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Abstract

This paper presents novel approaches to
reordering in phrase-based statistical ma-
chine translation. We perform consistent
reordering of source sentences in train-
ing and estimate a statistical translation
model. Using this model, we follow a
phrase-based monotonic machine transla-
tion approach, for which we develop an ef-
ficient and flexible reordering framework
that allows to easily introduce different re-
ordering constraints. In translation, we
apply source sentence reordering on word
level and use areordering automaton as in-
put. We show how to compute reordering
automata on-demand using IBM or ITG
constraints, and also introduce two new
types of reordering constraints. We further
add weights to the reordering automata.
We present detailed experimental results
and show that reordering significantly im-
proves translation quality.

Introduction

A second category of finite-state translation ap-
proaches uses joint instead of conditional probabili-
ties. Many joint probability approaches originate in
speech-to-speech translation as they are the natural
choice in combination with speech recognition mod-
els. The automated transducer inference techniques
OMEGA (Vilar, 2000) and GIATI (Casacuberta et
al., 2004) work on phrase level, but ignore the re-
ordering problem from the view of the model. With-
out reordering both in training and during search,
sentences can only be translated properly into a lan-
guage with similar word order. In (Bangalore et al.,
2000) weighted reordering has been applied to tar-
get sentences since defining a permutation model on
the source side is impractical in combination with
speech recognition. In order to reduce the computa-
tional complexity, this approach considers only a set
of plausible reorderings seen on training data.

Most other phrase-based statistical approaches
like the Alignment Template system of Bender
et al. (2004) rely on (local) reorderings which are
implicitly memorized with each pair of source and
target phrases in training. Additional reorderings on
phrase level are fully integrated into the decoding
process, which increases the complexity of the sys-
tem and makes it hard to modify. Zens et al. (2003)

Reordering is of crucial importance for machingeviewed two types of reordering constraints for this
translation. Already (Knight et al., 1998) use full un-type of translation systems.
weighted permutations on the level of source words In our work we follow a phrase-based transla-

in their early weighted finite-state transducer aption approach, applying source sentence reordering
proach which implemented single-word based trangn word level. We compute a reordering graph on-

lation using conditional probabilities. In a refine-demand and take it as input for monotonic trans-
ment with additional phrase-based models, (Kumdation. This approach is modular and allows easy
et al., 2003) define a probability distribution overintroduction of different reordering constraints and

all possible permutations of source sentence phragg®babilistic dependencies. We will show that it per-

and prune the resulting automaton to reduce confierms at least as well as the best statistical machine
plexity. translation system at the IWSLT Evaluation.
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In the next section we briefly review the basic(f;, €;). Mapping the bilingual language model to a
theory of our translation system based on weighted/FSTT is canonical and it has been shown in (Kan-
finite-state transducers (WFST). In Sec. 3 we inthak et al., 2004) that the search problem can then be
troduce new methods for reordering and alignmemewritten using finite-state terminology:
monotonizaFion in trair_1ing. To compare differ- &l — project-output (best (7 oT)).
ent reordering constraints used in the translation
search process we develop an on-demand corhhis implementation of the problem as WFSTs may
putable framework for permutation models in Sec. 4€ used to efficiently solve the search problem in
In the same section we also define and analyze umachine translation.
restricted and restricted permutations with some
them being first published in this paper. We con*

clude the paper by presenting and discussing a righen the alignment functiorl’ is not monotonic,
set of experimental results. target language phraséscan become very long.
For example in a completely non-monotonic align-
ment all target words are paired with the last aligned
Let £/ ande! be two sentences from a source angource word, whereas all other source words form
target language. Assume that we have word levéliples with the empty phrase. Therefore, for lan-
alignmentsA of all sentence pairs from a bilingual guage pairs with big differences in word order, prob-
training corpus. We denote wit#y the segmenta- ability estimates may be poor.

tion of a target sentened into J phrases such that  This problem can be solved by reordering either
f{ andé&/ can be aligned to form bilingual tuples source or target training sentences such that align-
(fj.€;). If alignments are onlfunctions of target ments become monotonic for all sentences. We
words A’ : {1,...,I} — {1,...,J}, the bilingual suggest the following consistent source sentence re-
tuples(f;, é;) can be inferred with e.g. the GIATI ordering and alignment monotonization approach in
method of (Casacuberta et al., 2004), or with ouwhich we compute optimal, minimum-cost align-
novel monotonization technique (see Sec. 3). Eacghents.

