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Abstract

This paper presents novel approaches to
reordering in phrase-based statistical ma-
chine translation. We perform consistent
reordering of source sentences in train-
ing and estimate a statistical translation
model. Using this model, we follow a
phrase-based monotonic machine transla-
tion approach, for which we develop an ef-
ficient and flexible reordering framework
that allows to easily introduce different re-
ordering constraints. In translation, we
apply source sentence reordering on word
level and use a reordering automaton as in-
put. We show how to compute reordering
automata on-demand using IBM or ITG
constraints, and also introduce two new
types of reordering constraints. We further
add weights to the reordering automata.
We present detailed experimental results
and show that reordering significantly im-
proves translation quality.

1 Introduction

Reordering is of crucial importance for machine
translation. Already (Knight et al., 1998) use full un-
weighted permutations on the level of source words
in their early weighted finite-state transducer ap-
proach which implemented single-word based trans-
lation using conditional probabilities. In a refine-
ment with additional phrase-based models, (Kumar
et al., 2003) define a probability distribution over
all possible permutations of source sentence phrases
and prune the resulting automaton to reduce com-
plexity.

A second category of finite-state translation ap-
proaches uses joint instead of conditional probabili-
ties. Many joint probability approaches originate in
speech-to-speech translation as they are the natural
choice in combination with speech recognition mod-
els. The automated transducer inference techniques
OMEGA (Vilar, 2000) and GIATI (Casacuberta et
al., 2004) work on phrase level, but ignore the re-
ordering problem from the view of the model. With-
out reordering both in training and during search,
sentences can only be translated properly into a lan-
guage with similar word order. In (Bangalore et al.,
2000) weighted reordering has been applied to tar-
get sentences since defining a permutation model on
the source side is impractical in combination with
speech recognition. In order to reduce the computa-
tional complexity, this approach considers only a set
of plausible reorderings seen on training data.

Most other phrase-based statistical approaches
like the Alignment Template system of Bender
et al. (2004) rely on (local) reorderings which are
implicitly memorized with each pair of source and
target phrases in training. Additional reorderings on
phrase level are fully integrated into the decoding
process, which increases the complexity of the sys-
tem and makes it hard to modify. Zens et al. (2003)
reviewed two types of reordering constraints for this
type of translation systems.

In our work we follow a phrase-based transla-
tion approach, applying source sentence reordering
on word level. We compute a reordering graph on-
demand and take it as input for monotonic trans-
lation. This approach is modular and allows easy
introduction of different reordering constraints and
probabilistic dependencies. We will show that it per-
forms at least as well as the best statistical machine
translation system at the IWSLT Evaluation.
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In the next section we briefly review the basic
theory of our translation system based on weighted
finite-state transducers (WFST). In Sec. 3 we in-
troduce new methods for reordering and alignment
monotonization in training. To compare differ-
ent reordering constraints used in the translation
search process we develop an on-demand com-
putable framework for permutation models in Sec. 4.
In the same section we also define and analyze un-
restricted and restricted permutations with some of
them being first published in this paper. We con-
clude the paper by presenting and discussing a rich
set of experimental results.

2 Machine Translation using WFSTs

Let fJ
1 andeI

i be two sentences from a source and
target language. Assume that we have word level
alignmentsA of all sentence pairs from a bilingual
training corpus. We denote with̃eJ

1 the segmenta-
tion of a target sentenceeI

1 into J phrases such that
fJ
1 and ẽJ

1 can be aligned to form bilingual tuples
(fj , ẽj). If alignments are onlyfunctions of target
wordsA′ : {1, . . . , I} → {1, . . . , J}, the bilingual
tuples(fj , ẽj) can be inferred with e. g. the GIATI
method of (Casacuberta et al., 2004), or with our
novel monotonization technique (see Sec. 3). Each
source word will be mapped to a target phrase of one
or more words or an “empty” phraseε. In particular,
the source words which will remain non-aligned due
to the alignment functionality restriction are paired
with the empty phrase.

