
Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages, pages 1–8,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Memory-based morphological analysis generation and
part-of-speech tagging of Arabic

Erwin Marsi, Antal van den Bosch
ILK, Tilburg University

P.O. Box 90153
NL-5000 LE Tilburg

The Netherlands
{E.C.Marsi,Antal.vdnBosch}@uvt.nl

Abdelhadi Soudi
Center for Computational Linguistics

Ecole Nationale de L’Industrie Minérale
Rabat,

Morocco,
asoudi@gmail.com/asoudi@enim.ac.ma

Abstract

We explore the application of memory-
based learning to morphological analy-
sis and part-of-speech tagging of written
Arabic, based on data from the Arabic
Treebank. Morphological analysis – the
construction of all possible analyses of
isolated unvoweled wordforms – is per-
formed as a letter-by-letter operation pre-
diction task, where the operation encodes
segmentation, part-of-speech, character
changes, and vocalization. Part-of-speech
tagging is carried out by a bi-modular tag-
ger that has a subtagger for known words
and one for unknown words. We report on
the performance of the morphological an-
alyzer and part-of-speech tagger. We ob-
serve that the tagger, which has an accu-
racy of 91.9% on new data, can be used to
select the appropriate morphological anal-
ysis of words in context at a precision of
64.0 and a recall of 89.7.

1 Introduction

Memory-based learning has been successfully ap-
plied to morphological analysis and part-of-speech
tagging in Western and Eastern-European languages
(van den Bosch and Daelemans, 1999; Daelemans et
al., 1996). With the release of the Arabic Treebank
by the Linguistic Data Consortium (current version:
3), a large corpus has become available for Ara-
bic that can act as training material for machine-

learning algorithms. The data facilitates machine-
learned part-of-speech taggers, tokenizers, and shal-
low parsing units such as chunkers, as exemplified
by Diab et al. (2004).

However, Arabic appears to be a special challenge
for data-driven approaches. It is a Semitic language
with a non-concatenative morphology. In addition to
prefixation and suffixation, inflectional and deriva-
tional processes may cause stems to undergo infixa-
tional modification in the presence of different syn-
tactic features as well as certain consonants. An
Arabic word may be composed of a stem consist-
ing of a consonantal root and a pattern, affixes, and
clitics. The affixes include inflectional markers for
tense, gender, and number. The clitics may be ei-
ther attached to the beginning of stems (proclitics)
or to the end of stems (enclitics) and include pos-
sessive pronouns, pronouns, some prepositions, con-
junctions and determiners.

Arabic verbs, for example, can be conjugated ac-
cording to one of the traditionally recognized pat-
terns. There are 15 triliteral forms, of which at least
9 are in common. They represent very subtle dif-
ferences. Within each conjugation pattern, an entire
paradigm is found: two tenses (perfect and imper-
fect), two voices (active and passive) and five moods
(indicative, subjunctive, jussive, imperative and en-
ergetic). Arabic nouns show a comparably rich and
complex morphological structure. The broken plu-
ral system, for example, is highly allomorphic: for
a given singular pattern, two different plural forms
may be equally frequent, and there may be no way
to predict which of the two a particular singular will
take. For some singulars as many as three further

1



statistically minor plural patterns are also possible.
Various ways of accounting for Arabic morphol-

ogy have been proposed. The type of account of
Arabic morphology that is generally accepted by
(computational) linguists is that proposed by (Mc-
Carthy, 1981). In his proposal, stems are formed
by a derivational combination of a root morpheme
and a vowel melody. The two are arranged accord-
ing to canonical patterns. Roots are said to inter-
digitate with patterns to form stems. For exam-
ple, the Arabic stemkatab (”he wrote”) is com-
posed of the morphemektb (”the notion of writ-
ing”) and the vowel melody morpheme ’a-a’. The
two are integrated according to the pattern CVCVC
(C=consonant, V=vowel). This means that word
structure in this morphology is not built linearly as
is the case in concatenative morphological systems.

The attempts to model Arabic morphology in a
two-level system (Kay’s (1987) Finite State Model,
Beesley’s (1990; 1998) Two-Level Model and Ki-
raz’s (1994) Multi-tape Two-Level Model) reflect
McCarthy’s separation of levels. It is beyond the
scope of this paper to provide a detailed description
of these models, but see (Soudi, 2002).

