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Abstract

Recent natural language learning research
has shown that structural kernels can be
effectively used to induce accurate models
of linguistic phenomena.

In this paper, we show that the above prop-
erties hold on a novel task related to predi-
cate argument classification. A tree kernel
for selecting the subtrees which encodes
argument structures is applied. Experi-

ments with Support Vector Machines on

large data sets (i.e. the PropBank collec-
tion) show that such kernel improves the

recognition of argument boundaries.

text, e.g. the ancestor nodes or the semantic depen-
dencies (Toutanova et al., 2004).

A viable alternative has been proposed in (Collins
and Duffy, 2002), where convolution kernels were
used to implicitly define a tree substructure space.
The selection of the relevant structural features was
left to the voted perceptron learning algorithm. An-
other interesting model for parsing re-ranking based
on tree kernel is presented in (Taskar et al., 2004).
The good results show that tree kernels are very
promising for automatic feature engineering, espe-
cially when the available knowledge about the phe-
nomenon is limited.

Along the same line, automatic learning tasks that
rely on syntactic information may take advantage of

a tree kernel approach. One of such tasks is the au-
tomatic boundary detection of predicate arguments
of the kind defined in PropBank (Kingsbury and

The design of features for natural language procesgalmer, 2002). For this purpose, given a predigate
ing tasks is, in general, a critical problem. The inherin a sentence, we can define the notion pfedicate
ent complexity of linguistic phenomena, often charargument spanning treg#> AST's) as those syntac-
acterized by structured data, makes difficult to findic subtrees ofs which exactly coverall and only
effective linear feature representations for the targéi€p’s arguments (see Section 4.1). The set of non-
learning models. spanning trees can be then associated with all the
In many cases, the traditional feature selectiofémaining subtrees af
techniques (Kohavi and Sommerfield, 1995) are not An automatic classifier which recognizes the
so useful since the critical problem relates to featurgpanning trees can potentially be used to detect the
generation rather than selection. For example, thpgredicate argument boundaries. Unfortunately, the
design of features for a natural language syntactapplication of such classifier to all possible sen-
parse-tree re-ranking problem (Collins, 2000) cartence subtrees would require an exponential execu-
not be carried out without a deep knowledge abouion time. As a consequence, we can use it only to
automatic syntactic parsing. The modeling of syneecide for a reduced set of subtrees associated with
tactic/semantic based features should take into aa-corresponding set of candidate boundaries. Notice
count linguistic aspects to detect the interesting corow these can be detected by previous approaches

1 Introduction
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(e.g. (Pradhan et al., 2004)) in which a traditionaPredicates in PB are only embodied by verbs
boundary classifiertfc) labels the parse-tree nodeswhereas most of the timesg0 is thesubject Argl

as potential argument®(4). Such classifiers, gen- is thedirect objectand ArgM indicatedocations as
erally, are not sensitive to the overall argument strugn our example.
ture. On the contrary, B AST classifier past.) can

consider the overall argument structure encoded in - s N

the associated subtree. This is induced by7h4é N VP

subsets. | / | \
The feature design for thB AST representation v NP PP

is not simple. Tree kernels are a viable alternative Arg.0 D/ \N IN/ \N

that allows the learning algorithm to measure the _ | |
similarity between twaPAST's in term of all pos- Predicate
sible tree substructures. Arg. 1 Arg. M
In this paper, we designed and experimented a
boundary classifier for predicate argument |abe|in5|gure 1: A predicate argument structure in a parse-tree rep-
based on two phases: (1) a first annotation of pdesentation.

tential arguments by using a high recalkc and  geyeral machine learning approaches for auto-
(2) a PAST classification step aiming to select theyaic predicate argument extraction have been de-
correct substructures associated with potential ar9Yaloped, e.g. (Gildea and Jurasfky, 2002; Gildea and
ments. Both classifiers are based on Support Vectpgmer, 2002; Gildea and Hockenmaier, 2003; Prad-
Machines leaming. Theast. uses the tree kemel o ot 4 2004). Their common characteristic is
function defined in (Collins and Duffy, 2002). The e adoption of feature spaces that model predicate-
results show that thé?AST classification can be 5, ment structures in a flat feature representation.