We can then formulate the problem of finding the
best translation̂eI

1 of a source sentencefJ
1 :

êI
1 = argmax

eI
1

Pr(fJ
1 , eI

1)

= argmax
ẽJ
1

∑
A∈A

Pr(fJ
1 , ẽJ

1 , A)

∼= argmax
ẽJ
1

max
A∈A

Pr(A) · Pr(fJ
1 , ẽJ

1 |A)

∼= argmax
ẽJ
1

max
A∈A

∏
fj :j=1...J

Pr(fj , ẽj |f j−1
1 , ẽj−1

1 , A)

= argmax
ẽJ
1

max
A∈A

∏
fj :j=1...J

p(fj , ẽj |f j−1
j−m, ẽj−1

j−m, A)

In other words: if we assume a uniform distri-
bution for Pr(A), the translation problem can be
mapped to the problem of estimating anm-gram lan-
guage model over a learned set of bilingual tuples

(fj , ẽj). Mapping the bilingual language model to a
WFSTT is canonical and it has been shown in (Kan-
thak et al., 2004) that the search problem can then be
rewritten using finite-state terminology:

êI
1 = project-output (best (fJ

1 ◦ T )) .

This implementation of the problem as WFSTs may
be used to efficiently solve the search problem in
machine translation.

3 Reordering in Training

When the alignment functionA′ is not monotonic,
target language phrases̃e can become very long.
For example in a completely non-monotonic align-
ment all target words are paired with the last aligned
source word, whereas all other source words form
tuples with the empty phrase. Therefore, for lan-
guage pairs with big differences in word order, prob-
ability estimates may be poor.

This problem can be solved by reordering either
source or target training sentences such that align-
ments become monotonic for all sentences. We
suggest the following consistent source sentence re-
ordering and alignment monotonization approach in
which we compute optimal, minimum-cost align-
ments.

First, we estimate a cost matrixC for each sen-
tence pair(fJ

1 , eI
1). The elements of this matrixcij

are the local costs of aligning a source wordfj to a
target wordei. Following (Matusov et al., 2004), we
compute these local costs by interpolating state oc-
cupation probabilities from the source-to-target and
target-to-source training of the HMM and IBM-4
models as trained by the GIZA++ toolkit (Och et al.,
2003). For a given alignmentA ⊆ I × J , we define
the costs of this alignmentc(A) as the sum of the
local costs of all aligned word pairs:

c(A) =
∑

(i,j)∈A

cij (1)

The goal is to find an alignment with the minimum
costs which fulfills certain constraints.

3.1 Source Sentence Reordering

To reorder a source sentence, we require the
alignment to be afunction of source words A1:
{1, . . . , J} → {1, . . . , I}, easily computed from the
cost matrixC as:

A1(j) = argmini cij (2)
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We do not allow for non-aligned source words.A1

naturally defines a new order of the source wordsfJ
1

which we denote by̆fJ
1 . By computing this permu-

tation for each pair of sentences in training and ap-
plying it to each source sentence, we create a corpus
of reordered sentences.

3.2 Alignment Monotonization

In order to create a “sentence” of bilingual tuples
(f̆J

1 , ẽJ
1 ) we required alignments between reordered

source and target words to be afunction of target
wordsA2 : {1, . . . , I} → {1, . . . , J}. This align-
ment can be computed in analogy to Eq. 2 as:

A2(i) = argminj c̆ij (3)

where c̆ij are the elements of the new cost matrix
C̆ which corresponds to the reordered source sen-
tence. We can optionally re-estimate this matrix by
repeating EM training of state occupation probabili-
ties with GIZA++ using the reordered source corpus
and the original target corpus. Alternatively, we can
get the cost matrix̆C by reordering the columns of
the cost matrixC according to the permutation given
by alignmentA1.

In alignmentA2 some target words that were pre-
viously unaligned inA1 (like “the” in Fig. 1) may
now still violate the alignment monotonicity. The
monotonicity of this alignment can not be guaran-
teed forall words if re-estimation of the cost matri-
ces had been performed using GIZA++.

The general GIATI technique (Casacuberta et al.,
2004) is applicable and can be used to monotonize
the alignmentA2. However, in our experiments
the following method performs better. We make
use of the cost matrix representation and compute
a monotonic minimum-cost alignment with a dy-
namic programming algorithm similar to the Lev-
enshtein string edit distance algorithm. As costs of
each “edit” operation we consider the local align-
ment costs. The resulting alignmentA3 represents
a minimum-cost monotonic “path” through the cost
matrix. To makeA3 a function of target words we
do not consider the source words non-aligned inA2

and also forbid “deletions” (“many-to-one” source
word alignments) in the DP search.

