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Abstract

We explore the application of memory-
based learning to morphological analy-
sis and part-of-speech tagging of written
Arabic, based on data from the Arabic
Treebank. Morphological analysis — the
construction of all possible analyses of
isolated unvoweled wordforms — is per-
formed as a letter-by-letter operation pre-
diction task, where the operation encodes
segmentation, part-of-speech, character
changes, and vocalization. Part-of-speech
tagging is carried out by a bi-modular tag-
ger that has a subtagger for known words
and one for unknown words. We report on
the performance of the morphological an-
alyzer and part-of-speech tagger. We ob-
serve that the tagger, which has an accu-
racy of 91.9% on new data, can be used to
select the appropriate morphological anal-
ysis of words in context at a precision of
64.0 and a recall of 89.7.
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learning algorithms. The data facilitates machine-
learned part-of-speech taggers, tokenizers, and shal-
low parsing units such as chunkers, as exemplified
by Diab et al. (2004).

However, Arabic appears to be a special challenge
for data-driven approaches. It is a Semitic language
with a non-concatenative morphology. In addition to
prefixation and suffixation, inflectional and deriva-
tional processes may cause stems to undergo infixa-
tional modification in the presence of different syn-
tactic features as well as certain consonants. An
Arabic word may be composed of a stem consist-
ing of a consonantal root and a pattern, affixes, and
clitics. The affixes include inflectional markers for
tense, gender, and number. The clitics may be ei-
ther attached to the beginning of stems (proclitics)
or to the end of stems (enclitics) and include pos-
sessive pronouns, pronouns, some prepositions, con-
junctions and determiners.

Arabic verbs, for example, can be conjugated ac-
cording to one of the traditionally recognized pat-
terns. There are 15 triliteral forms, of which at least
9 are in common. They represent very subtle dif-
ferences. Within each conjugation pattern, an entire
paradigm is found: two tenses (perfect and imper-
fect), two voices (active and passive) and five moods

Memory-based learning has been successfully afindicative, subjunctive, jussive, imperative and en-
plied to morphological analysis and part-of-speeckrgetic). Arabic nouns show a comparably rich and
tagging in Western and Eastern-European languagesmplex morphological structure. The broken plu-
(van den Bosch and Daelemans, 1999; Daelemansrat system, for example, is highly allomorphic: for
al., 1996). With the release of the Arabic Treebank given singular pattern, two different plural forms
by the Linguistic Data Consortium (current versionmay be equally frequent, and there may be no way
3), a large corpus has become available for Arae predict which of the two a particular singular will
bic that can act as training material for machinetake. For some singulars as many as three further
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statistically minor plural patterns are also possible.frequency exceptions (Daelemans et al., 1999).
Various ways of accounting for Arabic morphol- An instance consists of a fixed-length vector of
ogy have been proposed. The type of account of feature-value pairs, and the classification of that
Arabic morphology that is generally accepted byarticular feature-value vector. After the instance
(computational) linguists is that proposed by (Mcbase is stored, new (test) instances are classified by
Carthy, 1981). In his proposal, stems are formethatching them to all instances in the instance base,
by a derivational combination of a root morphemend by calculating with each match thistance,
and a vowel melody. The two are arranged accordyiven by a distance kernel function. Classification
ing to canonical patterns. Roots are said to intein memory-based learning is performed by the
digitate with patterns to form stems. For examNN algorithm that searches for tihieénearest neigh-
ple, the Arabic stenkatab ("he wrote”) is com- bours’ according to thé\(X,Y") kernel function.
posed of the morphemktb ("the notion of writ- The distance function and the classifier can be
ing”) and the vowel melody morpheme 'a-a’. Therefined by several kernel plug-ins, such as feature
two are integrated according to the pattern CVCV@veighting (assigning larger distance to mismatches
(C=consonant, V=vowel). This means that wordn important features), and distance weighting (as-
structure in this morphology is not built linearly assigning a smaller vote in the classification to more
is the case in concatenative morphological systemslistant nearest neighbors). Details can be found in
The attempts to model Arabic morphology in a(Daelemans et al., 2004).
two-level system (Kay’s (1987) Finite State Model,
Beesley’s (1990; 1998) Two-Level Model and Ki-3 Morphological analysis

raz’s (1994) Multi-tape Two-Level Model) reflect We focus first on morphological analysis . Training

