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Abstract

We present the results of feature engineer-
ing and post-processing experiments con-
ducted on a temporal expression recogni-
tion task. The former explores the use of
different kinds of tagging schemes and of
exploiting a list of core temporal expres-
sions during training. The latter is con-
cerned with the use of this list for post-
processing the output of a system based on
conditional random fields.

We find that the incorporation of knowl-
edge sources both for training and post-
processing improves recall, while the use
of extended tagging schemes may help
to offset the (mildly) negative impact on
precision. Each of these approaches ad-
dresses a different aspect of the over-
all recognition performance. Taken sep-
arately, the impact on the overall perfor-
mance is low, but by combining the ap-
proaches we achieve both high precision
and high recall scores.

Introduction

9

tasks, timex recognition is naturally viewed as a se-
guence labeling task, easily lending itself to ma-
chine learning techniques such as conditional ran-
dom fields (CRFs) (Lafferty et al., 2001).

A preliminary experiment showed that, using
CRFs, a respectable recognition performance can
easily be achieved with a straightforward baseline
system that is based on a simple tagging scheme and
requires very little tuning, yielding F-scores around
0.78 (exact match) or even 0.90 (partial match).
Interestingly, these high scores are mainly due to
high or even very high precision scores, while recall
leaves much to be improved.

The main focus of this paper is on boosting re-
call while maintaining precision at an acceptable
(i.e., high) level. We report on two types of ex-
periments aimed at achieving this goal. One type
concerns feature engineering and the other concerns
post-processing the output of a machine learner.
While we do exploit the special nature of timexes,
for portability reasons we avoid using task-specific
and richer linguistic features (POS, chunks, etc.). In-
stead, we focus on features and techniques that can
readily be applied to other NER tasks.

Specifically, our feature engineering experiments
have two facets. The first concerns identification of
a set of simple features that results in high general-
ization ability (accuracy). Here, particular emphasis

Temporal expressionfifiexes) are natural languagewill be placed on the use of a list of core timexes as
phrases that refer directly to time points or intervalsa feature. The assumption is that the performance of
They not only convey temporal information on theirdata-driven approaches for timex recognition can be
own but also serve as anchors for locating events ramproved by taking into account the peculiar prop-
ferred to in a text. Timex recognition is a nameckrties of timexes. Timexes exhibit various patterns,
entity recognition (NER) task to which a variety ofranging from regular patterns that can easily be cap-
natural language processing and machine learnitigred using simple regular expressions to complex
techniques have been applied. As with other NERnguistic forms (phrases). While timexes are real-
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ized in different phrase types, the core lexical item& Background

of timexes are restricted. This suggests that a list .

of core timexes can easily be compiled and used fyl  Task Description

machine learning-based timex recognition. One apn recent years, temporal aspects of information ac-
proach of integrating such a list is using them to gersess have received increasing amounts of attention,
erate features, but the availability of such a list alsespecially as it relates to news documents. In addi-
opens up other possibilities in feature design that wigon to factual content, news documents have a tem-
present in later sections. poral context, reporting events that happened, are

The second aspect concerns the tagging schent@ppening, or will happen in relation to the publi-
As in most NER experiments, the task of recognizeation date. Temporal documenetrieval concerns
ing timexes is reduced to tagging. Commonly usethe inclusion of both the document publication date
tagging schemes are Inside-Outside (I0) and Begi@nd the in-text temporal expressions in the retrieval
Continue-End-Unique-Negative (BCEUN) (Borth-model (Kalczynski and Chou, 2005). The task in
wick et al., 1998). The 10 tagging scheme, which wavhich we are interested in this paper is identifying
use as a baseline, assigns the tag | to a token if it iBe latter type of expressions, i.extractionof tem-
part of a timex and O otherwise. The richer BCEUNporal expressions. TERN, the Temporal Expression
scheme assigns the five tags B, C, E, U, and N to t&kecognition and Normalization Evaluation, is orga-
kens depending on whether the token is single-tokgrized under the auspices of the Automatic Content
timex (U), a non-timex (N), appears at the beginnindextraction program (ACEhttp://www.nist.