source word will be mapped to a target phrase of one First, we estimate a cost matr&X for each sen-

or more words or an “empty” phraseIn particular, tence pair(f{,e!). The elements of this matrix;

the source words which will remain non-aligned duere the local costs of aligning a source wgido a

to the alignment functionality restriction are pairedarget worde;. Following (Matusov et al., 2004), we

SI Reordering in Training

2 Machine Translation using WFSTs

with the empty phrase. compute these local costs by interpolating state oc-
We can then formulate the problem of finding thecupation probabilities from the source-to-target and
best translatios! of a source sentencg’: target-to-source training of the HMM and IBM-4

models as trained by the GIZA++ toolkit (Och et al.,
2003). For a given alignment C I x J, we define
the costs of this alignment(A) as the sum of the

¢l = argmax Pr(fi, el)

I
€1

= argmax > pr(ff e, A) local costs of all aligned word pairs:
& AcA
> argmax max Pr(A) - Pr(f{,é]|A) c(4) = Z Cij (1)
&/ AeA (3,7)€A
~ argmax max H Pr(fy.e| 7Y, &7, A) The goal'ls to fl'nd an aI_lgnment Wlth the minimum
g ASAL T costs which fulfills certain constraints.
J-
— afgma“}gj{ H p fj,egl m’ ~§ 7171714) 3.1 Source Sentence Reordering
“ fig=1..0 To reorder a source sentence, we require the

alignment to be dunction of sourcewords A;:
,J} — {1,..., I}, easily computed from the
cost matrGC as:

In other words: if we assume a uniform distri-
bution for Pr(A), the translation problem can be 11
mapped to the problem of estimatingrangram lan-
guage model over a learned set of bilingual tuples Ai(j) = argmin, ¢;; (2)

168



We do not allow for non-aligned source word4; mir wiirde sehr gut Anfang Mai passen .

naturally defines a new order of the source wofgds Alm \
which we denote byci] By CompUting this permu- tne very beginning of May would suit me .
tation for each pair of sentences in training and ap
plying it to each source sentence, we create acorpus)ehr gut Anfang Mai wiirde passen mir

of reordered sentences. z/s\/'T ;\\ \ \ \ T
. . . the very beginning of May would suit me .
3.2 Alignment Monotonization
sehr gut Anfang Mai wiirde passen mir .
In order to create a “sentence” of bilingual tuplesA/ \ /4 \ \ \ \ T
(f{,&]) we required alignments between reordered b _
source and target words to befunction of target the verY beginning of May would suit me .

WordSAQ . {17 ceey I} - {17 ceey J} ThIS align' sehr |the_very gut|$ Anfang|beginning
ment can be computed in analogy to Eq. 2 as: Mai|of_May wiirde|would passen|suit mir|me .|.

Ag(i) = argmin; é; (3) Figure 1: Example of alignment, source sentence re-

where¢;; are the elements of the new cost matrixordering, monotonization, and construction of bilin-

C which corresponds to the reordered source segual tuples.

tence. We can optionally re-estimate this matrix by

repeating EM training of state occupation probabiliwith the dynamic programming algorithm. Fig. 1
ties with GIZA++ using the reordered source corpuglso shows the resulting bilingual tupl(eﬁ €;).

and the original target corpus. Alternatively, we can
get the cost matrix_’ by reordering the columns of 4 Reordering in Search

the cost matrixC' according to the permutation givenwhen searching the best translatighfor a given

by alignmentA; . source sentencg’, we permute the source sentence
In alignmentA4, some target words that were pre-as described in (Knight et al., 1998):

viously unaligned in4; (like “the” in Fig. 1) may
now still violate the alignment monotonicity. The
monotonicity of this alignment can not be guaran- Permuting an input sequence df symbols re-
teed forall words if re-estimation of the cost matri- sults in .J! possible permutations and representing
ces had been performed using GIZA++. the permutations as a finite-state automaton requires
The general GIATI technique (Casacuberta et alat least2”’ states. Therefore, we opt for computing
2004) is applicable and can be used to monotonizhe permutation automaton on-demand while apply-
the alignmentA4,. However, in our experiments ing beam pruning in the search.
the following method performs better. We make
use of the cost matrix representation and compufel Lazy Permutation Automata
a monotonic minimum-cost alignment with a dy-For on-demand computation of an automaton in the
namic programming algorithm similar to the Lev-flavor described in (Kanthak et al., 2004) it is suffi-
enshtein string edit distance algorithm. As costs dfient to specify a state description and an algorithm
each “edit” operation we consider the local alignthat calculates all outgoing arcs of a state from the
ment costs. The resulting alignmeAt represents state description. In our case, each state represents
a minimum-cost monotonic “path” through the cost permutation of a subset of the source wofgds
matrix. To makeAs a function of target words we which are already translated.
do not consider the source words non-alignedijn This can be described by a bit vectf (Zens
and also forbid “deletions” (“many-to-one” sourceet al., 2002). Each bit of the state bit vector corre-
word alignments) in the DP search. sponds to an arc of the linear input automaton and is
An example of such consistent reordering andet to one if the arc has been used on any path from
monotonization is given in Fig. 1. Here, we re-the initial to the current state. The bit vectors of two
order the German source sentence based on the igiates connected by an arc differ only in a single bit.
tial alignmentA,, then compute the function of tar- Note that bit vectors elegantly solve the problem of
get wordsAs, and monotonize this alignment#;  recombining paths in the automaton as states with

