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Abstract

In this paper, a variant of a spectral clus-
tering algorithm is proposed for bilingual
word clustering. The proposed algorithm
generates the two sets of clusters for both
languages efficiently with high seman-
tic correlation within monolingual clus-
ters, and high translation quality across
the clusters between two languages. Each
cluster level translation is considered as
a bilingual concept, which generalizes
words in bilingual clusters. This scheme
improves the robustness for statistical ma-
chine translation models. Two HMM-
based translation models are tested to use
these bilingual clusters. Improved per-
plexity, word alignment accuracy, and
translation quality are observed in our ex-
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1999) showed improvements on perplexity of bilin-
gual corpus, and word translation accuracy using a
template-based translation model. Both approaches
are optimizing the maximum likelihood of parallel
corpus, in which a data point is a sentence pair: an
English sentence and its translation in another lan-
guage such as French. These algorithms are es-
sentially the same as monolingual word clusterings
(Kneser and Ney, 1993)—an iterative local search.
In each iteration, a two-level loop over every possi-
ble word-cluster assignment is tested for better like-
lihood change. This kind of approach has two draw-
backs: first it is easily to get stuck in local op-
tima; second, the clustering of English and the other
language are basically two separated optimization
processes, and cluster-level translation is modelled
loosely. These drawbacks make their approaches
generally not very effective in improving translation
models.

periments.
In this paper, we propose a variant of the spec-

tral clustering algorithm (Ng et al., 2001) for bilin-
gual word clustering. Given parallel corpus, first, the
Statistical natural language processing usually sufvord’s bilingual context is used directly as features
fers from the sparse data problem. Comparing tofor instance, each English word is represented by
the available monolingual data, we have much lests bilingual word translation candidates. Second,
training data especially for statistical machine trandatent eigenstructure analysis is carried out in this
lation (SMT). For example, in language modellingpilingual feature space, which leads to clusters of
there are more than 1.7 billion words corpora availwords with similar translations. Essentially an affin-
able: English Gigaword by (Graff, 2003). Howeverjty matrix is computed using these cross-lingual fea-
for machine translation tasks, there are typically legsires. It is then decomposed into two sub-spaces,
than 10 million words of training data. which are meaningful for translation tasks: the left
Bilingual word clustering is a process of form-subspace corresponds to the representation of words
ing corresponding word clusters suitable for main English vocabulary, and the right sub-space cor-
chine translation. Previous work from (Wang et al.responds to words in French. Each eigenvector is
1996) showed improvements in perplexity-oriented¢onsidered as one bilingual concept, and the bilin-
measures using mixture-based translation lexicagual clusters are considered to be its realizations in
(Brown et al.,, 1993). A later study by (Och,two languages. Finally, a general K-means cluster-
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25

Proceedings of the ACL Workshop on Building and Using Parallel Tesiges 25-32,
Ann Arbor, June 20050 Association for Computational Linguistics, 2005



ing algorithm is used to find out word clusters in thevhereP(a;|a;_1) is the transition probability. This
two sub-spaces. model captures the assumption that words close in
The remainder of the paper is structured as fokhe source sentence are aligned to words close in
lows: in section 2, concepts of translation modelthe target sentence. An additional pseudo word of
are introduced together with two extended HMMs{NULL” is used as the beginning of English sen-
in section 3, our proposed bilingual word clustertence for HMM to start with. The (Och and Ney,
ing algorithm is explained in detail, and the relatec003) model includes other refinements such as spe-
works are analyzed; in section 4, evaluation metricgial treatment of a jump to a Null word, and a uni-
are defined and the experimental results are givefgrm smoothing prior. The HMM with these refine-

in section 5, the discussions and conclusions. ments is used as our baseline. Motivated by the work
in both (Och and Ney, 2000) and (Toutanova et al.,
2 Statistical Machine Translation 2002), we propose the two following simplest ver-

. sions of extended HMMs to utilize bilingual word
The task of translation is to translate one Semen%‘i’usters

in some source languadeinto a target language.
For example, given a French sentence witlvords 2.2  Extensions to HMM with word clusters
J _
denoted gy = fifs...fs, an SMT system auto- | 4o te the cluster mappirg — F(f;), which
matically translates it into an English sentence with _ . .
I assigns French worfj; to its cluster IDF; = F(f;).
I words denoted by; = ejes...e;. The SMT sys- . . ) )
) . ; .. Similarly E maps English wore; to its cluster ID
tem first proposes multiple English hypotheses in its .
of E; = E(e;). In this paper, we assume each word
model space. Among all the hypotheses, the systebm