In this paper, we explore the use of memory-
based learning for morphological analysis and part-
of-speech (PoS) tagging of written Arabic. The next
section summarizes the principles of memory-based
learning. The following three sections describe our
exploratory work on memory-based morphological
analysis and PoS tagging, and integration of the two
tasks. The final two sections contain a short discus-
sion of related work and an overall conclusion.

2 Memory-based learning

Memory-based learning, also known as instance-
based, example-based, or lazy learning (Aha et al.,
1991; Daelemans et al., 1999), extensions of thek-
nearest neighbor classifier (Cover and Hart, 1967),
is a supervised inductive learning algorithm for
learning classification tasks. Memory-based learn-
ing treats a set of labeled (pre-classified) training
instances as points in a multi-dimensional feature
space, and stores them as such in aninstance base
in memory. Thus, in contrast to most other ma-
chine learning algorithms, it performs no abstrac-
tion, which allows it to deal with productive but low-

frequency exceptions (Daelemans et al., 1999).
An instance consists of a fixed-length vector of

n feature-value pairs, and the classification of that
particular feature-value vector. After the instance
base is stored, new (test) instances are classified by
matching them to all instances in the instance base,
and by calculating with each match thedistance,
given by a distance kernel function. Classification
in memory-based learning is performed by thek-
NN algorithm that searches for thek ‘nearest neigh-
bours’ according to the∆(X,Y ) kernel function1.

The distance function and the classifier can be
refined by several kernel plug-ins, such as feature
weighting (assigning larger distance to mismatches
on important features), and distance weighting (as-
signing a smaller vote in the classification to more
distant nearest neighbors). Details can be found in
(Daelemans et al., 2004).

3 Morphological analysis

We focus first on morphological analysis . Training
on data extracted from the Arabic Treebank, we in-
duce a morphological analysis generator which we
control for undergeneralization (recall errors) and
overgeneralization (precision errors).

3.1 Data

3.1.1 Arabic Treebank

Our point of departure is the Arabic Treebank 1
(ATB1), version 3.0, distributed by LDC in 2005,
more specifically the “after treebank” PoS-tagged
data. Unvoweled tokens as they appear in the orig-
inal news paper are accompanied in the treebank
by vocalized versions; all of their morphological
analyses are generated by means of Tim Buckwal-
ter’s Arabic Morphological Analyzer (Buckwalter,
2002), and the appropriate morphological analysis is
singled out. An example is given in Figure 1. The in-
put token (INPUT STRING) is transliterated (LOOK-UP
WORD) according to Buckwalter’s transliteration sys-
tem. All possible vocalizations and their morpho-
logical analyzes are listed (SOLUTION). The analysis
is rule-based, and basically consists of three steps.
First, all possible segmentations of the input string

1All experiments with memory-based learning were per-
formed with TiMBL, version 5.1 (Daelemans et al., 2004),
available fromhttp://ilk.uvt.nl.

2



INPUT STRING: \331\203\330\252\330\250
LOOK-UP WORD: ktb

Comment:
INDEX: P2W38

SOLUTION 1: (kataba) [katab-u_1] katab/PV+a/PVSUFF_SUBJ:3MS
(GLOSS): write + he/it [verb]

* SOLUTION 2: (kutiba) [katab-u_1] kutib/PV_PASS+a/PVSUFF_SUBJ:3MS
(GLOSS): be written/be fated/be destined + he/it [verb]

SOLUTION 3: (kutub) [kitAb_1] kutub/NOUN
(GLOSS): books

SOLUTION 4: (kutubu) [kitAb_1] kutub/NOUN+u/CASE_DEF_NOM
(GLOSS): books + [def.nom.]

SOLUTION 5: (kutuba) [kitAb_1] kutub/NOUN+a/CASE_DEF_ACC
(GLOSS): books + [def.acc.]

SOLUTION 6: (kutubi) [kitAb_1] kutub/NOUN+i/CASE_DEF_GEN
(GLOSS): books + [def.gen.]