é1 = project-output (best (permute (f{)oT))
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the same bit vectors can be merged. As a result,aé
fully minimized permutation automaton has only a
single initial and final state. o)1~ )2 (o0 )2 o) @
Even with on-demand computation, complexity
using full permutations is unmanagable for long sen-
tences. We further reduce complexity by additionb)
ally constraining permutations. Refer to Figure 2 for

visualizations of the permutation constraints which !
we describe in the following.
4.2 IBM Constraints

The IBM reordering constraints are well-known in

the field of machine translation and were first de-
scribed in (Berger et al., 1996). The idea behing)
these constraints is to deviate from monotonic trans-
lation by postponing translations of a limited num-
ber of words. More specifically, at each state we
can translate any of thirst [ yet uncovered word

positions. The implementation using a bit vector is
straightforward. For consistency, we associate win-
dow size with the parametéfor all constraints pre-

sented here. d) . M
; S

0000

4.3 Inverse IBM Constraints

3
4
.. . 1101
The original IBM constraints are useful for a large

number of language pairs where the ability to skip _ -

some words reflects the differences in word ordefigure 2: Permutations of a) positions= 1,2, 3, 4
between the two languages. For some other paif@f & SOUrce sentench f f; f4 using a window size
it is beneficial to translate some words at the end ¢ 2 for b) IBM constraints, c) inverse IBM con-
the sentence first and to translate the rest of the setifaints and d) local constraints.

tence nearly monotonically. Following this idea we o .
can define thinverse IBM constraintsLet j be the VETY 10w complexity is given by the following per-

first uncovered position. We can choose any IOOS511utation rule: the next word for translation comes
tion for translation, unless— 1 words on positions 7oM the window ofl positions counting from the
j' > j have been translated. If this is the case whrstyetuncovered position. Note, that the local con-

must translate the word in positigh The inverse straints define a true subset of the permutations de-
IBM constraints can also be expressed by fined by the IBM constraints.
invIBM (z) = transpose (IBM(transpose (z))). 4.5 TG Constraints

As thetranspose  operation can not be computed,yper type of reordering can be obtained using In-
on-demz}nd_, our specialized |mplem_entat|on uses kwarsion Transduction Grammars (ITG) (Wu, 1997).
vectorsbi similar to the IBM constraints. These constraints are inspired by bilingual bracket-
4.4 Local Constraints ing. They proved to be quite useful for machine

| _ i i translation, e.g. see (Bender et al., 2004). Here,
For some language pairs, e.g. ltalian — EnglisRq interpret the input sentence as a sequence of seg-
words are moved only a few words to the left or

_ . X ments. In the beginning, each word is a segment of
right. The IBM constraints provide too many alter-

X . its own. Longer segments are constructed by recur-
native permutations to chose from as each word c

) d\ely combining two adjacent segments. At each
be moved to the end of the sentence. A solution that

allows only for local permutations and therefore has 'both covered and uncovered
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| Chinese| English|| Japanese English|| Italian| English|

train sentences 20000 20000 66107
words 182904| 160523| 209012 160427| 410275| 427402
singletons 3525 2948 4108 2956 6 386 3974
vocabulary 7643 6982 9277 6932 15983 10971
dev  sentences 506 506 500
words 3515 3595 4374 3595 3155 3253
sentence length (avg/max)6.95/24| 7.01/29| 8.64/30| 7.01/29| 5.79/24| 6.51/25
test sentences 500 500 506
words 3794 - 4370 - 2931 3595
sentence length (avg/max)7.59/62| 7.16 /71| 8.74/75| 7.16/71|| 6.31/27| 6.84/28

