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Abstract

We describe a data-driven approach to
building interpretable discourse structures
for appointment scheduling dialogues. We
represent discourse structures as headed
trees and model them with probabilis-
tic head-driven parsing techniques. We
show that dialogue-based features regard-
ing turn-taking and domain specific goals
have a large positive impact on perfor-
mance. Our best model achieves an f-
score of 43.2% for labelled discourse rela-
tions and 67.9% for unlabelled ones, sig-
nificantly beating a right-branching base-
line that uses the most frequent relations.

1 Introduction

Achieving a model of discourse interpretation that is
both robust and deep is a major challenge. Consider
the dialogue in Figure 1 (the sentence numbers are
from the Redwoods treebank (Oepen et al., 2002)).
A robust and deep interpretation of it should resolve
the anaphoric temporal description in utterance 154
to the twenty sixth of July in the afternoon. It should
identify that time and before 3pm on the twenty-
seventh as potential times to meet, while ruling out
July thirtieth to August third. It should gracefully
handle incomplete or ungrammatical utterances like
152 and recognise that utterances 151 and 152 have
no overall effect on the time and place to meet.
According to Hobbs et al. (1993) and Asher and
Lascarides (2003), a discourse structure consisting
of hierarchical rhetorical connections between utter-
ances is vital for providing a unified model of a wide
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149 PAM: maybe we can get together, and, discuss, the

planning, say, two hours, in the next, couple weeks,
150
151
152

153

PAM: let me know what your schedule is like.
CAE:
CAE:

CAE:

okay, let me see.

twenty,

actually, July twenty sixth and twenty seventh looks
good,

154
155
156
157

CAE: the twenty sixth afternoon,

CAE: or the twenty seventh, before three p.m., geez.
CAE: I am out of town the thirtieth through the,

CAE: the third, I am in San Francisco.

Figure 1: A dialogue extract from Redwoods.

range of anaphoric and intentional discourse phe-
nomena, contributing to the interpretations of pro-
nouns, temporal expressions, presuppositions and
ellipses (among others), as well as influencing com-
municative goals. This suggests that a robust model
of discourse structure could complement current ro-
bust interpretation systems, which tend to focus on
only one aspect of the semantically ambiguous ma-
terial, such as pronouns (e.g., Striibe and Miiller
(2003)), definite descriptions (e.g., Vieira and Poe-
sio (2000)), or temporal expressions (e.g., Wiebe
et al. (1998)). This specialization makes it hard to
assess how they would perform in the context of a
more comprehensive set of interpretation tasks.

To date, most methods for constructing discourse
structures are not robust. They typically rely on
grammatical input and use symbolic methods which
inevitably lack coverage. One exception is Marcu’s
work (Marcu, 1997, 1999) (see also Soricut and
Marcu (2003) for constructing discourse structures
for individual sentences). Marcu (1999) uses a
decision-tree learner and shallow syntactic features
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to create classifiers for discourse segmentation and
for identifying rhetorical relations. Together, these
amount to a model of discourse parsing. However,
the results are trees of Rhetorical Structure Theory
(RST) (Mann and Thompson, 1986), and the clas-
sifiers rely on well-formedness constraints on RST
trees which are too restrictive (Moore and Pollack,
1992). Furthermore, RST does not offer an account
of how compositional semantics gets augmented,
nor does it model anaphora. It is also designed for
monologue rather than dialogue, so it does not of-
fer a precise semantics of questions or non-sentential
utterances which convey propositional content (e.g.,
154 and 155 in Figure 1). Another main approach to
robust dialogue processing has been statistical mod-
els for identifying dialogue acts (e.g., Stolcke et al.
(2000)). However, dialogue acts are properties of
utterances rather than hierarchically arranged rela-
tions between them, so they do not provide a basis
for resolving semantic underspecification generated
by the grammar (Asher and Lascarides, 2003).