McCarthy's separation of levels. It is beyond theon data extracted from the Arabic Treebank, we in-

scope of this paper to provide a detailed descriptioHuce a morphological analysis generator which we

of these models, but see (Soudi, 2002). T
_ control for undergeneralization (recall errors) and
In this paper, we explore .the use Of memory'overgeneralization (precision errors).
based learning for morphological analysis and part-

of-speech (PoS) tagging of written Arabic. The nex8.1 Data

sectlgn summarlzes_the prmmples_of memory'/-basergll1 Arabic Treebank

learning. The following three sections describe our

exploratory work on memory-based morphological Our point of departure is the Arabic Treebank 1
analysis and PoS tagging, and integration of the twg\TB1), version 3.0, distributed by LDC in 2005,
tasks. The final two sections contain a short discugtore specifically the “after treebank” PoS-tagged

sion of related work and an overall conclusion. ~ data. Unvoweled tokens as they appear in the orig-
inal news paper are accompanied in the treebank

2 Memory-based learning by vocalized versions; all of their morphological

analyses are generated by means of Tim Buckwal-
Memory-based learning, also known as instancder’'s Arabic Morphological Analyzer (Buckwalter,
based, example-based, or lazy learning (Aha et aRP02), and the appropriate morphological analysis is
1991; Daelemans et al., 1999), extensions ofithe singled out. An example is given in Figure 1. Thein-
nearest neighbor classifier (Cover and Hart, 1967jput token (NPUT STRI NG) is transliteratedL(OoK- UP
is a supervised inductive learning algorithm fomoRrRD) according to Buckwalter’s transliteration sys-
learning classification tasks. Memory-based learriem. All possible vocalizations and their morpho-
ing treats a set of labeled (pre-classified) trainingpgical analyzes are listed@.uUtl ON). The analysis
instances as points in a multi-dimensional featurts rule-based, and basically consists of three steps.
space, and stores them as such irirsance base  First, all possible segmentations of the input string
in memory. Thus, in contrast to most other ma———— _ _

All experiments with memory-based learning were per-

C_hme Ie_ammg alg_omhms’ 't_ performs_ no aIC)Stracformed with TIMBL, version 5.1 (Daelemans et al., 2004),
tion, which allows it to deal with productive but low- available fromhtt p: / /i 1 k. uvt. nl .



INPUT STRING \ 331\ 203\ 330\ 252\ 330\ 250 =====Kk
LOOK- UP WORD:  kt b

ka/ PREP+; ka; k; ku
t a/ PREP+t ; uti;ata;t;utu
b = = = = = ab/ PV+a/ PVSUFF_SUBJ: 3V5+;

Comment :
| NDEX: P2V88 b/ NOUN_PROP+; ub/ NOUN+i / CASE_DEF_GEN+;
SOLUTI ON 1: (kataba) [katab-u_1] katab/PV+a/ PVSUFF_SUBJ: 3MB ub/ NOUNt+a/ CASE_DEF_ACCH;
(GLOSS): wite + hel/it [verb] ub/ NOUN+K/ CASE_| NDEF_GEN+;
* SOLUTION 2: (kutiba) [katab-u_1] kutib/PV_PASS+a/ PVSUFF_SUBJ: 3VB i b/ PV_PASS+a/ PVSUFF_SUBJ: 3VB+;
(GLOSS): be witten/be fated/ be destined + he/it [verb] ub/ NOUN+N/ CASE_| NDEF_NOWF; ub/ NOUNt;
SOLUTION 3: (kutub) [kitAb_1] kutub/ NOUN ub/ NOUN+u/ CASE_DEF_NOW+

(GLOSS): books

SOLUTI ON 4: k b kitAb_1] k b/ NOUN+u/ CASE_DEF_NOM .