learned with high accuracy (the f-measure is aboyf, the next section, we present the common parse
89%) and the impact on the overall boundary detegsaa_pased approach to this problem.

tion accuracy is good.
In the remainder of this paper, Section 2 intro2.1 Predicate Argument Extraction

duces the Semantic Role Labeling problem alongjven a sentence in natural language, all the predi-
with the boundary detection subtask. Section 3 demtes associated with the verbs have to be identified
fines the SVMs using the linear kernel and the parsgong with their arguments. This problem is usually
tree kernel for boundary detection. Section 4 degjvided in two subtasks: (a) the detection of the tar-
scribes our boundary detection algorithm. Section §et argument boundaries, i.e. the span of its words
shows the preliminary comparative results betwegg the sentence, and (b) the classification of the argu-
the traditional and the two-step boundary detectiofnent type, e.gArg0 or ArgM in PropBank oAgent
Finally, Section 7 summarizes the conclusions.  3ndGoalin FrameNet.

The standard approach to learn both the detection
2 Automated Semantic Role Labeling and the classification of predicate arguments is sum-

arized by the following steps:
One of the largest resources of manually annotatena y g step

predicate argument structures has been developed i, Given a sentence from theining-set gener-
the PropBank (PB) project. The PB corpus contains  ate a full syntactic parse-tree;

300,000 words annotated with predicative informa-

tion on top of the Penn Treebank 2 Wall Street Jour- 2. let P and A be the set of predicates and the
nal texts. For any given predicate, the expected ar- Set of parse-tree nodes (i.e. the potential argu-
guments are labeled sequentially frémg0to Arg9, ments), respectively;

ArgA and ArgM. Figure 1 shows an example of
the PB predicate annotation of the sentenagin
rented a room in Boston. e extract the feature representation get,;

3. for each paik p,a > P x A:
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o if the subtree rooted im covers exactly 3 Learning predicate structures via
the words of one argument of put F, , Support Vector Machines
in TT (positive examples), otherwise put

itin T~ (negative examples). Given a vector space " and a set of positive and

negative points, SVMs classify vectors according to

a separating hyperplanél(z) = @ x ¥ + b = 0,
For instance, in Figure 1, for each combination ofherew € 3" andb < 3t are learned by applying

the predicateent with the nodesN, S, VP, V, NP the Structural Risk Minimization principlévapnik,

PP, Dor IN the instanced’..,; , are generated. In 1995). , ]

case the node exactly covers "John”, “a room” or 10 @pply the SVM algorithm to Predicate Argu-

"in Boston”, it will be a positive instance otherwise MeNt Classification, we need a function 7 — R"

it will be a negative one, e.g%ent.1x- to mgp our features spgdé: {f1, -, fm} and our
predicate/argument pair representatiép,, = F,

+ —_ .
TheT* andT~ sets are used to train the bound~m,[0 %" such that:

ary classifier. To train the multi-class classifietr
can be reorganized as positig,., and negative F, — ¢(F;) = (61(Fy), .., on(F%))
1,,, examples for each argument In this way,
an individual ONE-vs-ALL classifier for each argu-
menti can be trained. We adopted this solution, ac- o -\ o .
cording to (Pradhan et al., 2004), since it is simple H(@) = ( 2 am) Trb=
and effective. In the classification phase, given an
unseen sentence, all if§, , are generated and clas- >, i - Z+b= > op(F) - ¢(F.) +b.
sified by each individual classifié¥;. The argument  =1.1 i=1.1
associated with the maximum among the scores pratere, F; Vi € {1,..,1} are the training instances
vided by the individual classifiers is eventually seand the produck (F;, F.) =<o¢(F;)-¢(F;)> isthe
lected. kernel function associated with the mapping
The simplest mapping that we can apply is