Here, we present the first probabilistic approach
to parsing the discourse structure of dialogue.
We use dialogues from Redwoods’ appointment
scheduling domain and adapt head-driven genera-
tive parsing strategies from sentential parsing (e.g.,
Collins (2003)) for discourse parsing. The discourse
structures we build conform to Segmented Dis-
course Representation Theory (SDRT) (Asher and
Lascarides, 2003). SDRT provides a precise dynamic
semantic interpretation for its discourse structures
which augments the conventional semantic repre-
sentations that are built by most grammars. We thus
view the task of learning a model of SDRT-style dis-
course structures as one step towards achieving the
goal of robust and precise semantic interpretations.

We describe SDRT in the context of our domain
in Section 2. Section 3 discusses how we encode
and annotate discourse structures as headed trees
for our domain. Section 4 provides background on
probabilistic head-driven parsing models, and Sec-
tion 5 describes how we adapt the approach for dis-
course and gives four models for discourse parsing.
We report results in Section 6, which show the im-
portance of dialogue-based features on performance.
Our best model performs far better than a baseline
that uses the most frequent rhetorical relations and
right-branching segmentation.
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ho :  Request-Elab(149, 150) A
Plan-Elab(150, hy)

hi :  Elaboration(153, ha)A
Continuation(153, 156 )\
Continuation(156, 157)

ho = Alternation(154, 155)

Figure 2: The SDRS for the dialogue in Figure 1.

2 Segmented Discourse Representation
Theory

SDRT extends prior work in dynamic semantics (e.g.,
van Eijk and Kamp (1997)) via logical forms that
feature rhetorical relations. The logical forms con-
sist of speech act discourse referents which la-
bel content (either of a clause or of text seg-
ments). Rhetorical relations such as Explanation
relate these referents. The resulting structures are
called segmented discourse representation struc-
tures or SDRSs. An SDRS for the dialogue in Fig-
ure 1 is given in Figure 2; we have used the numbers
of the elementary utterances from Redwoods as the
speech act discourse referents but have omitted their
labelled logical forms. Note that utterances 151 and
152, which do not contribute to the truth conditions
of the dialogue, are absent — we return to this shortly.
There are several things to note about this SDRS.
First, SDRT’s dynamic semantics of rhetorical rela-
tions imposes constraints on the contents of its argu-
ments. For example, Plan-Elab(150, h1) (standing
for Plan-Elaboration) means that h1 provides infor-
mation from which the speaker of 150 can elaborate
a plan to achieve their communicative goal (to meet
for two hours in the next couple of weeks). The
relation Plan-Elab contrasts with Plan-Correction,
which would relate the utterances in dialogue (1):

A: Can we meet at the weekend?

(1 a.
b.  B: I'm afraid I'm busy then.

Plan-Correction holds when the content of the sec-
ond utterance in the relation indicates that its com-
municative goals conflict with those of the first one.
In this case, A indicates he wants to meet next week-
end, and B indicates that he does not (note that then
resolves to the weekend). Utterances (1ab) would
also be related with IQAP (Indirect Question Answer



Pair): this means that (1b) provides sufficient infor-
mation for the questioner A to infer a direct answer
to his question (Asher and Lascarides, 2003).

The relation Elaboration(153,hs) in Figure 2
means that the segment 154 to 155 resolves to a
proposition which elaborates part of the content of
the proposition 153. Therefore the twenty sixth in
154 resolves to the twenty sixth of July—any other
interpretation contradicts the truth conditional con-
sequences of Elaboration. Alternation(154,155)
has truth conditions similar to (dynamic) disjunc-
tion. Continuation(156,157) means that 156 and
157 have a common topic (here, this amounts to a
proposition about when CAE is unavailable to meet).

The second thing to note about Figure 2 is how
one rhetorical relation can outscope another: this
creates a hierarchical segmentation of the discourse.
For example, the second argument to the Elabo-
ration relation is the label hg of the Alternation-
segment relating 154 to 155. Due to the semantics
of Elaboration and Alternation, this ensures that the
dialogue entails that one of 154 or 155 is true, but it
does not entail 154, nor 155.