An example of such consistent reordering and
monotonization is given in Fig. 1. Here, we re-
order the German source sentence based on the ini-
tial alignmentA1, then compute the function of tar-
get wordsA2, and monotonize this alignment toA3

the very beginning of May would suit me .

the very beginning of May would suit me .

sehr gut Anfang Mai würde passen mir .

sehr gut Anfang Mai würde passen mir .

the very beginning of May would suit me .

mir sehrwürde gut Anfang Mai passen .

.Mai|of_May würde|would passen|suit mir|me |.
sehr|the_very gut|$ Anfang|beginning

A

A

A1

2

3

Figure 1: Example of alignment, source sentence re-
ordering, monotonization, and construction of bilin-
gual tuples.

with the dynamic programming algorithm. Fig. 1
also shows the resulting bilingual tuples(f̆j , ẽj).

4 Reordering in Search

When searching the best translationẽJ
1 for a given

source sentencefJ
1 , we permute the source sentence

as described in (Knight et al., 1998):

êI
1 = project-output (best (permute (fJ

1 ) ◦ T ))

Permuting an input sequence ofJ symbols re-
sults in J ! possible permutations and representing
the permutations as a finite-state automaton requires
at least2J states. Therefore, we opt for computing
the permutation automaton on-demand while apply-
ing beam pruning in the search.

4.1 Lazy Permutation Automata

For on-demand computation of an automaton in the
flavor described in (Kanthak et al., 2004) it is suffi-
cient to specify a state description and an algorithm
that calculates all outgoing arcs of a state from the
state description. In our case, each state represents
a permutation of a subset of the source wordsfJ

1 ,
which are already translated.

This can be described by a bit vectorbJ
1 (Zens

et al., 2002). Each bit of the state bit vector corre-
sponds to an arc of the linear input automaton and is
set to one if the arc has been used on any path from
the initial to the current state. The bit vectors of two
states connected by an arc differ only in a single bit.
Note that bit vectors elegantly solve the problem of
recombining paths in the automaton as states with
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the same bit vectors can be merged. As a result, a
fully minimized permutation automaton has only a
single initial and final state.

Even with on-demand computation, complexity
using full permutations is unmanagable for long sen-
tences. We further reduce complexity by addition-
ally constraining permutations. Refer to Figure 2 for
visualizations of the permutation constraints which
we describe in the following.

4.2 IBM Constraints

The IBM reordering constraints are well-known in
the field of machine translation and were first de-
scribed in (Berger et al., 1996). The idea behind
these constraints is to deviate from monotonic trans-
lation by postponing translations of a limited num-
ber of words. More specifically, at each state we
can translate any of thefirst l yet uncovered word
positions. The implementation using a bit vector is
straightforward. For consistency, we associate win-
dow size with the parameterl for all constraints pre-
sented here.

4.3 Inverse IBM Constraints

The original IBM constraints are useful for a large
number of language pairs where the ability to skip
some words reflects the differences in word order
between the two languages. For some other pairs,
it is beneficial to translate some words at the end of
the sentence first and to translate the rest of the sen-
tence nearly monotonically. Following this idea we
can define theinverse IBM constraints. Let j be the
first uncovered position. We can choose any posi-
tion for translation, unlessl − 1 words on positions
j′ > j have been translated. If this is the case we
must translate the word in positionj. The inverse
IBM constraints can also be expressed by

invIBM (x) = transpose (IBM(transpose (x))) .

As thetranspose operation can not be computed
on-demand, our specialized implementation uses bit
vectorsbJ

1 similar to the IBM constraints.

4.4 Local Constraints

For some language pairs, e.g. Italian – English,
words are moved only a few words to the left or
right. The IBM constraints provide too many alter-
native permutations to chose from as each word can
be moved to the end of the sentence. A solution that
allows only for local permutations and therefore has
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Figure 2: Permutations of a) positionsj = 1, 2, 3, 4
of a source sentencef1f2f3f4 using a window size
of 2 for b) IBM constraints, c) inverse IBM con-
straints and d) local constraints.

very low complexity is given by the following per-
mutation rule: the next word for translation comes
from the window ofl positions1 counting from the
first yet uncovered position. Note, that the local con-
straints define a true subset of the permutations de-
fined by the IBM constraints.

