
Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 177–180, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Sparse Bayesian Classification of Predicate Arguments

Richard Johansson and Pierre Nugues
LUCAS, Department of Computer Science, Lund University

Box 118
SE-221 00 Lund, Sweden

{richard, pierre}@cs.lth.se

Abstract

We present an application of Sparse
Bayesian Learning to the task of semantic
role labeling, and we demonstrate that this
method produces smaller classifiers than
the popular Support Vector approach.

We describe the classification strategy and
the features used by the classifier. In par-
ticular, the contribution of six parse tree
path features is investigated.

1 Introduction

Generalized linear classifiers, in particular Support
Vector Machines (SVMs), have recently been suc-
cessfully applied to the task of semantic role iden-
tification and classification (Pradhan et al., 2005),
inter alia.

Although the SVM approach has a number of
properties that make it attractive (above all, excel-
lent software packages exist), it also has drawbacks.
First, the resulting classifier is slow since it makes
heavy use of kernel function evaluations. This is
especially the case in the presence of noise (since
each misclassified example has to be stored as a
bound support vector). The number of support vec-
tors typically grows with the number of training ex-
amples. Although there exist optimization methods
that speed up the computations, the main drawback
of the SVM approach is still the classification speed.

Another point is that it is necessary to tune the
parameters (typicallyC andγ). This makes it nec-
essary to train repeatedly using cross-validation to
find the best combination of parameter values.

Also, the output of the decision function of the
SVM is not probabilistic. There are methods to map
the decision function onto a probability output using
the sigmoid function, but they are considered some-
what ad-hoc (see (Tipping, 2001) for a discussion).

In this paper, we apply a recent learning
paradigm, namelySparse Bayesian learning, or
more specifically theRelevance Vectorlearning
method, to the problem of role classification. Its
principal advantages compared to the SVM ap-
proach are:

• It typically utilizes fewer examples compared
to the SVM, which makes the classifier faster.

• It uses noC parameter, which reduces the need
for cross-validation.

• The decision function is adapted for probabilis-
tic output.

• Arbitrary basis functions can be used.

Its significant drawback is that the training pro-
cedure relies heavily on dense linear algebra, and is
thus difficult to scale up to large training sets and
may be prone to numerical difficulties.

For a description of the task and the data, see (Car-
reras and Màrquez, 2005).

2 Sparse Bayesian Learning and the
Relevance Vector Machine

The Sparse Bayesian method is described in detail in
(Tipping, 2001). Like other generalized linear learn-
ing methods, the resulting binary classifier has the
form

signf(x) = sign
m∑

i=1

αifi(x) + b

177

where thefi are basis functions. Training the
model then consists of finding a suitableα =
(b, α1, . . . , αm) given a data set(X,Y).

Analogous with the SVM approach, we can let
fi(x) = k(x, xi), wherexi is an example from the
training set andk a function. We have then arrived
at theRelevance Vector Machine(RVM). There are
however no restrictions on the functionk (such as
Mercer’s condition for SVM). We use the Gaussian
kernelk(x, y) = exp(−γ‖x − y‖2) throughout this
work.

We first model the probability of a positive ex-
ample as a sigmoid applied tof(x). This can be
used to write the likelihood functionP (Y |X,α).
Instead of a conventional ML approach (maximiz-
ing the likelihood with respect toα, which would
give an overfit model), we now adopt a Bayesian
approach and encode the model preferences using
priors onα. For eachαi, we introduce a parame-
ter si and assume thatαi ∈ N(0, s−1

i) (i.e. Gaus-
sian). This is in effect an “Occam penalty” that en-
codes our preference for sparse models. We should
finally specify the distributions of thesi. However,
we make the simplifying assumption that their dis-
tribution is flat (noninformative).

We now find the maximum of themarginal likeli-
hood, or “evidence”, with respect tos, that is

p(Y |X, s) =
∫

P (Y |X,α)p(α|s)dα.

This integral is not tractable, hence we approximate
the integrand using a Gaussian centered at the mode
of the integrand (Laplace’s approximation). The
marginal likelihood can then be differentiated with
respect tos, and maximized using iterative methods
such as gradient descent.

The algorithm thus proceeds iteratively as fol-
lows: First maximize the penalized likelihood func-
tion P (Y |X,α)p(α|s) with respect toα (for ex-
ample via the Newton-Raphson method), then up-
date the parameterssi. This goes on until a con-
vergence criterion is met, for example that thesi

changes are small enough. During iteration, thesi

parameters for redundant examples tend to infinity.
They (and the corresponding columns of the kernel
matrix) are then removed from the model. This is
necessary because of numerical stability and also re-
duces the training time considerably.