O(Fy) = 2= (z1,...,2n) Wherez; = 1if f; € F,

2.2 Standard feature space andz; = 0 otherwise, i.e. the characteristic vector

of the setF, with respect taF. If we choose the

The discovery of relevant features is, as usual, &aar product as a kernel function we obtain the lin-
complex task. However, there is a common CONz 4, kerneli ;. (Fy, F,) =
X

. L) =2 Z.
sensus on the set of basic features. These stan—An interesting property is that we do not need to

dard features, firstly proposed in (Gildea and Juragy o ate the) function to compute the above vector.

ﬂ_(y' 2002), refer to un_structured informati_on de'OnIytheK (2, Z) values are in fact required. This al-
rived from parse trees, i.ePhrase TypePredicate s s to derive efficient classifiers in a huge (pos-

word !—|ead Word Governing Categor,yPo_sition sible infinite) feature space, provided that the ker-
andVoice For example, thé®hrase Typendicates nel is processed in an efficient way. This property

the syntactic type of the phrase labeled as a predicgle 5 s, exploited to design convolution kernel like
argument, e.g. NP foirglin Figure 1. TheParse those based on tree structures.

Tree Pathcontains the path in the parse tree between
the predicate and the argument phrase, expressed3at The tree kernel function

a sequence of nonterminal labels linked by directiofne main idea of the tree kernels is the modeling of

(up or down) symbols, e.g/ 1 VP | NPfor Arglin a Kr(T,Ty) function which computes the number
Figure 1. ThePredicate Words the surface form of ¢ -ommon substructures between two tréesand
the verbal predicate, e.gentfor all arguments. .

From the kernel theory we have that:

i=1..1

In the next section we describe the SVM approach Given the set of substructures (fragments)
and the basic kernel theory for the predicate argu-f1, f2,..} = F extracted from all the trees of the
ment classification. training set, we define the indicator functidy(n)
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Sentence Parse-Tree t00K{arco, ARGL} readarao, ARG1}

N N

| /,\ PlRP V|P lep vlp
PRP VP cc VP | / \ | / \
| / \ , / \ John vB NP John vB NP
John VB NP and VB NP /\
\ | /\ took DT NN reag PRPS NN

took DT NN read PRP$ NN | ’ | ’

I ’ ’ , the  book its title

the book its ~ title

Figure 2:A sentence parse tree with two predicative tree structuPes7's)

which is equal 1 if the targef; is rooted at node. 4 Boundary detection via argument

and 0 otherwise. It follows that: spanning
Kp(Ty,To)= Y., Y. A(ni,n2) (1) Section 2 has shown that traditional argument
n1ENT) n2€NT, boundary classifiers rely only on features extracted
where N, and Ny, are the sets of thelj’s from the current potential argument node. In or-
and Ty's nodes, respectively and\(ni,np) = der to take into account a complete argument struc-

Z\ZJ’:II I;(n1)I;(n2). This latter is equal to the num- ture information, the classifier should select a set of

ber of common fragments rooted at the andn, Parse-tree nodes and consider them as potential ar-

nodes. We can compute as follows: guments of the target predicate. The number of all

. . _ possible subsets is exponential in the number of the

1. i the productions ahy andn; are different parse-tree nodes of the sentence, thus, we need to
thenA(ny, ) = 0; cut the search space. For such purpose, a traditional

2. if the productions ak; andn, are the same, boundary classifier can be applied to select the set
andn; andny have only leaf children (i.e. they of potential argument®.A. The reduced number of

are pre-terminals symbols) thek(ni,n2) = P.A subsets can be associated with sentence subtrees

L which in turn can be classified by using tree kernel
3. if the productions at; andn, are the same, functions. These measure if a subtreeaspatible

andn; andn, are not pre-terminals then or not with the subtree of a correct predicate argu-

ment structure.