. . ” elongs to one cluster only.
selects the one with the highest conditional proba-~,, . 9 . y
o ) ) . i With bilingual word clusters, we can extend the
bility according to Bayes'’s decision rule:

HMM model in Eqgn. 1 in the following two ways:
N I pJ T\ Iy ol
€1 = arg{ge?;axP(eﬂfl ) = ari?;ax]?(fl le1) P(ey), P(fl‘]\e{) _ Za{ H}‘]=1 P(fjleaj)'

(1) P(aj|aj*17E(eaj71)vF(fjfl))a
where P(f/|e!) is called translation model and 3)
P(el) is calledlanguage model The translation wWhereE(e,; ,) and F(f;—1) are non overlapping
model is the key component, which is the focus iword clusters E,; ., F;—1)for English and French

this paper. respectively.
Another explicit way of utilizing bilingual word
2.1 HMM-based Translation Model clusters can be considered as a two-stream HMM as

HMM is one of the effective translation models (Vo-1OllOWS:

gel et al., 1996), which is easily scalable to VeryP(fi’,F{\e{,E{)
large training corpus.

To model word-to-word translation, we introduce
the mappingi — a;, which assigns a French word
fj in position j to a English worde; in position
i = a; denoted as,;. Each French word; is

Yo7 T2y P(fjlea,) P(F}|Ea,) Plajla;—1).

4)
This model introduces the translation of bilingual
word clusters directly as an extra factor to Eqn. 2.
. . Intuitively, the role of this factor is to boost the trans-
an observation, and it is generated by a HMM Stat%tion probabilities for words sharing the same con-

d.e.fmeq.ase[af’%]’ where the alignment; for po- cept. This is a more expressive model because it
S't'o’? J1S c_onS|dered to have a dgpendency on thr%odels both word and the cluster level translation
g(ej\gﬁ::daggrmgxé_‘l' Thus the first-order HMM equivalence. Also, compared with the model in Eqn.
) 3, this model is easier to train, as it uses a two-
J dimension table instead of a four-dimension table.
P(filef) = > T] P(filea,)P(ajlaj—1), (2) ~ However, we do notwant thi8(F}|E,,) to dom-
J =1 inate the HMM transition structure, and the obser-
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vation probability ofP( f;|e,,) during the EM itera- is a class of its own. There exists efficient leave-one-
tions. Thus a uniform prioP(F;) = 1/|F|isintro-  out style algorithm (Kneser and Ney, 1993), which
duced as a smoothing factor f&Y F}| £, ): can automatically determine the number of clusters.
For the bilingual partP(f{lel, F,E), we can
P(Fj|Eq;) = AP(Fj|E,;) + (1 = \)P(F;), (5) slightly modify the same algorithm as in (Kneser
and Ney, 1993). Given the word alignmefit{ }
where |F| is the total number of word clusters in betweenf; ande! collected from the Viterbi path

French (we use the same number of clusters for bofh MM-based translation model. we can infeas
languages).A can be chosen to get optimal perfor,)ows:

mance on a development set. In our case, we fix it to

be 0.5 in all our experiments. F = argmaxP(f]|e!,F,E)
{F}

3 Bilingual Word Clustering

J
= P(F:|E, \P(f;|F;). (8
In bilingual word clustering, the task is to build word arg{?}laXH (F1Ee ) P(S51E)- - (8)

clusters- andE to form partitions of the vocabular-

ies of the two languages respectively. The two pa©verall, this bilingual word clustering algorithm is
titions for the vocabularies df andE are aimed to essentially a two-step approach. In the first step,
be suitable for machine translation in the sense thainferred by optimizing the monolingual likelihood
the cluster/partition level translation equivalence isf English data, and secondkyis inferred by op-
reliable and focused to handle data sparseness; tivizing the bilingual part without changing. In
translation model using these clusters explains thhis way, the algorithm is easy to implement without
parallel corpug (f{, el)} better in terms of perplex- much change from the monolingual correspondent.