Finally, observe that SDRT allows for a situ-
ation where an utterance connects to more than
one subsequent utterance, as shown here with
Elaboration(153, h2) A Continuation(153,156). In
fact, SDRT also allows two utterances to be related
by multiple relations (see (1)) and it allows an utter-
ance to rhetorically connect to multiple utterances in
the context. These three features of SDRT capture the
fact that an utterance can make more than one illo-
cutionary contribution to the discourse. An example
of the latter kind of structure is given in (2):

2) a.
b.  A: How about one pm?
c. B: Would one thirty be OK with you?

A: Shall we meet on Wednesday?

The SDRS for this dialogue would feature the re-
lations Plan-Correction(2b,2c), IQAP(2b,2c) and
Q-Elab(2a,2c¢). Q-Elab, or Question-Elaboration,
always takes a question as its second argument;
any answers to the question must elaborate a plan
to achieve the communicative goal underlying the
first argument to the relation. From a logical per-
spective, recognising Plan-Correction(2b,2c) and
Q-Elab(2a, 2c) are co-dependent.
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Segment/hg

~
ind Request-Elab
149 imp Plan-Elab
[ e
150 Segment/h1
Pass Continuation
pause irr ind  Elaboration/ha ind Continuation
[ I I 7 N\ I
151 152 153 irid Alterrlzation 156 irid
154 inld 157
155

Figure 3: The discourse structure for the dialogue
from Figure 1 in tree form.

3 Augmenting the Redwoods treebank
with discourse structures

Our starting point is to create training material for
probabilistic discourse parsers. For this, we have
augmented dialogues from the Redwoods Treebank
(Oepen et al., 2002) with their analyses within a
fragment of SDRT (Baldridge and Lascarides, 2005).
This is a very different effort from that being pur-
sued for the Penn Discourse Treebank (Miltsakaki
et al.,, 2004), which uses discourse connectives
rather than abstract rhetorical relations like those in
SDRT in order to provide theory neutral annotations.
Our goal is instead to leverage the power of the se-
mantics provided by SDRT’s relations, and in partic-
ular to do so for dialogue as opposed to monologue.

Because the SDRS-representation scheme, as
shown in Figure 2, uses graph structures that do not
conform to tree constraints, it cannot be combined
directly with statistical techniques from sentential
parsing. We have therefore designed a headed tree
encoding of SDRSs, which can be straightforwardly
modeled with standard parsing techniques and from
which SDRSs can be recovered.

For instance, the tree for the dialogue in Figure 1
is given in Figure 3. The SDRS in Figure 2 is recov-
ered automatically from it. In this tree, utterances
are leaves which are immediately dominated by their
tag, indicating either the sentence mood (indicative,
interrogative or imperative) or that it is irrelevant, a
pause or a pleasantry (e.g., hello), annotated as pls.
Each non-terminal node has a unique head daugh-
ter: this is either a Segment node, Pass node, or a



leaf utterance tagged with its sentence mood. Non-
terminal nodes may in addition have any number of
daughter irr, pause and pls nodes, and an additional
daughter labelled with a rhetorical relation.

The notion of headedness has no status in the se-
mantics of SDRSs themselves. The heads of these
discourse trees are not like verbal heads with sub-
categorization requirements in syntax; here, they are
nothing more than the left argument of a rhetor-
ical relation, like 154 in Alternation(154,155).
Nonetheless, defining one of the arguments of
rhetorical relations as a head serves two main pur-
poses. First, it enables a fully deterministic algo-
rithm for recovering SDRSs from these trees. Sec-
ond, it is also crucial for creating probabilistic head-
driven parsing models for discourse structure.

Segment and Pass are non-rhetorical node types.
The former explicitly groups multiple utterances.
The latter allows its head daughter to enter into re-
lations with segments higher in the tree. This allows
us to represent situations where an utterance attaches
to more than one subsequent utterance, such as 153
in dialogue (1). Annotators manually annotate the
rhetorical relation, Segment and Pass nodes and de-
termine their daughters. They also tag the individual
utterances with one of the three sentence moods or
irr, pause or pls. The labels for segments (e.g., hg
and h; in Figure 3) are added automatically. Non-
veridical relations such as Alternation also introduce
segment labels on their parents; e.g., ho in Figure 3.