SOLUTION 7: (kutubN) [kitAb_1] kutub/NOUN+N/CASE_INDEF_NOM
(GLOSS): books + [indef.nom.]

SOLUTION 8: (kutubK) [kitAb_1] kutub/NOUN+K/CASE_INDEF_GEN
(GLOSS): books + [indef.gen.]

SOLUTION 9: (ktb) [DEFAULT] ktb/NOUN_PROP
(GLOSS): NOT_IN_LEXICON

SOLUTION 10: (katb) [DEFAULT] ka/PREP+tb/NOUN_PROP
(GLOSS): like/such as + NOT_IN_LEXICON

Figure 1: Example token fromATB1

in terms of prefixes (0 to 4 characters long), stems (at
least one character), and suffixes (0 to 6 characters
long) are generated. Next, dictionary lookup is used
to determine if these segments are existing morpho-
logical units. Finally, the numbers of analyses is fur-
ther reduced by checking for the mutual compatibil-
ity of prefix+stem, stem+suffix, and prefix+stem
in three compatibility tables. The resulting analy-
ses have to a certain extent been manually checked.
Most importantly, a star (*) preceding a solution in-
dicates that this is the correct analysis in the given
context.

3.1.2 Preprocessing

We grouped the 734 files from the treebank into
eleven parts of approximately equal size. Ten parts
were used for training and testing our morphological
analyzer, while the final part was used as held-out
material for testing the morphological analyzer in
combination with the PoS tagger (described in Sec-
tion 4).

In the corpus the number of analyses per word
is not entirely constant, either due to the automatic
generation method or to annotator edits. As our ini-
tial goal is to predict all possible analyses for a given
word, regardless of contextual constraints, we first
created alexicon that maps every word to all anal-
yses encountered and their respective frequencies
From the 185,061 tokens in the corpus, we extracted
16,626 unique word types – skipping punctuation to-
kens – and 129,655 analyses, which amounts to 7.8
analyses per type on average.

= = = = = k t b = = = ka/PREP+;ka;k;ku
= = = = k t b = = = = a/PREP+t;uti;ata;t;utu
= = = k t b = = = = = ab/PV+a/PVSUFF_SUBJ:3MS+;

b/NOUN_PROP+;ub/NOUN+i/CASE_DEF_GEN+;
ub/NOUN+a/CASE_DEF_ACC+;
ub/NOUN+K/CASE_INDEF_GEN+;
ib/PV_PASS+a/PVSUFF_SUBJ:3MS+;
ub/NOUN+N/CASE_INDEF_NOM+;ub/NOUN+;
ub/NOUN+u/CASE_DEF_NOM+

Figure 2: Instances for the analyses of the wordktb
in Figure 1.

3.1.3 Creating instances

These separate lexicons were created for training
and testing material. The lexical entries in a lexi-
con were converted toinstances suitable to memory-
based learning of the mapping from words to their
analyses (van den Bosch and Daelemans, 1999). In-
stances consist of a sequence of feature values and a
corresponding class, representing a potentially com-
plex morphological operation.

The features are created by sliding a window over
the unvoweled look-up word, resulting in one in-
stance for each character. Using a 5-1-5 window
yields 11 features, i.e. the input character in focus,
plus the five preceding and five following characters.
The equal sign (=) is used as a filler symbol.

The instance classes represent the morphological
analyses. The classes corresponding to a word’s
characters should enable us to derive all associated
analyses. This implies that the classes need to en-
code several aspects simultaneously: vocalization,
morphological segmentation and tagging. The fol-
lowing template describes the format of classes:
class = subanalysis; subanalysis; ...

subanalysis = preceding vowels & tags +
input character +
following vowels & tags

For example, the classes of the instances in Fig-
ure 2 encode the ten solutions for the wordktb in
Figure 1. The ratio behind this encoding is that
it allows for a simple derivation of the solution,
akin to the way that the pieces of a jigsaw puz-
zle can be combined. We can exhaustively try all
combinations of the subanalyses of the classes, and
check if the right side of one subanalysis matches
the left side of a subsequent subanalysis. This re-
construction process is illustrated in Figure 3 (only
two reconstructions are depicted, corresponding to
SOLUTION 1 and SOLUTION 4). For exam-
ple, the subanalysiska from the first class in Fig-
ure 2 matches the subanalysisata from the sec-

