Using Uneven Margins SVM and Perceptron for Information Extraction

Yaoyong Li, Kalina Bontcheva and Hamish Cunningham
Department of Computer Science, The University of Sheffield, Sheffield, S1 4DP, UK
{yvaoyong, kalina, hamish}@dcs.shef.ac.uk

Abstract

The classification problem derived from
information extraction (IE) has an imbal-
anced training set. This is particularly
true when learning from smaller datasets
which often have a few positive training
examples and many negative ones. This
paper takes two popular IE algorithms —
SVM and Perceptron — and demonstrates
how the introduction of an uneven margins
parameter can improve the results on im-
balanced training data in IE. Our experi-
ments demonstrate that the uneven margin
was indeed helpful, especially when learn-
ing from few examples. Essentially, the
smaller the training set is, the more bene-
ficial the uneven margin can be. We also
compare our systems to other state-of-the-
art algorithms on several benchmarking
corpora for IE.

1 Introduction

Information Extraction (IE) is the process of auto-
matic extraction of information about pre-specified
types of events, entities or relations from text such
as newswire articles or Web pages. IE is useful in
many applications, such as information gathering in
a variety of domains, automatic annotations of web
pages for Semantic Web, and knowledge manage-
ment.

A wide range of machine learning techniques
have been used for IE and achieved state-of-the-art
results, comparable to manually engineered IE sys-
tems. A learning algorithm usually learns a model

72

from a set of documents which have been manually
annotated by the user. Then the model can be used
to extract information from new documents. Manual
annotation is a time-consuming process. Hence, in
many cases learning from small data sets is highly
desirable. Therefore in this paper we also evaluate
the performance of our algorithms on small amounts
of training data and show their learning curve.

The learning algorithms for IE can be classified
broadly into two main categories: rule learning and
statistical learning. The former induces a set of
rules from training examples. There are many rule
based learning systems, e.g. SRV (Freitag, 1998),
RAPIER (Califf, 1998), WHISK (Soderland, 1999),
BWI (Freitag and Kushmerick, 2000), and (LP)?
(Ciravegna, 2001). Statistical systems learn a statis-
tical model or classifiers, such as HMMs (Freigtag
and McCallum, 1999), Maximal Entropy (Chieu and
Ng., 2002), the SVM (Isozaki and Kazawa, 2002;
Mayfield et al., 2003), and Perceptron (Carreras et
al., 2003). IE systems also differ from each other
in the NLP features that they use. These include
simple features such as token form and capitalisa-
tion information, linguistic features such as part-of-
speech, semantic information from gazetteer lists,
and genre-specific information such as document
structure. In general, the more features the system
uses, the better performance it can achieve.

This paper concentrates on classifier-based learn-
ing for IE, which typically converts the recognition
of each information entity into a set of classification
problems. In the framework discussed here, two bi-
nary classifiers are trained for each type of informa-
tion entity. One classifier is used for recognising the
entity’s start token and the other — the entity’s end
token.

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 72-79, Ann Arbor, June 20@®2005 Association for Computational Linguistics

The classification problem derived from IE usu-
ally has imbalanced training data, in which positive
training examples are vastly outnumbered by neg-
ative ones. This is particularly true for smaller data
sets where often there are hundreds of negative train-
ing examples and only few positive ones. Two ap-
proaches have been studied so far to deal with imbal-
anced data in IE. One approach is to under-sample
majority class or over-sample minority class in order
to obtain a relatively balanced training data (Zhang
and Mani, 2003). However, under-sampling can
potentially remove certain important examples, and
over-sampling can lead to over-fitting and a larger
training set. Another approach is to divide the prob-
lem into several sub-problems in two layers, each of
which has less imbalanced training set than the orig-
inal one (Carreras et al., 2003; Sitter and Daelemans,
2003). The output of the classifier in the first layer is
used as the input to the classifiers in the second layer.
As aresult, this approach needs more classifiers than
the original problem. Moreover, the classification
errors in the first layer will affect the performance of
the second one.

In this paper we explore another approach to han-
dle the imbalanced data in IE, namely, adapting
the learning algorithms for balanced classification to
imbalanced data. We particularly study two popular
classification algorithms in IE, Support Vector Ma-
chines (SVM) and Perceptron.