Table 1: Statistics of the Basic Travel Expression (BTEC) corpora.

combination step, we either keep the two segments Experimental Results
in monotonic order or invert the order. This pro-g 4 Corpus Statistics

cess continues until only one segment for the whole

sentence remains. The on-demand computation e translation experiments were carried out on the
implemented in spirit of Earley parsing. Basic Travel Expression Corp¢BTEC), a multilin-

We can modify the original ITG constraints togual speech corpus which contains tourism-related
further limit the number of reorderings by forbid- SENtences usually found in travel phrase books.
ding segment inversions which violate IBM con-Wve tested our system on the so called Chinese-to-

straints with a certain window size. Thus, the reENglish (CE) and Japanese-to-English (JE) Supplied

sulting reordering graph contains the intersection of2SKS: the corpora which were provided during the

the reorderings with IBM and the original ITG con-/ntérnational Workshop on Spoken Language Trans-
straints. lation (IWSLT 2004) (Akiba et al., 2004). In ad-

dition, we performed experiments on the Italian-to-
4.6 Weighted Permutations English (IE) task, for which a larger corpus was
éﬁj_ndly provided to us by ITC/IRST. The corpus

So far, we have discussed how to generate the p tistics for the th BTEC ) .
mutation graphs under different constraints, but pe AlSTCs torthe three corpora are given in
ab. 1. The development corpus for the Italian-to-

mutations were equally probable. Especially for th nalish translation had onlv one reference transla
case of nearly monotonic translation it is make sen gl statl y i
egon of each Italian sentence. A set &6 source

to restrict the degree of non-monotonicity that w X )
allow when translating a sentence. We propose sentences and 16 reference t_ranslatlons is used as
simple approach which gives a higher probabilit development corpus for Chinese-to-English and
to the monotone transitions and penalizes the nof@panese-to-English and as a test corpus for ltalian-
monotonic ones to-English tasks. The 500 sentence Chinese and
A state descriptiorb'] for which the following Japanese test sets of the IWSLT 2004 evaluation
condition holds: b campaign were translated and automatically scored
' against 16 reference translations after the end of the
Mon(j) : by =6(' <) V1<j <J campaign using the IWSLT evaluation server.
t by = < <J <

: 5.2 Evaluation Criteria
represents the monotonic path up to the wfrdAt

each state we assign the probabilityto that out- For the automatic evaluation, we used the crite-
going arc where the target state description fullfill§ia from the IWSLT evaluation campaign (Akiba et
Mon(j+1) and distribute the remaining probability &l 2004), namely word error rate (WER), position-
massl — « uniformly among the remaining arcs. Inindependent word error rate (PER), and the BLEU
case there is no such arc, all outgoing arcs get tff&d NIST scores (Papineni et al., 2002; Doddington,
same uniform probability. This weighting scheme2002). The two scores measure accuracy, i. e. larger
clearly depends on the state description and the oficOres are better. The error rates and scores were
going arcs only and can be computed on-demand.computed with respect tmultiple reference transla-
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1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
reordering constraints window size reordering constraints window size

Figure 3: Word error rate [%] as a function of the reordering window size for different reordering constraints:
Japanese-to-English (left) and Chinese-to-English (right) translation.

tions, when they were available. To indicate this, w&.3.1 Highly Non-Monotonic Translation (JE)

will label the error rate acronyms with an. Both Fig. 3 (left) shows word error rate on the
training and evaluation were performed using corjapanese-to-English task as a function of the win-
pora and references in lowercase and without pungow size for different reordering constraints. For

tuation marks. each of the constraints, good results are achieved
_ using a window size of 9 and larger. This can be
5.3 Experiments attributed to the Japanese word order which is very

We used reordering and alignment monotonizatioflifferent from English and often follows a subject-
in training as described in Sec. 3. To estimate th@bject-verb structure. For small window sizes, ITG
matrices of local alignment costs for the sentenc@' IBM constraints are better suited for this task, for
pairs in the training corpus we used the state occupt/ger window sizes, inverse IBM constraints per-
tion probabilities of GIZA++ IBM-4 model training form best. The local constraints perform worst and
and interpolated the probabilities of source-to-targd€quire very Igrge window sizes to capture the main
and target-to-source training directions. After thayord order differences between Japanese and En-
we estimated a smootheegram language model on glish. However, their computational complexity is
the level of bilingual tupleg;, &; and represented it low; f(_)r mstar_lce, a system with local constraints
as a finite-state transducer. and window size of 9 is as fast (25 words per sec-

