graphs.

1 Introduction

A statistical machine translation system usually pro-
duces the single-best translation hypotheses for a
source sentence. For some applications, we are also
interested in alternative translations. The simplest
way to represent these alternatives is a list with the
N -best translation candidates. These N -best lists
have one major disadvantage: the high redundancy.
The translation alternatives may differ only by a sin-
gle word, but still both are listed completely. Usu-
ally, the size of the N -best list is in the range of a few

hundred up to a few thousand candidate translations
per source sentence. If we want to use larger N -best
lists the processing time gets very soon infeasible.

Word graphs are a much more compact represen-
tation that avoid these redundancies as much as pos-
sible. The number of alternatives in a word graph is
usually an order of magnitude larger than in an N -
best list. The graph representation avoids the com-
binatorial explosion that make large N -best lists in-
feasible.

Word graphs are an important data structure with
various applications:

• Word Filter.
The word graph is used as a compact repre-
sentation of a large number of sentences. The
score information is not contained.

• Rescoring.
We can use word graphs for rescoring with
more sophisticated models, e.g. higher-order
language models.

• Discriminative Training.
The training of the model scaling factors as de-
scribed in (Och and Ney, 2002) was done on
N -best lists. Using word graphs instead could
further improve the results. Also, the phrase
translation probabilities could be trained dis-
crimatively, rather than only the scaling factors.

• Confidence Measures.
Word graphs can be used to derive confidence
measures, such as the posterior probability
(Ueffing and Ney, 2004).

191

• Interactive Machine Translation.
Some interactive machine translation systems
make use of word graphs, e.g. (Och et al.,
2003).

State Of The Art. Although there are these many
applications, there are only few publications directly
devoted to word graphs. The only publication, we
are aware of, is (Ueffing et al., 2002). The short-
comings of (Ueffing et al., 2002) are:

• They use single-word based models only. Cur-
rent state of the art statistical machine transla-
tion systems are phrase-based.

• Their graph pruning method is suboptimal as it
considers only partial scores and not full path
scores.

• The N -best list extraction does not eliminate
duplicates, i.e. different paths that represent the
same translation candidate.

• The rest cost estimation is not efficient. It has
an exponential worst-case time complexity. We
will describe an algorithm with linear worst-
case complexity.

Apart from (Ueffing et al., 2002), publications on
weighted finite state transducer approaches to ma-
chine translation, e.g. (Bangalore and Riccardi,
2001; Kumar and Byrne, 2003), deal with word
graphs. But to our knowledge, there are no publica-
tions that give a detailed analysis and evaluation of
the quality of word graphs for machine translation.

We will fill this gap and give a systematic descrip-
tion and an assessment of the quality of word graphs
for phrase-based machine translation. We will show
that even for hard tasks with very large vocabulary
and long sentences the graph error rate drops signif-
icantly.

The remaining part is structured as follows: first
we will give a brief description of the translation sys-
tem in Section 2. In Section 3, we will give a def-
inition of word graphs and describe the generation.
We will also present efficient pruning and N -best
list extraction techniques. In Section 4, we will de-
scribe evaluation criteria for word graphs. We will
use the graph word error rate, which is well known
from speech recognition. Additionally, we introduce
the novel position-independent word graph error rate

and the graph BLEU score. These are generaliza-
tions of the commonly used string-to-string evalua-
tion criteria in machine translation. We will present
experimental results in Section 5 for two Chinese–
English tasks: the first one, the IWSLT task, is in the
domain of basic travel expression found in phrase-
books. The vocabulary is limited and the sentences
are short. The second task is the NIST Chinese–
English large data track task. Here, the domain is
news and therefore the vocabulary is very large and
the sentences are with an average of 30 words quite
long.

2 Translation System

In this section, we give a brief description of the
translation system. We use a phrase-based transla-
tion approach as described in (Zens and Ney, 2004).
The posterior probability Pr(eI

1|f
J
1) is modeled di-

rectly using a weighted log-linear combination of
a trigram language model and various translation
models: a phrase translation model and a word-
based lexicon model. These translation models are
used for both directions: p(f |e) and p(e|f). Addi-
tionally, we use a word penalty and a phrase penalty.
With the exception of the language model, all mod-
els can be considered as within-phrase models as
they depend only on a single phrase pair, but not on
the context outside of the phrase. The model scaling
factors are optimized with respect to some evalua-
tion criterion (Och, 2003).