ne(ny)

A(n1,n2) = H1 L+ Al en,)) @) 41 The Predicate Argument Spanning Trees
j:

(PASTS)

We consider the predicate argument structures an-
notated in PropBank along with the corresponding

TreeBank data as our object space. Given the target

The above kernel has the drawback of aSSignir@redicatep in a sentence parse tréeand a subset
higher weights to larger structufesn order to over- s — {n1,..,ny} of the T's nodesNr, we define as

come this problem we scalg the relative i_mportancg.'e spanning tree roetthe lowest common ancestor
of f[he tree fragments imposing a paramet@ér con- of ny,...nk. The node spanning tre&GT), p. is
ditions 2 and 3 as follows:A(n;,n:) = A and o guptree rooted in, from which the nodes that

A(ng,n.) = ATTS (14 Aleh, s ¢hy))- are neither ancestors nor descendants ofrargre

wherenc(ny) is the number of the children of;
andc/, is the j-th child of the node:. Note that, as
the productions are the same;(n1) = nc(na).

In order to approach this problem and to map similarityrem_OVEd- ] ] )
scores in the [0,1] range, a normalization in the kernel space, Since predicate arguments are associated with

. K T . . . .
e K (1, Th) = e B8 —. Isalways applied  tree nodes, we can define thwedicate argu-
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@ S S Incorrect PAST () S S Incorrect PAST (©)

s
~ ~

\VP (e) \/V \VP ) \/\/P \/Vp\

VB/ ‘ vB (np) VB/ ve vB NP

N
ﬂ | John , / John | / NP John | John , * \
rg.0 read read NP PP read read NP PP read
e ANAN ANAN /A
I VA I VA A A I VA

the ftite of DT NN the tite of DT NN the tile of DT NN the tite of DT NN the ftitle of DT NN

‘ I ‘ , Correct PAST ‘
the book Correct PAST the book the book the book the book|

Arg. 1

Figure 3:Two-step boundary classifier.

ment spanning tre§ PAST) of a predicate ar- ing atraditional boundary classifigb€), e.g. (Prad-
gument set,{aj,..,a,}, as the NST over such han et al., 2004), which provides a small set of po-
nodes, i.e. pa,, .4, A PAST corresponds tential argument nodes. L&A be the set of nodes
to the minimal subparse tree whose leaves ar@ocated bytbc as arguments. We may consider the
all and only the word sequence compoundinget? of the NST's associated with any subset of
the arguments. For example, Figure 2 show®A, i.e. P = {p; : s C PA}. However, also
the parse tree of the sentencihn took the the classification gP may be computationally prob-
book and read its title" . took{arG, ARG,y lematic since theoretically there afp| = 2/PAl
and readgapc, Arc,)} are two PAST structures members.

associated with the two predicatesok and read In order to have a very efficient procedure, we

respectively. All the other’VST's are not valid appliedpast, to only theP.A sets associated with
PASTs. incorrect PASTs. A way to detect such incor-
Notice that, labeling,,Vs C Ny witha PAST rect NSTs is to look for a node paikni,ns>€
classifier past.) corresponds to solve the boundaryP.A x P.A of overlapping nodesi.e. n; is ances-
problem. The critical points for the application oftor of ny or viceversa. After we have detected such
this strategy are: (1) how to design suitable featuresdes, we create two node séts; = PA — {n;}
for the PAST characterization. This new problemandPA; = PA — {n2} and classify them with the
requires a careful linguistic investigation about thewast,. to select the correct set of argument bound-
significant properties of the argument spanning treesies. This procedure can be generalized to a set of
and (2) how to deal with the exponential number obverlapping node® greater than 2 as reported in
NSTs. Appendix 1.