(A beake ) et nom H/ ASEDEF- Figure 2: Instances for the analyses of the wkitd
SOLUTI ON 5: (kutuba) [kitAb_1] kutub/ NOUN+a/ CASE_DEF_ACC . :

(GL0SS): books + [def.acc.] In F|gure 1
SOLUTI ON 6 (Kutubi) [KitAb 1] kutub/ NOUNi / CASE DEF_GEN

(G.0S9): books + [def . gen. ] 3.1.3 Creatinginstances

SOLUTION 7: (KutubN) [kitAb_1] kut ub/ NOUN+N CASE_I NDEF_NOM

SOLUT O B oot oot Lo e mi ST ket by NOUNFKI CASE. | NDEF. GEN These separate lexicons were created for training
SOLUTTON Bt Coehy [DRFALLT] Kt bl NOUN. PROP and testing material. The lexical entries in a lexi-
SOLUTT N 10: (Kat b TDECAULT]  Kal PREPH b/ NOUN_PROP con were converted fmstances suitable to memory-
(G089 Tikelsuch as + NOTINLEXI GO based learning of the mapping from words to their
Figure 1: Example token fromrs 1 analyses (van den Bosch and Daelemans, 1999). In-

stances consist of a sequence of feature values and a
in terms of prefixes (0 to 4 characters long), stems (aprresponding class, representing a potentially com-
least one character), and suffixes (0 to 6 charactepéex morphological operation.
long) are generated. Next, dictionary lookup is used The features are created by sliding a window over
to determine if these segments are existing morphthe unvoweled look-up word, resulting in one in-
logical units. Finally, the numbers of analyses is furstance for each character. Using a 5-1-5 window
ther reduced by checking for the mutual compatibilyields 11 features, i.e. the input character in focus,
ity of prefix+stem, stem-suffix, and prefix-stem plus the five preceding and five following characters.
in three compatibility tables. The resulting analy-The equal sign (=) is used as a filler symbol.
ses have to a certain extent been manually checked.The instance classes represent the morphological
Most importantly, a star*() preceding a solution in- analyses. The classes corresponding to a word’s
dicates that this is the correct analysis in the givepharacters should enable us to derive all associated
context. analyses. This implies that the classes need to en-
code several aspects simultaneously: vocalization,
morphological segmentation and tagging. The fol-
lowing template describes the format of classes:

We grouped the 734 files from the treebank int@l ass = subanal ysis; subanal ysis;
eleven parts of approximately equal size. Ten parts

3.1.2 Preprocessing

.. . . ?ubanal ysis = preceding vowels & tags +
were used for training and testing our morphologica input character +
analyzer, while the final part was used as held-out following vowel s & tags

material for testing the morphological analyzer ingq, example, the classes of the instances in Fig-
combination with the PoS tagger (described in Segyre 2 encode the ten solutions for the wdad in
tion 4). Figure 1. The ratio behind this encoding is that
In the corpus the number of analyses per word allows for a simple derivation of the solution,
is not entirely constant, either due to the automatiakin to the way that the pieces of a jigsaw puz-
generation method or to annotator edits. As our inizle can be combined. We can exhaustively try all
tial goal is to predict all possible analyses for a givewombinations of the subanalyses of the classes, and
word, regardless of contextual constraints, we firstheck if the right side of one subanalysis matches
created dexicon that maps every word to all anal- the left side of a subsequent subanalysis. This re-
yses encountered and their respective frequenciesnstruction process is illustrated in Figure 3 (only
From the 185,061 tokens in the corpus, we extractddo reconstructions are depicted, corresponding to
16,626 unique word types — skipping punctuation toSOLUTION 1 and SOLUTION 4). For exam-
kens — and 129,655 analyses, which amounts to 7p8e, the subanalysika from the first class in Fig-
analyses per type on average. ure 2 matches the subanalysis a from the sec-



ka ku

ata utu #Wrds Prec Rec F

ab/ PV+a/ PVSUFF_SUBJ: 3M5 ub/ NOUN+u/ CASE_DEF_NOM
Kat abl PVeal PVSUEF_ SUBJ: 3M6 Kut ub/ NOUN+ CASE. DEF_NCM Known with lookup 3220 92.6 98.1 95.3
. . . Known without lookup 3220 49.9 95.0 65.5
Figure 3: lllustration of how two morphological

gure 3: lllustration of how two morphological )\ 847 22.8 26.8 24.7

analyses are reconstructed from the classes in Fig=
ure 2.