3



ka ku
ata utu

ab/PV+a/PVSUFF_SUBJ:3MS ub/NOUN+u/CASE_DEF_NOM
-------------------------- + ------------------------- +
katab/PV+a/PVSUFF_SUBJ:3MS kutub/NOUN+u/CASE_DEF_NOM

Figure 3: Illustration of how two morphological
analyses are reconstructed from the classes in Fig-
ure 2.

ond class, which in turn matches the subanaly-
sisab/PV+a/PVSUFF SUBJ:3MS from the third
class; together these constitute the complete analysis
katab/PV+a/PVSUFF SUBJ:3MS.

3.2 Initial Experiments

To test the feasibility of our approach, we first train
and test on the full data set. Timbl is used with its de-
fault settings (overlap distance function, gain-ratio
feature weighting,k = 1). Rather than evaluating
on the accuracy of predicting the complex classes,
we evaluate on the complete correctness of all recon-
structed analyses, in terms of precision, recall, and
F-score (van Rijsbergen, 1979). As expected, this
results in a near perfect recall (97.5). The precision,
however, is much lower (52.5), indicating a substan-
tial amount of analysis overgeneration; almost one
in two generated analyses is actually not valid. With
an F-score of only 68.1, we are clearly not able to
reproduce the training data perfectly.

Next we split the data in 9 parts for training and
1 part for testing. Thek-NN classifier is again used
with its default settings. Table 1 shows the results
broken down into known and unknown words. As
known words can be looked up in the lexicon derived
from the training material, the first row presents
the results with lookup and the second row without
lookup (that is, with prediction). The fact that even
with lookup the performance is not perfect shows
that the upper bound for this task is not 100%. The
reason is that apparantly some words in the test ma-
terial have received analyses that never occur in the
training material and vice versa. For known words
without lookup, the recall is still good, but the preci-
sion is low. This is consistent with the initial results
mentioned above. For unknown words, both recall
and precison are much worse, indicating rather poor
generalization.

To sum up, there appear to be problems with both
the precision and the recall. The precision is low for
known words and even worse for unknown words.

#Wrds Prec Rec F

Known with lookup 3220 92.6 98.1 95.3
Known without lookup 3220 49.9 95.0 65.5
Unknown 847 22.8 26.8 24.7

Table 1: Results of initial experiments split into
known and unknown words, and with and without
lookup of known words.

#Wrds Prec Rec F

Known 3220 15.6 99.0 26.9
Unknown 847 3.9 66.8 7.5

Table 2: Results of experiments for improving the
recall, split into known and unknown words.

Analysis overgeneration seems to be a side effect
of the way we encode and reconstruct the analyses.
The recall is low for unknown words only. There
appear to be at least two reasons for this undergen-
eration problem. First, if just one of the predicted
classes is incorrect (one of the pieces of the jigsaw
puzzle is of the wrong shape) then many, or even all
of the reconstructions fail. Second, some generaliza-
tions cannot be made, because infrequent classes are
overshadowed by more frequent ones with the same
features. Consider, for example, the instance for the
third character (l) of the wordjEl:

= = = j E l = = = = =

Its real class in the test data is:

al/VERB_PERFECT+;ol/NOUN+

When thek-NN classifier is looking for its nearest
neighbors, it finds three; two with a “verb imperfect”
tag, and one with a “noun” tag.

{ al/VERB_IMPERFECT+ 2, ol/NOUN+ 1}

Therefore, the class predicted by the classifier is
al/VERB IMPERFECT+, because this is the majority
class in the NN-set. So, although a part of the cor-
rect solution is present in the NN-set, simple major-
ity voting prevents it from surfacing in the output.