(B), at the end (E) or inside a timex boundary (C). Irgov/speech/tests/ace/ ). The TERN evalu-

this paper, we compare the 10, BCEUN and an exation provides specific guidelines for the identifica-
tended form of the BCEUN tagging scheme. Thédion and normalization of timexes, as well as tagged
extended scheme adds two tags, PRE and POST,aerpora for training and testing and evaluation soft-
the BCEUN scheme, which correspond to tokens apvare. These guidelines and resources were used for
pearing to the left and to the right of a timex. the experiments described below.

In contrast, our post-processing experiments in- The TERN evaluation consisted of two distinct
vestigate the application of the list of core timexesgasks: recognition and normalization. Timex recog-
for filtering the output of a machine learner. The inHition involves correctly detecting and delimiting
corporation into the recognition process of explicitimexes in text. Normalization involves assigning
knowledge in the form of a list for post-processingecognized timexes a fully qualified temporal value.
requires a carefully designed strategy to ensure th@ur focus in this paper is on the recognition task;
the important properties of the trained model aré is defined, for human annotators, in the TIDES
kept intact as much as possible while at the sam@dMEX2 annotation guidelines (Ferro et al., 2004).
time improving overall results. We present an apThe recognition task is performed with respect to
proach for using a list for post-processing that exeorpora of transcribed broadcast news speech and
ploits the knowledge embodied in the trained modehews wire texts from ACE 2002, ACE 2003, and

The paper is organized as follows. In Section ACE 2004, marked up in SGML format and, for
we provide background material, both on the timethe training set, hand-annotated for TIMEX2s. An
extraction task §2.1) and on the machine learningofficial scorer that evaluates the recognition perfor-
technigues on which we build in this paper, condimance is provided as part of the TERN evaluation. It
tional random fields§2.2). Our ideas on engineer-computes precision, recall, and F-measure both for
ing feature sets and tagging schemes are presentB#EX2 tags (i.e., foroverlapwith a gold standard
in Section 3, while we describe our method for exTIMEX2 element) and forextentof TIMEX2 ele-
ploiting the explicit knowledge contained in a list inments (i.e., exact match of entire timexes).

Section 4. In Section 5, we describe the experimen- N _

tal setup and present the results of our experiment&2 Conditional Random Fields

Related work is briefly reviewed in Section 6, and/\Ve view the recognition of timexes task as a se-
we conclude in Section 7. guence labeling task in which each token in the text
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is classified as being either a timex or not. One maight context window constitute another set of fea-
chine learning technique that has recently been itdres. These feature sets capture the lexical con-
troduced to tackle the problem of labeling and segent and context of timexes. Additionally, charac-
menting sequence data is conditional random fieldsr type pattern features (such as capitalization, digit
(CRFs, (Lafferty etal., 2001)). CRFs are conditionatequence) of tokens in the timexes are used to cap-
probability distributions that take the form of ex-ture the character patterns exhibited by some of the
ponential models. The special case of linear chaitokens in temporal expressions. These features con-
CRFs, which takes the following form, has beerstitute thebasic featureset.

widely used for sequence labeling tasks: Another important feature is the list of core
timexes. The list is obtained by first extracting the
Py|z) = phrases with -TMP function tags from the PennTree

et al., 1993). The resulting list is filtered for stop-
words. Among others, the list of core timexes con-
sists of the names of days of the week and months,
{z1,...,7n} is the observation sequenc¥, — temporal units ‘day, ‘month,’ ‘year, etc. This list

is used to generate binary features. In addition, the

{y1,...,yr} is the label sequenceg; and \;, are > * . _
the feature functions and their weights respectivelyiSt is used to guide the design of other complex fea-
ures that may involve one or more of token-tag pairs

An important property of these models is that proba_t- :
bilities are computed based on a set of feature funé the context of the current token. One way of using

tions, i.e.,f;, (usually binary valued), which are de__the list for_this purpose is to gene_rate a fea_ture that
fined on both the observatioki and label sequences NVOIVes bi-grams tokens. In certain cases, informa-
Y. These feature functions describe different aspetipn extracted from bi-grams, e.g. +Xx 99 (May 20),

of the data and may overlap, providing a flexible way@" be more informative than information generated
of describing the task. from individual tokens. We refer to these features as