SVM is a general supervised machine learning
algorithm, that has achieved state of the art per-
formance on many classification tasks, including
NE recognition. Isozaki and Kazawa (2002) com-
pared three commonly used methods for named en-
tity recognition — the SVM with quadratic kernel,
maximal entropy method, and a rule based learning
system, and showed that the SVM-based system per-
formed better than the other two. Mayfield et al.
(2003) used a lattice-based approach to named en-
tity recognition and employed the SVM with cubic
kernel to compute transition probabilities in a lattice.
Their results on CoNLL2003 shared task were com-
parable to other systems but were not the best ones.

Previous research on using SVMs for IE adopts
the standard form of the SVM, which treats posi-
tive and negative examples equally. As a result, they
did not consider the difference between the balanced
classification problems, where the SVM performs

73

quite well, and the imbalanced ones. Li and Shawe-
Taylor (2003) proposes an uneven margins version
of the SVM and shows that the SVM with uneven
margins performs significantly better than the stan-
dard SVM on document classification problems with
imbalanced training data. Since the classification
problem for IE is also imbalanced, this paper inves-
tigates the SVM with uneven margins for IE tasks
and demonstrates empirically that the uneven mar-
gins SVM does have better performance than the
standard SVM.

Perceptron is a simple, fast and effective learn-
ing algorithm, which has successfully been applied
to named entity recognition (Carreras et al., 2003).
The system uses a two-layer structure of classifiers
to handle the imbalanced data. The first layer clas-
sifies each word as entity or non-entity. The second
layer classifies the named entities identified by the
first layer in the respective entity classes. Li et al.
(2002) proposed another variant of Perceptron, the
Perceptron algorithm with uneven margins (PAUM),
designed especially for imbalanced data. In this pa-
per we explore the application of PAUM to IE.

The rest of the paper is structured as follows. Sec-
tion 2 describes the uneven margins SVM and Per-
ceptron algorithms. Sections 3.1 and 3.2 discuss
the classifier-based framework for IE and the exper-
imental datasets we used, respectively. We compare
our systems to other state-of-the-art systems on three
benchmark datasets in Section 3.3. Section 3.4 dis-
cusses the effects of the uneven margins parameter
on the SVM and Perceptron’s performances. Finally,
Section 4 provides some conclusions.

2 Uneven Margins SVM and Perceptron

Li and Shawe-Taylor (2003) introduced an uneven
margins parameter into the SVM to deal with imbal-
anced classification problems. They showed that the
SVM with uneven margins outperformed the stan-
dard SVM on document classification problem with
imbalanced training data. Formally, given a training
set Z = ((x1,¥1)s- -, (Xm, Ym)),Where x; is the n-
dimensional input vector and y; (= +1 or —1) its
label, the SVM with uneven margins is obtained by
solving the quadratic optimisation problem:

m
minw7 b, € (W,W) + CZ&
i=1

st (w,x) +&+b0>1 if yy=+1

(w,x;) =& +b< —1 if y; =—1

for :=1,....,m

& >0

We can see that the uneven margins parameter
7 was added to the constraints of the optimisation
problem. 7 is the ratio of negative margin to the
positive margin of the classifier and is equal to 1 in
the standard SVM. For an imbalanced dataset with
a few positive examples and many negative ones, it
would be beneficial to use larger margin for positive
examples than for the negative ones. Li and Shawe-
Taylor (2003) also showed that the solution of the
above problem could be obtained by solving a re-
lated standard SVM problem by, for example, using
a publicly available SVM package'.

Perceptron is an on-line learning algorithm for
linear classification. It checks the training exam-
ples one by one by predicting their labels. If the
prediction is correct, the example is passed; other-
wise, the example is used to correct the model. The
algorithm stops when the model classifies all train-
ing examples correctly. The margin Perceptron not
only classifies every training example correctly but
also outputs for every training example a value (be-
fore thresholding) larger than a predefined parameter
(margin). The margin Perceptron has better general-
isation capability than the standard Perceptron. Li
et al. (2002) proposed the Perceptron algorithm with
uneven margins (PAUM) by introducing two margin
parameters 74 and 7_ into the updating rules for the
positive and negative examples, respectively. Sim-
ilar to the uneven margins parameter in SVM, two
margin parameters allow the PAUM to handle im-
balanced datasets better than both the standard Per-
ceptron and the margin Perceptron. Additionally, it
is known that the Perceptron learning will stop after
limited loops only on a linearly separable training
set. Hence, a regularisation parameter \ is used in
PAUM to guarantee that the algorithm would stop
for any training dataset after some updates. PAUM
is simple and fast and performed very well on doc-
ument classification, in particularly on imbalanced
training data.