3.3 Improving recall

In an attempt to address the low recall, we revised
our experimental setup to take advantage of the com-
plete NN-set. As before, thek-NN classifier is used,

4



Prec Rec F

Known 58.6 (0.4) 66.6 (0.5) 62.4 (0.3)
Unknown 28.7 (3.7) 37.2 (1.2) 32.2 (2.5)
All 53.4 (1.2) 62.2 (0.6) 57.5 (0.8)

Table 3: Average results and SD of the 10-fold CV
experiment, split into known and unknown words

but rather than relying on the classifier to do the ma-
jority voting over the (possibly weighted) classes in
thek-NN set and to output asingle class, we perform
a reconstruction of analyses combiningall classes in
thek-NN set. To allow for more classes ink-NN’s
output, we increasek to 3 while keeping the other
settings as before. As expected, this approach in-
creases the number of analyses. This, in turn, in-
creases the recall dramatically, up to nearly perfect
for known words; see Table 2. However, this gain
in recall is at the expense of the precision, which
drops dramatically. So, although our revised ap-
proach solves the issues above, it introduces massive
overgeneration.

3.4 Improving precision

We try to tackle the overgeneration problem by fil-
tering the analyses in two ways. First, by ranking
the analyses and limiting output to then-best. The
ranking mechanism relies on the distribution of the
classes in the NN-set. Normally, some classes occur
more frequently than others in the NN-set. During
the reconstruction of a particular analysis, we sum
the frequencies of the classes involved. The result-
ing score is then used to rank the analyses in de-
creasing order, which we filter by taking then-best.

The second filter employs the fact that only cer-
tain sequences of morphological tags are valid. Tag
bigrams are already implicit in the way that the
classes are constructed, because a class contains
the tags preceding and following the input charac-
ter. However, cooccurrence restrictions on tags may
stretch over longer distances; tag trigram informa-
tion is not available at all. We therefore derive a
frequency list of all tag trigrams occurring in the
training data. This information is then used to filter
analyses containing tag trigrams occurring below a
certain frequency threshold in the training data.

Both filters were optimized on the fold that was
used for testing so far, maximizing the overall F-

score. This yieled ann-best value of 40 and tag
frequency treshold of 250. Next, we ran a 10-fold
cross-validation experiment on all data (except the
held out data) using the method described in the pre-
vious section in combination with the filters. Aver-
age scores of the 10 folds are given in Table 3. In
comparison with the initial results, both precision
and recall on unknown words has improved, indi-
cating that overgeneration and undergeneration can
be midly counteracted.

3.5 Discussion

Admittedly, the performance is not very impressive.
We have to keep in mind, however, that the task is
not an easy one. It includes vowel insertion in am-
biguous root forms, which – in contrast to vowel in-
sertion in prefixes and suffixes – is probably irreg-
ular and unpredictable, unless the appropriate stem
would be known. As far as the evaluation is con-
cerned, we are unsure whether the analyses found
in the treebank for a particular word are exhaus-
tive. If not, some of the predictions that are currently
counted as precision errors (overgeneration) may in
fact be correct alternatives.

Since instances are generated for each type rather
than for each token in the data, the effect of to-
ken frequency on classification is lost. For exam-
ple, instances from frequent tokens are more likely
to occur in thek-NN set, and therefore their (par-
tial) analyses will show up more frequently. This is
an issue to explore in future work. Depending on
the application, it may also make sense to optimize
on the correct prediction of unkown words, or on in-
creasing only the recall.

4 Part-of-speech tagging

We employMBT, a memory-based tagger-generator
and tagger (Daelemans et al., 1996) to produce a
part-of-speech (PoS) tagger based on theATB1 cor-
pus2. We first describe how we prepared the corpus
data. We then describe how we generated the tag-
ger (a two-module tagger with a module for known
words and one for unknown words), and subse-
quently we report on the accuracies obtained on test
material by the generated tagger. We conclude this

2In our experiments we used theMBT software pack-
age, version 2 (Daelemans et al., 2003), available from
http://ilk.uvt.nl/.

5



w CONJ
bdA VERB_PERFECT
styfn NOUN_PROP
knt NOUN_PROP
nHylA ADJ+NSUFF_MASC_SG_ACC_INDEF
jdA ADV
, PUNC
AlA ADV
>n FUNC_WORD
...

Figure 4: Part of anATB1 sentence with unvoweled
words (left) and their respective PoS tags (right).

section by describing the effect of using the output
of the morphological analyzer as extra input to the
tagger.