The SDRS is automatically recovered from this
tree representation as follows. First, each rela-
tion node generates a rhetorical connection in the
SDRS: its first argument is the discourse referent
of its parent’s head daughter, and the second is the
discourse referent of the node itself (which unless
stated otherwise is its head daughter’s discourse ref-
erent). For example, the structure in Figure 3 yields
Request-Elab(149, 150), Alternation(154,155) and
Elaboration(153, hy). The labels for the relations
in the SDRS—which determine segmentation—must
also be recovered. This is easily done: any node
which has a segment label introduces an outscopes
relation between that and the discourse referents
of the node’s daughters. This produces, for ex-
ample, outscopes(ho, 149), outscopes(hi, 153) and
outscopes(hg, 154). 1t is straightforward to deter-
mine the labels of all the rhetorical relations from
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these conditions. Utterances such as 151 and 152,
which are attached with pause and irr to indicate that
they have no overall truth conditional effect on the
dialogue, are ignored when constructing the SDRS,
S0 SDRT does not assign these terms any semantics.
Overall, this algorithm generates the SDRS in Fig-
ure 2 from the tree in Figure 3.

Thus far, 70 dialogues have been annotated and
reviewed to create our gold-standard corpus. On av-
erage, these dialogues have 237.5 words, 31.5 ut-
terances, and 8.9 speaker turns. In all, there are 30
different rhetorical relations in the inventory for this
annotation task, and 6 types of tags for the utterances
themselves: ind, int, imp, pause, irr and pls.

Finally, we annotated all 6,000 utterances in the
Verbmobil portion of Redwoods with the following:
whether the time mentioned (if there is one) is a
good time to meet (e.g., I'm free then or Shall we
meet at 2pm?) or a bad time to meet (e.g., I'm busy
then or Let’s avoid meeting at the weekend). These
are used as features in our model of discourse struc-
ture (see Section 5). We use these so as to minimise
using directly detailed features from the utterances
themselves (e.g. the fact that the utterance contains
the word free or busy, or that it contains a negation),
which would lead to sparse data problems given the
size of our training corpus. We ultimately aim to
learn good-time and bad-time from sentence-level
features extracted from the 6,000 Redwoods analy-
ses, but we leave this to future work.

4 Generative parsing models

There is a significant body of work on probabilistic
parsing, especially that dealing with the English sen-
tences found in the annotated Penn Treebank. One
of the most important developments in this work is
that of Collins (2003). Collins created several lex-
icalised head-driven generative parsing models that
incorporate varying levels of structural information,
such as distance features, the complement/adjunct
distinction, subcategorization and gaps. These mod-
els are attractive for constructing our discourse trees,
which contain heads that establish non-local depen-
dencies in a manner similar to that in syntactic pars-
ing. Also, the co-dependent tasks of determining
segmentation and choosing the rhetorical connec-
tions are both heavily influenced by the content of



the utterances/segments which are being considered,
and lexicalisation allows the model to probabilisti-
cally relate such utterances/segments very directly.

Probabilistic Context Free Grammars (PCFGs)
determine the conditional probability of a right-
hand side of a rule given the left-hand side,
P(RHS|LHS). Collins instead decomposes the
calculation of such probabilities by first generating a
head and then generating its left and right modifiers
independently. In a supervised setting, doing this
gathers a much larger set of rules from a set of la-
belled data than a standard PCFG, which learns only
rules that are directly observed.!

