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PREFACE 

We are pleased to present the current volume of tcchnical papers accepted for presentation at thc 
Seventh International Workshop on Tree Adjoining Grammar and Relatcd Formalisms (TAG+7). 
And we are honored to be able to acknowledge the many people and organizations who have 
contributed to the event. Thc meeting depends on the hard work of paper authors and of our 
program corrunittee, who along with outside reviewcrs provided feedback to authors of all 
submitted abstracts. Wc also thank our invited speakcrs, Barbara Partee, Jeff Pellcticr and Giorgio 
Satta, for offering their participation and support to thc meeting. As an accompanimcnt to the 
conference, Chung-hye Han and Anoop Sarkar have arrangcd a tutorial program on TAG, 
featuring Aravind Joshi, Anthony Kroch, Giorgio Satta, and Robert Frank - and we apprcciatc the 
dcdication of these organizers and prescnters to fostering TAG as part of a broader enterprise of 
formal rcsearch on language. (Thcy even persuaded us to contribute to thc tutorial session.) 

Funding for the workshop has been provided by a grant from the Social Sciences and Humanities 
Research Council of Canada, by Simon Fraser University, and by its Department of Linguistics, 
School of Computer Science and Cognitive Science Program. Chung-hye Han and Anoop Sarkar 
are responsible not just for securing this undcrwriting for thc meeting, but for all the details of 
local arrangements - a heroic task that must underpin any successful meeting. TAG+7 owcs its 
existcnce to their organizatior. and initiative. 

The volume offers the 29 research papcrs which are to be presented at TAG+7. 14 arc to be 
delivercd in spoken presentations at the meeting and 15 are to be presented as posters. Tue topics 
of the papers cover mathematics of language, linguistic syntax and formal semantics, 
computational approaches to grarrunar design and grammatical inference, and explorations of 
constrained grammar formalisms in ncw fields such as computational biology. So, by all 
indications, this seventh workshop in the TAG+ scries promises once again to reunite a diverse 
array of researchers in the cognitive science of language and in language technology, and to foster 
the productive interactions that have been the hallmark of TAG research. 

So let's get startcd! 

Owen Rambow and Matthew Stone 
Program co-Chairs 
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Abstract 

This paper presents LTAG semantics of focus 
and focus-sensitive quantifiers which adopts 
alternative semantics of focus (Rooth 1985 
and subsequent work). It proposes that fo-
cused lexical items make its contribution at 
the level of elementary trees, so that each 
elementary tree is associated with two seman-
tic representations: its ordinary semantic rep-
resentation and its focus representation. Based 
on the semantic framework, discussed in 
Kallmeyer and Joshi 2003 and Kallmeyer and 
Romero 2004, the paper develops a composi-
tional analysis of focus representations, and 
extends this analysis to focusing adverbs and 
adverbs of quantification. 

1 Alternative Semantics of Focus. 

According to alternative semantics, introduced in Rooth 
1985, every constituent has two semantic values: an 
ordinary semantic value, which determines its contribu-
tion to the truth conditions, and a focus semantic value, 
which determines the set of alternatives, or propositions 
under discussion. The focus semantic value is the set of 
propositions obtained by making substitutions in the 
position of the focused phrase. For example, the focus 
semantic value of the sentence ‘Mary dates [Bill]F’ is 
the  set of propositions of the form “Mary dates y”, 
whereas the focus semantic value of ‘[Mary]F dates Bill’ 
is the  set of propositions of the form “x dates Bill”.  
  
The contribution of focus is thus to evoke a set of alter-
natives, which can be contrasted with the ordinary se-
mantic value. This can be illustrated by the question-

answer paradigm. Consider, for example, the question 
‘Who dates Bill?’. This question determines the set of 
potential answers ‘Mary dates Bill’, ‘Sue dates Bill’, 
etc, which are alternatives to the actual answer. An ap-
propriate answer to this question is ‘[Mary]F dates Bill’, 
where the position of focus correlates with the ques-
tioned position in wh-questions.  The contribution of 
focus in an answer is thus to indicate that propositions 
of the form ‘x dates Bill’ are alternatives to the actual 
answer. 
 
Ordinary semantic value is not directly affected by fo-
cus,  however, focus has a truth-conditional effect in the 
case of quantifiers like ‘only’.  Consider the sentences 
in (1) from Rooth 1985 in the context where John intro-
duced Bill and Tom to Sue, and there were no other 
introductions. In this context, the sentence in (1a) is 
false, and the sentence in (1b) is true.  
 
(1)   a.John only introduced BillF to Sue 
        b.John only introduced Bill to SueF 
 
The analysis of ‘only’ proposed in Rooth 1985 assumes 
that ‘only’ is a universal quantifier which quantifies 
over the set of alternatives. The sentence in (2a), for 
example, is true in case any proposition of the form 
‘John introduced x to Sue’ is a proposition “John intro-
duced Bill to Sue’. 
 
