
Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 80–87, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Improving sequence segmentation learning by predicting trigrams

Antal van den Bosch
ILK / Computational Linguistics and AI

Tilburg University
Tilburg, The Netherlands

Antal.vdnBosch@uvt.nl

Walter Daelemans
CNTS, Department of Linguistics

University of Antwerp
Antwerp, Belgium

Walter.Daelemans@ua.ac.be

Abstract

Symbolic machine-learning classifiers are
known to suffer from near-sightedness
when performing sequence segmentation
(chunking) tasks in natural language pro-
cessing: without special architectural ad-
ditions they are oblivious of the decisions
they made earlier when making new ones.
We introduce a new pointwise-prediction
single-classifier method that predicts tri-
grams of class labels on the basis of win-
dowed input sequences, and uses a simple
voting mechanism to decide on the labels
in the final output sequence. We apply
the method to maximum-entropy, sparse-
winnow, and memory-based classifiers us-
ing three different sentence-level chunk-
ing tasks, and show that the method is able
to boost generalization performance in
most experiments, attaining error reduc-
tions of up to 51%. We compare and com-
bine the method with two known alterna-
tive methods to combat near-sightedness,
viz. a feedback-loop method and a stack-
ing method, using the memory-based clas-
sifier. The combination with a feedback
loop suffers from the label bias problem,
while the combination with a stacking
method produces the best overall results.

1 Optimizing output sequences

Many tasks in natural language processing have the
full sentence as their domain. Chunking tasks, for
example, deal with segmenting the full sentence into
chunks of some type, for example constituents or
named entities, and possibly labeling each identified

� �� � �� �

� � 	 
 � � 


� � � � � � � � � � � � �

� � � � � � � � � � � � � �

� ��

�

� �
� ��

�

�
�

� � � � � � � � � � � � � �

Figure 1: Standard windowing process. Sequences
of input symbols and output symbols are converted
into windows of fixed-width input symbols each as-
sociated with one output symbol.

chunk. The latter typically involves disambigua-
tion among alternative labels (e.g. syntactic role la-
beling, or semantic type assignment). Both tasks,
whether seen as separate tasks or as one, involve the
use of contextual knowledge from the available in-
put (e.g. words with part-of-speech tags), but also
the coordination of segmentations and disambigua-
tions over the sentence as a whole.

Many machine-learning approaches to chunking
tasks use windowing, a standard representational ap-
proach to generate cases that can be sequentially
processed. Each case produces one element of the
output sequence. The simplest method to process
these cases is that each case is classified in isolation,
generating a so-called point-wise prediction; the se-
quence of subsequent predictions can be concate-
nated to form the entire output analysis of the sen-
tence. Within a window, fixed-width subsequences
of adjacent input symbols, representing a certain
contextual scope, are mapped to one output symbol,
typically associated with one of the input symbols,
for example the middle one. Figure 1 displays this
standard version of the windowing process.

80



The fact that the point-wise classifier is only
trained to associate subsequences of input symbols
to single output symbols as accurately as possible
is a problematic restriction: it may easily cause the
classifier to produce invalid or impossible output se-
quences, since it is incapable of taking into account
any decisions it has made earlier. This well-known
problem has triggered at least the following three
main types of solutions.

Feedback loop Each training or test example may
represent not only the regular windowed input, but
also a copy of previously made classifications, to al-
low the classifier to be more consistent with its pre-
vious decisions. Direct feedback loops that copy
a predicted output label to the input representa-
tion of the next example have been used in sym-
bolic machine-learning architectures such as the the
maximum-entropy tagger described by Ratnaparkhi
(1996) and the memory-based tagger (MBT) pro-
posed by Daelemans et al. (1996). This solution as-
sumes that processing is directed, e.g. from left to
right. A noted problem of this approach is thelabel
bias problem(Lafferty et al., 2001), which is that a
feedback-loop classifier may be driven to be consis-
tent with its previous decision also in the case this
decision was wrong; sequences of errors may result.

Stacking, boosting, and voting The partly incor-
rect concatenated output sequence of a single classi-
fier may serve as input to a second-stage classifier in
a stacking architecture, a common machine-learning
optimization technique (Wolpert, 1992). Although
less elegant than a monolithic single-classifier ar-
chitecture, this method is known to be capable of
recognizing recurring errors of the first-stage clas-
sifier and correcting them (Veenstra, 1998). Boost-
ing (Freund and Schapire, 1996) has been applied to
optimize chunking systems (Carreras et al., 2002),
as well as voting over sets of different classifiers
(Florian et al., 2003). Punyakanok and Roth (2001)
present two methods for combining the predictions
of different classifiers according to constraints that
ensure that the resulting output is made more coher-
ent.