When translating, we applied moderate bearfind) as the same system with IBM constraints and
pruning to the search automaton only when using rd¥indow size of 5. Using window sizes larger than
ordering constraints with window sizes larger tigan 10 iS computationally expensive and does not sig-
For very large window sizes we also varied the pruri?ificantly improve the translation quality under any
ing thresholds depending on the length of the inpiRf the constraints. _ _
sentence. Pruning allowed for fast translations and ab- 2 presents the overall improvements in trans-
reasonable memory consumption without a signifition quality when using the best setting: inverse
cant negative impact on performance. IBM constraints, window siz8. The baseline with-

In our first experiments, we tested the four reOut reordering in training and testing failed com-

ordering constraints with various window sizes. W&'€t€ly for this task, producing empty translations
; , ) ) 0 iqi
aimed at improving the translation resuits on the dd2f 37 % of the sentencés Most of the original

velopment corpora and compared the results Witﬂllgr]inzr!ts in trqlnlngf V\iere ?on-\]monotonlc WhoIICht
two baselines: reordering only the source trainin§SY'*€d IN Mapping ot aimost all Japanese words o

sentences and translation of the unreordered test sénv-\'hen using only the GIATI monqtonlzatlon tech-
tences; and the GIATI technique for creating bilin/1du€: Thus, the proposed reordering methods are of

gual tuples(f;, €;) without reordering of the source crucial importance for this task.
sentences, neither in training nor during translation. 2Hence a NIST score of 0 due to the brevity penalty.
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mWER | mPER | BLEU | NIST mWER | mPER | BLEU | NIST

Reordering:| [%)] [%0] [%] Reordering:| [%] [%] [%0]

BTEC Japanese-to-English (JE) dev none 25.6 22.0 | 62.1 | 10.46
none 59.7 58.8 | 13.0 | 0.00 in training 28.0 22.3 | 58.1 | 10.32
in training 57.8 394 | 14.7 | 3.27 + 4-local 26.3 20.3 | 62.2 | 10.81
+9-inv-ibm | 40.3 | 32.1 | 451 | 8.59 + weights 25.3 | 20.3 | 62.6 | 10.79
+rescoring | 39.1 30.9 | 53.2 | 9.93 + 3-ibm 27.2 205 | 614 | 10.76

BTEC Chinese-to-English (CE) dev + weights 25.2 20.3 | 62.9 | 10.80
none 55.2 52.1 | 249 | 1.34 +rescoring | 22.2 19.0 | 69.2 | 10.47
intraining | 54.0 | 423 | 230 | 418 | Taple 4: Translation results with optimal reordering
+7-inv-ibm | 47.1 | 39.4 | 345 | 6.53 | constraints and window sizes for the test corpus of
+rescoring | 483 | 40.7 | 39.1 | 811 | the BTEC IE task’ Optimized for WER.

Table 2: Translation results with optimal reorder
ing constraints and window sizes for the BTE
Japanese-to-English and Chinese-to-English dev
opment corpora.Optimized for the NIST score.

straints already with relatively small window sizes.
ncreasing the window size beyoddor these con-

Sraints only marginally improves the translation er-
ror measures for both short (under 8 words) and long

MWER | mPER | BLEU | NIST sentences. Thus, a suitable language-pair-specific
[%] [%] [%] choice of reordering constraints can avoid the huge
BTEC Japanese-to-English (JE) test computational complexity required for permutations
AT 41.9 33.8 | 45.3 | 9.49 of long sentences.
WEST | 42.1 35.6 | 47.3 | 9.50 Tab. 2 includes error measures for the best setup
BTEC Chinese-to-English (CE) test with inverse IBM constraints with window size ©f
AT 45.6 390 | 409 | 855 as well as additional improvements obtained by a
WFST| 46.4 | 38.8 | 40.8 | 8.73 best list rescoring.