4.1 Data preparation

While the morphological analyzer attempts to gener-
ate all possible analyses for a given unvoweled word,
the goal of PoS tagging is to select one of these
analyses as the appropriate one given the context,
as the annotators of theATB1 corpus did using the
* marker. We developed a PoS tagger that is trained
to predict an unvoweled word in context, a concate-
nation of the PoS tags of its morphemes. Essentially
this is the task of the morphological analyzer with-
out segmentation and vocalization. Figure 4 shows
part of a sentence where for each word the respective
tag is given in the second column. Concatenation is
marked by the delimiter+.

We trained on the full ten folds used in the previ-
ous sections, and tested on the eleventh fold. The
training set thus contains 150,966 words in 4,601
sentences; the test set contains 15,102 words in 469
sentences. 358 unique tags occur in the corpus. In
the test set 947 words occur that do not occur in the
training set.

4.2 Memory-based tagger generator

Memory-based tagging is based on the idea that
words occurring in similar contexts will have the
same PoS tag. A particular instantiation,MBT, was
proposed in (Daelemans et al., 1996). MBT has three
modules. First, it has a lexicon module which stores
for all words occurring in the provided training cor-
pus their possible PoS tags (tags which occur below
a certain threshold, default 5%, are ignored). Sec-
ond, it generates two distinct taggers; one for known
words, and one for unknown words.

The known-word tagger can obviously benefit
from the lexicon, just as a morphological analyzer

could. The input on which the known-word tag-
ger bases its prediction for a given focus word con-
sists of the following set of features and parameter
settings: (1) The word itself, in a local context of
the two preceding words and one subsequent word.
Only the 200 most frequent words are represented
as themselves; other words are reduced to a generic
string – cf. (Daelemans et al., 2003) for details. (2)
The possible tags of the focus word, plus the pos-
sible tags of the next word, and thedisambiguated
tags of two words to the left (which are available be-
cause the tagger operates from the beginning to the
end of the sentence). The known-words tagger is
based on ak-NN classifier withk = 15, the modi-
fied value difference metric (MVDM) distance func-
tion, inverse-linear distance weighting, and GR fea-
ture weighting. These settings were manually opti-
mized on a held-out validation set (taken from the
training data).

The unknown-word tagger attempts to derive as
much information as possible from the surface form
of the word, by using its suffix and prefix letters as
features. The following set of features and param-
eters are used: (1) The three prefix characters and
the four suffix characters of the focus word (possi-
bly encompassing the whole word); (2) The possible
tags of the next word, and the disambiguated tags
of two words to the left. The unknown-words tag-
ger is based on ak-NN classifier withk = 19, the
modified value difference metric (MVDM) distance
function, inverse-linear distance weighting, and GR
feature weighting – again, manually tuned on vali-
dation material.

The accuracy of the tagger on the held-out cor-
pus is 91.9% correctly assigned tags. On the 14155
known words in the test set the tagger attains an ac-
curacy of 93.1%; on the 947 unknown words the ac-
curacy is considerably lower: 73.6%.

5 Integrating morphological analysis and
part-of-speech tagging

While morphological analysis and PoS tagging are
ends in their own right, the usual function of the
two modules in higher-level natural-language pro-
cessing or text mining systems is that they jointly
determine for each word in a text the appropriate
single morpho-syntactic analysis. In our setup, this

6



All words Known words Unknown words
Part-of-speech source Precision Recall Precision Recall Precision Recall

Gold standard 70.1 97.8 75.8 99.5 30.2 73.4
Predicted 64.0 89.7 69.8 92.0 23.9 59.0

Table 4: Precision and recall of the identification of the contextually appropriate morphological analysis,
measured on all test words and split on known words and unknown words. The top line represents the upper-
bound experiment with gold-standard PoS tags; the bottom line represents the experiment with predicted PoS
tags.

amounts to predicting the solution that is preceded
by “*” in the original ATB1 data. For this purpose,
the PoS tag predicted byMBT, as described in the
previous section, serves to select the morphological
analysis that is compatible with this tag. We em-
ployed the following two rules to implement this:
(1) If the input word occurs in the training data,
then look up the morphological analyses of the word
in the training-based lexicon, and return all mor-
phological analyses with a PoS content matching
the tag predicted by the tagger. (2) Otherwise, let
the memory-based morphological analyzer produce
analyses, and return all analyses with a PoS content
matching the predicted tag.