The decomposition of a rule begins by noting that
rules in a lexicalised PCFG have the form:

P(h) — Lp(lp) ... Li(L)H(h)R1(11) . . . Ry (1)

where h is the head word, H(h) is the label of the
head constituent, P(h) is its parent, and L;(l;) and
R;(r;) are the n left and m right modifiers, respec-
tively. It is also necessary to include STOP sym-
bols L,4+1 and R,,+1 on either side to allow the
Markov process to properly model the sequences of
modifiers. By assuming these modifiers are gener-
ated independently of each other but are dependent
on the head and its parent, the probability of such
expansions can be calculated as follows (where P,
‘P, and P, are the probabilities for the head, left-
modifiers and right-modifiers respectively):

PLn(l) ... Ly () H(R)Ry(r1) . .. R (rm) | P(R)) =

Pr(H|P(h))

X H Pu(Li(l;)|P(h), H)
i=1l...n+1

x [ Pr(Ri(ri)|P(h),H)
i=1..m1

This provides the simplest of models. More con-
ditioning information can of course be added from
any structure which has already been generated. For
example, Collins’ model 1 adds a distance feature
that indicates whether the head and modifier it is
generating are adjacent and whether a verb is in the
string between the head and the modifier.

'A similar effect can be achieved by converting n-ary trees
to binary form.
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5 Discourse parsing models

In Section 3, we outlined how SDRSs can be repre-
sented as headed trees. This allows us to create pars-
ing models for discourse that are directly inspired by
those described in the previous section. These mod-
els are well suited for our discourse parsing task.
They are lexicalised, so there is a clear place in the
discourse model for incorporating features from ut-
terances: simply replace lexical heads with whole
utterances, and exploit features from those utter-
ances in discourse parsing in the same manner as
lexical features are used in sentential parsing.

Discourse trees contain a much wider variety of
kinds of information than syntactic trees. The leaves
of these trees are sentences with full syntactic and
semantic analyses, rather than words. Furthermore,
each dialogue has two speakers, and speaker style
can change dramatically from dialogue to dialogue.
Nonetheless, the task is also more constrained in
that there are fewer overall constituent labels, there
are only a few labels which can act as heads, and
trees are essentially binary branching apart from
constituents containing ignorable utterances.

The basic features we use are very similar to those
for the syntactic parsing model given in the previous
section. The feature P is the parent label that is the
starting point for generating the head and its modi-
fiers. H is the label of the head constituent. The tag
t is also used, except that rather than being a part-of-
speech, it is either a sentence mood label (ind, int, or
imp) or an ignorable label (irr, pls, or pause). The
word feature w in our model is the first discourse cue
phrase present in the utterance.? In the absence of a
cue phrase, w is the empty string. The distance fea-
ture A is true if the modifier being generated is adja-
cent to the head and false otherwise. To incorporate
a larger context into the conditioning information,
we also utilize a feature HC R, which encodes the
child relation of a node’s head.

We have two features that are particular to dia-
logue. The first ST, indicates whether the head ut-
terance of a segment starts a turn or not. The other,
TC, encodes the number of turn changes within a
segment with one of the values 0, 1, or > 2.

Finally, we use the good/bad-time annotations
discussed in Section 3 for a feature 7'M indicating

2We obtained our list of cue phrases from Oates (2001).



Head features Modifier features
P|t|w|HCR|ST|TC|TM || P |t |w | H|A|HCR|ST|TC|TM
Modell | v | vV | V VIV I IVvIiv |V
Model2 | v | vV | V v v VIV IVvIiVvI|Y v v
Model3 | v | vV | V v v | Vv VIV IVvIiv |V v v |V
Model4 | v | V | V v VAR VAR VAR | IRV VA IRV VAN V4 v VI vV

Figure 4: The features active for determining the head and modifier probabilities in each of the four models.

one of the following values for the head utterance of
a segment: good_time, bad_time, neither, or both.

With these features, we create the four models
given in Figure 4. As example feature values, con-
sider the Segment node labelled h; in Figure 3. Here,
the features have as values: P=Segment, H=Pass,
t=ind (the tag of utterance 153), w=Actually (see
153 in Figure 1), HC R=Elaboration, ST=false,
TC=0, and T M=good_time.

As is standard, linear interpolation with back-off
levels of decreasing specificity is used for smooth-
ing. Weights for the levels are determined as in
Collins (2003).