We extended the monotone search algorithm from
(Zens and Ney, 2004) such that reorderings are pos-
sible. In our case, we assume that local reorder-
ings are sufficient. Within a certain window, all
possible permutations of the source positions are al-
lowed. These permutations are represented as a re-
ordering graph, similar to (Zens et al., 2002). Once
we have this reordering graph, we perform a mono-
tone phrase-based translation of this graph. More
details of this reordering approach are described in
(Kanthak et al., 2005).

3 Word Graphs

3.1 Definition
A word graph is a directed acyclic graph G = (V, E)
with one designated root node n0 ∈ V . The edges
are labeled with words and optionally with scores.
We will use (n, n′, w) to denote an edge from node

192

n to node n′ with word label w. Each path through
the word graph represents a translation candidate. If
the word graph contains scores, we accumulate the
edge scores along a path to get the sentence or string
score.

The score information the word graph has to con-
tain depends on the application.

If we want to use the word graph as a word fil-
ter, we do not need any score information at all. If
we want to extract the single- or N -best hypotheses,
we have to retain the string or sentence score infor-
mation. The information about the hidden variables
of the search, e.g. the phrase segmentation, is not
needed for this purpose. For discriminative training
of the phrase translation probabilities, we need all
the information, even about the hidden variables.

3.2 Generation
In this section, we analyze the search process in de-
tail. Later, in Section 5, we will show the (experi-
mental) complexity of each step. We start with the
source language sentence that is represented as a lin-
ear graph. Then, we introduce reorderings into this
graph as described in (Kanthak et al., 2005). The
type of reordering should depend on the language
pair. In our case, we assume that only local reorder-
ings are required. Within a certain window, all pos-
sible reorderings of the source positions are allowed.
These permutations are represented as a reordering
graph, similar to (Knight and Al-Onaizan, 1998) and
(Zens et al., 2002).

Once we have this reordering graph, we perform
a monotone phrase-based translation of this graph.
This translation process consists of the following
steps that will be described afterward:

1. segment into phrase

2. translate the individual phrases

3. split the phrases into words

4. apply the language model

Now, we will describe each step. The first step is
the segmentation into phrases. This can be imag-
ined as introducing “short-cuts” into the graph. The
phrase segmentation does not affect the number of
nodes, because only additional edges are added to
the graph.

In the segmented graph, each edge represents a
source phrase. Now, we replace each edge with one

edge for each possible phrase translation. The edge
scores are the combination of the different transla-
tion probabilities, namely the within-phrase models
mentioned in Section 2. Again, this step does not
increase the number of nodes, but only the number
of edges.

So far, the edge labels of our graph are phrases. In
the final word graph, we want to have words as edge
labels. Therefore, we replace each edge representing
a multi-word target phrase with a sequence of edges
that represent the target word sequence. Obviously,
edges representing a single-word phrase do not have
to be changed.

As we will show in the results section, the word
graphs up to this point are rather compact. The
score information in the word graph so far consists
of the reordering model scores and the phrase trans-
lation model scores. To obtain the sentence posterior
probability p(eI

1|f
J
1), we apply the target language

model. To do this, we have to separate paths accord-
ing to the language model history. This increases the
word graph size by an order of magnitude.

Finally, we have generated a word graph with full
sentence scores. Note that the word graph may con-
tain a word sequence multiple times with different
hidden variables. For instance, two different seg-
mentations into source phrases may result in the
same target sentence translation.

The described steps can be implemented using
weighted finite state transducer, similar to (Kumar
and Byrne, 2003).

3.3 Pruning

To adjust the size of the word graph to the desired
density, we can reduce the word graph size using
forward-backward pruning, which is well-known in
the speech recognition community, e.g. see (Mangu
et al., 2000). This pruning method guarantees that
the good strings (with respect to the model scores)
remain in the word graph, whereas the bad ones are
removed. The important point is that we compare
the full path scores and not only partial scores as, for
instance, in the beam pruning method in (Ueffing et
al., 2002).

