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Abstract

We report on an active learning experi-
ment for named entity recognition in the
astronomy domain. Active learning has
been shown to reduce the amount of la-
belled data required to train a supervised
learner by selectively sampling more in-
formative data points for human annota-
tion. We inspect double annotation data
from the same domain and quantify poten-
tial problems concerning annotators’ per-
formance. For data selectively sampled
according to different selection metrics,
we find lower inter-annotator agreement
and higher per token annotation times.
However, overall results confirm the util-
ity of active learning.

1 Introduction

Supervised training of named entity recognition
(NER) systems requires large amounts of manually
annotated data. However, human annotation is typ-
ically costly and time-consuming. Active learn-
ing promises to reduce this cost by requesting only
those data points for human annotation which are
highly informative. Example informativity can be
estimated by the degree of uncertainty of a single
learner as to the correct label of a data point (Cohn
et al., 1995) or in terms of the disagreement of a
committee of learners (Seung et al., 1992). Ac-
tive learning has been successfully applied to a va-
riety of tasks such as document classification (Mc-
Callum and Nigam, 1998), part-of-speech tagging

(Argamon-Engelson and Dagan, 1999), and parsing
(Thompson et al., 1999).

We employ a committee-based method where the
degree of deviation of different classifiers with re-
spect to their analysis can tell us if an example is
potentially useful. In a companion paper (Becker et
al., 2005), we present active learning experiments
for NER in radio-astronomical texts following this
approach.1 These experiments prove the utility of
selective sampling and suggest that parameters for a
new domain can be optimised in another domain for
which annotated data is already available.

However there are some provisos for active learn-
ing. An important point to consider is what effect
informativeexamples have on the annotators. Are
these examples more difficult? Will they affect the
annotators’ performance in terms of accuracy? Will
they affect the annotators performance in terms of
time? In this paper, we explore these questions us-
ing doubly annotated data. We find that selective
sampling does have an adverse effect on annotator
accuracy and efficiency.

In section 2, we present standard active learn-
ing results showing that good performance can be
achieved using fewer examples than random sam-
pling. Then, in section 3, we address the questions
above, looking at the relationship between inter-
annotator agreement and annotation time and the ex-
amples that are selected by active learning. Finally,
section 4 presents conclusions and future work.

1Please refer to the companion paper for details of the
selective sampling approach with experimental adaptation re-
sults as well as more information about the corpus of radio-
astronomical abstracts.
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2 Bootstrapping NER

The work reported here was carried out in order to
assess methods of porting a statisticalNER system to
a new domain. We started with aNER system trained
on biomedical literature and built a new system to
identify four novel entities in abstracts from astron-
omy articles. This section introduces the Astronomy
Bootstrapping Corpus (ABC) which was developed
for the task, describes our active learning approach
to bootstrapping, and gives a brief overview of the
experiments.

2.1 The Astronomy Bootstrapping Corpus

The ABC corpus consists of abstracts of radio astro-
nomical papers from the NASA Astrophysics Data
System archive2, a digital library for physics, as-
trophysics, and instrumentation. Abstracts were ex-
tracted from the years 1997-2003 that matched the
query “quasar AND line”. A set of 50 abstracts
from the year 2002 were annotated as seed mate-
rial and 159 abstracts from 2003 were annotated as
testing material. A further 778 abstracts from the
years 1997-2001 were provided as an unannotated
pool for bootstrapping. On average, these abstracts
contain 10 sentences with a length of 30 tokens. The
annotation marks up four entity types:

Instrument-name (IN) Names of telescopes and
other measurement instruments, e.g.Superconduct-
ing Tunnel Junction (STJ) camera, Plateau de Bure
Interferometer, Chandra, XMM-Newton Reflection
Grating Spectrometer (RGS), Hubble Space Tele-
scope.

Source-name (SN) Names of celestial objects,
e.g. NGC 7603, 3C 273, BRI 1335-0417, SDSSp
J104433.04-012502.2, PC0953+ 4749.

Source-type (ST) Types of objects, e.g.Type II Su-
pernovae (SNe II), radio-loud quasar, type 2 QSO,
starburst galaxies, low-luminosity AGNs.

Spectral-feature (SF) Features that can be
pointed to on a spectrum, e.g.Mg II emission, broad
emission lines, radio continuum emission at 1.47
GHz, CO ladder from (2-1) up to (7-6), non-LTE
line.