For the first problem, the use of tree kernels over Note that the algorithm selects a maximal set of
the PAST's can be an alternative to the manual feanon-overlapping nodes, i.e. the first that is gener-
tures design as the learning machine, (e.g. SVMs)ed. Additionally, the worst case is rather rare thus
can select the most relevant features from a high dike algorithm is very fast on average.
mensional feature space. In other words, we can useThe Figure 3 shows a working example of the

Eqg. 1to estimate the similarity between tWwal ST's multi-stage classifier. In Frame (ajc labels as

avoiding to define explicit fe_atures. The same ideﬁotential arguments (gray color) three overlapping
has been successfully applied to the parse-tree gs5qes (in Arg.1). The overlap resolution algorithm
ranking task (Taskar et al., 2004; Collins and Duffyyroposes two solutions (Frame (b)) of which only
2002) and predicate argument classification (Mogsne s correct. In fact, according to the second so-
chitti, 2004). lution the propositional phrasef the book would

For the second problem, i.e. the high computancorrectly be attached to the verbal predicate, i.e.
tional complexity, we can cut the search space by ugi contrast with the parse tree. Thest., applied
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to the two N ST's, should detect this inconsistencypora available at www.cis.upenn.edu/  ~ace,
and provide the correct output. Note that, during thalong with the Penn TreeBank 2
learning, we generate the non-overlapping structurééww.cis.upenn.edu/  ~treebank ) (Marcus et

in the same way to derive the positive and negatival.,, 1993). This corpus contains about 53,700

examples. sentences and a fixed split between training and
_ _ testing which has been used in other researches, e.g.
4.2 Engineering Tree Fragment Features (Pradhan et al., 2004; Gildea and Palmer, 2002).

In the Frame (b) of Figure 3, we show one of thaMe did not include continuation and co-referring
possible cases whichust. should deal with. The arguments in our experiments.
critical problem is that the twv ST's are perfectly =~ We used sections from 02 to 07 (54,443 argu-
identical, thus, it is not possible to discern betweefent nodes and 1,343,046 non-argument nodes) to
them using only their parse-tree fragments. train the traditional boundary classifigb{). Then,
The solution to engineer novel features is to simwe applied it to classify the sections from 08 to
ply add the boundary information provided by the2l (125,443 argument nodes vs. 3,010,673 non-
the to the NST's. We mark with a progressive num-argument nodes). As results we obtained 2,988
ber the phrase type corresponding to an argumeftS7's containing at least an overlapping node pair
node, starting from the leftmost argument. For exout of the total 65,212 predicate structures (accord-
amp|e’ in the firstVST of Frame (C), we mark Ing to the tbc deCiSionS). From the 2,988 over-
as NP-0 andNP-1 the first and second argumentlapping structures we extracted 3,624 positive and
nodes whereas in the secoMl7 we have an hy- 4,461 negativeNSTs, that we used to train the
pothesis of three arguments on tNe, NPandPP  past..
nodes. We trasform them iNP-0, NP-1 and  The performance was evaluated with tiemea-
PP-2. suré over the section 23. This contains 10,406 ar-
This simple modification enables the tree kergument nodes out of 249,879 parse tree nodes. By
nel to generate features useful to distinguish bépplying thetbe classifier we derived 235 overlap-
tween two identical parse trees associated with diping N .ST's, from which we extracted 20R AST's
ferent argument structures. For example, for the firénd 385 incorrect predicate argument structures. On

NST the fragments[NP-1 [NP][PP]] , [NP such test data, the performanceafst. was very
[DT][NN]]  and [PP [IN][NP]] are gener- high,i.e. 87.08% in Precision and 89.22% in Recall.

ated. They do not match anymore with fiNP-0 Using thepast. we removed from thébc the P A
[NP][PP]] , [NP-1 [DT][NNI]] and [PP-2  that cause overlaps. To measure the impact on the
[IN]INP]] fragments of the secondl ST boundary identification performance, we compared

In order to verify the relevance of our model, thet with three different boundary classification base-
next section provides empirical evidence about thénes:
effectiveness of our approach.

e tbc: overlaps are ignored and no decision is

5 The Experiments taken. This provides an upper bound for the
recall as no potential argument is rejected for
later labeling. Notice that, in presence of over-
lapping nodes, the sentence cannot be anno-
tated correctly.