The best settings for reordering constraints and
odel scaling factors on the development corpora
ere then used to produce translations of the IWSLT
Japanese and Chinese test corpora. These trans-

Further improvements were obtained with dations were evaluated against multiple references
rescoring procedure. For rescoring, we produceghich were unknown to the authors. Our system
a k-best list of translation hypotheses and used thiglenoted with WFST, see Tab. 3) produced results
word penalty and deletion model features, the IBMompetitive with the results of the best system at the
Model 1 lexicon score, and target languaggram evaluation campaign (denoted with AT (Bender et
models of the order up . The scaling factors for al., 2004)) and, according to some of the error mea-
all features were optimized on the development cosures, even outperformed this system.

pus for the NIST score, as described in (Bender et ) )
al., 2004). 5.3.3 Almost Monotonic Translation (IE)

The word order in the Italian language does not
5.3.2 Moderately Non-Mon. Translation (CE)  djffer much from the English. Therefore, the abso-
Word order in Chinese and English is usually simlute translation error rates are quite low and translat-
ilar. However, a few word reorderings over quiteing without reordering in training and search already
large distances may be necessary. This is especiatBsults in a relatively good performance. This is re-
true in case of questions, in which question wordflected in Tab. 4. However, even for this language
like “where” and “when” are placed at the end ofpair it is possible to improve translation quality by
a sentence in Chinese. The BTEC corpora contaperforming reordering both in training and during
many sentences with questions. translation. The best performance on the develop-
The inverse IBM constraints are designed to pement corpus is obtained when we constrain the re-
form this type of reordering (see Sec. 4.3). As showndering with relatively small window sizes of 3 to 4
in Fig. 3, the system performs well under these corand use either IBM or local reordering constraints.

Table 3. Comparison of the IWSLT-2004 automati
evaluation results for the described system (WFS%EI
with those of the best submitted system (AT).
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On the test corpus, as shown in Tab. 4, all error mea- Int. Workshop on Spoken Language Translation, pp.
sures can be improved with these settings. 79-84, Kyoto, Japan.

Especially for languages with similar word orderA. L. Berger, P. F. Brown, S. A. Della Pietra, V. J. Della
it is important to useveightedreorderings (Sec. 4.6) Pietra, J. R. Gillett, A. S._Kehler, and R. L. Mercer.
. - 1996. Language Translation Apparatus and Method
in order to prefer the original word order. Introduc-

. . . . ; of Using Context-based Translation Model&nited
tion of reordering weights for this task results in no-  siates Patent 5510981.

table improvement of most error measures using &t casacuberta and E. Vidal. 2004. Machine Transla-
ther the IBM or local constraints. The optimal prob- tion with Inferred Stochastic Finite-State Transducers.
ability o for the unreordered path was determined Computational Linguistics, vol. 30(2):205-225.

on the development corpus 8% for both of these G. Doddington. 2002Automatic Evaluation of Machine

constraints. The results on the test corpus using this Translation Quality Using n-gram Co-Occurrence
setting are also given in Tab. 4. Statistics Proc. Human Language Technology Conf.,

San Diego, CA.

6 Conclusion S. Kanthak and H. Ney. 2004FSA: an Efficient and

In this paper. we described a reordering framework Flexible C++ Toolkit for Finite State Automata using
IS paper, w : ing w On-demand ComputationProc. 42nd Annual Meet-

which performs source sentence reordering on word jng of the Association for Computational Linguistics,
level. We suggested to use optimal alignment func- pp. 510-517, Barcelona, Spain.

tions for monotonization and improvement of transk. Knight and Y. Al-Onaizan. 1998.Translation with
lation model training. This allowed us to translate Finite-State DevicesLecture Notes in Atrtificial Intel-
monotonically taking a reordering graph as input. ligence, Springer-Verlag, vol. 1529, pp. 421-437.
We then described known and novel reordering cor- Kumar and W. Byrne. 2003A Weighted Finite State

. : . o : _ Transducer Implementation of the Alignment Template
straints and their efficient finite-state implementa Model for Statistical Machine TranslatiorProc. Hu-

tions in which the reordering graph is computed on- i | anguage Technology Conf. NAACL, pp. 142—

demand. We also utilized weighted permutations. 149, Edmonton, Canada.

We showed that our monotonic phrase-based trans: Matusov, R. Zens, and H. Ney. 200ymmetric Word

lation approach effectively makes use of the reorder- Alignments for Statistical Machine TranslatioRroc.

ing framework to produce quality translations even 20th Int. Conf. on Computational Linguistics, pp. 219—
: i ; 225, Geneva, Switzerland.

from languages with significantly different word or _ .

der. On the Japanese-to-English and Chinese—tB—‘\]/' Och agd H. '_\'e3|" Aﬁ.OOS\ Sysﬁ”:jat;;:compa”.son |°f

English IWSLT tasks, our system performed at least arlous Statistical Alignment Models-omputationa

I he b hi lati Linguistics, vol. 29, number 1, pp. 19-51.
as well as the best machine translation system. . o, heni s Roukos, T. Ward, and W.-J. Zhu. 2002.

BLEU: a Method for Automatic Evaluation of Machine
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