CRFs have been shown to perform well in gnelistfeature set.
number of natural language processing applications, » Tagging schemes
such as POS tagging (Lafferty et al., 2001), shallow

arsing or NP chunking (Sha and Pereira, 2003), a i . i ) .
P J 9( ) consider in this paper concerns different tagging

named entity recognition (McCallum and Li, 2003). h A tioned ously. the task of
In this paper, CRFs are applied to the recognition gtcemes. As mentioned previously, the task ot rec-

timexes; in our experiments we used the minorThir(?gniZing timexes is reduced to a §equence-labeling
implementation of CRFs (Cohen, 2004). task. W(.a compare three tagging schemes, 10
(our baseline), BCEUN, and BCEUN+PRE&POST.

3 Feature Engineering While the first two are relatively standard, the last

one is an extension of the BCEUN scheme. The
The success of applying CRFs depends on the quéhtuition underlying this tagging scheme is that the
ity of the set of features used and the tagging schemgost relevant features for timex recognition are ex-
chosen. Below, we discuss these two aspects iracted from the immediate context of the timex,
greater detail. e.g., the word 'During’ in (1) below.

) bank, and taking the words in these phrases (Marcus

sz) exp (Z Z)‘kfk: (t, Yt—1,yt, )

t=1 k

where Z (z) is the normalization factorX =

second aspect of feature engineering that we

3.1 Feature sets (1) During <TIMEX2>the past week/TIMEX2> ,
the storm has pounded the city.

During-PRE the-B past-C week-E ,-POST the
storm has pounded the city.

Our baseline feature set consists of simple lexical
and character features. These features are derived
from a context window of two words (left and right).
Specifically, the features are the lowercase form dfherefore, instead of treating these elements uni-
all the tokens in the span, with each token contribuformly as outside (N), which ignores their relative
ing a separate feature, and the tokens in the left ammportance, we conjecture that it is worthwhile to
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assign them a special category, like PRE and POST will leave next week. The press conference will
corresponding to the tokens immediately preceding be held tomorrow afternoon.
and following a timex, and that this leads to im-

proved results. Now, assume that (2) is a test instance (a two-
sentence document), and that the system returns the
4 Post-processing Using a List following best sequence (3). For readability, the tag

_ _ . N is not shown on the words that are assigned nega-
In this section, we describe the proposed metho&{/e tags in all the examples below

for incorporating a list of core lexical timexes for
post-processing the output of a machine learner. AS) The chairman arrived in the city yesterday-U ,
we will see below, although the baseline system and will leave next week . The press conference
(with the 10 tagging scheme and the basic feature will be held tomorrow-B afternoon-E .
set) achieves a high accuracy, the recall scores leave
much to be desired. One important problem that waccording to (3), the system recognizes only ‘yes-
have identified is that timexes headed by core lexicirday’ and ‘tomorrow afternoon’ but misses ‘next
items on the list may be missed. This is either du&eek’. Assuming our list of timexes contains the
to the fact that some of these lexical items are seord ‘week’, it tells us that there is a missing tem-
mantically ambiguous and appear in a non-tempor&oral expression, headed by ‘week’ The naive
sense, or the training material does not cover the pdpethod is to go through the above output sequence
ticular context. In such cases, a reliable list of cor@nd change the token-tag pair ‘week-N' to ‘week-
timexes can be used to identify the missing timexe$)'- This procedure recognizes the token ‘week’ as a
For the purposes of this paper, we have Createdva”d temporal eXpreSSion, but this is not correct: the
list containing mainly headwords of timexes. Thes#alid temporal expression is ‘next week'’.
words are calledrigger wordssince they are good ~ We now describe a second approach to incorpo-
indicators of the presence of temporal expressionstating the knowledge contained in a list of core lexi-
How can we use trigger words? Before describcal imexes as a post-processing device. To illustrate
ing our method in some detail, we briefly describ®ur ideas, take the complete sequence in (3) and ex-
a more naive (and problematic) approach. ObsenjEact the following segment, which is a window of 7
that trigger words usually appear in a text along witfiokens centered at ‘week'’.
their complements or adjuncts. As a result, pick- .
ing only these words will usually contribute to token(4) - [will leave next week . The press] ...