The experiments were carried out with
the SVM-light-TK software available at
http://ai-nlp.info.uniromaz2.it/moschitti/

which encodes the tree kernels in the SVM-light
software (Joachims, 1999). Febc, we used the
linear kernel with a regularization parameter (option
-c ) equal to 1 and a cost-factor (optign) of 10 to
have a higher Recall. For thest. we used\ = 0.4

(see (Moschitti, 2004)). 2F, assigns equal importance to PrecisiBrand RecallR,

As referring dataset, we used the PropBank core. F = 224%.

e RN D: one among the non-overlapping struc-
tures with maximal number of arguments is
randomly selected.
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tbc tbc+RND tbc+Heu tbctpast,
P T R TF P T R TF P T RTF P T RTF
[ AllStruct. [ 92.21]98.76] 95.37] 93.55[ 97.31[ 95.39] 92.96[ 97.32] 95.10] 94.40] 98.42] 96.36 |
[ Overl. Struct.]] 98.29] 65.8 | 78.83] 74.00] 72.27[ 73.13] 68.12] 75.23] 71.50] 89.61] 92.68] 91.11

Table 1: Two-steps boundary classification performance using the traditional boundary classifitre random selection of

non-overlapping structuresR(V D), the heuristic to select the most suitable non-overlapping nodef&eat)(and the predicate
argument spanning tree classifipt.t.).

e Heu (heuristic): one of theV ST's which con- 6 Related Work
tain the nodes with the lowest overlapping _
score is chosen. This score counts the numb&ecently, many kernels for natural language applica-
of overlapping node pairs in th¥ ST For ex- t_|ons haye peen designed. In Wh_at follows, we high-
ample, in Figure 3.(a) we haveNPthat over- light their difference and properties.
laps with two nodedNP and PP, thus it is as-  1he tree kernel used in this article was proposed
signed a score of 2. in (Collins and Duffy, 2002) for syntactic parsing re-
ranking. It was experimented with the Voted Percep-
The third row of Table 1 shows the resultstoé, tron and was shown to improve the syntactic parsing.
tbe + RND, tbc + Heu and tbc + past. in the A refinement of such technique was presented in
columns 2,3,4 and 5, respectively. We note that: (Taskar et al., 2004). The substructures produced by
the proposed tree kernel were bound to local prop-
e Thetbc F1 is slightly higher than the result ob- erties of the target parse tree and more lexical infor-
tained in (Pradhan et al., 2004), i.e. 95.37%nation was added to the overall kernel function.
vs. 93.8% on same training/testing conditions, |n (Zelenko et al., 2003), two kernels over syn-
i.e. (same PropBank version, same training anctic shallow parser structures were devised for
testing split and same machine learning algahe extraction of linguistic relations, e.gperson-
rithm). This is explained by the fact that weaffiliation. To measure the similarity between two
did not include the continuations and the COnodeS’ the:ontiguous String kerneind thesparse
referring arguments that are more difficult tostring kernel(Lodhi et al., 2000) were used. The
detect. former can be reduced to the contiguous substring
kernel whereas the latter can be transformed in the
non-contiguous string kernel. The high running time

tsy:még?/ls ?‘;? be explained bytobs(,jerylng that Irz:omplexity, caused by the general form of the frag-
€ 0 OThe cases a correct node 1S removeﬂ1ents, limited the experiments on data-set of just