J=1

ity or joint likelihood. This approach was shown to give the best results
_ - in (Och, 1999). We use it as our baseline to compare
3.1 From Monolingual to Bilingual with.

To infer bilingual word clusters ofF, E), one can

optimize the joint probability of the parallel corpusg'2 Bilingual Word Spectral Clustering

{( 1Ja 6{)} using the clusters as follows: Instead of using word alignment to bridge the par-
allel sentence pair, and optimize the likelihood in

(F.E) = argmaxP(f{,e!|F, E) two separate steps, we develop an alignment-free al-
(F,E) gorithm using a variant of spectral clustering algo-
= argmax P(el|E)P(f{|el, F,E)(6) rithm. The goal is to build high cluster-level trans-
(F,E) lation quality suitable for translation modelling, and

E 6 tes th timizati into t at the same time maintain high intra-cluster similar-
qn. © separates Ihe oplimization process into W|?y , and low inter-cluster similarity for monolingual

parts: the monolingual part f&, and the bilingual clusters

part for F given fixedE. The monolingual part is '

considered as a prior probabilif§te! |E), andE can 3.2.1 Notations

be inferred using corpus bigram statistics in the fol- \we define the vocabulary as the French vo-
lowing equation: cabulary with a size ofVr|; Vg as the English vo-
cabulary with size ofVg|. A co-occurrence matrix
Cyr,g) is built with |Vz| rows and|Vg| columns;
each element represents the co-occurrence counts of
! he corresponding French wofdand English word
— argmax [[ P(BEi1)Plei|By). (7) _
(B} e;. In this way, each French word forms a row vec-
tor with a dimension ofVz|, and each dimensional-
We need to fix the number of clusters beforehandty is a co-occurring English word. The elements in
otherwise the optimum is reached when each wortthe vector are the co-occurrence counts. We can also

E = argmaxP(c!|E)
{E}

27



view each column as a vector for English word, and e Compute the eigen structure of the normalized
we’ll have similar interpretations as above. matrix A g, and find thek largest eigen vectors:
3.2.2  Algorithm v1, V2, ..., Ug; Similarly, find thek largest eigen

i ) o ) vectors ofAp: uy,us, ..., Ug;
With Cr gy, we can infer two affinity matrixes

as follows: e Stack thek eigenvectors ofvy,ve, ..., v in
An — (T the columns ofyz, and stack the eigenvectors

E = C{EE}C{FE} u1, Us, ..., ug in the columns folz; Normalize

Ap = Cip, E}C{TR B} rows of bothYz andYF to have unit lengthYy

whereAg is an|Vg| x |Vg| affinity matrix for En- 's size ofViz| x k andYp is size off Ve[ x k;

glish words, with rows and columns representing e Treat each row oF as a point inR!V=1**  and
English words and each element the inner product cluster them intaX English word clusters us-
between two English words column vectors. Corre-  ing K-means. Treat each row bf- as a pointin
spondingly,Ar is an affinity matrix of sizdVg| x RIVFIxE “and cluster them inté& French word
|V | for French words with similar definitions. Both clusters.
Ag and Ap aresymmetricand non-negative Now
we can compute the eigenstructure for bdth and
Apr. In fact, the eigen vectors of the two are corre-
spondingly the right and left sub-spaces of the orig-
inal co-occurrence matrix of’;r zy respectively.  HereAp and Ay are affinity matrixes of pair-wise
This can be computed using singular value deconmner products between the monolingual words. The
position (SVD):Cyp, gy = USVT, Ap = VS?VT,  more similar the two words, the larger the value.
andAp = US?UT, whereU is the left sub-space, In our implementations, we did not apply a kernel
andV the right sub-space of the co-occurrence méunction like the algorithm in (Ng et al., 2001). But
trix Cyr - S is a diagonal matrix, with the singular the kernel function such as the exponential func-
values ranked from large to small along the diagonation mentioned above can be applied here to control
Obviously, the left sub-spadé is the eigenstructure how rapidly the similarity falls, using some carefully
for Ap; the right sub-spac¥ is the eigenstructure chosen scaling parameter.
for Ag. . .