recall but span precision is likely to drop. Furthere reclassifythe tokens in (4) assuming the history
more, there is no principled way of deciding whichzontains the token ‘and’ (the token which appears to
one to pick (semantically ambiguous elements Willhe |eft of this segment in the original sequence) and
also be picked). Let's make this more precise. Thg,e associated parameters. Of course, the best se-
aim is to take into account the knowledge acquireauence will still assign both ‘next’ and ‘week’ the N

by the trained model and to search for the next oRag since the underlying parameters (feature sets and
timal sequence of tags, which assigns the missgfle associated weights) are the same as the ones in
timex a non-negative tag. However, searching fofe system. However, since the word sequence in (4)
this sequence by taking the whole word sequengg now short (contains only 7 words) we can main-
is impractical since the number of possible tag sy a list of all possible tag sequences for it and per-
quences (number of all possible paths in a viterlym 5 sequential search for the next best sequence,
search) is very large. But if one limits the search tQhich assigns the ‘week’ token a non-negative tag.

a window of sizen (n < 6), sequential search will Assume the new tag sequence looks as follows:
be feasible. The method, then, works on the output

of the system. We illustrate the method by using théb) ... [will leave next-B week-E . The press] ...

example given in (2) below.
ped @) This tag sequence will then be placed back into the

(2) The chairman arrived in the city yesterday, anariginal sequence resulting in (6):
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(6) The chairman arrived in the city yesterday-U available in the 2004 Temporal Expression Recog-
and will leave next-B week-E . The press conhition and Normalization Evaluation. The tempo-
ference will be held tomorrow-B afternoon-E . ral expressions in the training files are marked with
. i . XML tags. The minorThird system takes care of

In this case, all the temporal exprfe55|ons W'!I,be exéutomatically converting from XML format to the

tracted since the token sequence ‘next week'’ is pro%’orresponding tagging schemes. A temporal expres-

erly tagged. Of course, the above procedure can alg%n enclosed by TIMEX2> tags constitutes a span.

return other, invalid sequences as in (7): The features in the training instances are generated

(7) a. ...willleave next-B week-C . The press ... by looking at the surface forms of the tokens in the
b. ...will leave next week-C . The press ... SPans and their surrounding contexts.
c. ...willleave next week-C .-E The press...

5.2 Experimental results

The final extraction step will not return any t'meX_Richer feature sets Table 1 lists the results of the

since none of the candidate sequences in (7) contalfsy oo of our experiments. Specifically, for every

a valid tag sequence. The assumption here is thatt%fgging scheme, there are two sets of featurasic

all the tag se_quences, which assign the token_ ‘Weeg’ndlist. The results are based on both exact-match
a _non-negatlve ta‘%” those tag sequencgs which cofl; partial match between the spans in the gold stan-
tal_n the s_egment _next—l_3 week-E’ are I|I_<ely to '®-dard and the spans in the output of the systems, as
ceive a higher weight since the underlying SySter[élxplained in Subsection 2.1. In both the exact and

IS trame‘d to recogfl!ze tgmporal expressions apd trib‘%lrtial match criteria, the addition of the list features
phrase ‘next week'is a likely temporal expression. jo4s to an improvement in recall, and no change or

This way, we hypothesize, it is possible to eX- decrease in precision.

ploit the knowledge embodied in the trained model. In sum, the feature addition helps recall more than

As pointed out previously, simply going through:. . i
t hurts precision, as the F score goes nearly ev-
the list and picking only head words like ‘week’I Ur's precisi g up y ev