o When, to select the correct node, thest, is 200 NEWS items. o
used, theF, increases of 1.49%, i.e. (96.86 vs. " (Cumby and Roth, 2003), it is proposed a de-
95.37). This is a very good result considering¢"Ption Iang_uage that models feature descrlptors
that to increase the very high baselinefis © generate different feature type. The descriptors,
hard. which are quantified logical prepositions, are instan-
tiated by means of aoncept graptwhich encodes
In order to give a fairer evaluation of our approachhe structural data. In the case of relation extraction
we tested the above classifiers on the overlappirtheconcept graplis associated with a syntactic shal-
structures only, i.e. we measured thet. improve- low parse and the extracted propositional features
ment on all and only the structures that required itexpress fragments of a such syntactic structure. The
application. Such reduced test set contains 642 axperiments over the named entity class categoriza-
gument nodes and 15,408 non-argument nodes. Ttien show that when the description language selects
fourth row of Table 1 reports the classifier perforan adequate set of tree fragments the Voted Percep-
mance on such task. We note that thest, im-  tron algorithm increases its classification accuracy.
proves the other heuristics of about 20%. In (Culotta and Sorensen, 2004) a dependency

e Both RN D andH eu do not improve thebc re-
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tree kernel is used to detect the Named Entity classesin Proceedings of the 2003 Conference on Empirical
in natural language texts. The major novelty was Methods in Natural Language Processjn8apporo,
the combination of the contiguous and sparse ker- 72Pa":

nels with the word kernel. The results show thabaniel Gildea and Daniel Jurasfky. 2002. Automatic la-
the contiguous outperforms the sparse kernel and thebeling of semantic roles.Computational Linguistic

bag-of-words 28(3):496-530.
lusi Daniel Gildea and Martha Palmer. 2002. The neces-
7 Conclusions sity of parsing for predicate argument recognition. In

The feat desian f tural | | Proceedings of the 40th Annual Conference of the
€ feature design for new natural language learn- sqqqciation for Computational Linguistics (ACL-02)

ing tasks is difficult. We can take advantage from philadelphia, PA, USA.

the kernel methods to model our intuitive knowledge

: i : T. Joachims. 1999. Making large-scale SVM learning
about the target linguistic phenomenon. In this pa praciical. In B. Sctilkopf, C. Burges, and A. Smola,

per we have shown that we can exploit the properties ggitors Advances in Kernel Methods - Support Vector
of tree kernels to engineer syntactic features for the Learning

redicate argument boundary detection task.

P - 9 y Pfiu| Kingsbury and Martha Palmer. 2002. From Tree-
Prellmlnary results. on gold standard trees SUQQ?S bank to PropBank. Ifroceedings of the 3rd Interna-
that (1) the information related to the whole predi- tional Conference on Language Resources and Evalu-

cate argument structure is important and (2) tree ker- ation (LREC-2002)Las Palmas, Spain.

nel can be used to generate syntactic features. Ron Kohavi and Dan Sommerfield. 1995. Feature sub-

_In the future, we would like to use an approach  set selection using the wrapper model: Overfitting and
similar to the PAST classifier on parses provided dynamic search space topology. The First Interna-

by different parsing models to detect boundary and tional Conference on Knowledge Discovery and Data

; ; Mining, pages 192-197. AAAI Press, Menlo Park,
to classify semantic role more accurately . Califo?nig Rugust Journal version in AlJ
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Appendix 1: Generalized Boundary
Selection Algorithm

Let O be the set of overlapping nodes Bf4, and
NO the set of non overlapping nodes7#A.
Let subs(~1(A) = {B|B € 24,|B| = |A| - 1}.
LetO = subs(=D(0).
while(true)
begin

1L H=0

2.YoeO:

(a) If o does notinclude any overlapping node
pair
then H = HU {o}

3. If H # 0 then:

(a) Lets =argmaz,cy paste(Pyoy,)s
wherep, ., represents the node span-
ning tree compatible witho, and the
paste(pPyou,) 1S the score provided by the
PAST SVM categorizer on it

(b) If past.(3) > 0 then RETURN( 5)
4. 1f O = {0} then RETURN(NO)

5. Else
@0=0-H
(b) O = Uoeo subs(=1(0)
end
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