6 Results

For our experiments, we use a standard chart parsing
algorithm with beam search that allows a maximum
of 500 edges per cell. The figure of merit for the
cut-off combines the probability of an edge with the
prior probability of its label, head and head tag. Hy-
pothesized trees that do not conform to some simple
discourse tree constraints are also pruned.>

The parser is given the elementary discourse units
as defined in the corpus. These units correspond di-
rectly to the utterances already defined in Redwoods
and we can thus easily access their complete syntac-
tic analyses directly from the treebank.

The parser is also given the correct utterance
moods to start with. This is akin to getting the cor-
rect part-of-speech tags in syntactic parsing. We
do this since we are using the parser for semi-
automated annotation. Tagging moods for a new
discourse is a very quick and reliable task for the
human. With them the parser can produce the more
complex hierarchical structure more accurately than
if it had to guess them — with the potential to dra-
matically reduce the time to annotate the discourse

3E.g., nodes can have at most one child with a relation label.
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structures of further dialogues. Later, we will create
a sentence mood tagger that presents an n-best list
for the parser to start with, from the tag set ind, int,
imp, iry, pause, and pls.

Models are evaluated by using a leave-one-out
strategy, in which each dialogue is parsed after train-
ing on all the others. We measure labelled and un-
labelled performance with both the standard PAR-
SEVAL metric for comparing spans in trees and a
relation-based metric that compares the SDRS’s pro-
duced by the trees. The latter gives a more direct in-
dication of the accuracy of the actual discourse log-
ical form, but we include the former to show perfor-
mance using a more standard measure. Scores are
globally determined rather than averaged over all in-
dividual dialogues.

For the relations metric, the relations from the
derived discourse tree for the test dialogue are ex-
tracted; then, the overlap with relations from the
corresponding gold standard tree is measured. For
labelled performance, the model is awarded a point
for a span or relation which has the correct discourse
relation label and both arguments are correct. For
unlabelled, only the arguments need to be correct.*

Figure 5 provides the f-scores® of the various
models and compares them against those of a base-
line model and annotators. All differences between
models are significant, using a pair-wise t-test at
99.5% confidence, except that between the baseline
and Model 2 for unlabelled relations.

The baseline model is based on the most frequent
way of attaching the current utterance to its dia-

“This is a much stricter measure than one which measures
relations between a head and its dependents in syntax because
it requires two segments rather than two heads to be related cor-
rectly. For example, Model 4’s labelled and unlabelled relation
f-scores using segments are 43.2% and 67.9%, respectively; on
a head-to-head basis, they rise to 50.4% and 81.8%.

. 2 IS g
SThe f-score is calculated as 2Xprecisionxrecall
precision+recall



PARSEVAL Relations
Model Lab. Unlab. | Lab. Unlab.
Baseline 14.7 338 | 74 53.3
Model 1 22.7 42.2 | 23.1 47.0
Model 2 30.1 51.1 | 31.0 54.3
Model 3 394 62.8 | 394 64.4
Model 4 46.3 69.2 | 43.2 67.9
Inter-annotator | 53.7 76.5 | 50.3 73.0
Annotator-gold | 75.9 88.0 | 75.3 84.0

Figure 5: Model performance.

logue context. The baseline is informed by the gold-
standard utterance moods. For this corpus, this re-
sults in a baseline which is a right-branching struc-
ture, where the relation Plan-Elaboration is used if
the utterance is indicative, Question-Elaboration if
it is interrogative, and Request-Elaboration if it is
imperative. The baseline also appropriately handles
ignorable utterances (i.e, those with the mood labels
irrelevant, pause, or pleasantry).

The baseline performs poorly on labelled rela-
tions (7.4%), but is more competitive on unlabelled
ones (53.3%). The main reason for this is that
it takes no segmentation risks. It simply relates
every non-ignorable utterance to the previous one,
which is indeed a typical configuration with com-
mon content-level relations like Continuation. The
generative models take risks that allow them to cor-
rectly identify more complex segments — at the cost
of missing some of these easier cases.