) erywhere, except for the exact-match/baseline pair.
will not guarantee that the extracted tokens form a w P P

valid temporal expression. On the other hand, thgagging schemes In Table 1 we also list the ex-
above heuristics, which relies on the trained modelyaction scores for the tagging schemes we con-
is likely to pick the adjunct ‘next’. sider, 10, BCEUN, and BCEUN+PRE&POST, as
The post-processing method we have just outtescribed in Section 3.2.
lined boils down to reclassifying a small segment | et us first look at the impact of the different tag-
of a complete sequence using the same parametgffg schemes in combination with the basic feature
(feature sets and associated weights) as the origing@t (rows 3, 5, 7). As we go from the baseline
model, and keeping all possible candidate sequencggging scheme 10 to the more complex BCEUN
and searching through them to find a valid sequencgnd BCEUN+PRE&POS, precision increases on
the exact-match criterion but remains almost the
same on the partial match criterion. Recall, on
In this section we provide an experimental assesi€ other hand, does not show the same trend.
ment of the feature engineering and post-processif@CEUN has the highest recall values followed by
methods introduced in Sections 3 and 4. SpecifBCEUN+PRE&POST and finally 10. In general,
cally, we want to determine what their impact is olO based tagging seems to perform worse whereas
the precision and recall scores of the baseline syBCEUN based tagging scores slightly above its ex-
tem, and how they can be combined to boost recdnded tagging scheme BCEUN+PRE&POST.

5 Experimental Evaluation

while keeping precision at an acceptable level. Next, considering the combination of extend-
. ing the feature set and moving to a richer tagging
5.1 Experimental data scheme (rows 4, 6, 8), we have very much the same

The training data consists of 511 files, and the tegattern. In both the exact match and the partial
data consists of 192 files; these files were madmatch setting, BCEUN tops (or almost tops) the two
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Exact Match Partial Match

Tagging scheme Features Prec. Rec. F Prec. Rec. F
10 (baseline) basic 0.846 0.723 0.780 0.973 0.832 0,897

basic+ list | 0.822 0.736 0.776 0.963 0.862 0.910
BCEUN basic 0.874 0.768 0.8147 0.974 0.856 0.911

basic+ list | 0.872 0.794 0.831 0.974 0.887 0.928
BCEUN+PRE&POS basic 0.882 0.749 0.810 0.979 0.831 0.899

basic+ list | 0.869 0.785 0.825 0.975 0.881 0.925

Table 1: Timex: Results of training on basic and list features, and different tagging schemes. Highest scores

(Precision, Recall, F-measure) are in bold face.

other schemes in both precision and recall. all scores on the exact match criteria, the latter per-

In sum, the richer tagging schemes function atorms better on partial match criteria. This, in turn,
precision enhancing devices. The effect is clearlghows that the combination of post-processing, and
visible for the exact-match setting, but less so foBCEUN+PRE&POS achieves better results.

partial matching. It is not the case that the learner

trained on the richest tagging scheme outperforma{€PPing back We have seen that the extended
all learners trained with poorer schemes. tagging scheme and the post-processing methods
improve on different aspects of the overall per-

Post-processing Table 2 shows the results of ap-formance.  As mentioned previously, the ex-
plying the post-processing method described itended tagging scheme is both recall and precision-
Section 4. One general pattern we observe iariented, while the post-processing method is pri-
Table 2 is that the addition of the list featuresmarily recall-oriented. Combining these two meth-
improves precision for |0 and BCEUN taggingods results in a system which maintains both these
scheme and shows a minor reduction in precisioproperties and achieves a better overall result. In or-
for BCEUN+PRE&POS tagging scheme in bothder to see how these two methods complement each
matching criteria. Similarly, in the presence ofother it is sufficient to look at the highest scores
post-processing, the use of a more complex taggirfgr both precision and recall. The extended tagging
scheme results in a better precision. On the othecheme with basic features achieves the highest pre-
hand, recall shows a different pattern. The addiision but has relatively low recall. On the other
tion of list features improves recall both for BCEUNhand, the simplest form, the 10 tagging scheme
and BCEUN+PRE&POS, but hurts recall for the IGand basic features with post-processing, achieves
scheme for both matching criteria. the highest recall and the lowest precision in par-
Comparing the results in Table 1 and Table 2tial match. This shows that the 10 tagging scheme
we see that post-processing is a recall enhancingth basic features imposes a minimal amount of
device since all the recall values in Table 2 areonstraints, which allows for most of the timexes in
higher than the recall values in Table 1. Prethe list to be extracted. Put differently, it does not
cision values in Table 2, on the other hand, ardiscriminate well between the valid vs invalid oc-
lower than those of Table 1. Importantly, thecurrences of timexes from the listin the text. At the
use of a more complex tagging scheme such &her extreme, the extended tagging scheme with 7
BCEUN+PRE&POS, allows us to minimize thetags imposes strict criteria on the type of words that
drop in precision. In general, the best result (oonstitute a timex, thereby restricting which occur-
partial match) in Table 1 is achieved through thé&ences of the timex in the list count as valid timexes.
combination of BCEUN and basic&list features In general, although the overall gain in score is
whereas the best result in Table 2 is achieved Himited, our feature engineering and post-processing
the combination of BCEUN+PRE&POS and basiefforts reveal some interesting facts. First, they show
&list features. Although both have the same overene possible way of using a list for post-processing.
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Exact Match Partial Match
Tagging scheme Features Prec. Rec. F Prec. Rec. F
10 basic (baseline) 0.846 0.723 0.78@.973 0.832 0.897
“basic | 0.756 0.780 0.768 0.9020.931 0.916
basic+ list 0.772 0.752 0.762 0.930 0.906 0.918
BCEUN basic 0.827 0.789 0.808 0.945 0.901 0.922
basic+ list 0.847 0.801 0.823 0.958 0.906 0.931
BCEUN+PRE&POS basic 0.863 0.765 0.810.973 0.863 0.915
basic+ list 0.861 0.804 0.8310.970 0.906 0.937