 (2) a. John only introduced BillF to Sue 

b. ∀q(q ∧ λp [∃y (p= introduce(j, y, s)](q) -> 
          q=introduce(j, b, s))  
 
The main question addressed in the paper is how the set 
of alternatives can be computed within LTAG-based 
semantics. The next section introduces the semantic 
framework adopted in the paper, which is based on se-
mantic feature unification. Section 3 proposes an analy-
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sis of focus which assumes that focused lexical items 
make its contribution at the level of elementary trees, so 
that each elementary tree is associated with two seman-
tic representations: its ordinary semantic representation 
and its focus representation. Sections 4 and 5 extend the 
proposed analysis to focus-sensitive quantifiers.  

2 LTAG Semantics with Semantic Unifi-
cation.  

In LTAG framework (Joshi and Schabes 1997), the ba-
sic units are (elementary) trees, which can be combined 
into bigger trees by substitution or adjunction. LTAG 
derivations are represented by derivation trees that re-
cord the history of how the elementary trees are put 
together. Given that derivation steps in LTAG corre-
spond to predicate-argument applications, it is usually 
assumed that LTAG semantics is based on the deriva-
tion tree, rather than the derived tree (Kallmeyer and 
Joshi 2003).  
 
Semantic composition which we adopt is based on 
LTAG semantics with semantic unification (Kallmeyer 
and Romero 2004). In the derivation tree, elementary 
trees are replaced by their semantic representations and 
corresponding feature structures.  Semantic representa-
tions are as defined in Kallmeyer and Joshi 2003, except 
that they do not have argument variables. These repre-
sentations consist of a set of formulas (typed λ-
expressions with labels) and a set of scope constraints. 
The scope constraints x ≤ y are as in Kallmeyer and 
Joshi 2003, except that both x and y are propositional 
labels or propositional variables.   
 
Each semantic representation is linked to a feature struc-
ture. Feature structures, as illustrated by different exam-
ples below, include a feature i whose values are 
individual variables, features p and MaxS, whose values 
are propositional labels, and a feature S, whose values 
are situations. Semantic composition consists of feature 
unification. After having performed all unifications, the 
union of all semantic representations is built.  
 
Consider, for example, the semantic representations and 
feature structures2 associated with the elementary trees 
of the sentence shown in (3).    
 
 
 
 
 
 
 
                                                           

2 For simplification, top-bottom feature distinction is omit-
ted. 

 (3)  Mary dates Bill 
 
             S                         
                                                                                      
    NP          VP             
[i:1]             
       date             NP    [i: 2]          
 
   NP                            NP           
         mary(x)                      
 
  Mary                       Bill            
  [i: x]                        [i: y]  
 
The derivation tree that records the history of how ele-
mentary trees are put together is shown in (4): 
 
(4)             date 
               1       2 
        mary            bill 
 
Semantic composition proceeds on the derivation tree 
and consists of feature unification:  
 
(5)     l1: date(1, 2 )                                                               
                                           
            1 [i: 1]                                                                      
            2 [i: 2 ]                                               
 
              1             2                                                                                 
                                                                  
    mary(x)               bill(y) 
     [i: x]                      [i: y]    
                   
Performing two unifications,  1=x, 2=y, we arrive at the 
final interpretation of this sentence: 
     
(6)     

     
       

 
 
This representation is interpreted conjunctively, with 
free variables being existentially bound.                                                        

3 LTAG based Alternative Semantics.  

In order to incorporate the semantics of focus we pro-
pose that each elementary tree is associated with two 
semantic representations, which correspond to its ordi-
nary semantic value and its focus semantic value. The 
focus semantic value is built parallel to the meaning of 
questions, where the focused constituent is replaced by 
a wh-phrase.  As in the alternative semantics, ordinary 

l1: date(1, 2 ) 

mary(x) bill (y) 

l1: date(1, 2 ) 

l1: date(x, y) 
bill(y) 
mary(x) 
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and focus semantic values are viewed as separate se-
mantic representations. 

3.1 Compositional Analysis of Focus  

Semantic representations and feature structures for the 
sentence ‘Mary dates Bill’, where ‘Bill’ is focused is 
given below. As this sentence illustrates, each tree has 
two semantic representations: which we refer to as Sem 
and Foc below, and feature structures shared by the two  
representations. 
 
 (7)  Mary dates BillF 

 
             S                        Sem 
                                                 
     NP        VP             
[i:1]    Foc    
        date            NPF   
      [p: l2, i: 2 , MaxS: 5]          

 
 
 
 
 
    NP         Sem              NPF          Sem 
                  Mary(x)                     Bill(y) 
 
   Mary      Foc              BillF           Foc 
 [i:x]         Mary(x)                    
                                      
    
                                [i: y, p: 11, MaxS: 8]                      
 
The focus representation of a non-focused phrase is 
simply a copy of its ordinary semantic representation, as 
illustrated by the NP ‘Mary’ above. The focus semantic 
value of the S tree corresponds to the semantic interpre-
tation of a question, and is based on the LTAG-
semantics of questions discussed in Romero et al 2004.  
And, finally, the focus representation of a focused 
phrase, as illustrated by the NPF ‘Bill’ above, introduces 
an indefinite quantifier, where the restricted clause is 
left as an open variable.  
 