Output sequence optimization Rather than bas-
ing classifications only on model parameters esti-
mated from co-occurrences between input and out-

put symbols employed for maximizing the likeli-
hood of point-wise single-label predictions at the
output level, classifier output may be augmented by
an optimization over the output sequence as a whole
using optimization techniques such as beam search-
ing in the space of a conditional markov model’s
output (Ratnaparkhi, 1996) or hidden markov mod-
els (Skut and Brants, 1998). Maximum-entropy
markov models (McCallum et al., 2000) and con-
ditional random fields (Lafferty et al., 2001) opti-
mize the likelihood of segmentations of output sym-
bol sequences through variations of Viterbi search.
A non-stochastic, non-generative method for output
sequence optimization is presented by Argamon et
al. (1999), who propose a memory-based sequence
learner that finds alternative chunking analyses of a
sequence, and produces one best-guess analysis by a
tiling algorithm that finds an optimal joining of the
alternative analyses.

In this paper we introduce a symbolic machine-
learning method that can be likened to the ap-
proaches of the latter type of output sequence op-
timizers, but which does not perform a search in
a space of possible analyses. The approach is to
have a point-wise symbolic machine-learning clas-
sifier predict series of overlappingn-grams (in the
current study, trigrams) of class symbols, and have
a simple voting mechanism decide on the final out-
put sequence based on the overlapping predicted tri-
grams. We show that the approach has similar posi-
tive effects when applied to a memory-based classi-
fier and a maximum-entropy classifier, while yield-
ing mixed effects with a sparse-winnow classifier.
We then proceed to compare the trigram prediction
method to a feedback-loop method and a stacking
method applied using the memory-based classifier.
The three methods attain comparable error reduc-
tions. Finally, we combine the trigram-prediction
method with each of the two other methods. We
show that the combination of the trigram-prediction
method and the feedback-loop method does not
improve performance due to the label bias prob-
lem. In contrast, the combination of the trigram-
prediction method and the stacking method leads to
the overall best results, indicating that the latter two
methods solve complementary aspects of the near-
sightedness problem.

The structure of the paper is as follows. First,

81



we introduce the three chunking sequence segmen-
tation tasks studied in this paper and explain the au-
tomatic algorithmic model selection method for the
three machine-learning classifiers used in our study,
in Section 2. The subsequent three sections report
on empirical results for the different methods pro-
posed for correcting the near-sightedness of classi-
fiers: the new class-trigrams method, a feedback-
loop approach in combination with single classes
and class trigrams, and two types of stacking in com-
bination with single classes and class trigrams. Sec-
tion 6 sums up and discusses the main results of the
comparison.

2 Data and methodology

The three data sets we used for this study repre-
sent a varied set of sentence-level chunking tasks
of both syntactic and semantic nature: English
base phrase chunking (henceforthCHUNK), En-
glish named-entity recognition (NER), and disflu-
ency chunking in transcribed spoken Dutch utter-
ances (DISFL).

CHUNK is the task of splitting sentences into
non-overlapping syntactic phrases or constituents.
The used data set, extracted from the WSJ Penn
Treebank, contains 211,727 training examples and
47,377 test instances. The examples represent
seven-word windows of words and their respective
(predicted) part-of-speech tags, and each example
is labeled with a class using the IOB type of seg-
mentation coding as introduced by Ramshaw and
Marcus (1995), marking whether the middle word
is inside (I), outside (O), or at the beginning (B)
of a chunk. Words occuring less than ten times in
the training material are attenuated (converted into a
more general string that retains some of the word’s
surface form). Generalization performance is mea-
sured by the F-score on correctly identified and la-
beled constituents in test data, using the evaluation
method originally used in the “shared task” sub-
event of the CoNLL-2000 conference (Tjong Kim
Sang and Buchholz, 2000) in which this particu-
lar training and test set were used. An example
sentence with base phrases marked and labeled is
the following: [He]NP [reckons]V P [the current account

deficit]NP [will narrow]V P [to]PP [only $ 1.8 billion]NP

[in]PP [September]NP .