2http://adsabs.harvard.edu/preprint_
service.html

The seed and test data sets were annotated by two
astrophysics PhD students. In addition, they anno-
tated 1000 randomly sampled sentences from the
pool to provide a random baseline for active learn-
ing. These sentences were doubly annotated and ad-
judicated and form the basis for our calculations in
section 3.

2.2 Inter-Annotator Agreement

In order to ensure consistency in annotation projects,
corpora are often annotated by more than one an-
notator, e.g. in the annotation of the Penn Treebank
(Marcus et al., 1994). In these cases, inter-annotator
agreement is frequently reported between different
annotated versions of a corpus as an indicator for
the difficulty of the annotation task. For example,
Brants (2000) reports inter-annotator agreement in
terms of accuracy and f-score for the annotation of
the German NEGRA treebank.

Evaluation metrics for named entity recognition
are standardly reported as accuracy on the token
level, and as f-score on the phrasal level, e.g.
Sang (2002), where token level annotation refers to
the B-I-O coding scheme.3 Likewise, we will use
accuracy to report inter-annotator agreement on the
token level, and f-score for the phrase level. We
may arbitrarily assign one annotator’s data as the
gold standard, since both accuracy and f-score are
symmetric with respect to the test and gold set. To
see why this is the case, note that accuracy can sim-
ply be defined as the ratio of the number of tokens
on which the annotators agree over the total number
of tokens. Also the f-score is symmetric, since re-
call(A,B) = precision(B,A) and (balanced) f-score is
the harmonic mean of recall and precision (Brants,
2000). The pairwise f-score for the ABC corpus is
85.52 (accuracy of 97.15) with class information and
86.15 (accuracy of 97.28) without class information.
The results in later sections will be reported using
this pairwise f-score for measuring agreement.

For NER, it is also common to compare an anno-
tator’s tagged document to the final, reconciled ver-
sion of the document, e.g. Robinson et al. (1999)
and Strassel et al. (2003). The inter-annotator f-
score agreement calculated this way for MUC-7 and
Hub 4 was measured at 97 and 98 respectively. The

3B-X marks the beginning of a phrase of type X, I-X denotes
the continuation of an X phrase, and O a non-phrasal token.
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doubly annotated data for the ABC corpus was re-
solved by the original annotators in the presence
of an astronomy adjudicator (senior academic staff)
and a computational linguist. This approach gives
an f-score of 91.89 (accuracy of 98.43) with class
information for the ABC corpus. Without class in-
formation, we get an f-score of 92.22 (accuracy of
98.49), indicating that most of our errors are due to
boundary problems. These numbers suggest that our
task is more difficult than the genericNER tasks from
the MUC and HUB evaluations.

Another common agreement metric is the kappa
coefficient which normalises token level accuracy
by chance, e.g. Carletta et al. (1997). This met-
ric showed that the human annotators distinguish
the four categories with a reproducibility of K=.925
(N=44775, k=2; where K is the kappa coefficient,
N is the number of tokens and k is the number of
annotators).

2.3 Active Learning

We have already mentioned that there are two main
approaches in the literature to assessing the informa-
tivity of an example: the degree of uncertainty of a
single learner and the disagreement between a com-
mittee of learners. For the current work, we employ
query-by-committee (QBC). We use a conditional
Markov model (CMM) tagger (Klein et al., 2003;
Finkel et al., 2005) to train two different models on
the same data by splitting the feature set. In this sec-
tion we discuss several parameters of this approach
for the current task.

Level of annotation For the manual annotation of
named entity examples, we needed to decide on the
level of granularity. The question arises of what con-
stitutes an example that will be submitted to the an-
notators. Possible levels include the document level,
the sentence level and the token level. The most fine-
grained annotation would certainly be on the token
level. However, it seems unnatural for the annota-
tor to label individual tokens. Furthermore, our ma-
chine learning tool models sequences at the sentence
level and does not allow to mix unannotated tokens
with annotated ones. At the other extreme, one may
submit an entire document for annotation. A possi-
ble disadvantage is that a document with some inter-
esting parts may well contain large portions with re-

dundant, already known structures for which know-
ing the manual annotation may not be very useful.
In the given setting, we decided that the best granu-
larity is the sentence.

Sample Selection Metric There are a variety of
metrics that could be used to quantify the degree
of deviation between classifiers in a committee (e.g.
KL-divergence, information radius, f-measure). The
work reported here uses two sentence-level met-
rics based on KL-divergence and one based on f-
measure.