By choosing the tog( singular values (the square3'2'3 Related Clustering Algorithms
root of the eigen values for bothy and Ar), the Thg abovg algorithm is very close'to the va}riants
sub-spaces will be reduced @y, x andViy, | pf a big fam_|ly of the spectra_l clustering algorl_thm_s
respectively. Based on these subspaces, we can cdfyfoduced in (Meila and Shi, 2000) and studied in
out K-means or other clustering algorithms to in{Ng etal., 2001). Spectral clustering refers to a class

fer word clusters for both languages. Our algorithn?f techniques which rely on the eigenstructure of
goes as follows: a similarity matrix to partition points into disjoint

clusters with high intra-cluster similarity and low

e Initialize  bilingual ~ co-occurrence  matrix jnter-cluster similarity. It's shown to be computing
C(r,py With rows representing French Words’thek-way normalized cuti — trYTD-3 AD-3Y
and columns English words.Cj; s the €o- ¢4 5y matrixy” € RM*N. A is the affinity matrix,

occurrence raw counts of French woffand 54y~ in our algorithm corresponds to the subspaces
English worde;; of U and V.

e Form the affinity matrixds = C{TFE}C{F,E} Experimentally, it has been observed that using

andAp = C{TEE}C{F,E}- Kernels can also be MOT€ €igenvectors a_nd directly computing-avay
partitioning usually gives better performance. In our

applied here such a4 = exp( implementations, we used the top 500 eigen vectors
for English words. Setflg,; = 0andAr;; =0, to construct the subspacesiéfandV” for K-means
and normalize each row to be unit length; clustering.

e Finally, assign original wora; to cluster Fy
if row i of the matrix Yz is clustered asvy;
similar assignments are for French words.

C{F’E}C?F,E})
)
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3.2.4 K-means alignment between the parallel sentences. Practi-

The K-means here can be considered as a po&§@lly, we can use word alignment as used in (Och,
processing step in our proposed bilingual word clust999). Given an initial word alignment inferred by
tering. For initial centroids, we first compute theHMM, the counts are collected from the aligned
centerof the whole data set. The farthest centroigvord pair. If the counts are L-1 normalized, then
from the center is then chosen to be the first initiadin® co-occurrence matrix is essentially the bilingual
centroid; and after that, the other K-1 centroids ar@/ord-to-word translation lexicon such &% fj|eq, ).

. H 7
chosen one by one to well separate all the previold/€ can remove very small entrieB(f|e) < 1e™"),
chosen centroids. so that the matrix of’( - 17y is more sparse for eigen-

The stopping criterion is: if the maximal Ch(,jmgestructure computation. The proposed algorithm is

of the clusters’ centroids is less than the threshold §R€n carried out to generate the bilingual word clus-

1e-3 between two iterations, the clustering algorithrf£rs for both English and Chinese.
then stops. Figure 1 shows the ranked Eigen values for the

co-occurrence matrix af'y . gy .
4 Experiments

Eigen values of affinity matrices
35 T T

To test our algorithm, we applied it to the TIDES T [5 @ oo e o itvor e
Chinese-English small data track evaluation test se

After preprocessing, such as English tokenizatior
Chinese word segmentation, and parallel sentenc
splitting, there are in total 4172 parallel sentence N
pairs for training. We manually labeled word align-
ments for 627 test sentence pairs randomly sampleé |}

from the dry-run test data in 2001, which has four | |
human translations for each Chinese sentence. T ——
preprocessing for the test data is different from the
above, as it is designed for humans to label wor
alignments correctly by removing ambiguities from L
tokenization and word segmentationas muchaspo °~ % Twcgenvawe
sible. The data statistics are shown in Table 1.

n Values
N

Figure 1: Top-1000 Eigen Values of Co-occurrence

English| Chinese|  Matrix
Sent. Pairs 4172
Train | Words 133598 105331 It is clear, that using the initial HMM word align-
Voc Size 8359 | 7984 ment for co-occurrence matrix makes a difference.
Sent. Pairs 627 The top Eigen value using word alignment in piot
Test | Words 25500 | 19726 (the deep blue curve) is 3.1946. The two plateaus
Voc Size 4084 | 4827 indicate how many top eigen vectors to choose to
Unseen Voc Size 1278 | 1888 reduce the feature space. The first one indicates that
Alignment Links 14769 K is in the range of 50 to 120, and the second plateau

indicates K is in the range of 500 to 800. Ptotis
inferred from the raw co-occurrence counts with the
top eigen value of 2.7148. There is no clear plateau,
o ] which indicates that the feature space is less struc-
4.1 Building Co-occurrence Matrix tured than the one built with initial word alignment.
Bilingual word co-occurrence counts are collected We find 500 top eigen vectors are good enough
from the training data for constructing the matrixfor bilingual clustering in terms of efficiency and ef-
of Cr,gy). Raw counts are collected without wordfectiveness.