NER, named-entity recognition, is to recognize
and type named entities in text. We employ the En-
glish NER shared task data set used in the CoNLL-
2003 conference, again using the same evaluation
method as originally used in the shared task (Tjong
Kim Sang and De Meulder, 2003). This data set
discriminates four name types: persons, organiza-
tions, locations, and a rest category of “miscellany
names”. The data set is a collection of newswire ar-
ticles from the Reuters Corpus, RCV11. The given
training set contains 203,621 examples; as test set
we use the “testb” evaluation set which contains
46,435 examples. Examples represent seven-word
windows of unattenuated words with their respec-
tive predicted part-of-speech tags. No other task-
specific features such as capitalization identifiers or
seed list features were used. Class labels use the
IOB segmentation coding coupled with the four pos-
sible name type labels. Analogous to theCHUNK

task, generalization performance is measured by the
F-score on correctly identified and labeled named
entities in test data. An example sentence with
the named entities segmented and typed is the fol-
lowing: [U.N.]organization official [Ekeus]person heads for

[Baghdad]location.

DISFL, disfluency chunking, is the task of rec-
ognizing subsequences of words in spoken utter-
ances such as fragmented words, laughter, self-
corrections, stammering, repetitions, abandoned
constituents, hesitations, and filled pauses, that are
not part of the syntactic core of the spoken utter-
ance. We use data introduced by Lendvai et al.
(2003), who extracted the data from a part of the
Spoken Dutch Corpus of spontaneous speech2 that
is both transcribed and syntactically annotated. All
words and multi-word subsequences judged not to
be part of the syntactic tree are defined as disfluent
chunks. We used a single 90% – 10% split of the
data, producing a training set of 303,385 examples
and a test set of 37,160 examples. Each example
represents a window of nine words (attenuated be-
low an occurrence threshold of 100) and 22 binary
features representing various string overlaps (to en-
code possible repetitions); for details, cf. (Lendvai

1Reuters Corpus, Volume 1, English language, 1996-08-20
to 1997-08-19.

2CGN, Spoken Dutch Corpus, version 1.0,
http://lands.let.kun.nl/cgn/ehome.htm.

82



et al., 2003). Generalization performance is mea-
sured by the F-score on correctly identified disfluent
chunks in test data. An example of a chunked Spo-
ken Dutch Corpus sentence is the following (“uh” is
a filled pause; without the disfluencies, the sentence
means “I have followed this process with a certain
amount of scepticism for about a year”):[ik uh] ik heb

met de nodige scepsis [uh] deze gang van zaken [zo’n]

zo’n jaar aangekeken.

We perform our experiments on the three tasks us-
ing three machine-learning algorithms: the memory-
based learning ork-nearest neighbor algorithm as
implemented in the TiMBL software package (ver-
sion 5.1) (Daelemans et al., 2004), henceforth re-
ferred to asMBL ; maximum-entropy classification
(Guiasu and Shenitzer, 1985) as implemented in
the maxent software package (version 20040930)
by Zhang Le3, henceforthMAXENT ; and a sparse-
winnow network (Littlestone, 1988) as implemented
in the SNoW software package (version 3.0.5) by
Carlson et al. (1999), henceforthWINNOW. All
three algorithms have algorithmic parameters that
bias their performance; to allow for a fair compar-
ison we optimized each algorithm on each task us-
ing wrapped progressive sampling (Van den Bosch,
2004) (WPS), a heuristic automatic procedure that,
on the basis of validation experiments internal to
the training material, searches among algorithmic
parameter combinations for a combination likely to
yield optimal generalization performance on unseen
data. We used wrapped progressive sampling in all
experiments.

3 Predicting class trigrams

There is no intrinsic bound to what is packed into
a class label associated to a windowed example.
For example, complex class labels can span over
trigrams of singular class labels. A classifier that
learns to produce trigrams of class labels will at least
produce syntactically valid trigrams from the train-
ing material, which might partly solve some near-
sightedness problems of the single-class classifier.
Although simple and appealing, the lurking disad-
vantage of the trigram idea is that the number of
class labels increases explosively when moving from

3Maximum Entropy Modeling Toolkit for Python
and C++, http://homepages.inf.ed.ac.uk/s0450736/

maxent toolkit.html.