We implemented the RVM training method using
the ATLAS (Whaley et al., 2000) implementation
of the BLAS and LAPACK standard linear algebra
APIs. To make the algorithm scale up, we used a
working-set strategy that used the results of partial
solutions to train the final classifier. Our implemen-
tation is based on the original description of the al-
gorithm (Tipping, 2001) rather than the greedy opti-
mized version (Tipping and Faul, 2003), since pre-
liminary experiments suggested a decrease in clas-
sification accuracy. Our current implementation can
handle training sets up to about 30000 examples.

We used the conventional one-versus-one method
for multiclass classification. Although the Sparse
Bayesian paradigm is theoretically not limited to bi-
nary classifiers, this is of little use in practice, since
the size of the Hessian matrix (used while maximiz-
ing the likelihood and updatings) grows with the
number of classes.

3 System Description

Like previous systems for semantic role identifica-
tion and classification, we used an approach based
on classification of nodes in the constituent tree.
To simplify training, we used the soft-prune ap-
proach as described in (Pradhan et al., 2005), which
means that before classification, the nodes were fil-
tered through a binary classifier that classifies them
as having a semantic role or not (NON-NULL or
NULL). The NULL nodes missed by the filter were
included in the training set for the final classifier.

Since our current implementation of the RVM
training algorithm does not scale up to large training
sets, training on the whole PropBank was infeasible.
We instead trained the multiclass classifier on sec-
tions 15 – 18, and used an SVM for the soft-pruning
classifier, which was then trained on the remaining
sections. The excellent LIBSVM (Chang and Lin,
2001) package was used to train the SVM.

The features used by the classifiers can be
grouped into predicate and node features. Of the
node features, we here pay most attention to the
parse tree path features.

3.1 Predicate Features

We used the following predicate features, all of
which first appeared in (Gildea and Jurafsky, 2002).

178

• Predicate lemma.

• Subcategorization frame.

• Voice.

3.2 Node Features

• Head wordandhead POS. Like most previous
work, we used the head rules of Collins to ex-
tract this feature.

• Position. A binary feature that describes if the
node is before or after the predicate token.

• Phrase type(PT), that is the label of the con-
stituent.

• Named entity. Type of the first contained NE.

• Governing category. As in (Gildea and Juraf-
sky, 2002), this was used to distinguish subjects
from objects. For an NP, this is either S or VP.

• Path features. (See next subsection.)

For prepositional phrases, we attached the prepo-
sition to the PT and replaced head word and head
POS with those of the first contained NP.

3.3 Parse Tree Path Features

Previous studies have shown that the parse tree path
feature, used by almost all systems since (Gildea and
Jurafsky, 2002), is salient for argument identifica-
tion. However, it is extremely sparse (which makes
the system learn slowly) and is dependent on the
quality of the parse tree. We therefore investigated
the contribution of the following features in order
to come up with a combination of path features that
leads to a robust system that generalizes well.

• Constituent tree path. As in (Gildea and Ju-
rafsky, 2002), this feature represents the path
(consisting of step directions and PTs of the
nodes traversed) from the node to the predicate,
for example NP↑VP↓VB for a typical object.
Removing the direction (as in (Pradhan et al.,
2005)) improved neither precision nor recall.

• Partial path. To reduce sparsity, we introduced
a partial path feature (as in (Pradhan et al.,
2005)), which consists of the path from the
node to the lowest common ancestor.

• Dependency tree path. We believe that la-
beled dependency paths provide more informa-
tion about grammatical functions (and, implic-
itly, semantic relationships) than the raw con-
stituent structure. Since the grammatical func-
tions are not directly available from the parse
trees, we investigated two approximations of
dependency arc labels: first, the POSs of the
head tokens; secondly, the PTs of the head node
and its immediate parent (such labels were used
in (Ahn et al., 2004)).

• Shallow path. Since the UPC shallow parsers
were expected to be more robust than the full
parsers, we used a shallow path feature. We
first built a parse tree using clause and chunk
bracketing, and the shallow path feature was
then constructed like the constituent tree path.

• Subpaths. All subpaths of the constituent path.

We used the parse trees from Charniak’s parser to
derive all paths except for the shallow path.

4 Results

4.1 Comparison with SVM

The binary classifiers that comprise the one-versus-
one multiclass classifier were 89% – 98% smaller
when using RVM compared to SVM. However, the
performance dropped by about 2 percent. The rea-
son for the drop is possibly that the classifier uses a
number of features with extremely sparse distribu-
tions (two word features and three path features).