Table 1: Training and Test data statistics
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4.2 Clustering Results ing within a cluster. The cluster of bil2;Eelates

Clusters built via the two described methods arf® the concept of “wine” in English. The mono-
compared. The first methdil1 is the two-step op- lingual word clustering tends to scatter those words

timization approach: first optimizing the monolin-into several big noisy clusters. This cluster also has a

gual clusters for target language (English), and aflood translational corres_pondent in bil2-@ Chi-
terwards optimizing clusters for the source languag&®Se- The clusters of bil2;Eand bil2-G are also
(Chinese). The second methbil? is our proposed correlated very well. We not_lced that thg Chlne_:se
algorithm to compute the eigenstructure of the cotlUSters are slightly more noisy than their English
occurrence matrix, which builds the left and righC0rresponding ones. This comes from the noise in
subspaces, and finds clusters in such spaces. 2%}? parallel corpus, and sometimes from ambiguities
500 eigen vectors are used to construct these sufj-the word segmentation in the preprocessing steps.
spaces. For both methods, 1000 clusters are inferred!© Measure the quality of the bilingual clusters,
for English and Chinese respectively. The numbel/® can use the following two kind of metrics:

of clusters is chosen in a way that the final word
alignment accuracy was optimal. Table 2 provides
the clustering examples using the two algorithms.

e Averagee-mirror (Wang et al., 1996): The-
mirror of a classE; is the set of clusters in
Chinese which have a translation probability

settings cluster examples greater thare. In our casee is 0.05, the same
mono-E entirely,mainly,merely value used in (Och, 1999).
MONo-6 10th,13th,T4th,16th,17th,18th,19th
____20th,21s1,23rd,24th,26th ___ e Perplexity: The perplexity is defined as pro-
mono-E | drink,anglophobia,carota,giant,gymnasium i | to th tive | likelihood of th
bil1-Cs i, R, W, I, PR, R, OK portional {o the negative log likelinood ot the
bil2-E, alcoholic cognac distilled drink HMM model Viterbi alignment path for each
,__scotch spirits whiskey _ sentence pair. We use the bilingual word clus-
bil2-C, :%{%@%g%é’ %ﬁ ff E&m ters in two extended HMM models, and mea-
AR, y M —., B, e, AR bE .
: evrec harmony luxury people sedan sedans sure the perplexities of the unseen test data af-
b|I2-E2 . . .. . .
tour tourism tourist toward travel ter seven forward-backward training iterations.
SEN LA ELnE E =il o7 e .
bilz-C, | /AR ST, PR, S, The two perplexities are defined d&P1 =
BRAT, ki, A AR, A J
exp(— Zj:l Og(P(fj|6aj)P(aj|aj*1’Eaj—l’
- A _ —1yJ
Table 2: Bilingual Cluster Examples Fj_1))/J) andPP2 = exp(—J " }_7_; log(

P(fj|eaj)P(aj|aj*1)P(Fj*1|.E1ajf1))) for the
The monolingual word clusters often contain  tWo extended HMM models in Eqn 3 and 4.

words with similar syntax functions. This hap-

pens with esp. frequent words (eg. monp4nd Both metrics measure the extent to which the trans-

mono-B). The algorithm tends to put rare Wordslatlon probability is spread out. The smaller the bet-

such as “carota, anglophobia” into a very big clustetrer' 'The following ta'ble summarizes the results on
(eg. mono-g). In addition, the words within these e-mirror and perplexity using different methods on

X - he unseen .
monolingual clusters rarely share similar translat- e unseen test data