� �� � �� �

� � 	 
 � � 


� � � � � � � � � � � � �

� � � � � � � � � � � � � �

� ��
� �

� ��
�

�

� � � � � � � � � � � � � �

�
�

� � 	�

Figure 2: Windowing process with trigrams of class
symbols. Sequences of input symbols and output
symbols are converted into windows of fixed-width
input symbols each associated with, in this example,
trigrams of output symbols.

single class labels to wider trigrams. TheCHUNK

data, for example, has 22 classes (“IOB” codes as-
sociated with chunk types); in the same training set,
846 different trigrams of these 22 classes and the
start/end context symbol occur. The eight original
classes ofNER combine to 138 occurring trigrams.
DISFL only has two classes, but 18 trigram classes.

Figure 2 illustrates the procedure by which win-
dows are created with, as an example, class trigrams.
Each windowed instance maps to a class label that
incorporates three atomic class labels, namely the
focus class label that was the original unigram label,
plus its immediate left and right neighboring class
labels.

While creating instances this way is trivial, it is
not entirely trivial how the output of overlapping
class trigrams recombines into a normal string of
class sequences. When the example illustrated in
Figure 2 is followed, each single class label in the
output sequence is effectively predicted three times;
first, as the right label of a trigram, next as the mid-
dle label, and finally as the left label. Although
it would be possible to avoid overlaps and classify
only every three words, there is an interesting prop-
erty of overlapping class labeln-grams: it is pos-
sible to vote over them. To pursue our example of
trigram classes, the following voting procedure can
be followed to decide about the resulting unigram
class label sequence:

1. When all three votes are unanimous, their com-
mon class label is returned;

2. When two out of three votes are for the same

83



MBL MAXENT WINNOW

Task Baseline Trigram red. Baseline Trigram red. Baseline Trigram red.

CHUNK 91.9 92.7 10 90.3 91.9 17 89.5 88.3 -11
NER 77.2 80.2 17 47.5 74.5 51 68.9 70.1 4
DISFL 77.9 81.7 17 75.3 80.7 22 70.5 65.3 -17

Table 1: Comparison of generalization performances of three machine-learning algorithms in terms of F-
score on the three test sets without and with class trigrams. Each third column displays the error reduction
in F-score by the class trigrams method over the other method. The best performances per task are printed
in bold.

class label, this class label is returned;
3. When all three votes disagree (i.e., when ma-

jority voting ties), the class label is returned of
which the classifier is most confident.

Classifier confidence, needed for the third tie-
breaking rule, can be heuristically estimated by tak-
ing the distance of the nearest neighbor inMBL , the
estimated probability value of the most likely class
produced by theMAXENT classifier, or the activa-
tion level of the most active unit of theWINNOW

network.
Clearly this scheme is one out of many possible

schemes, using variants of voting as well as variants
of n (and having multiple classifiers with differentn,
so that some back-off procedure could be followed).
For now we use this procedure with trigrams as an
example. To measure its effect we apply it to the se-
quence tasksCHUNK, NER, andDISFL. The results
of this experiment, where in each caseWPSwas used
to find optimal algorithmic parameters of all three
algorithms, are listed in Table 1. We find rather posi-
tive effects of the trigram method both withMBL and
MAXENT ; we observe relative error reductions in the
F-score on chunking ranging between 10% and a re-
markable 51% error reduction, withMAXENT on the
NER task. WithWINNOW, we observe decreases in
performance onCHUNK andDISFL, and a minor er-
ror reduction of 4% onNER.

4 The feedback-loop method versus class
trigrams

An alternative method for providing a classifier ac-
cess to its previous decisions is a feedback-loop ap-
proach, which extends the windowing approach by
feeding previous decisions of the classifier as fea-
tures into the current input of the classifier. This

Task Baseline Feedback Trigrams Feed+Tri

CHUNK 91.9 93.0 92.7 89.8
NER 77.2 78.1 80.2 77.5
DISFL 77.9 78.6 81.7 79.1

Table 2: Comparison of generalization perfor-
mances in terms of F-score ofMBL on the three test
sets, with and without a feedback loop, and the error
reduction attained by the feedback-loop method, the
F-score of the trigram-class method, and the F-score
of the combination of the two methods.

approach was proposed in the context of memory-
based learning for part-of-speech tagging as MBT

(Daelemans et al., 1996). The number of decisions
fed back into the input can be varied. In the exper-
iments described here, the feedback loop iteratively
updates a memory of the three most recent predic-
tions.