Considering instead the PARSEVAL scores for the
baseline, the labelled performance is much higher
(14.7%) and the unlabelled is much lower (33.8%)
than for relations. The difference in labelled per-
formance is due to the fact that the intentional-level
relations used in the baseline often have arguments
that are multi-utterance segments in the gold stan-
dard. These are penalized in the relations compar-
ison, but the spans used in PARSEVAL are blind to
them. On the other hand, the unlabelled score drops
considerably — this is due to poor performance on
dialogues whose gold standard analyses do not have
a primarily right-branching structure.

Model 1 performs most poorly of all the models.
It is significantly better than the baseline on labelled
relations, but significantly worse on unlabelled rela-
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tions. All its features are derived from the structure
of the trees, so it gets no clues from speaker turns or
the semantic content of utterances.

Model 2 brings turns and larger context via the
ST and HC'R features, respectively. This improves
segmentation over Model 1 considerably, so that the
model matches the baseline on unlabelled relations
and beats it significantly on labelled relations.

The inclusion of the T'C' feature in Model 3 brings
large (and significant) improvements over Model 2.
Essentially, this feature has the effect of penalizing
hypothesized content-level segments that span sev-
eral turns. This leads to better overall segmentation.

Finally, Model 4 incorporates the domain-based
T M feature that summarizes some of the semantic
content of utterances. This extra information im-
proves the determination of labelled relations. For
example, it is especially useful in distinguishing a
Plan-Correction from a Plan-Elaboration.

The overall trend of differences between PARSE-
VAL and relations scoring show that PARSEVAL is
tougher on overall segmentation and relations scor-
ing is tougher on whether a model got the right ar-
guments for each labelled relation. It is the latter
that ultimately matters for the discourse structures
produced by the parser to be useful; nonetheless, the
PARSEVAL scores do show that each model progres-
sively improves on capturing the trees themselves,
and that even Model 1 — as a syntactic model — is
far superior to the baseline for capturing the overall
form of the trees.

We also compare our best model against two up-
perbounds: (1) inter-annotator agreement on ten
dialogues that were annotated independently and
(2) the best annotator against the gold standard
agreed upon after the independent annotation phase.
For the first, the labelled/unlabelled relations f-
scores are 50.3%/73.0% and for the latter, they are
75.3%/84.0%—this is similar to the performance on
other discourse annotation projects, e.g., Carlson
et al. (2001). On the same ten dialogues, Model 4
achieves 42.3%/64.9%.

It is hard to compare these models with Marcu’s
(1999) rhetorical parsing model. Unlike Marcu, we
did not use a variety of corpora, have a smaller train-
ing corpus, are analysing dialogues as opposed to
monologues, have a larger class of rhetorical re-
lations, and obtain the elementary discourse units



from the Redwoods annotations rather than estimat-
ing them. Even so, it is interesting that the scores
reported in Marcu (1999) for labelled and unlabelled
relations are similar to our scores for Model 4.

7 Conclusion

In this paper, we have shown how the complex task
of creating structures for SDRT can be adapted to a
standard probabilistic parsing task. This is achieved
via a headed tree representation from which SDRSs
can be recovered. This enables us to directly ap-
ply well-known probabilistic parsing algorithms and
use features inspired by them. Our results show
that using dialogue-based features are a major factor
in improving the performance of the models, both
in terms of determining segmentation appropriately
and choosing the right relations to connect them.

There is clearly a great deal of room for improve-
ment, even with our best model. Even so, that
model performed sufficiently well for use in semi-
automated annotation: when correcting the model’s
output on ten dialogues, one annotator took 30 sec-
onds per utterance, compared to 39 for another an-
notator working on the same dialogues with no aid.

In future work, we intend to exploit an exist-
ing implementation of SDRT’s semantics (Schlangen
and Lascarides, 2002), which adopts theorem prov-
ing to infer resolutions of temporal anaphora and
communicative goals from SDRSs for scheduling di-
alogues. This additional semantic content can in
turn be added (semi-automatically) to a training cor-
pus. This will provide further features for learn-
ing discourse structure and opportunities for learn-
ing anaphora and goal information directly.