Table 1: Results of initial experiments split into
ond class, which in turn matches the subanalyknown and unknown words, and with and without
sisab/ PV+a/ PVSUFF_SUBJ: 3MsS from the third lookup of known words.

class; together these constitute the complete analysis
kat ab/ Pv+a/ PVSUFF_SUBJ: 3MS.

#Wrds Prec Rec F

3.2 Initial Experiments Known 3220 156 99.0 26.9

. _ _ Unknown 847 39 668 7.5
To test the feasibility of our approach, we first train

and test on the full data set. Timbl is used with its detgpje 2: Results of experiments for improving the

fault settings (overlap distance function, gain-ratiqeca|, split into known and unknown words.

feature weightingk = 1). Rather than evaluating

on the accuracy of predicting the complex classegnalysis overgeneration seems to be a side effect

we evaluate on the complete correctness of all recoonf the way we encode and reconstruct the analyses.

structed analyses, in terms of precision, recall, arhe recall is low for unknown words only. There

F-score (van Rijsbergen, 1979). As expected, thigppear to be at least two reasons for this undergen-

results in a near perfect recall (97.5). The precisiorgration problem. First, if just one of the predicted

however, is much lower (52.5), indicating a substarelasses is incorrect (one of the pieces of the jigsaw

tial amount of analysis overgeneration; almost onpuzzle is of the wrong shape) then many, or even alll

in two generated analyses is actually not valid. Witlof the reconstructions fail. Second, some generaliza-

an F-score of only 68.1, we are clearly not able teions cannot be made, because infrequent classes are

reproduce the training data perfectly. overshadowed by more frequent ones with the same
Next we split the data in 9 parts for training andfeatures. Consider, for example, the instance for the

1 part for testing. Thé-NN classifier is again used third character (l) of the worfEl:

with its default settings. Table 1 shows the results = = = j g| === = =

broken down into known and unknown words. As ] ]

known words can be looked up in the lexicon derivedfS €@l class in the test data is:

from the training material, the first row presents al/VERB_PERFECT+; ol / NOUN+

the results with lookup and the second row withoWyhen thek-NN classifier is looking for its nearest

lookup (that is, with prediction). The fact that &VeMheighbors, it finds three: two with a “verb imperfect”
with lookup the performance is not perfect show§ag and one with a “noun” tag.

that the upper bound for this task is not 100%. The
. : { al /VERB_| MPERFECT+ 2, ol / NOUN+ 1}

reason is that apparantly some words in the test ma-
terial have received analyses that never occur in thherefore, the class predicted by the classifier is
training material and vice versa. For known words| / VERB.I MPERFECT+, because this is the majority
without lookup, the recall is still good, but the preci-class in the NN-set. So, although a part of the cor-
sion is low. This is consistent with the initial resultsrect solution is present in the NN-set, simple major-
mentioned above. For unknown words, both recalty voting prevents it from surfacing in the output.
and precison are much worse, indicating rather poor
generalization. 3.3 Improving recall

To sum up, there appear to be problems with bothn an attempt to address the low recall, we revised
the precision and the recall. The precision is low foour experimental setup to take advantage of the com-
known words and even worse for unknown wordsplete NN-set. As before, theNN classifier is used,
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Prec Rec F score. This yieled am-best value of 40 and tag
nown 58604 666 (05 62403l TR D L e (ovcept the
Unknown 28.7 (3.7) 37.2(1.2) 32.2(2.5) eXp 1 (excep

held out data) using the method described in the pre-
All 53.4(1.2) 62.2(0.6) 57.5(0.8) . - N ) :
vious section in combination with the filters. Aver-