'The SVMY9" package version 3.5, available from
http://svmlight.joachims.org/, was used to learn the SVM clas-
sifiers in our experiments.

74

3 Experiments

3.1 Classifier-Based Framework for IE

In the experiments we adopted a classifier-based
framework for applying the SVM and PAUM algo-
rithms to IE. The framework consists of three stages:
pre-processing of the documents to obtain feature
vectors, learning classifiers or applying classifiers to
test documents, and finally post-processing the re-
sults to tag the documents.

The aim of the preprocessing is to form input vec-
tors from documents. Each document is first pro-
cessed using the open-source ANNIE system, which
is part of GATE? (Cunningham et al., 2002). This
produces a number of linguistic (NLP) features, in-
cluding token form, capitalisation information, to-
ken kind, lemma, part-of-speech (POS) tag, seman-
tic classes from gazetteers, and named entity types
according to ANNIE’s rule-based recogniser.

Based on the linguistic information, an input
vector is constructed for each token, as we iter-
ate through the tokens in each document (includ-
ing word, number, punctuation and other symbols)
to see if the current token belongs to an information
entity or not. Since in IE the context of the token is
usually as important as the token itself, the features
in the input vector come not only from the current
token, but also from preceding and following ones.
As the input vector incorporates information from
the context surrounding the current token, features
from different tokens can be weighted differently,
based on their position in the context. The weight-
ing scheme we use is the reciprocal scheme, which
weights the surrounding tokens reciprocally to the
distance to the token in the centre of the context
window. This reflects the intuition that the nearer
a neighbouring token is, the more important it is
for classifying the given token. Our experiments
showed that such a weighting scheme obtained bet-
ter results than the commonly used equal weighting
of features (Li et al., 2005).

The key part of the framework is to convert the
recognition of information entities into binary clas-
sification tasks — one to decide whether a token is the
start of an entity and another one for the end token.

After classification, the start and end tags of the

% Available from http://www.gate.ac.uk/

entities are obtained and need to be combined into
one entity tag. Therefore some post-processing
is needed to guarantee tag consistency and to try
to improve the results by exploring other informa-
tion. The currently implemented procedure has three
stages. First, in order to guarantee the consistency
of the recognition results, the document is scanned
from left to right to remove start tags without match-
ing end tags and end tags without preceding start
tags. The second stage filters out candidate enti-
ties from the output of the first stage, based on their
length. Namely, a candidate entity tag is removed
if the entity’s length (i.e., the number of tokens) is
not equal to the length of any entity of the same type
in the training set. The third stage puts together all
possible tags for a sequence of tokens and chooses
the best one according to the probability which was
computed from the output of the classifiers (before
thresholding) via a Sigmoid function.

3.2 The Experimental Datasets

The paper reports evaluation results on three corpora
covering different IE tasks — named entity recogni-
tion (CoNLL-2003) and template filling or scenario
templates in different domains (Jobs and CFP). The
CoNLL-2003% provides the most recent evaluation
results of many learning algorithms on named entity
recognition. The Jobs corpus* has also been used re-
cently by several learning systems. The CFP corpus
was created as part of the recent Pascal Challenge
for evaluation of machine learning methods for IES.

In detail, we used the English part of the CoNLL-
2003 shared task dataset, which consists of 946 doc-
uments for training, 216 document for development
(e.g., tuning the parameters in learning algorithm),
and 231 documents for evaluation (i.e., testing), all
of which are news articles taken from the Reuters
English corpus (RCV1). The corpus contains four
types of named entities — person, location, organ-
isation and miscellaneous names. In the other two
corpora domain-specific information was extracted
into a number of slots. The Job corpus includes 300
computer related job advertisements and 17 slots en-
coding job details, such as title, salary, recruiter,
computer language, application, and platform. The

3See http://cnts.uia.ac.be/conl12003/ner/
4See http://www.isi.edu/info-agents/RISE/repository.html.
3See http://nlp.shef.ac.uk/pascal/.