We first carried out an experiment integrating the
output of the morphological analyzer and the PoS
tagger, faking perfect tagger predictions, in order to
determine the upper bound of this approach. Rather
than predicting the PoS tag withMBT, we directly
derived the PoS tag from the annotations in the tree-
bank. The upper result line in Table 4 displays the
precision and recall scores on the held-out data of
identifying the appropriate morphological analysis,
i.e. the solution marked by*. Unsurprisingly, the
recall on known words is 99.5%, since we are us-
ing the gold-standard PoS tag which is guaranteed
to be among the training-based lexicon, except for
some annotation discrepancies. More interestingly,
about one in four analyses of known words matching
on PoS tags actually mismatches on vowel or conso-
nant changes, e.g. because it represents a different
stem – which is unpredictable by our method.

About one out of four unknown words has mor-
phological analyses that do not match the gold-
standard PoS (a recall of 73.4); at the same time,
a considerable amount of overgeneration of analy-
ses accounts for the low amount of analyses that

matches (a precision of 30.2).
Next, the experiment was repeated withpredicted

PoS tags and morphological analyses. The results
are presented in the bottom result line of Table 4.
The precision and recall of identifying correct anal-
yses of known words degrades as compared to the
upper-bounds results due to incorrect PoS tag pre-
dictions. On unknown words the combination of
heavy overgeneration by the morphological analyzer
and the 73.6% accuracy of the tagger leads to a low
precision of 23.9 and a fair recall of 59.0. On both
known and unknown words the integration of the
morphological analyzer and the tagger is able to nar-
row down the analyses by the analyzer to a subset of
matching analyses that in about nine out of ten cases
contains the “* SOLUTION” word.

6 Related work

The application of machine learning methods to
Arabic morphology and PoS tagging appears to
be somewhat limited and recent, compared to the
vast descriptive and rule-based literature particularly
on morphology (Kay, 1987; Beesley, 1990; Kiraz,
1994; Beesley, 1998; Cavalli-Sfora et al., 2000;
Soudi, 2002).

We are not aware of any machine-learning ap-
proach to Arabic morphology, but find related is-
sues treated in (Daya et al., 2004), who propose a
machine-learning method augmented with linguistic
constraints to identifying roots in Hebrew words –
a related but reverse task to ours. Arabic PoS tag-
ging seems to have attracted some more attention.
Freeman (2001) describes initial work in developing
a PoS tagger based on transformational error-driven
learning (i.e. the Brill tagger), but does not provide
performance analyses. Khoja (2001) reports a 90%
accurate morpho-syntactic statistical tagger that uses

7



the Viterbi algorithm to select a maximally-likely
part-of-speech tag sequence over a sentence. Diab
et al. (2004) describe a part-of-speech tagger based
on support vector machines that is trained on tok-
enized data (clitics are separate tokens), reporting a
tagging accuracy of 95.5%.

7 Conclusions

We investigated the application of memory-based
learning (k-nearest neighbor classification) to mor-
phological analysis and PoS tagging of unvoweled
written Arabic, using theATB1 corpus as training
and testing material. The morphological analyzer
was shown to attain F-scores of 0.32 onunknown
words when predicting all aspects of the analysis,
including vocalization (a partly unpredictable task,
certainly if no context is available). The PoS tag-
ger attains an accuracy of about 74% on unknown
words, and 92% on all words (including known
words). A combination of the two which selects
from the set of generated analyses a subset of anal-
yses with the PoS predicted by the tagger, yielded
a recall of the contextually appropriate analysis of
0.90 on test words, yet a low precision of 0.64
largely caused by overgeneration of invalid analy-
ses.