The feedback-loop approach can be combined
both with single class and class trigram output. In
the latter case, the full trigram class labels are copied
to the input, retaining at any time the three most re-
cently predicted labels in the input. Table 2 shows
the results for both options on the three chunking
tasks. The feedback-loop method outperforms the
trigram-class method onCHUNK, but not on the
other two tasks. It does consistently outperform
the baseline single-class classifier. Interestingly, the
combination of the two methods performs worse
than the baseline classifier onCHUNK, and also per-
forms worse than the trigram-class method on the
other two tasks.

84



� �� � �� �

� � 	 
 � � 


� � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

��

�

� �
��

�

�
�

� � � � � � � � � � � � � �

� � 	 
 � � 
 � � � � � � � � � � � � � � � � � � � � � � �

� �
� 	

�
� 	 


� �

� �

Figure 3: The windowing process after a first-stage
classifier has produced a predicted output sequence.
Sequences of input symbols, predicted output sym-
bols, and real output symbols are converted into win-
dows of fixed-width input symbols and predicted
output symbols, each associated with one output
symbol.

5 Stacking versus class trigrams

Stacking, a term popularized by Wolpert (1992) in
an artificial neural network context, refers to a class
of meta-learning systems that learn to correct er-
rors made by lower-level classifiers. We implement
stacking by adding a windowed sequence of previ-
ous and subsequent output class labels to the origi-
nal input features (here, we copy a window of seven
predictions to the input, centered around the middle
position), and providing these enriched examples as
training material to a second-stage classifier. Fig-
ure 3 illustrates the procedure. Given the (possibly
erroneous) output of a first classifier on an input se-
quence, a certain window of class symbols from that
predicted sequence is copied to the input, to act as
predictive features for the real class label.

To generate the output of a first-stage classifier,
two options are open. We name these optionsper-
fect andadaptive. They differ in the way they create
training material for the second-stage classifier:

Perfect – the training material is created straight
from the training material of the first-stage classi-
fier, by windowing over the real class sequences.
In doing so, the class label of each window is ex-
cluded from the input window, since it is always
the same as the class to be predicted. In training,
this focus feature would receive an unrealistically

Perfect Adaptive
Task Baseline stacking stacking

CHUNK 91.9 92.0 92.6
NER 77.2 78.3 78.9
DISFL 77.9 80.5 81.6

Table 3: Comparison of generalization perfor-
mances in terms of F-score ofMBL on the three test
sets, without stacking, and with perfect and adaptive
stacking.

high weight, especially considering that in testing
this feature would contain errors. To assign a very
high weight to a feature that may contain an erro-
neous value does not seem a good idea in view of
the label bias problem.

Adaptive – the training material is created in-
directly by running an internal 10-fold cross-
validation experiment on the first-stage training set,
concatenating the predicted output class labels on all
of the ten test partitions, and converting this out-
put to class windows. In contrast with the perfect
variant, we do include the focus class feature in the
copied class label window. The adaptive approach
can in principle learn from recurring classification
errors in the input, and predict the correct class in
case an error re-occurs.

Table 3 lists the comparative results on the
CHUNK, NER, and DISFL tasks introduced earlier.
They show that both types of stacking improve per-
formance on the three tasks, and that the adaptive
stacking variant produces higher relative gains than
the perfect variant; in terms of error reduction in F-
score as compared to the baseline single-class clas-
sifier, the gains are 9% forCHUNK, 7% for NER,
and 17% forDISFL. There appears to be more use-
ful information in training data derived from cross-
validated output with errors, than in training data
with error-free material.

Stacking and class trigrams can be combined.
One possible straightforward combination is that of
a first-stage classifier that predicts trigrams, and a
second-stage stacked classifier that also predicts tri-
grams (we use the adaptive variant, since it produced
the best results), while including a centered seven-
positions-wide window of first-stage trigram class
labels in the input. Table 4 compares the results

85



Adaptive
Task stacking Trigram Combination

CHUNK 92.6 92.8 93.1
NER 78.9 80.2 80.6
DISFL 81.6 81.7 81.9

Table 4: Comparison of generalization perfor-
mances in terms of F-score byMBL on the three test
sets, with adaptive stacking, trigram classes, and the
combination of the two.

of adaptive stacking and trigram classes with those
of the combination of the two. As can be seen, the
combination produces even better results than both
the stacking and the trigram-class methods individ-
ually, on all three tasks. Compared to the baseline
single-class classifier, the error reductions are 15%
for CHUNK, 15% forNER, and 18% forDISFL.