Table 3: Average results and SD of the 10-fold C\R9€ Scores of the 10 folds are given in Table 3. In

experiment, split into known and unknown words comparison with the initial results, _both precision
and recall on unknown words has improved, indi-

but rather than relying on the classifier to do the magating that overgeneration and undergeneration can
jority voting over the (possibly weighted) classes irbe midly counteracted.

thek-NN set and to output single class, we perform
a reconstruction of analyses combiniigclasses in
the k-NN set. To allow for more classes irNN’s  Admittedly, the performance is not very impressive.
output, we increasé to 3 while keeping the other We have to keep in mind, however, that the task is
settings as before. As expected, this approach ifOt an easy one. It includes vowel insertion in am-
creases the number of analyses. This, in turn, ifiguous root forms, which —in contrast to vowel in-
creases the recall dramatically, up to nearly perfegertion in prefixes and suffixes — is probably irreg-
for known words; see Table 2. However, this gaitllar and unpredictable, unless the appropriate stem
in recall is at the expense of the precision, whictvould be known. As far as the evaluation is con-
drops dramatically. So, although our revised apcerned, we are unsure whether the analyses found
proach solves the issues above, it introduces massifethe treebank for a particular word are exhaus-

3.5 Discussion

overgeneration. tive. If not, some of the predictions that are currently
_ o counted as precision errors (overgeneration) may in
3.4 Improving precision fact be correct alternatives.

We try to tackle the overgeneration problem by fil- Since instances are generated for each type rather
tering the analyses in two ways. First, by rankinghan for each token in the data, the effect of to-
the analyses and limiting output to thebest. The ken frequency on classification is lost. For exam-
ranking mechanism relies on the distribution of théple, instances from frequent tokens are more likely
classes in the NN-set. Normally, some classes occtfr occur in thek-NN set, and therefore their (par-
more frequently than others in the NN-set. Duringial) analyses will show up more frequently. This is
the reconstruction of a particular analysis, we sur@in issue to explore in future work. Depending on
the frequencies of the classes involved. The resulthe application, it may also make sense to optimize
ing score is then used to rank the analyses in den the correct prediction of unkown words, or on in-
creasing order, which we filter by taking thebest. ~ creasing only the recall.

The second filter employs the fact that only cer- )
tain sequences of morphological tags are valid. Ta‘é Part-of-speech tagging

bigrams are already implicit in the way that thewe employmsT, a memory-based tagger-generator
classes are constructed, because a class contaifgl tagger (Daelemans et al., 1996) to produce a
the tags preceding and following the input charagpart-of-speech (PoS) tagger based onatel cor-

ter. However, cooccurrence restrictions on tags mepug We first describe how we prepared the corpus
stretch over longer distances; tag trigram informadata. We then describe how we generated the tag-
tion is not available at all. We therefore derive ger (a two-module tagger with a module for known
frequency list of all tag trigrams occurring in thewords and one for unknown words), and subse-
training data. This information is then used to fllterquenﬂy we report on the accuracies obtained on test

analyses containing tag trigrams occurring below gaterial by the generated tagger. We conclude this
certain frequency threshold in the training data. ~————
Both filters were optimized on the fold that was In our experiments we used thas software pack-
0 p age, version 2 (Daelemans et al., 2003), available from
used for testing so far, maximizing the overall Fhttp://ilk.uvt.nl/.



w CONJ

bdA  VERB_PERFECT could. The input on which the known-word tag-
styfn NOUN_PROP ; P i ; _
knt  NOUN PROP ger bases its preo!lctlon for a given focus word con
NEYLA - ADUNSURF_MASC_SGACC_ | NDEF sists of the following set of features and parameter
J . . .