75

CFP corpus consists of 1100 conference or work-
shop call for papers (CFP), of which 600 were anno-
tated. The corpus includes 11 slots such as work-
shop and conference names and acronyms, work-
shop date, location and homepage.

3.3 Comparison to Other Systems

Named Entity Recognition The algorithms are
evaluated on the CoNLL-2003 dataset. Since this set
comes with development data for tuning the learning
algorithm, different settings were tried in order to
obtain the best performance on the development set.
Different SVM kernel types, window sizes (namely
the number of tokens in left or right side of the token
at the centre of window), and the uneven margins
parameter 7 were tested. We found that quadratic
kernel, window size 4 and 7 = 0.5 produced best
results on the development set. These settings were
used in all experiments on the CoNLL-2003 dataset
in this paper, unless otherwise stated. The parameter
settings for PAUM described in Li et al. (2002), e.g.
7+ = 50,7 = 1, were adopted in all experiments
with PAUM, unless otherwise stated.

Table 1 presents the results of our system using
three learning algorithms, the uneven margins SVM,
the standard SVM and the PAUM on the CONLL-
2003 test set, together with the results of three
participating systems in the CoNLL-2003 shared
task: the best system (Florian et al., 2003), the
SVM-based system (Mayfield et al., 2003) and the
Perceptron-based system (Carreras et al., 2003).

Firstly, our uneven margins SVM system per-
formed significantly better than the other SVM-
based system. As the two systems are different from
each other in not only the SVM models used but
also other aspects such as the NLP features and the
framework, in order to make a fair comparison be-
tween the uneven margins SVM and the standard
SVM, we also present the results of the two learning
algorithms implemented in our framework. We can
see from Table 1 that, under the same experimental
settings, the uneven margins SVM again performed
better than the standard SVM.

Secondly, our PAUM-based system performed
slightly better than the system based on voted Per-
ceptron, but there is no significant difference be-
tween them. Note that they adopted different mech-
anisms to deal with the imbalanced data in IE (refer

Table 1: Comparison to other systems on CoNLL-2003 corpus: F'-measure(%) on each entity type and the
overall micro-averaged F-measure. The 90% confidence intervals for results of other three systems are also

presented. The best performance figures for each entity type and overall appear in bold.

System LOC MISC ORG PER Overall
Our SVM with uneven margins | 89.25 77.79 82.29 90.92 86.30
Systems Standard SVM 88.86 77.32 80.16 88.93 85.05

PAUM 88.18 76.64 7826 89.73 84.36
Participating | Best one 91.15 80.44 84.67 93.85 | 88.76(+0.7)
Systems Another SVM 88.77 74.19 79.00 90.67 | 84.67(+1.0)

Voted Perceptron 87.88 77.97 80.09 87.31 | 84.30(£0.9)

to Section 1). The structure of PAUM system is sim-
pler than that of the voted Perceptron system.

Finally, the PAUM system performed worse than
the SVM system. On the other hand, training time
of PAUM is only 1% of that for the SVM and the
PAUM implementation is much simpler than that of
SVM. Therefore, when simplicity and speed are re-
quired, PAUM presents a good alternative.

Template Filling On Jobs corpus our systems
are compared to several state-of-the-art learning sys-
tems, which include the rule based systems Rapier
(Califf, 1998), (LP)? (Ciravegna, 2001) and BWI
(Freitag and Kushmerick, 2000), the statistical sys-
tem HMM (Freitag and Kushmerick, 2000), and the
double classification system (Sitter and Daelemans,
2003). In order to make the comparison as informa-
tive as possible, the same settings are adopted in our
experiments as those used by (LP)?2, which previ-
ously reported the highest results on this dataset. In
particular, the results are obtained by averaging the
performance in ten runs, using a random half of the
corpus for training and the rest for testing. Only ba-
sic NLP features are used: token form, capitalisation
information, token types, and lemmas.

Preliminary experiments established that the
SVM with linear kernel obtained better results than
SVM with quadratic kernel on the Jobs corpus (Li
et al., 2005). Hence we used the SVM with linear
kernel in the experiments on the Jobs data. Note that
PAUM always uses linear kernel in our experiments.

Table 2 presents the results of our systems as well
as the other six systems which have been evaluated
on the Jobs corpus. Note that the results for all the
17 slots are available for only three systems, Rapier,
(LP)? and double classification, while the results

76

for some slots were available for the other three sys-
tems. We computed the macro-averaged F (the
mean of the F of all slots) for our systems as well
as for the three fully evaluated systems in order to
make a comparison of the overall performance.