. . “ algorithms | e-mirror [ HMM-1 Perp | HMM-2 Perp
tions such_ as the typical cluster of Week,_ month, baseline - 171780

year”. This indicates that the corresponding Chi- bill 3.97 1810.55 352.28
nese clusters inferred by optimizing Eqn. 7 are not __ bil2 2.54 1610.86 343.64

close in terms of translational similarity. Overall, theThe baseline uses no word clusters. bill and bil2
method of bil1 does not give us a good translationare defined as above. It is clear that our proposed
correspondence between clusters of two languagesethod gives overall lower perplexity: 1611 from
The English cluster of monosEand its best aligned the baseline of 1717 using the extended HMM-1.
candidate of bil1-G are not well correlated either. If we use HMM-2, the perplexity goes down even
Our proposed bilingual cluster algorithm bil2more using bilingual clusters: 352.28 using bill, and
generates the clusters with stronger semantic mea3¥3.64 using bil2. As stated, the four-dimensional
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table of P(aj]aj_l, E(eajfl), F(fj_1)) is eaSin e-mirror over different settings
subject to overfitting, and usually gives worse per- *e .
. A ————— el I i
plexities. _o3 e )
Averagee-mirror for the two-step bilingual clus- é 281
tering algorithm is 3.97, and for spectral cluster- b 15
. . . . E —#—BIL2: Co-occur raw counts
ing algorithm is 2.54. This means our proposed al- 05 Igltii?m%:g‘é‘;ﬁ?ﬁ?z;’{i’c??ﬂ”“w°“"a"g”t
gorithm generates more focused clusters of transla- OQ NN
tional equivalence. Figure 2 shows the histogram for T RE S LSS S
the cluster pair§F;, E;), of which the cluster level number of clusters
translation probabilitied®(F;|E;) € [0.05,1]. The _ _ o _
interval[0.05, 1] is divided into 10 bins, with first bin Figure 3:e-mirror with different settings
[0.05,0.1], and 9 bins dividgs.1, 1] equally. The
percentage for clusters pairs with( F;| E;) falling o
in each bin is drawn. methods. The baseline is the standard HMM trans-
lation model defined in Egn. 2; the HMML1 is de-
Histogram of (F.E) pairs with P(FIE) > 0.05 fined in Eqn 3, and HMM2 is defined in Eqn 4. The

algorithm is applying our proposed bilingual word
clustering algorithm to infer 1000 clusters for both
languages. As expected, Figure 4 shows that using

F-measure of word alignment

45.00%

005 01 02 03 04 05 06 07 08 09

44.00% -
Ten bins for P(F|E) ranging from [0.05, 1.0] 43.00%
o 43
§ 42.00% A
£ 41.00% —e—Baseline HMM ||

Figure 2: Histogram of cluster pai($;, F;) L 40.00% / = Extended HMM-1|__|
’ / —a—Extended HMM-2
39.00% {
. . 38.00% T T T T T T
Our algorithm generates much better aligned clus- t 2 3 4 5 6 7

HMM Viterbi Iterations

ter pairs than the two-step optimization algorithm.
There are 120 cluster pairs aligned withF; | E;) >
0.9 using clusters from our algorithm, while there
are only 8 such cluster pairs using the two-step ap-
proach. Figure 3 compares thenirror at different Word clusters is helpful for word alignment. HMM2
numbers of clusters using the two approaches. Og@ives the best performance in terms of F-measure of
algorithm has a much bettermirror than the two- Word alignment. One quarter of the words in the test
step approach over different number of clusters. Vocabulary are unseen as shown in Table 1. These
Overall, the extended HMM-2 is better thanunseen words related alignment links (4778 out of
HMM-1 in terms of perplexity, and is easier to train.14769) will be left unaligned by translation models.
Thus the oracle (best possible) recall we could get
4.3 Applications in Word Alignment is 67.65%. Our standard t-test showed that signifi-
We also applied our bilingual word clustering in acant interval is 0.82% at the 95% confidence level.
word alignment setting. The training data is thelhe improvement at the last iteration of HMM is
TIDES small data track. The word alignments arénarginally significant.
manually labeled for 627 sentences sampled from
the dryrun test data in 2001. In this manually4'
aligned data, we include one-to-one, one-to-man@ur pilot word alignment on unseen data showed
and many-to-many word alignments. Figure 4 sumimprovements. However, we find it more effective
marizes the word alignment accuracy for differenin our phrase extraction, in which three key scores

Figure 4: Word Alignment Over lterations

4 Applications in Phrase-based Translations
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