4.5 ITG Constraints

Another type of reordering can be obtained using In-
version Transduction Grammars (ITG) (Wu, 1997).
These constraints are inspired by bilingual bracket-
ing. They proved to be quite useful for machine
translation, e.g. see (Bender et al., 2004). Here,
we interpret the input sentence as a sequence of seg-
ments. In the beginning, each word is a segment of
its own. Longer segments are constructed by recur-
sively combining two adjacent segments. At each

1both covered and uncovered
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Chinese English Japanese English Italian English

train sentences 20 000 20 000 66107
words 182 904 160 523 209 012 160 427 410 275 427 402
singletons 3 525 2 948 4 108 2 956 6 386 3 974
vocabulary 7 643 6 982 9 277 6 932 15 983 10 971

dev sentences 506 506 500
words 3 515 3 595 4 374 3 595 3 155 3 253
sentence length (avg/max)6.95 / 24 7.01 / 29 8.64 / 30 7.01 / 29 5.79 / 24 6.51 / 25

test sentences 500 500 506
words 3 794 – 4 370 – 2 931 3 595
sentence length (avg/max)7.59 / 62 7.16 / 71 8.74 / 75 7.16 / 71 6.31 / 27 6.84 / 28

Table 1: Statistics of the Basic Travel Expression (BTEC) corpora.

combination step, we either keep the two segments
in monotonic order or invert the order. This pro-
cess continues until only one segment for the whole
sentence remains. The on-demand computation is
implemented in spirit of Earley parsing.

We can modify the original ITG constraints to
further limit the number of reorderings by forbid-
ding segment inversions which violate IBM con-
straints with a certain window size. Thus, the re-
sulting reordering graph contains the intersection of
the reorderings with IBM and the original ITG con-
straints.

4.6 Weighted Permutations

So far, we have discussed how to generate the per-
mutation graphs under different constraints, but per-
mutations were equally probable. Especially for the
case of nearly monotonic translation it is make sense
to restrict the degree of non-monotonicity that we
allow when translating a sentence. We propose a
simple approach which gives a higher probability
to the monotone transitions and penalizes the non-
monotonic ones.

A state descriptionbJ
1 , for which the following

condition holds:

Mon(j) : bj′ = δ(j′ ≤ j) ∀ 1 ≤ j′ ≤ J

represents the monotonic path up to the wordfj . At
each state we assign the probabilityα to that out-
going arc where the target state description fullfills
Mon(j+1) and distribute the remaining probability
mass1− α uniformly among the remaining arcs. In
case there is no such arc, all outgoing arcs get the
same uniform probability. This weighting scheme
clearly depends on the state description and the out-
going arcs only and can be computed on-demand.

5 Experimental Results

5.1 Corpus Statistics

The translation experiments were carried out on the
Basic Travel Expression Corpus(BTEC), a multilin-
gual speech corpus which contains tourism-related
sentences usually found in travel phrase books.
We tested our system on the so called Chinese-to-
English (CE) and Japanese-to-English (JE) Supplied
Tasks, the corpora which were provided during the
International Workshop on Spoken Language Trans-
lation (IWSLT 2004) (Akiba et al., 2004). In ad-
dition, we performed experiments on the Italian-to-
English (IE) task, for which a larger corpus was
kindly provided to us by ITC/IRST. The corpus
statistics for the three BTEC corpora are given in
Tab. 1. The development corpus for the Italian-to-
English translation had only one reference transla-
tion of each Italian sentence. A set of506 source
sentences and 16 reference translations is used as
a development corpus for Chinese-to-English and
Japanese-to-English and as a test corpus for Italian-
to-English tasks. The 500 sentence Chinese and
Japanese test sets of the IWSLT 2004 evaluation
campaign were translated and automatically scored
against 16 reference translations after the end of the
campaign using the IWSLT evaluation server.