4.2 Path Feature Contributions

To estimate the contribution of each path feature, we
measured the difference in performance between a
system that used all six features and one where one
of the features had been removed. Table 2 shows
the results for each of the six features. For the final
system, we used the dependency tree path with PT
pairs, the shallow path, and the partial path.

4.3 Final System Results

The results of the complete system on the test sets
are shown in Table 1. The smaller training set (as
mentioned above, we used only sections 15 – 18

179

Precision Recall Fβ=1

Development 73.40% 70.85% 72.10
Test WSJ 75.46% 73.18% 74.30
Test Brown 65.17% 60.59% 62.79
Test WSJ+Brown 74.13% 71.50% 72.79

Test WSJ Precision Recall Fβ=1

Overall 75.46% 73.18% 74.30
A0 84.56% 85.18% 84.87
A1 73.40% 73.35% 73.37
A2 61.99% 57.30% 59.55
A3 71.43% 46.24% 56.14
A4 72.53% 64.71% 68.39
A5 100.00% 40.00% 57.14
AM-ADV 58.13% 51.58% 54.66
AM-CAU 70.59% 49.32% 58.06
AM-DIR 59.62% 36.47% 45.26
AM-DIS 81.79% 71.56% 76.33
AM-EXT 72.22% 40.62% 52.00
AM-LOC 54.05% 55.10% 54.57
AM-MNR 54.33% 52.91% 53.61
AM-MOD 98.52% 96.73% 97.62
AM-NEG 96.96% 96.96% 96.96
AM-PNC 36.75% 37.39% 37.07
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 76.00% 70.19% 72.98
R-A0 83.33% 84.82% 84.07
R-A1 68.75% 70.51% 69.62
R-A2 57.14% 25.00% 34.78
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 25.00% 40.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 92.31% 57.14% 70.59
R-AM-MNR 40.00% 33.33% 36.36
R-AM-TMP 75.00% 69.23% 72.00
V 98.82% 98.82% 98.82

Table 1: Overall results (top) and detailed results on
the WSJ test (bottom).

for the role classifier) causes the result to be signifi-
cantly lower than state of the art (F-measure of 79.4,
reported in (Pradhan et al., 2005)).

5 Conclusion and Future Work

We have provided an application of Relevance Vec-
tor Machines to a large-scale NLP task. The re-
sulting classifiers are drastically smaller that those
produced by the SV training methods. On the other
hand, the classification accuracy is lower, probably
because of the use of lexicalized features.

The results on the Brown test set shows that the
genre has a significant impact on the performance.

An evaluation of the contribution of six parse tree

P R Fβ=1

Const. tree -0.2% -0.6% -0.4
Partial -0.4% +0.4% 0
Dep. w/ POSs -0.1% -0.4% -0.3
Dep. w/ PT pairs +0.4% +0.4% +0.4
Shallow -0.1% +0.4% +0.1
Const. subpaths -10.9% +2.5% -4.5

Table 2: Contribution of path features

path features suggests that dependency tree paths are
more useful for semantic role labeling than the tra-
ditional constituent tree path.

In the future, we will investigate if it is possible
to incorporate theγ parameter into the probability
model, thus eliminating the need for cross-validation
completely. In addition, the training algorithm will
need to be redesigned to scale up to larger training
sets. The learning paradigm is still young and op-
timized methods (such as for SVM) have yet to ap-
pear. One possible direction is the greedy method
described in (Tipping and Faul, 2003).

References
David Ahn, Sisay Fissaha, Valentin Jijkoun, and Maarten

de Rijke. 2004. The university of Amsterdam at
Senseval-3: Semantic roles and logic forms. InPro-
ceedings of SENSEVAL-3.

Xavier Carreras and Lluís Màrquez. 2005. Introduction
to the CoNLL-2005 Shared Task: Semantic Role La-
beling. InProceedings of CoNLL-2005.

Chih-Chung Chang and Chih-Jen Lin, 2001.LIBSVM: a
library for support vector machines.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles.Computational Linguistics,
28(3):245–288.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler,
Wayne Ward, James Martin, and Dan Jurafsky. 2005.
Support vector learning for semantic argument classi-
fication. Machine Learning. To appear.

Michael E. Tipping and Anita Faul. 2003. Fast marginal
likelihood maximisation for sparse bayesian models.
In 9th International Workshop on AI and Statistics.

Michael E. Tipping. 2001. Sparse bayesian learning
and the relevance vector machine.Journal of Machine
Learning Research, 1:211 – 244.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra.
2000. Automated empirical optimizations of software
and the ATLAS project.

180