Firstly, the overall performance of our two sys-
tems is significantly better than the other three fully
evaluated systems. The PAUM system achieves the
best performance on 5 out of the 17 slots. The SVM
system performs best on the other 3 slots. Secondly,
the double classification system had much worse
overall performance than our systems and other two
fully evaluated systems. HMM was evaluated only
on two slots. It achieved best result on one slot but
was much worse on the other slot than our two sys-
tems and some of the others. Finally, somewhat sur-
prisingly, our PAUM system achieves better perfor-
mance than the SVM system on this dataset. More-
over, the computation time of PAUM is about 1/3 of
that of the SVM. Hence, the PAUM system performs
quite satisfactory on the Jobs corpus.

Our systems were also evaluated by participating
in a Pascal challenge — Evaluating Machine Learn-
ing for Information Extraction. The evaluation pro-
vided not only the CFP corpus but also the linguistic
features for all tokens by pre-processing the docu-
ments. The main purpose of the challenge was to
evaluate machine learning algorithms based on the
same linguistic features. The only compulsory task
is taskl, which used 400 annotated documents for
training and other 200 annotated documents for test-
ing. See Ireson and Ciravegna (2005) for a short
overview of the challenge. The learning methods ex-
plored by the participating systems included LP?,
HMM, CRF, SVM, and a variety of combinations

Table 2: Comparison to other systems on the jobs corpus: F (%) on each entity type and overall perfor-
mance as macro-averaged F. Standard deviations for the MA F of our systems are presented in parenthe-
sis. The highest score on each slot and overall performance appears in bold.

Slot SVM PAUM (LP)* Rapier DCs BWI HMM semi-CRF
Id 97.7 97.4 100 97.5 97 100 - -
Title 49.6 53.1 43.9 40.5 35 501 577 40.2
Company 77.2 78.4 71.9 70.0 38 782 504 60.9
Salary 86.5 86.4 62.8 67.4 67 - - -
Recruiter 78.4 814 80.6 68.4 55 - - -
State 92.8 93.6 84.7 90.2 94 - - -
City 95.5 95.2 93.0 90.4 91 - - -
Country 96.2 96.5 81.0 93.2 92 - - -
Language 86.9 87.3 91.0 81.8 33 - - -
Platform 80.1 78.4 80.5 72.5 36 - - -
Application 70.2 69.7 78.4 69.3 30 - - -
Area 46.8 54.0 53.7 42.4 17 - - -
Req-years-e 80.8 80.0 68.8 67.2 76 - - -
Des-years-e 81.9 85.6 60.4 87.5 47 - - -
Req-degree 87.5 87.9 84.7 81.5 45 - - -
Des-degree 59.2 62.9 65.1 72.2 33 - - -
Post date 99.2 99.4 99.5 99.5 98 - - -
MA Fy 80.8(£1.0) 81.6(+1.1) | 77.2 76.0 579 - - -

of different learning algorithms. Firstly, the sys-
tem of the challenge organisers, which is based on
L P? obtained the best result for Task1, followed by
one of our participating systems which combined the
uneven margins SVM and PAUM (see Ireson and
Ciravegna (2005)). Our SVM and PAUM systems
on their own were respectively in the fourth and fifth
position among the 20 participating systems. Sec-
ondly, at least six other participating system were
also based on SVM but used different IE framework
and possibly different SVM models from our SVM
system. Our SVM system achieved better results
than all those SVM-based systems, showing that the
SVM models and the IE framework of our system
were quite suitable to IE task. Thirdly, our PAUM
based system was not as good as our SVM system
but was still better than the other SVM based sys-
tems. The computation time of the PAUM system
was about 1/5 of that of our SVM system.

Table 3 presents the per slot results and over-
all performance of our SVM and PAUM systems
as well as the system with the best overall result.
Compared to the best system, our SVM system per-

77

formed better on two slots and had similar results
on many of other slots. The best system had ex-
tremely good results on the two slots, C-acronym
and C-homepage. Actually, the F values of the best
system on the two slots were more than double of
those of every other participating system.