As an additional analysis, we inspected the pre-
dictions made by the trigram-class method and its
combinations with the stacking and the feedback-
loop methods on theCHUNK task to obtain a bet-
ter view on the amount of disagreements between
the trigrams. We found that with the trigram-class
method, in 6.3% of all votes some disagreement
among the overlapping trigrams occurs. A slightly
higher percentage of disagreements, 7.1%, is ob-
served with the combination of the trigram-class and
the stacking method. Interestingly, in the combina-
tion of the trigram-class and feedback-loop methods,
only 0.1% of all trigram votes are not unanimous.
This clearly illustrates that in the latter combination
the resulting sequence of trigrams is internally very
consistent – also in its errors.

6 Conclusion

Classifiers trained on chunking tasks that make iso-
lated. near-sighted decisions on output symbols and
that do not optimize the resulting output sequences
afterwards or internally through a feedback loop,
tend to produce weak models for sequence process-
ing tasks. To combat this weakness, we have pro-
posed a new method that uses a single symbolic
machine-learning classifier predicting trigrams of
classes, using a simple voting mechanism to reduce
the sequence of predicted overlapping trigrams to a
sequence of single output symbols. Compared to

their near-sighted counterparts, error reductions are
attained of 10 to 51% withMBL and MAXENT on
three chunking tasks. We found weaker results with
a WINNOW classifier, suggesting that the latter is
more sensitive to the division of the class space in
more classes, likely due to the relatively sparser co-
occurrences between feature values and class labels
on whichWINNOW network connection weights are
based.

We have contrasted the trigram-class method
against a feedback-loop method (MBT) and a stack-
ing method, all using a memory-based classifier
(but the methods generalize to any machine-learning
classifier). With the feedback-loop method, modest
error reductions of 3%, 4%, and 17% are measured;
stacking attains comparable improvements of 7%,
9%, and 17% error reductions in the chunking F-
score. We then combined the trigram-class method
with the two other methods. The combination with
the feedback-loop system led to relatively low per-
formance results. A closer analysis indicated that
the two methods appear to render each other ineffec-
tive: by feeding back predicted trigrams in the input,
the classifier is very much geared towards predicting
a next trigram that will be in accordance with the
two partly overlapping trigrams in the input, as sug-
gested by overwhelming evidence in this direction
in training material – this problem is also known as
the label bias problem (Lafferty et al., 2001). (The
fact that maximum-entropy markov models also suf-
fer from this problem prompted Laffertyet al. to
propose conditional random fields.)

We also observed that the positive effects of the
trigram-class and stacking variants do not mute each
other when combined. The overall highest error re-
ductions are attained with the combination: 15%
for CHUNK, 15% for NER, and 18% forDISFL.
The combination of the two methods solve more er-
rors than the individual methods do. Apparently,
they both introduce complementary disagreements
in overlapping trigrams, which the simple voting
mechanism can convert to more correct predictions
than the two methods do individually.

Further research should focus on a deep quan-
titative and qualitative analysis of the different er-
rors the different methods correct when compared
to the baseline single-class classifier, as well as
the errors they may introduce. Alternatives to the

86



IOB-style encoding should also be incorporated in
these experiments (Tjong Kim Sang, 2000). Ad-
ditionally, a broader comparison with point-wise
predictors (Kashima and Tsuboi, 2004) as well as
Viterbi-based probabilistic models (McCallum et al.,
2000; Lafferty et al., 2001; Sha and Pereira, 2003)
in large-scale comparative studies is warranted.
Also, the scope of the study may be broadened to
all sequential language processing tasks, including
tasks in which no segmentation takes place (e.g.
part-of-speech tagging), and tasks at the morpho-
phonological level (e.g. grapheme-phoneme conver-
sion and morphological analysis).

Acknowledgements

The authors wish to thank Sander Canisius for dis-
cussions and suggestions. The work of the first au-
thor is funded by NWO, the Netherlands Organi-
sation for Scientific Research; the second author’s
work is partially funded by the EU BioMinT project.

References
S. Argamon, I. Dagan, and Y. Krymolowski. 1999. A

memory-based approach to learning shallow natural
language patterns.Journal of Experimental and Theo-
retical Artificial Intelligence, 10:1–22.