KL-divergencehas been used for active learning
to quantify the disagreement of classifiers over the
probability distribution of output labels (McCallum
and Nigam, 1998; Jones et al., 2003). It measures
the divergence between two probability distributions
p andq over the same event spaceχ:

D(p||q) =
∑
x∈χ

p(x) log
p(x)
q(x)

(1)

KL-divergence is a non-negative metric. It is zero
for identical distributions; the more different the two
distributions, the higher the KL-divergence. Intu-
itively, a high KL-divergence score indicates an in-
formative data point. However, in the current formu-
lation, KL-divergence only relates to individual to-
kens. In order to turn this into a sentence score, we
need to combine the individual KL-divergences for
the tokens within a sentence into one single score.
We employed mean and max.

The f-complementhas been suggested for active
learning in the context of NP chunking as a struc-
tural comparison between the different analyses of
a committee (Ngai and Yarowsky, 2000). It is the
pairwise f-measure comparison between the multi-
ple analyses for a given sentence:

fMcomp =
1
2

∑
M,M ′∈M

(1− F1(M(t),M ′(t))) (2)

whereF1 is the balanced f-measure ofM(t) and
M ′(t), the preferred analyses of data pointt accord-
ing to different membersM,M ′ of ensembleM.
We take the complement so that it is oriented the
same as KL-divergence with high values indicating
high disagreement. This is equivalent to taking the
inter-annotator agreement between|M| classifiers.
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Figure 1: Learning curve of the real AL experiment.

2.4 Experiments

To tune the active learning parameters discussed
in section 2.3, we ran detailed simulated experi-
ments on the named entity data from the BioNLP
shared task of the COLING 2004 International
Joint Workshop on Natural Language Processing in
Biomedicine and its Applications (Kim et al., 2004).
These results are treated in detail in the companion
paper (Becker et al., 2005).

We used the CMM tagger to train two different
models by splitting the feature set to give multiple
views of the same data. The feature set was hand-
crafted such that it comprises different views while
empirically ensuring that performance is sufficiently
similar. On the basis of the findings of the simulation
experiments we set up the real active learning anno-
tation experiment using: average KL-divergence as
the selection metric and a feature split that divides
the full feature set roughly into features of words
and features derived from external resources. As
smaller batch sizes require more retraining iterations
and larger batch sizes increase the amount of anno-
tation necessary at each round and could lead to un-
necessary strain for the annotators, we settled on a
batch size of 50 sentences for the real AL experi-
ment as a compromise between computational cost
and work load for the annotator.

We developed an active annotation tool and ran
real annotation experiments on the astronomy ab-
stracts described in section 2.1. The tool was given
to the same astronomy PhD students for annotation
who were responsible for the seed and test data. The
learning curve for selective sampling is plotted in

figure 1.4 The randomly sampled data was dou-
bly annotated and the learning curve is averaged be-
tween the two annotators.

Comparing the selective sampling performance to
the baseline, we confirm that active learning pro-
vides a significant reduction in the number of exam-
ples that need annotating. In fact, the random curve
reaches an f-score of 76 after approximately 39000
tokens have been annotated while the selective sam-
pling curve reaches this level of performance after
only ≈ 24000 tokens. This represents a substantial
reduction in tokens annotated of 38.5%. In addition,
at 39000 tokens, selectively sampling offers an error
reduction of 21.4% with a 3 point improvement in
f-score.

3 Evaluating Selective Sampling

Standardly, the evaluation of active learning meth-
ods and the comparison of sample selection metrics
draws on experiments over gold-standard annotated
corpora, where a set of annotated data is at our dis-
posal, e.g. McCallum and Nigam (1998), Osborne
and Baldridge (2004). This assumes implicitly that
annotators will always produce gold-standard qual-
ity annotations, which is typically not the case, as we
discussed in Section 2.2. What is more, we speculate
that annotators might have an even higher error rate
on the supposedly more informative, but possibly
also more difficult examples. However, this would
not be reflected in the carefully annotated and veri-
fied examples of a gold standard corpus. In the fol-
lowing analysis, we leverage information from dou-
bly annotated data to explore the effects on annota-
tion of selectively sampled examples.

To evaluate the practicality and usefulness of ac-
tive learning as a generally applicable methodology,
it is desirable to be able to observe the behaviour
of the annotators. In this section, we will report on
the evaluation of various subsets of the doubly an-
notated portion of the ABC corpus comprising 1000
sentences, which we sample according to a sample
selection metric. That is, examples are added to the
subsets according to the sample selection metric, se-
lecting those with higher disagreement first. This
allows us to trace changes in inter-annotator agree-

4Learning curves reflect the performance on the test set us-
ing the full feature set.