We make two final remarks. First, memory-
based morphological analysis of Arabic words ap-
pears feasible, but its main limitation is its inevitable
inability to recognize the appropriate stem of un-
known words on the basis of the ambiguous root
form input; our current method simply overgener-
ates vocalizations, keeping high recall at the cost of
low precision. Second, memory-based PoS tagging
of written Arabic text also appears to be feasible; the
observed performances are roughly comparable to
those observed for other languages. The PoS tagging
task as we define it is deliberately separated from the
problem of vocalization, which is in effect the prob-
lem of stem identification. We therefore consider the
automatic identification of stems as a component of
full morpho-syntactic analysis of written Arabic an
important issue for future research.

References
D. W. Aha, D. Kibler, and M. Albert. 1991. Instance-based

learning algorithms.Machine Learning, 6:37–66.

K. Beesley. 1990. Finite-state description of Arabic morphol-
ogy. In Proceedings of the Second Cambridge Conference:
Bilingual Computing in Arabic and English.

K. Beesley. 1998. Consonant spreading in Arabic stems. In
Proceedings of COLING-98.

T. Buckwalter. 2002. Buckwalter Arabic morpho-
logical analyzer version 1.0. Technical Report
LDC2002L49, Linguistic Data Consortium. available
from http://www.ldc.upenn.edu/.

V. Cavalli-Sfora, A. Soudi, and M. Teruko. 2000. Arabic
morphology generation using a concatenative strategy. In
Proceedings of the First Conference of the North-American
Chapter of the Association for Computational Linguistics,
Seattle, WA, USA.

T. M. Cover and P. E. Hart. 1967. Nearest neighbor pattern
classification. Institute of Electrical and Electronics Engi-
neers Transactions on Information Theory, 13:21–27.

W. Daelemans, J. Zavrel, P. Berck, and S. Gillis. 1996.MBT: A
memory-based part of speech tagger generator. In E. Ejerhed
and I. Dagan, editors,Proceedings of Fourth Workshop on
Very Large Corpora, pages 14–27. ACL SIGDAT.

W. Daelemans, A. van den Bosch, and J. Zavrel. 1999. For-
getting exceptions is harmful in language learning.Ma-
chine Learning, Special issue on Natural Language Learn-
ing, 34:11–41.

W. Daelemans, J. Zavrel, A. van den Bosch, and K. van der
Sloot. 2003. MBT: Memory based tagger, version 2.0, ref-
erence guide. ILK Technical Report 03-13, Tilburg Univer-
sity.

W. Daelemans, J. Zavrel, K. van der Sloot, and
A. van den Bosch. 2004. TiMBL: Tilburg memory
based learner, version 5.1, reference guide. ILK Technical
Report 04-02, Tilburg University.

E. Daya, D. Roth, and S. Wintner. 2004. Learning Hebrew
roots: Machine learning with linguistic constraints. InPro-
ceedings of EMNLP’04, Barcelona, Spain.

M. Diab, K. Hacioglu, and D. Jurafsky. 2004. Automatic tag-
ging of arabic text: From raw text to base phrase chunks. In
Proceedings of HLT/NAACL-2004.

A. Freeman. 2001. Brill’s POS tagger and a morphology parser
for Arabic. In ACL/EACL-2001 Workshop on Arabic Lan-
guage Processing: Status and Prospects, Toulouse, France.

M. Kay. 1987. Non-concatenative finite-state morphology. In
Proceedings of the third Conference of the European Chap-
ter of the Association for Computational Linguistics, pages
2–10, Copenhagen, Denmark.

S. Khoja. 2001. APT: Arabic part-of-speech tagger. InPro-
ceedings of the Student Workshop at NAACL-2001.

G. Kiraz. 1994. Multi-tape two-level morphology: A case
study in semitic non-linear morphology. InProceedings of
COLING’94, volume 1, pages 180–186.

J. McCarthy. 1981. A prosodic theory of non-concatenative
morphology.Linguistic Inquiry, 12:373–418.

A. Soudi. 2002.A Computational Lexeme-based Treatment of
Arabic Morphology. Ph.D. thesis, Mohamed V University
(Morocco) and Carnegie Mellon University (USA).

A. van den Bosch and W. Daelemans. 1999. Memory-based
morphological analysis. InProceedings of the 37th Annual
Meeting of the ACL, pages 285–292, San Francisco, CA.
Morgan Kaufmann.

C.J. van Rijsbergen. 1979.Information Retrieval. Butter-
sworth, London.

8