, PUNC settings: (1) The word itself, in a local context of
Al A ADV

-n FUNC_WORD the two preceding words and one subsequent word.
Only the 200 most frequent words are represented

Figure 4: Part of amTB1 sentence with unvoweled @ themselves; other words are reduced to a generic

words (left) and their respective PoS tags (right). String —cf. (Daelemans et al., 2003) for details. (2)
The possible tags of the focus word, plus the pos-

section by describing the effect of using the outpuip|e tags of the next word, and tidsambiguated
of the morphological analyzer as extra input to theags of two words to the left (which are available be-
tagger. cause the tagger operates from the beginning to the
end of the sentence). The known-words tagger is
based on &-NN classifier witht = 15, the modi-
While the morphological analyzer attempts to genefiied value difference metric (MVDM) distance func-
ate all possible analyses for a given unvoweled worgion, inverse-linear distance weighting, and GR fea-
the goal of PoS tagging is to select one of thesgire weighting. These settings were manually opti-
analyses as the appropriate one given the contextized on a held-out validation set (taken from the
as the annotators of thers1 corpus did using the training data).
* marker. We developed a PoS tagger that is trained The unknown-word tagger attempts to derive as
to predict an unvoweled word in context, a concatemych information as possible from the surface form
nation of the PoS tags of its morphemes. Essentially the word, by using its suffix and prefix letters as
this is the task of the morphological analyzer withfeatyres. The following set of features and param-
out segmentation and vocalization. Figure 4 showsters are used: (1) The three prefix characters and
part of a sentence where for each word the respectiyge four suffix characters of the focus word (possi-
tag is given in the second column. Concatenation igqy encompassing the whole word); (2) The possible
marked by the delimitef. tags of the next word, and the disambiguated tags
We trained on the full ten folds used in the previqf two words to the left. The unknown-words tag-
ous sections, and tested on the eleventh fold. Tl'geér is based on &-NN classifier withk = 19, the
training set thus contains 150,966 words in 4,60 odified value difference metric (MVDM) distance
sentences; the test set contains 15,102 words in 4ﬁ9‘|ction, inverse-linear distance weighting, and GR

sentences. 358 unique tags occur in the corpus. f8ature weighting — again, manually tuned on vali-
the test set 947 words occur that do not occur in th@ation material.

training set.

4.1 Data preparation

The accuracy of the tagger on the held-out cor-
pus is 91.9% correctly assigned tags. On the 14155
known words in the test set the tagger attains an ac-

Memory-based tagging is based on the idea thaiiracy of 93.1%; on the 947 unknown words the ac-
words occurring in similar contexts will have thecyracy is considerably lower: 73.6%.

same PoS tag. A particular instantiatiomgT, was

proposed in (Daelemans etal., 1996)svhasthree 5 |ntegrating morphological analysis and

modules. First, it has a lexicon module which stores part-of-speech tagging

for all words occurring in the provided training cor-

pus their possible PoS tags (tags which occur belowhile morphological analysis and PoS tagging are

a certain threshold, default 5%, are ignored). Se@nds in their own right, the usual function of the

ond, it generates two distinct taggers; one for knowtwo modules in higher-level natural-language pro-

words, and one for unknown words. cessing or text mining systems is that they jointly
The known-word tagger can obviously benefidetermine for each word in a text the appropriate

from the lexicon, just as a morphological analyzesingle morpho-syntactic analysis. In our setup, this

4.2 Memory-based tagger generator



All words Known words Unknown words
Part-of-speech source Precision Recall Precision Recakcigion Recall

Gold standard 70.1 97.8 75.8 99.5 30.2 73.4
Predicted 64.0 89.7 69.8 92.0 23.9 59.0

Table 4: Precision and recall of the identification of thetegtually appropriate morphological analysis,
measured on all test words and split on known words and unkieovds. The top line represents the upper-
bound experiment with gold-standard PoS tags; the bottoerépresents the experiment with predicted PoS
tags.

amounts to predicting the solution that is precededhatches (a precision of 30.2).