Acknowledgments

This work was supported by Edinburgh-Stanford
Link R36763, ROSIE project. Thanks to Mirella La-
pata and Miles Osborne for comments.

References

N. Asher and A. Lascarides. Logics of Conversation. Cam-
bridge University Press, 2003.

J. Baldridge and A. Lascarides. Annotating discourse struc-
tures for robust semantic interpretation. In Proceedings of
the 6th International Workshop on Computational Seman-
tics, Tilburg, The Netherlands, 2005.

103

L. Carlson, D. Marcu, and M. Okurowski. Building a discourse-
tagged corpus in the framework of rhetorical structure the-
ory. In Proceedings of the 2nd SIGDIAL Workshop on Dis-
course and Dialogue, Eurospeech, 2001.

M. Collins. Head-driven statistical models for natural language
parsing. Computational Linguistics, 29(4):589-638, 2003.

J.R. Hobbs, M. Stickel, D. Appelt, and P. Martin. Interpretation
as abduction. Artificial Intelligence, 63(1-2):69-142, 1993.

W. C. Mann and S. A. Thompson. Rhetorical structure theory:
Description and construction of text structures. In G. Kem-
pen, editor, Natural Language Generation: New Results in
Artificial Intelligence, pages 279-300. 1986.

D. Marcu. The rhetorical parsing of unrestricted natural lan-
guage texts. In Proceedings of ACL/EACL, pages 96-103,
Somerset, New Jersey, 1997.

D. Marcu. A decision-based approach to rhetorical parsing.
In Proceedings of the 37th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL99), pages 365-372,
Maryland, 1999.

E. Miltsakaki, R. Prasad, A. Joshi, and B. Webber. The Penn
Discourse TreeBank. In Proceedings of the Language Re-
sources and Evaluation Conference, Lisbon, Portugal, 2004.

J. D. Moore and M. E. Pollack. A problem for RST: The need
for multi-level discourse analysis. Computational Linguis-
tics, 18(4):537-544, 1992.

S. Oates. Generating multiple discourse markers in text. Mas-
ter’s thesis, ITRI, University of Brighton, 2001.

S. Oepen, E. Callahan, C. Manning, and K. Toutanova. LinGO
Redwoods—a rich and dynamic treebank for HPSG. In Pro-
ceedings of the LREC parsing workshop: Beyond PARSEVAL,
towards improved evaluation measures for parsing systems,
pages 17-22, Las Palmas, 2002.

D. Schlangen and A. Lascarides. Resolving fragments using
discourse information. In Proceedings of the 6th Interna-
tional Workshop on the Semantics and Pragmatics of Dia-
logue (Edilog), Edinburgh, 2002.

R. Soricut and D. Marcu. Sentence level discourse parsing using
syntactic and lexical information. In Proceedings of Human
Language Technology and North American Association for
Computational Linguistics, Edmonton, Canada, 2003.

A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, D. Jurafsky
R. Bates, P. Taylor, R. Martin, C. van Ess-Dykema, and
M. Meteer. Dialogue act modeling for automatic tagging and
recognition of conversational speech. Computational Lin-
guistics, 26(3):339-374, 2000.

M. Striibe and C. Miiller. A machine learning approach to pro-
noun resolution in spoken dialogue. In Proceedings of the
41st Annual Meeting of the Association for Computational
Linguistics (ACL2003), pages 168-175, 2003.

J. van Eijk and H. Kamp. Representing discourse in context.
In J. van Benthem and A. ter Meulen, editors, Handbook of
Logic and Linguistics, pages 179-237. Elsevier, 1997.

R. Vieira and M. Poesio. Processing definite descriptions in
corpora. In Corpus-based and computational approaches to
anaphora. UCL Press, 2000.

J. M. Wiebe, T. P. O’Hara, T. Ohrstrom-Sandgren, and K. J. Mc-
Keever. An empirical approach to temporal reference resolu-
tion. Journal of Artificial Intelligence Research, 9:247-293,
1998.