3.4 Effects of Uneven Margins Parameter

A number of experiments were conducted to inves-
tigate the influence of the uneven margins parameter
on the SVM and Perceptron’s performances. Table 4
show the results with several different values of un-
even margins parameter respectively for the SVM
and the Perceptron on two datasets — CoNLL-2003
and Jobs. The SVM with uneven margins (7 < 1.0)
had better results than the standard SVM (7 1).
We can also see that the results were similar for the 7
between 0.6 and 0.4, showing that the results are not
particularly sensitive to the value of the uneven mar-
gins parameter. The uneven margins parameter has
similar effect on Perceptron as on the SVM. Table 4
shows that the PAUM had better results than both the
standard Perceptron and the margin Perceptron

Table 3: Results of our SVM and PAUM systems
on CFP corpus: F-measures(%) on individual entity
type and the overall figures, together with the system
with the highest overall score. The highest score on
each slot appears in bold.

SLOT PAUM SVM | Best one
W-name 519 54.2 35.2
W-acronym 50.4 60.0 86.5
W-date 67.0 69.0 69.4
W-homepage 69.6 705 72.1
W-location 60.0 66.0 48.8
W-submission 70.2 69.6 86.4
W-notification 76.1 85.6 88.9
W-camera-ready | 71.5 74.7 87.0
C-name 43.2 47.7 551
C-acronym 38.8 38.7 90.5
C-homepage 7.1 11.6 393
Micro-average 61.1 64.3 73.4

Our conjecture was that the uneven margins pa-
rameter was more helpful on small training sets, be-
cause the smaller a training set is, the more imbal-
anced it could be. Therefore we carried out exper-
iments on a small numbers of training documents.
Table 5 shows the results of the SVM and the uneven
margins SVM on different numbers of training doc-
uments from CoNLL-2003 and Jobs datasets. The
performance of both the standard SVM and the un-
even margins SVM improves consistently as more
training documents are used. Moreover, compared
to the results one large training sets shown in Table
4, the uneven margins SVM obtains more improve-
ments on small training sets than the standard SVM
model. We can see that the smaller the training set
is, the better the results of the uneven margins SVM
are in comparison to the standard SVM.

4 Conclusions

This paper studied the uneven margins versions of
two learning algorithms — SVM and Perceptron — to
deal with the imbalanced training data in IE. Our ex-
periments showed that the uneven margin is helpful,
in particular on small training sets. The smaller the
training set is, the more beneficial the uneven margin
could be. We also showed that the systems based on
the uneven margins SVM and Perceptron were com-

78

Table 4: The effects of uneven margins parameter
of the SVM and Perceptron, respectively: macro av-
eraged F1(%) on the two datasets CoNLL-2003 (de-
velopment set) and Jobs. The standard deviations for
the Jobs dataset show the statistical significances of
the results. In bold are the best performance figures
for each dataset and each system.

T 1.0 0.8 0.6 0.4 0.2
Conll 89.0 89.6 89.7 892 853
Jobs 79.0 799 81.0 80.8 79.0
+14 £1.2 +09 +£1.0 =13
(t4,7—) (0,00 (1,1) (50,1)
Conll 835 839 844
Jobs 74.1 78.8 81.6
+1.5 +£1.0 =11

parable to other state-of-the-art systems.

Our SVM system obtained better results than
other SVM-based systems on the CoNLL-2003 cor-
pus and CFP corpus respectively, while being sim-
pler than most of them. This demonstrates that our
SVM system is both effective and efficient.

We also explored PAUM, a simple and fast
learning algorithm for IE. The results of PAUM
were somehow worse (about 0.02 overall F-measure
lower) than those of the SVM on two out of three
datasets. On the other hand, PAUM is much faster
to train and easier to implement than SVM. It is also
worth noting that PAUM outperformed some other
learning algorithms. Therefore, even PAUM on its
own would be a good learning algorithm for IE.
Moreover, PAUM could be used in combination with
other classifiers or in the more complicated frame-
work such as the one in Carreras et al. (2003).

Since many other tasks in Natural Language Pro-
cessing, like IE, often lead to imbalanced classifica-
tion problems and the SVM has been used widely
in Natural Language Learning (NLL), we can ex-
pect that the uneven margins SVM and PAUM are
likely to obtain good results on other NLL problems
as well.

Acknowledgements

This work is supported by the EU-funded SEKT
project (http://www.sekt-project.org).