147



ment between the full corpus and selected subsets
thereof. Also, we will inspect timing information.
This novel methodology allows us to experiment
with different sample selection metrics without hav-
ing to repeat the actual time and resource intensive
annotation.

3.1 Error Analysis

To investigate the types of classification errors, it is
common to set up a confusion matrix. One approach
is to do this at the token level. However, we are deal-
ing with phrases and our analysis should reflect that.
Thus we devised a method for constructing a confu-
sion matrix based on phrasal alignment. These con-
fusion matrices are constructed by giving a double
count for each phrase that has matching boundaries
and a single count for each phrase that does not have
matching boundaries. To illustrate, consider the fol-
lowing sentences–annotated with phrasesA, B, and
C for annotator 1 on top and annotator 2 on bottom–
as sentence 1 and sentence 2 respectively:

A A

BA C
A

BA C

A

Sentence 1 will get a count of 2 forA/A and for
A/B and a count of 1 for O/C, while sentence 2
will get 2 counts ofA/O, and 1 count each of O/A,
O/B, and O/C. Table 1 contains confusion matrices
for the first 100 sentences sorted by averaged KL-
divergence and for the full set of 1000 random sen-
tences from the pool data. (Note that these confusion
matrices contain percentages instead of raw counts
so they can be directly compared.)

We can make some interesting observations look-
ing at these phrasal confusion matrices. The main
effect we observed is the same as was suggested by
the f-score inter-annotator agreement errors in sec-
tion 2.1. Specifically, looking at the full random set
of 1000 sentences, almost all errors (Where∗ is any
entity phrase type,∗/O + O/∗ errors

all errors = 95.43%) are
due to problems with phrase boundaries. Compar-
ing the full random set to the 100 sentences with
the highest averaged KL-divergence, we can see that
this is even more the case for the sub-set of 100 sen-
tences (97.43%). Therefore, we can observe that

100: A2
IN SN ST SF O

IN 12.0 0.0 0.0 0.0 0.4
SN 0.0 10.4 0.0 0.0 0.4

A1 ST 0.0 0.4 30.3 0.0 1.0
SF 0.0 0.0 0.0 31.1 3.9
O 0.2 0.4 2.9 6.4 —

1000: A2
IN SN ST SF O

IN 9.4 0.0 0.0 0.0 0.3
SN 0.0 10.1 0.2 0.1 0.3

A1 ST 0.0 0.1 41.9 0.1 1.6
SF 0.0 0.0 0.1 25.1 3.0
O 0.3 0.2 2.4 4.8 —

Table 1: Phrasal confusion matrices for document
sub-set of 100 sentences sorted by average KL-
divergence and for full random document sub-set of
1000 sentences (A1: Annotator 1, A2: Annotator 2).

Entity 100 1000

Instrument-name 12.4% 9.7%
Source-name 10.8% 10.7%
Source-type 31.7% 43.7%
Spectral-feature 35.0% 28.2%
O 9.9% 7.7%

Table 2: Normalised distributions of agreed entity
annotations.

there is a tendency for the averaged KL-divergence
selection metric to choose sentences where phrase
boundary identification is difficult.

Furthermore, comparing the confusion matrices
for 100 sentences and for the full set of 1000 shows
that sentences containing less common entity types
tend to be selected first while sentences containing
the most common entity types are dispreferred. Ta-
ble 2 contains the marginal distribution for annotator
1 (A1) from the confusion matrices for the ordered
sub-set of 100 and for the full random set of 1000
sentences. So, for example, the sorted sub-set con-
tains 12.4%Instrument-name annotations (the
least common entity type) while the full set con-
tains 9.7%. And, 31.7% of agreed entity annota-
tions in the first sub-set of 100 areSource-type
(the most common entity type), whereas the propor-
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Figure 2: Raw agreement plotted against KL-sorted
document subsets.

tion of agreedSource-type annotations in the
full random set is 43.7%. Looking at the O row, we
also observe that sentences with difficult phrases are
preferred. A similar effect can be observed in the
marginals for annotator 2.

3.2 Annotator Performance

So far, the behaviour we have observed is what you
would expect from selective sampling; there is a
marked improvement in terms of cost and error rate
reduction over random sampling. However, selec-
tive sampling raises questions of cognitive load and
the quality of annotation. In the following section
we investigate the relationship between informativ-
ity, inter-annotator agreement, and annotation time.