The forward probabilities F (n) and backward
probabilities B(n) of a node n are defined by the

193

following recursive equations:

F (n) =
∑

(n′,n,w)∈E

F (n′) · p(n′, n, w)

B(n) =
∑

(n,n′,w)∈E

B(n′) · p(n, n′, w)

The forward probability of the root node and the
backward probabilities of the final nodes are initial-
ized with one. Using a topological sorting of the
nodes, the forward and backward probabilities can
be computed with linear time complexity. The pos-
terior probability q(n, n′, w) of an edge is defined
as:

q(n, n′, w) =
F (n) · p(n, n′, w) · B(n′)

B(n0)

The posterior probability of an edge is identical to
the sum over the probabilities of all full paths that
contain this edge. Note that the backward probabil-
ity of the root node B(n0) is identical to the sum
over all sentence probabilities in the word graph.
Let q∗ denoted the maximum posterior probability
of all edges and let τ be a pruning threshold, then
we prune an edge (n, n′, w) if:

q(n, n′, w) < q∗ · τ

3.4 N -Best List Extraction
In this section, we describe the extraction of the N -
best translation candidates from a word graph.

(Ueffing et al., 2002) and (Mohri and Riley, 2002)
both present an algorithm based on the same idea:
use a modified A* algorithm with an optimal rest
cost estimation. As rest cost estimation, the negated
logarithm of the backward probabilities is used. The
algorithm in (Ueffing et al., 2002) has two disadvan-
tages: it does not care about duplicates and the rest
cost computation is suboptimal as the described al-
gorithm has an exponential worst-case complexity.
As mentioned in the previous section, the backward
probabilities can be computed in linear time.

In (Mohri and Riley, 2002) the word graph is rep-
resented as a weighted finite state automaton. The
word graph is first determinized, i.e. the nondeter-
ministic automaton is transformed in an equivalent
deterministic automaton. This process removes the
duplicates from the word graph. Out of this deter-
minized word graph, the N best candidates are ex-
tracted. In (Mohri and Riley, 2002), ε-transitions are

ignored, i.e. transitions that do not produce a word.
These ε-transitions usually occur in the backing-off
case of language models. The ε-transitions have to
be removed before using the algorithm of (Mohri
and Riley, 2002). In the presence of ε-transitions,
two path representing the same string are considered
equal only if the ε-transitions are identical as well.

4 Evaluation Criteria

4.1 String-To-String Criteria

To evaluate the single-best translation hypotheses,
we use the following string-to-string criteria: word
error rate (WER), position-independent word error
rate (PER) and the BLEU score. More details on
these standard criteria can be found for instance in
(Och, 2003).

4.2 Graph-To-String Criteria

To evaluate the quality of the word graphs, we
generalize the string-to-string criteria to work on
word graphs. We will use the well-known graph
word error rate (GWER), see also (Ueffing et al.,
2002). Additionally, we introduce two novel graph-
to-string criteria, namely the position-independent
graph word error rate (GPER) and the graph BLEU
score (GBLEU). The idea of these graph-to-string
criteria is to choose a sequence from the word graph
and compute the corresponding string-to-string cri-
terion for this specific sequence. The choice of the
sequence is such that the criterion is the optimum
over all possible sequences in the word graph, i.e.
the minimum for GWER/GPER and the maximum
for GBLEU.

The GWER is a generalization of the word er-
ror rate. It is a lower bound for the WER. It can be
computed using a dynamic programming algorithm
which is quite similar to the usual edit distance com-
putation. Visiting the nodes of the word graph in
topological order helps to avoid repeated computa-
tions.

The GPER is a generalization of the position-
independent word error rate. It is a lower bound for
the PER. The computation is not as straightforward
as for the GWER.

In (Ueffing and Ney, 2004), a method for com-
puting the string-to-string PER is presented. This
method cannot be generalized for the graph-to-string
computation in a straightforward way. Therefore,

194

we will first describe an alternative computation for
the string-to-string PER and then use this idea for
the graph-to-string PER.

Now, we want to compute the number of position-
independent errors for two strings. As the word or-
der of the strings does not matter, we represent them
as multisets1 A and B. To do this, it is sufficient to
know how many words are in A but not in B, i.e.
a := |A−B|, and how many words are in B but not
in A, i.e. b := |B−A|. The number of substitutions,
insertions and deletions are then:

sub = min{a, b}

ins = a − sub

del = b − sub

error = sub + ins + del

= a + b − min{a, b}

= max{a, b}

It is obvious that there are either no insertions or no
deletions. The PER is then computed as the num-
ber of errors divided by the length of the reference
string.