Table 2: Timex: Results of applying post-processing on the systems in Table 1. The baseline (from Table 1)
is repeated for ease of reference; it does not use post-processing. Highest scores (Precision, Recall, F-
measure) are in bold face.

This method is especially appropriate for situationsather than single tokens as is done in conventional
where better recall is important. It offers a means o€RFs. This in turn allows one to incorporate seg-
controlling the loss in precision (gain in recall) byment based-features, e.g., segment length, and also
allowing a systematic process of recovering missinfacilitates integration of external dictionaries since
expressions that exploits the knowledge already emsegments are more likely to match the entries of an
bodied in a probabilistically trained model, therebyexternal dictionary than tokens. In this paper, we
reducing the extent to which we have to make rarstuck to conventional CRFs, which are computation-
dom decisions. The method is particularly sensitivally less expensive, and introduced post-processing
to the criterion (the quality of the list in the currenttechniques, which takes into account knowledge em-
experiment) used for post-processing. bodied in the trained model.

6 Related Work Kristjannson et al. (2004) introduced constrained
CRFs (CCRFs), a model which returns an optimal
A large number of publications deals with extractionabel sequence that fulfills a set of constraints im-
of temporal expressions; the task is often treated @sed by the user. The model is meant to be used in
part of a more involved task combining recognitioran interactive information extraction environment,
and normalization of timexes. As a result, manyn which the system extracts structured information
timex interpretation systems are a mixture of botlffields) from a text and presents it to the user, and
rule-based and machine learning approaches (Mathie user makes the necessary correction and submits
and Wilson, 2000). This is partly due to the fact thatt back to the system. These corrections constitute
timex recognition is more amenable to data-drivean additional set of constraints for CCRFs. CCRFs
methods whereas normalization is best handled ugs-computes the optimal sequence by taking these
ing primarily rule-based methods. We focused omonstraints into account. The method is shown to
machine learning methods for the timex recognitiomeduce the number of user interactions required in
task only. See (Katz et al., 2005) for an overview ofalidating the extracted information. In a very lim-
methods used for addressing the TERN 2004 taskited sense our approach is similar to this work. The
In many machine learning-based named-entitlist of core lexical timexes that we use represents
recognition tasks dictionaries are used for improvinghe set of constraints on the output of the underly-
results. They are commonly used to generate binaiyg system. However, our method differs in the way
features. Sarawagi and Cohen (2004) showed thiat which the constraints are implemented. In our
semi-CRFs models for NE recognition perform betease, we take a segment of the whole sequence that
ter than conventional CRFs. One advantage of sendentains a missing timex, and reclassify the words
CRFs models is that the units that will be tagged ar@ this segment while keeping all possible tag se-
segments which may contain one or more tokenguences sorted based on their weights. We then
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