by “*” in the original ATB1 data. For this purpose, Next, the experiment was repeated wtiedicted

the PoS tag predicted byBT, as described in the PoS tags and morphological analyses. The results
previous section, serves to select the morphologicale presented in the bottom result line of Table 4.
analysis that is compatible with this tag. We emThe precision and recall of identifying correct anal-
ployed the following two rules to implement this: yses of known words degrades as compared to the
(1) If the input word occurs in the training data,upper-bounds results due to incorrect PoS tag pre-
then look up the morphological analyses of the wordictions. On unknown words the combination of
in the training-based lexicon, and return all morheavy overgeneration by the morphological analyzer
phological analyses with a PoS content matchingnd the 73.6% accuracy of the tagger leads to a low
the tag predicted by the tagger. (2) Otherwise, lgirecision of 23.9 and a fair recall of 59.0. On both
the memory-based morphological analyzer produdenown and unknown words the integration of the
analyses, and return all analyses with a PoS contemforphological analyzer and the tagger is able to nar-
matching the predicted tag. row down the analyses by the analyzer to a subset of
dnatching analyses that in about nine out of ten cases

We first carried out an experiment integrating th
e* soLuTI ON’ word.

output of the morphological analyzer and the Po§ONtains th
tagger, faking perfect tagger predictions, in order tg
determine the upper bound of this approach. Rath& Related work

than predicting the PoS tag withT, we directly 1o apgjication of machine learning methods to

derived the PoS tag from the annotations in the tree apic morphology and PoS tagging appears to
bank. The upper result line in Table 4 displays thge gomewhat limited and recent, compared to the
precision and recall scores on the held-out data Qf,qt jescriptive and rule-based literature particularly
identifying the appropriate morphological analysis, morphology (Kay, 1987; Beesley, 1990; Kiraz,

i.e. the solution marked by. Unsurprisingly, the 1994; Beesley, 1998: Cavalli-Sfora et al., 2000;
recall on known words is 99.5%, since we are USs o di 2002).

ing the gold-standard PoS tag which is guaranteed We are not aware of any machine-learning ap-
to be among the training-based lexicon, except for

tation di ) M int inal roach to Arabic morphology, but find related is-
some annotation discrepancies. More interestingly, oo in (Daya et al.. 2004), who propose a

POS t tually mi tch | %achine-learning method augmented with linguistic
on Fos fags actually mismalches on VOWel or ConsQe, o aints 1o identifying roots in Hebrew words —
nant changes, e.g. because it represents a differ

o ) @ felated but reverse task to ours. Arabic PoS tag-
stem —which is unpredictable by our method. ging seems to have attracted some more attention.
About one out of four unknown words has mor-Freeman (2001) describes initial work in developing
phological analyses that do not match the golda PoS tagger based on transformational error-driven

standard PoS (a recall of 73.4); at the same timé&arning (i.e. the Brill tagger), but does not provide
a considerable amount of overgeneration of analyerformance analyses. Khoja (2001) reports a 90%
ses accounts for the low amount of analyses thatccurate morpho-syntactic statistical tagger that uses



the Viterbi algorithm to select a maximally-likely K. Beesley. 1990. Finite-state description of Arabic maiph
part-of-speech tag sequence over a sentence. Dialfdy. InProceedings of the Second Cambridge Conference:

L (2004) d ib f h b dBlllngual Computing in Arabic and English.
et al. (2004) describe a part-o 'Sp_eec .tagger 8SRUBeesley. 1998. Consonant spreading in Arabic stems. In
on support vector machines that is trained on tok- Proceedings of COLING-98.

enized data (clitics are separate tokens), reportingTa Buckwalter. ~ 2002. ~ Buckwalter Arabic morpho-

. logical analyzer version 1.0. Technical Report
0
tagging accuracy of 95.5%. LDC2002L49, Linguistic Data Consortium. available
) fromhttp://ww. | dc. upenn. edu/ .
7 Conclusions V. Cavalli-Sfora, A. Soudi, and M. Teruko. 2000. Arabic

morphology generation using a concatenative strategy. In

We investigated the application of memory-based Proceedings of the First Conference of the North-American

| . A t neighbor cl ification) to mor- Chapter of the Association for Computational Linguistics,
earning ¢-nearest neighbor classification) to mor-  Sczie wa, UsA.

phological analysis and PoS tagging of unvoweled m. Cover and P. E. Hart. 1967. Nearest neighbor pattern

written Arabic, using theaTB1 corpus as training classification. Institute of Electrical and Electronics Engi-