Table 5: The performances of the SVM system with
small training sets: macro-averaged F'(%) on the
two datasets CoNLL-2003 (development set) and
Jobs. The uneven margins SVM (7 = 0.4) is com-
pared to the standard SVM model with even margins
(t = 1). The standard deviations are presented for
results on the Jobs dataset.

size 10 20 30 40 50

T=04
Conll 60.6 664 704 722 728
Jobs 51.6 609 657 686 71.1
+2.7 +25 +£2.1 £19 £2.5
T=1
Conll 462 586 652 683 68.6
Jobs 471 565 614 654 68.1
+34 431 27 +19 £2.1
References

M. E. Califf. 1998. Relational Learning Techniques for
Natural Language Information Extraction. Ph.D. the-
sis, University of Texas at Austin.

X. Carreras, L. Marquez, and L. Padr6. 2003. Learn-
ing a perceptron-based named entity chunker via on-
line recognition feedback. In Proceedings of CoNLL-
2003, pages 156—159. Edmonton, Canada.

H. L. Chieu and H. T. Ng. 2002. A Maximum En-
tropy Approach to Information Extraction from Semi-
Structured and Free Text. In Proceedings of the Eigh-
teenth National Conference on Artificial Intelligence,
pages 786-791.

F. Ciravegna. 2001. (LP)?, an Adaptive Algorithm for
Information Extraction from Web-related Texts. In
Proceedings of the IJCAI-2001 Workshop on Adaptive
Text Extraction and Mining, Seattle.

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguis-
tics (ACL’02).

R. Florian, A. Ittycheriah, H. Jing, and T. Zhang. 2003.
Named Entity Recognition through Classifier Combi-
nation. In Proceedings of CoNLL-2003, pages 168—
171. Edmonton, Canada.

D. Freigtag and A. K. McCallum. 1999. Information Ex-
traction with HMMs and Shrinkage. In Proceesings
of Workshop on Machine Learnig for Information Ex-
traction, pages 31-36.

79

D. Freitag and N. Kushmerick. 2000. Boosted Wrapper
Induction. In Proceedings of AAAI 2000.

D. Freitag. 1998. Machine Learning for Information Ex-
traction in Informal Domains. Ph.D. thesis, Carnegie
Mellon University.

N. Ireson and F. Ciravegna. 2005. Pascal Chal-
lenge The Evaluation of Machine Learning
for Information Extraction. In Proceedings of
Dagstuhl Seminar Machine Learning for the
Semantic ~ Web (http://www.smi.ucd.ie/Dagstuhl-
MLSW/proceedings/).

H. Isozaki and H. Kazawa. 2002. Efficient Support
Vector Classifiers for Named Entity Recognition. In
Proceedings of the 19th International Conference on
Computational Linguistics (COLING’02), pages 390—
396, Taipei, Taiwan.

Y. Li and J. Shawe-Taylor. 2003. The SVM with
Uneven Margins and Chinese Document Categoriza-
tion. In Proceedings of The 17th Pacific Asia Con-
ference on Language, Information and Computation
(PACLIC17), Singapore, Oct.

Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and
J. Kandola. 2002. The Perceptron Algorithm with Un-
even Margins. In Proceedings of the 9th International
Conference on Machine Learning (ICML-2002), pages
379-386.

Y. Li, K. Bontcheva, and H. Cunningham. 2005. SVM
Based Learning System For Information Extraction.
In Proceedings of Sheffield Machine Learning Work-
shop, Lecture Notes in Computer Science. Springer
Verlag.

J. Mayfield, P. McNamee, and C. Piatko. 2003. Named
Entity Recognition Using Hundreds of Thousands of
Features. In Proceedings of CONLL-2003, pages 184—
187. Edmonton, Canada.

A. De Sitter and W. Daelemans. 2003. Information ex-
traction via double classification. In Proceedings of
ECML/PRDD 2003 Workshop on Adaptive Text Ex-
traction and Mining (ATEM 2003), Cavtat-Dubrovnik,
Croatia.

S. Soderland. 1999. Learning information extrac-
tion rules for semi-structured and free text. Machine
Learning, 34(1):233-272.

J. Zhang and 1. Mani. 2003. KNN Approach to Un-
balanced Data Distributions: A Case Study Involv-
ing Information Extraction. In Proceedings of the
ICML’2003 Workshop on Learning from Imbalanced
Datasets.