Now, back to the graph-to-string PER computa-
tion. The information we need at each node of the
word graph are the following: the remaining multi-
set of words of the reference string that are not yet
produced. We denote this multiset C. The cardinal-
ity of this multiset will become the value a in the
preceding notation. In addition to this multiset, we
also need to count the number of words that we have
produced on the way to this node but which are not
in the reference string. The identity of these words is
not important, we simply have to count them. This
count will become the value b in the preceding nota-
tion.

If we make a transition to a successor node along
an edge labeled w, we remove that word w from the
set of remaining reference words C or, if the word
w is not in this set, we increase the count of words
that are in the hypothesis but not in the reference.

To compute the number of errors on a graph, we
use the auxiliary quantity Q(n, C), which is the
count of the produced words that are not in the refer-
ence. We use the following dynamic programming
recursion equations:

1A multiset is a set that may contain elements multiple
times.

Q(n0, C0) = 0

Q(n, C) = min
n′,w:(n′,n,w)∈E

{

Q(n′, C ∪ {w}),

Q(n′, C) + 1
}

Here, n0 denote the root node of the word graph,
C0 denotes the multiset representation of the refer-
ence string. As already mentioned in Section 3.1,
(n′, n, w) denotes an edge from node n′ to node n

with word label w.
In the implementation, we use a bit vector to rep-

resent the set C for efficiency reasons. Note that in
the worst-case the size of the Q-table is exponen-
tial in the length of the reference string. However, in
practice we found that in most cases the computation
is quite fast.

The GBLEU score is a generalization of the
BLEU score. It is an upper bound for the BLEU
score. The computation is similar to the GPER com-
putation. We traverse the word graph in topologi-
cal order and store the following information: the
counts of the matching n-grams and the length of the
hypothesis, i.e. the depth in the word graph. Addi-
tionally, we need the multiset of reference n-grams
that are not yet produced.

To compute the BLEU score, the n-gram counts
are collected over the whole test set. This results in
a combinatorial problem for the computation of the
GBLEU score. We process the test set sentence-wise
and accumulate the n-gram counts. After each sen-
tence, we take a greedy decision and choose the n-
gram counts that, if combined with the accumulated
n-gram counts, result is the largest BLEU score.
This gives a conservative approximation of the true
GBLEU score.

4.3 Word Graph Size
To measure the word graph size we use the word
graph density, which we define as the number of
edges in the graph divided by the source sentence
length.

5 Experimental Results

5.1 Tasks
We will show experimental results for two Chinese–
English translation tasks.

195

Table 1: IWSLT Chinese–English Task: corpus
statistics of the bilingual training data.

Chinese English
Train Sentences 20 000

Running Words 182 904 160 523
Vocabulary 7 643 6 982

Test Sentences 506
Running Words 3 515 3 595
avg. SentLen 6.9 7.1

Table 2: NIST Chinese English task: corpus statis-
tics of the bilingual training data.

Chinese English
Train Sentences 3.2M

Running Words 51.4M 55.5M
Vocabulary 80 010 170 758

Lexicon Entries 81 968
Test Sentences 878

Running Words 26 431 23 694
avg. SentLen 30.1 27.0

IWSLT Chinese–English Task. The first task is
the Chinese–English supplied data track task of the
International Workshop on Spoken Language Trans-
lation (IWSLT 2004) (Akiba et al., 2004). The do-
main is travel expressions from phrase-books. This
is a small task with a clean training and test corpus.
The vocabulary is limited and the sentences are rel-
atively short. The corpus statistics are shown in Ta-
ble 1. The Chinese part of this corpus is already
segmented into words.

NIST Chinese–English Task. The second task
is the NIST Chinese–English large data track task.
For this task, there are many bilingual corpora avail-
able. The domain is news, the vocabulary is very
large and the sentences have an average length of 30
words. We train our statistical models on various
corpora provided by LDC. The Chinese part is seg-
mented using the LDC segmentation tool. After the
preprocessing, our training corpus consists of about
three million sentences with somewhat more than 50
million running words. The corpus statistics of the
preprocessed training corpus are shown in Table 2.
We use the NIST 2002 evaluation data as test set.