. . . neers Transactions on Information Theory, 13:21-27.
and testing material. The morphological ar]a‘lyze\I;V. Daelemans, J. Zavrel, P. Berck, and S. Gillis. 1996T: A

was shown to attain F-scores of 0.32 amknown memory-based part of speech tagger generator. In E. Ejerhed
words when predicting all aspects of the analysis, and I. Dagan, editorsProceedings of Fourth Workshop on

. . N . Very Large Corpora, pages 14-27. ACL SIGDAT.
mCIUdmg vocalization (a partly unpredlCtable taSkW. Daelemans, A. van den Bosch, and J. Zavrel. 1999. For-

certainly if no context is available). The PoS tag- getting exceptions is harmful in language learninga-
ger attains an accuracy of about 74% on unknown chine Learning, Special issue on Natural Language Learn-

o . . ing, 34:11-41.
words, and 92% on all words (mCIUdmg knownW. Daelemans, J. Zavrel, A. van den Bosch, and K. van der

words). A combination of the two which selects  sjoot. 2003. MBT: Memory based tagger, version 2.0, ref-
from the set of generated analyses a subset of anal-erence guide. ILK Technical Report 03-13, Tilburg Univer-
yses with the PoS predicted by the tagger, yieldeﬁ/ Sity.

. ; Daelemans, J. Zavrel, K. van der Sloot, and
a recall of the contextually appropriate analysis Of A van den Bosch. 2004. TiMBL: Tilburg memory

0.90 on test words, yet a low precision of 0.64 based learner, version 5.1, reference guide. ILK Technical
; ; ; Report 04-02, Tilburg University.

largel vergeneration of invalid analy- ; .

argely caused by overgeneration o alid a ayE. Daya, D. Roth, and S. Wintner. 2004. Learning Hebrew

Ses. roots: Machine learning with linguistic constraints. Rro-

We make two final remarks. First, memory- ceedings of EMNLP'04, Barcelona, Spain.

; ; ; M. Diab, K. Hacioglu, and D. Jurafsky. 2004. Automatic tag-
based morphological analysis of Arabic words ap ging of arabic text: From raw text to base phrase chunks. In

pears feasible, but its main limitation is its inevitable  Proceedings of HLT/NAACL-2004.
inability to recognize the appropriate stem of unA. Freeman. 2001. Brill's POS tagger and a morphology parser

known words on the basis of the ambiguous root for Arabic. In ACL/EACL-2001 Workshop on Arabic Lan-
guage Processing: Satus and Prospects, Toulouse, France.

form input.; Ol_"r current _meth_Od simply overgenery, Kay. 1987. Non-concatenative finite-state morphology. |
ates vocalizations, keeping high recall at the cost of Proceedings of the third Conference of the European Chap-
low precision. Second, memory-based PoS tagging ter of the Association for Computational Linguistics, pages

. . . 2-10, Copenhagen, Denmark.
of written Arabic text also appears to be feasible; thg kpoja. 2001. APT: Arabic part-of-speech tagger. Pho-

observed performances are roughly comparable to ceedings of the Sudent Workshop at NAACL-2001.

those observed for other languages. The PoS taggifig Kiraz. 1994. Mulii-tape two-level morphology: A case
task as we define it is deliberately separated from the study in semitic non-linear morphology. Rroceedings of
askaswe y sep COLING' 94, volume 1, pages 180-186.

problem of vocalization, which is in effect the prob-j. Mccarthy. 1981. A prosodic theory of non-concatenative
lem of stem identification. We therefore consider the morphology.Linguistic Inquiry, 12:373-418.

i o . Soudi. 2002.A Computational Lexeme-based Treatment of
automatic identification of stems as a component & Arabic Morphology. Ph.D. thesis, Mohamed V University

full morpho-syntactic analysis of written Arabic an (Morocco) and Carnegie Mellon University (USA).

important issue for future research. A. van den Bosch and W. Daelemans. 1999. Memory-based
morphological analysis. |IRroceedings of the 37th Annual
Meeting of the ACL, pages 285-292, San Francisco, CA.
Morgan Kaufmann.
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