While reusability of selective samples for other
learning algorithms has been explored (Baldridge
and Osborne, 2004), no effort has been made to
quantify the effect of selective sampling on anno-
tator performance. We concentrate first on the ques-
tion: Are informative examples more difficult to an-
notate? One way to quantify this effect is to look
at the correlation between human agreement and the
token-level KL-divergence. The Pearson correlation
coefficient indicates the degree to which two vari-
ables are related. It ranges between−1 and1, where
1 means perfectly positive correlation, and−1 per-
fectly negative correlation. A value of0 indicates no
correlation. The Pearson correlation coefficient on
all tokens gives a very weak correlation coefficient
of −0.009.5 However, this includes many trivial to-

5In order to make this calculation, we give token-level agree-
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Figure 3: Human disagreement plotted against se-
lection metric-sorted document subsets.

kens which are easily identified as being outside an
entity phrase. If we look just at tokens that at least
one of the annotators posits as being part of an en-
tity phrase, we observe a larger effect with a Pear-
son correlation coefficient of−0.120, indicating that
agreement tends to be low when KL-divergence is
high. Figure 2 illustrates this effect even more dra-
matically. Here we plot accuracy against token sub-
sets of size1000, 2000, .., N where tokens are added
to the subsets according to their KL-divergence, se-
lecting those with the highest values first. This
demonstrates clearly that tokens with higher KL-
divergence have lower inter-annotator agreement.

However, as discussed in sections 2.3 and 2.4,
we decided on sentences as the preferred annota-
tion level. Therefore, it is important to explore these
relationships at the sentence level as well. Again,
we start by looking at the Pearson correlation coeffi-
cient between f-score inter-annotator agreement (as
described in section 2.1) and our active learning se-
lection metrics:

Ave KL Max KL 1-F

All Tokens −0.090 −0.145 −0.143
O Removed −0.042 −0.092 −0.101

HereO Removedmeans that sentences are removed
for which the annotators agree that there are no en-
tity phrases (i.e. all tokens are labelled as being
outside an entity phrase). This shows a relation-

ment a numeric representation by assigning1 to tokens on
which the annotators agree and0 to tokens on which they dis-
agree.
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Figure 4: Annotation time plotted against selection
metric-sorted document subsets.

ship very similar to what we observed at the token
level: a negative correlation indicating that agree-
ment is low when KL-divergence is high. Again,
the effect of selecting informative examples is better
illustrated with a plot. Figure 3 plots f-score agree-
ment against sentence subsets sorted by our sentence
level selection metrics. Lower agreement at the left
of these plots indicates that the more informative ex-
amples according to our selection metrics are more
difficult to annotate.

So, active learning makes the annotation more dif-
ficult. But, this raises a further question:What effect
do more difficult examples have on annotation time?
To investigate this, we once again start by looking
at the Pearson correlation coefficient, this time be-
tween the annotation time and our selection metrics.
However, as our sentence-level selection metrics af-
fect the length of sentences selected, we normalise
sentence-level annotation times by sentence length:

Ave KL Max KL 1-F

All Tokens 0.157 −0.009 0.082
O Removed 0.216 −0.007 0.106

Here we see a small positive correlations for av-
eraged KL-divergence and f-complement indicating
that sentences that score higher according to our se-
lection metrics do generally take longer to annotate.
Again, we can visualise this effect better by plotting
average time against KL-sorted subsets (Figure 4).
This demonstrates that sentences preferred by our
selection metrics generally take longer to annotate.

4 Conclusions and Future Work

We have presented active learning experiments in
a novelNER domain and investigated negative side
effects. We investigated the relationship between
informativity of an example, as determined by se-
lective sampling metrics, and inter-annotator agree-
ment. This effect has been quantified using the Pear-
son correlation coefficient and visualised using plots
that illustrate the difficulty and time-intensiveness of
examples chosen first by selective sampling. These
measurements clearly demonstrate that selectively
sampled examples are in fact more difficult to anno-
tate. And, while sentence length and entities per sen-
tence are somewhat confounding factors, we have
also shown that selective sampling of informative
examples appears to increase the time spent on in-
dividual examples.

High quality annotation is important for building
accurate models and for reusability. While anno-
tation quality suffers for selectively sampled exam-
ples, selective sampling nevertheless provided a dra-
matic cost reduction of 38.5% in a real annotation
experiment, demonstrating the utility of active learn-
ing for bootstrappingNER in a new domain.

In future work, we will perform further investi-
gations of the cost of resolving annotations for se-
lectively sampled examples. And, in related work,
we will use timing information to assess token, en-
tity and sentence cost metrics for annotation. This
should also lead to a better understanding of the re-
lationship between timing information and sentence
length for different selection metrics.
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