 15

 20

 25

 30

 35

 40

 45

 50

 0 200 400 600 800 1000 1200

gr
ap

h
w

or
d

er
ro

r r
at

e
[%

]

word graph density

window-size-1
window-size-2
window-size-3
window-size-4
window-size-5

Figure 1: IWSLT Chinese–English: Graph error rate
as a function of the word graph density for different
window sizes.

5.2 Search Space Analysis

In Table 3, we show the search space statistics of the
IWSLT task for different reordering window sizes.
Each line shows the resulting graph densities after
the corresponding step in our search as described in
Section 3.2. Our search process starts with the re-
ordering graph. The segmentation into phrases in-
creases the graph densities by a factor of two. Doing
the phrase translation results in an increase of the
densities by a factor of twenty. Unsegmenting the
phrases, i.e. replacing the phrase edges with a se-
quence of word edges doubles the graph sizes. Ap-
plying the language model results in a significant in-
crease of the word graphs.

Another interesting aspect is that increasing the
window size by one roughly doubles the search
space.

5.3 Word Graph Error Rates

In Figure 1, we show the graph word error rate for
the IWSLT task as a function of the word graph den-
sity. This is done for different window sizes for
the reordering. We see that the curves start with a
single-best word error rate of about 50%. For the
monotone search, the graph word error rate goes
down to about 31%. Using local reordering during
the search, we can further decrease the graph word
error rate down to less than 17% for a window size
of 5. This is almost one third of the single-best word
error rate. If we aim at halving the single-best word
error rate, word graphs with a density of less than

196

Table 3: IWSLT Chinese–English: Word graph densities for different window sizes and different stages of
the search process.

language level graph type window size
1 2 3 4 5

source word reordering 1.0 2.7 6.2 12.8 24.4
phrase segmented 2.0 5.0 12.1 26.8 55.6

target translated 40.8 99.3 229.0 479.9 932.8
word TM scores 78.6 184.6 419.2 869.1 1 670.4

+ LM scores 958.2 2874.2 7649.7 18 029.7 39 030.1

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 200 400 600 800 1000 1200 1400

gr
ap

h
w

or
d

er
ro

r r
at

e
[%

]

word graph density

window-size-1
window-size-2
window-size-3
window-size-4
window-size-5

Figure 2: NIST Chinese–English: Graph error rate
as a function of the word graph density for different
window sizes.

200 would already be sufficient.
In Figure 2, we show the same curves for the

NIST task. Here, the curves start from a single-best
word error rate of about 64%. Again, dependent on
the amount of reordering the graph word error rate
goes down to about 36% for the monotone search
and even down to 23% for the search with a window
of size 5. Again, the reduction of the graph word er-
ror rate compare to the single-best error rate is dra-
matic. For comparison we produced an N -best list
of size 10 000. The N -best list error rate (or oracle-
best WER) is still 50.8%. A word graph with a den-
sity of only 8 has about the same GWER.

In Figure 3, we show the graph position-
independent word error rate for the IWSLT task. As
this error criterion ignores the word order it is not
affected by reordering and we show only one curve.
We see that already for small word graph densities
the GPER drops significantly from about 42% down
to less than 14%.

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350

po
s.

-in
de

p.
gr

ap
h

w
or

d
er

ro
r r

at
e

[%
]

word graph density

Figure 3: IWSLT Chinese–English: Graph position-
independent word error rate as a function of the
word graph density.

In Figure 4, we show the graph BLEU scores for
the IWSLT task. We observe that, similar to the
GPER, the GBLEU score increases significantly al-
ready for small word graph densities. We attribute
this to the fact that the BLEU score and especially
the PER are less affected by errors of the word or-
der than the WER. This also indicates that produc-
ing translations with correct word order, i.e. syntac-
tically well-formed sentences, is one of the major
problems of current statistical machine translation
systems.

6 Conclusion

We have described word graphs for statistical ma-
chine translation. The generation of word graphs
during the search process has been described in de-
tail. We have shown detailed statistics of the in-
dividual steps of the translation process and have
given insight in the experimental complexity of each
step. We have described an efficient and optimal

197

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 50 100 150 200 250

gr
ap

h
B

LE
U

 s
co

re
 [%

]

word graph density

window size = 1
window size = 2
window size = 3
window size = 4
window size = 5

Figure 4: IWSLT Chinese–English: Graph BLEU
score as a function of the word graph density.

pruning method for word graphs. Using these tech-
nique, we have generated compact word graphs for
two Chinese–English tasks. For the IWSLT task, the
graph error rate drops from about 50% for the single-
best hypotheses to 17% of the word graph. Even for
the NIST task, with its very large vocabulary and
long sentences, we were able to reduce the graph er-
ror rate significantly from about 64% down to 23%.