5.2 Evaluation Criteria

For the automatic evaluation, we used the crite-
ria from the IWSLT evaluation campaign (Akiba et
al., 2004), namely word error rate (WER), position-
independent word error rate (PER), and the BLEU
and NIST scores (Papineni et al., 2002; Doddington,
2002). The two scores measure accuracy, i. e. larger
scores are better. The error rates and scores were
computed with respect tomultiple reference transla-
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Figure 3: Word error rate [%] as a function of the reordering window size for different reordering constraints:
Japanese-to-English (left) and Chinese-to-English (right) translation.

tions, when they were available. To indicate this, we
will label the error rate acronyms with anm. Both
training and evaluation were performed using cor-
pora and references in lowercase and without punc-
tuation marks.

5.3 Experiments

We used reordering and alignment monotonization
in training as described in Sec. 3. To estimate the
matrices of local alignment costs for the sentence
pairs in the training corpus we used the state occupa-
tion probabilities of GIZA++ IBM-4 model training
and interpolated the probabilities of source-to-target
and target-to-source training directions. After that
we estimated a smoothed4-gram language model on
the level of bilingual tuplesfj , ẽj and represented it
as a finite-state transducer.

When translating, we applied moderate beam
pruning to the search automaton only when using re-
ordering constraints with window sizes larger than3.
For very large window sizes we also varied the prun-
ing thresholds depending on the length of the input
sentence. Pruning allowed for fast translations and
reasonable memory consumption without a signifi-
cant negative impact on performance.

In our first experiments, we tested the four re-
ordering constraints with various window sizes. We
aimed at improving the translation results on the de-
velopment corpora and compared the results with
two baselines: reordering only the source training
sentences and translation of the unreordered test sen-
tences; and the GIATI technique for creating bilin-
gual tuples(fj , ẽj) without reordering of the source
sentences, neither in training nor during translation.

5.3.1 Highly Non-Monotonic Translation (JE)
Fig. 3 (left) shows word error rate on the

Japanese-to-English task as a function of the win-
dow size for different reordering constraints. For
each of the constraints, good results are achieved
using a window size of 9 and larger. This can be
attributed to the Japanese word order which is very
different from English and often follows a subject-
object-verb structure. For small window sizes, ITG
or IBM constraints are better suited for this task, for
larger window sizes, inverse IBM constraints per-
form best. The local constraints perform worst and
require very large window sizes to capture the main
word order differences between Japanese and En-
glish. However, their computational complexity is
low; for instance, a system with local constraints
and window size of 9 is as fast (25 words per sec-
ond) as the same system with IBM constraints and
window size of 5. Using window sizes larger than
10 is computationally expensive and does not sig-
nificantly improve the translation quality under any
of the constraints.

Tab. 2 presents the overall improvements in trans-
lation quality when using the best setting: inverse
IBM constraints, window size9. The baseline with-
out reordering in training and testing failed com-
pletely for this task, producing empty translations
for 37 % of the sentences2. Most of the original
alignments in training were non-monotonic which
resulted in mapping of almost all Japanese words to
ε when using only the GIATI monotonization tech-
nique. Thus, the proposed reordering methods are of
crucial importance for this task.

2Hence a NIST score of 0 due to the brevity penalty.
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mWER mPER BLEU NIST
Reordering: [%] [%] [%]

BTEC Japanese-to-English (JE) dev
none 59.7 58.8 13.0 0.00
in training 57.8 39.4 14.7 3.27
+ 9-inv-ibm 40.3 32.1 45.1 8.59
+ rescoring* 39.1 30.9 53.2 9.93

BTEC Chinese-to-English (CE) dev
none 55.2 52.1 24.9 1.34
in training 54.0 42.3 23.0 4.18
+ 7-inv-ibm 47.1 39.4 34.5 6.53
+ rescoring* 48.3 40.7 39.1 8.11

Table 2: Translation results with optimal reorder-
ing constraints and window sizes for the BTEC
Japanese-to-English and Chinese-to-English devel-
opment corpora.* Optimized for the NIST score.

mWER mPER BLEU NIST
[%] [%] [%]

BTEC Japanese-to-English (JE) test
AT 41.9 33.8 45.3 9.49
WFST 42.1 35.6 47.3 9.50

BTEC Chinese-to-English (CE) test
AT 45.6 39.0 40.9 8.55
WFST 46.4 38.8 40.8 8.73

Table 3: Comparison of the IWSLT-2004 automatic
evaluation results for the described system (WFST)
with those of the best submitted system (AT).