A. J. Carlson, C. M. Cumby, J. L. Rosen, and D. Roth.
1999. Snow user guide. Technical Report UIUCDCS-
R-99-2101, Cognitive Computation Group, Computer
Science Department, University of Illinois, Urbana,
Illinois.

X. Carreras, L. M̀arques, and L. Padró. 2002. Named
entity extraction using AdaBoost. InProceedings of
CoNLL-2002, pages 167–170. Taipei, Taiwan.

W. Daelemans, J. Zavrel, P. Berck, and S. Gillis. 1996.
MBT: A memory-based part of speech tagger genera-
tor. In E. Ejerhed and I. Dagan, editors,Proceedings
of WVLC, pages 14–27. ACL SIGDAT.

W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den
Bosch. 2004. TiMBL: Tilburg memory based learner,
version 5.1.0, reference guide. Technical Report ILK
04-02, ILK Research Group, Tilburg University.

R. Florian, A. Ittycheriah, H. Jing, and T. Zhang. 2003.
Named entity recognition through classifier combina-
tion. In W. Daelemans and M. Osborne, editors,Pro-
ceedings of CoNLL-2003, pages 168–171. Edmonton,
Canada.

Y. Freund and R. E. Schapire. 1996. Experiments with a
new boosting algorithm. In L. Saitta, editor,Proceed-
ings of ICML-96, pages 148–156, San Francisco, CA.
Morgan Kaufmann.

S. Guiasu and A. Shenitzer. 1985. The principle of max-
imum entropy.The Mathematical Intelligencer, 7(1).

H. Kashima and Y. Tsuboi. 2004. Kernel-based discrim-
inative learning algorithms for labeling sequences,
trees and graphs. InProceedings of ICML-2004,
Banff, Canada.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. InProceedings
of ICML-01, Williamstown, MA.

P. Lendvai, A. van den Bosch, and E. Krahmer. 2003.
Memory-based disfluency chunking. InProceedings
of DISS’03), Gothenburg, Sweden, pages 63–66.

N. Littlestone. 1988. Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Machine Learning, 2:285–318.

A. McCallum, D. Freitag, and F. Pereira. 2000. Maxi-
mum entropy Markov models for information extrac-
tion and segmentation. InProceedings of ICML-00,
Stanford, CA.

V. Punyakanok and D. Roth. 2001. The use of classifiers
in sequential inference. InNIPS-13; The 2000 Con-
ference on Advances in Neural Information Processing
Systems, pages 995–1001. The MIT Press.

L.A. Ramshaw and M.P. Marcus. 1995. Text chunking
using transformation-based learning. InProceedings
of WVLC-95, Cambridge, MA, pages 82–94.

A. Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. InProceedings of EMNLP, May 17-18,
1996, University of Pennsylvania.

F. Sha and F. Pereira. 2003. Shallow parsing with Condi-
tional Random Fields. InProceedings of HLT-NAACL
2003, Edmonton, Canada.

W. Skut and T. Brants. 1998. Chunk tagger: statistical
recognition of noun phrases. InESSLLI-1998 Work-
shop on Automated Acquisition of Syntax and Parsing.

E. Tjong Kim Sang and S. Buchholz. 2000. Introduction
to the CoNLL-2000 shared task: Chunking. InPro-
ceedings of CoNLL-2000 and LLL-2000, pages 127–
132.

E. Tjong Kim Sang and F. De Meulder. 2003. Intro-
duction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In W. Daele-
mans and M. Osborne, editors,Proceedings of CoNLL-
2003, pages 142–147. Edmonton, Canada.

E. Tjong Kim Sang. 2000. Noun phrase recognition by
system combination. InProceedings of ANLP-NAACL
2000, pages 50–55. Seattle, Washington, USA. Mor-
gan Kaufman Publishers.

A. van den Bosch. 2004. Wrapped progressive sampling
search for optimizing learning algorithm parameters.
In R. Verbrugge, N. Taatgen, and L. Schomaker, edi-
tors, Proceedings of the 16th Belgian-Dutch AI Con-
ference, pages 219–226, Groningen, The Netherlands.

J. Veenstra. 1998. Fast NP chunking using memory-
based learning techniques. InProceedings of BENE-
LEARN’98, pages 71–78, Wageningen, The Nether-
lands.

D. H. Wolpert. 1992. Stacked Generalization.Neural
Networks, 5:241–259.

87