Acknowledgment

This work was partly funded by the European Union
under the integrated project TC-Star (Technology
and Corpora for Speech to Speech Translation, IST-
2002-FP6-506738, http://www.tc-star.org).

References
Y. Akiba, M. Federico, N. Kando, H. Nakaiwa, M. Paul, and

J. Tsujii. 2004. Overview of the IWSLT04 evaluation cam-
paign. In Proc. of the Int. Workshop on Spoken Language
Translation (IWSLT), pages 1–12, Kyoto, Japan, Septem-
ber/October.

S. Bangalore and G. Riccardi. 2001. A finite-state approach to
machine translation. In Proc. Conf. of the North American
Association of Computational Linguistics (NAACL), Pitts-
burgh, May.

S. Kanthak, D. Vilar, E. Matusov, R. Zens, and H. Ney. 2005.
Novel reordering approaches in phrase-based statistical ma-
chine translation. In 43rd Annual Meeting of the Assoc. for
Computational Linguistics: Proc. Workshop on Building and
Using Parallel Texts: Data-Driven Machine Translation and
Beyond, Ann Arbor, MI, June.

K. Knight and Y. Al-Onaizan. 1998. Translation with finite-
state devices. In D. Farwell, L. Gerber, and E. H. Hovy,

editors, AMTA, volume 1529 of Lecture Notes in Computer
Science, pages 421–437. Springer Verlag.

S. Kumar and W. Byrne. 2003. A weighted finite state trans-
ducer implementation of the alignment template model for
statistical machine translation. In Proc. of the Human Lan-
guage Technology Conf. (HLT-NAACL), pages 63–70, Ed-
monton, Canada, May/June.

L. Mangu, E. Brill, and A. Stolcke. 2000. Finding consensus
in speech recognition: Word error minimization and other
applications of confusion networks. Computer, Speech and
Language, 14(4):373–400, October.

M. Mohri and M. Riley. 2002. An efficient algorithm for the n-
best-strings problem. In Proc. of the 7th Int. Conf. on Spoken
Language Processing (ICSLP’02), pages 1313–1316, Den-
ver, CO, September.

F. J. Och and H. Ney. 2002. Discriminative training and max-
imum entropy models for statistical machine translation. In
Proc. of the 40th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 295–302, Philadelphia,
PA, July.

F. J. Och, R. Zens, and H. Ney. 2003. Efficient search for in-
teractive statistical machine translation. In EACL03: 10th
Conf. of the Europ. Chapter of the Association for Com-
putational Linguistics, pages 387–393, Budapest, Hungary,
April.

F. J. Och. 2003. Minimum error rate training in statistical ma-
chine translation. In Proc. of the 41th Annual Meeting of
the Association for Computational Linguistics (ACL), pages
160–167, Sapporo, Japan, July.

N. Ueffing and H. Ney. 2004. Bayes decision rule and
confidence measures for statistical machine translation. In
Proc. EsTAL - España for Natural Language Processing,
pages 70–81, Alicante, Spain, October.

N. Ueffing, F. J. Och, and H. Ney. 2002. Generation of word
graphs in statistical machine translation. In Proc. of the
Conf. on Empirical Methods for Natural Language Process-
ing (EMNLP), pages 156–163, Philadelphia, PA, July.

R. Zens and H. Ney. 2004. Improvements in phrase-based
statistical machine translation. In Proc. of the Human
Language Technology Conf. (HLT-NAACL), pages 257–264,
Boston, MA, May.

R. Zens, F. J. Och, and H. Ney. 2002. Phrase-based statistical
machine translation. In M. Jarke, J. Koehler, and G. Lake-
meyer, editors, 25th German Conf. on Artificial Intelligence
(KI2002), volume 2479 of Lecture Notes in Artificial Intel-
ligence (LNAI), pages 18–32, Aachen, Germany, September.
Springer Verlag.

198