Further improvements were obtained with a
rescoring procedure. For rescoring, we produced
a k-best list of translation hypotheses and used the
word penalty and deletion model features, the IBM
Model 1 lexicon score, and target languagen-gram
models of the order up to9. The scaling factors for
all features were optimized on the development cor-
pus for the NIST score, as described in (Bender et
al., 2004).

5.3.2 Moderately Non-Mon. Translation (CE)

Word order in Chinese and English is usually sim-
ilar. However, a few word reorderings over quite
large distances may be necessary. This is especially
true in case of questions, in which question words
like “where” and “when” are placed at the end of
a sentence in Chinese. The BTEC corpora contain
many sentences with questions.

The inverse IBM constraints are designed to per-
form this type of reordering (see Sec. 4.3). As shown
in Fig. 3, the system performs well under these con-

mWER mPER BLEU NIST
Reordering: [%] [%] [%]
none 25.6 22.0 62.1 10.46
in training 28.0 22.3 58.1 10.32
+ 4-local 26.3 20.3 62.2 10.81
+ weights 25.3 20.3 62.6 10.79
+ 3-ibm 27.2 20.5 61.4 10.76
+ weights 25.2 20.3 62.9 10.80
+ rescoring* 22.2 19.0 69.2 10.47

Table 4: Translation results with optimal reordering
constraints and window sizes for the test corpus of
the BTEC IE task.* Optimized for WER.

straints already with relatively small window sizes.
Increasing the window size beyond4 for these con-
straints only marginally improves the translation er-
ror measures for both short (under 8 words) and long
sentences. Thus, a suitable language-pair-specific
choice of reordering constraints can avoid the huge
computational complexity required for permutations
of long sentences.

Tab. 2 includes error measures for the best setup
with inverse IBM constraints with window size of7,
as well as additional improvements obtained by ak-
best list rescoring.

The best settings for reordering constraints and
model scaling factors on the development corpora
were then used to produce translations of the IWSLT
Japanese and Chinese test corpora. These trans-
lations were evaluated against multiple references
which were unknown to the authors. Our system
(denoted with WFST, see Tab. 3) produced results
competitive with the results of the best system at the
evaluation campaign (denoted with AT (Bender et
al., 2004)) and, according to some of the error mea-
sures, even outperformed this system.

5.3.3 Almost Monotonic Translation (IE)
The word order in the Italian language does not

differ much from the English. Therefore, the abso-
lute translation error rates are quite low and translat-
ing without reordering in training and search already
results in a relatively good performance. This is re-
flected in Tab. 4. However, even for this language
pair it is possible to improve translation quality by
performing reordering both in training and during
translation. The best performance on the develop-
ment corpus is obtained when we constrain the re-
odering with relatively small window sizes of 3 to 4
and use either IBM or local reordering constraints.
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On the test corpus, as shown in Tab. 4, all error mea-
sures can be improved with these settings.

Especially for languages with similar word order
it is important to useweightedreorderings (Sec. 4.6)
in order to prefer the original word order. Introduc-
tion of reordering weights for this task results in no-
table improvement of most error measures using ei-
ther the IBM or local constraints. The optimal prob-
ability α for the unreordered path was determined
on the development corpus as0.5 for both of these
constraints. The results on the test corpus using this
setting are also given in Tab. 4.

6 Conclusion
In this paper, we described a reordering framework
which performs source sentence reordering on word
level. We suggested to use optimal alignment func-
tions for monotonization and improvement of trans-
lation model training. This allowed us to translate
monotonically taking a reordering graph as input.
We then described known and novel reordering con-
straints and their efficient finite-state implementa-
tions in which the reordering graph is computed on-
demand. We also utilized weighted permutations.
We showed that our monotonic phrase-based trans-
lation approach effectively makes use of the reorder-
ing framework to produce quality translations even
from languages with significantly different word or-
der. On the Japanese-to-English and Chinese-to-
English IWSLT tasks, our system performed at least
as well as the best machine translation system.
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