Whereas the present analysis of the focus semantic rep-
resentation assumes the semantics of questions dis-
cussed in Romero et al 2004, it differs in the following 
respect. Romero et al 2004 assume a multi-component 
analysis of wh-phrases, which is parallel to quantifica-
tional NPs discussed in Kallmeyer and Joshi 2003. 
Quantificational NPs under these approaches are associ-
ated with a multi-component TAG which consists of 
two elementary trees: S tree, which introduces the 
proposition containing the quantifier, and NP-tree, 
which introduces the restrictive clause. In the case of 

wh-quantifiers, the S tree, or the scope part of the wh-
NP, introduces the indefinite quantifier and adjoins to 
the S’ node in the wh-tree. As the representations in (7) 
show,  in the case of focused constituents,  both ordi-
nary semantic and focus representations are associated 
with the same tree. Furthermore, the S tree headed by 
the verb is not a wh-tree, and does not have an S’ node. 
And, finally, the restrictive clause of the indefinite is not 
provided by the syntax and is determined contextually. 
Given these syntactic differences, we suggest that the 
focus semantic value of a focused phrase is not multi-
component, and the indefinite quantifier is part of the 
focus semantic value of the NP tree.  
 
The use of multi-component representations for wh-
phrases is largely motivated by scope constraints. As we 
will show in section 3.3 below, the present analysis does 
not present any difficulties for the analysis of scope of 
focused constituents, given the assumption that the 
scope feature which is responsible for the right scope 
interpretations is associated with the focused constituent 
(such as NPF  in (7) above).  
 
Semantic composition of the focus representation is 
shown in (8): 
 
(8) 
 
 
 
 
 
                   1 [i: 1] 
                   2  [p: l2, i: 2 , MaxS: 5]        
 
                                1              2 
 
                   mary(x)                  
                    [i: x]                      
                              
                                               [i: y, p: 11, MaxS: 8]      
                 
Performing unifications leads to the following feature 
identities: 1=x, 2=y, 11= l2, 8=5 .  The feature MaxS, 
associated with the focused trees,  is the scope feature, 
introduced in Romero et al 2004 to account for the cor-
rect maximal scope of quantificational NPs. Given these 
feature identities,  the final representation of the focus 
semantic value is as follows: 
 
(9) 
 
 
 
 
 

l1: date(1, 2 ) 

l1: date(1, 2 ) 
q3: λp [p ∧5 ]
l2: p= 7 
l2 ≤ 5, l1 ≤ 7 

l3: some(y, 9, 10) 
l3 ≤ 8, 11≤ 10         

l1: date(1, 2 ) 
q3: λp [p ∧5 ] 
l2: p= 7 
l2 ≤ 5, l1 ≤ 7 

l3: some(y, 9, 10) 
l3 ≤ 8, 11≤ 10         

q3: λp [p∧5 ]   l2 ≤ 10    
l1: date(x, y)                       l2 ≤ 5 

l2: p=7    l1 ≤ 7   
Mary(x)                              l3 ≤ 5 
l3: some(y, 9, 10)  
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The scope constraints restrict possible assignments for 
the remaining variables. The only disambiguation (i.e. a 
function from propositional variables to propositional 
labels that respect the scope constraints in the sense of 
Kallmeyer and Joshi 2003) possible in this case is: l3=5, 
l1=7, l2=10.  This disambiguation leads to the desired 
interpretation, where the label q3 corresponds to the set 
of alternatives. 
  
The analysis of focus presented above assumes that 
composition of ordinary and focus semantic representa-
tions uses the same feature structures, specifically the 
ones shown in (7).  This means, for example, that the 
variable 2 is identified with y in both ordinary semantic 
and focus interpretations, although in the ordinary se-
mantic representation this variable refers to Bill, and in 
the focus representation it is existentially bound. This 
does not present a problem as long as the two final rep-
resentations are being viewed as separate semantic val-
ues, as the present analysis assumes.   
 
The assumption that the same feature structures are be-
ing used in the process of composing the two represen-
tations also implies that not all variables will get values 
in the final representation. For example, features p and 
MaxS, introduced by the NPF in (7), are only needed for 
the compositional interpretation of the focus semantic 
value, but do not play any role for the composition of 
the ordinary semantic representation.  

3.2 Multiple Foci 

Let us now consider a sentence where two constituents 
are focused, as in ‘MaryF dates BillF’. According to al-
ternative semantics of focus, both focused phrases are 
replaced by existentially quantified variables in the fo-
cus semantic value, so that the set of alternatives  for 
this sentence is of the form ‘x dates y’. 
 
 (10)   MaryF dates BillF 
 
 
 
 
 
 
 
                      1  [p: l2, i: 1 , MaxS: 5]        
                      2  [p: l2, i: 2 , MaxS: 5]        
 
                                1              2 
 
 
 
 
[i: x, p: 15, MaxS:14]             [i: y, p: 11, MaxS: 8]       

 The composition of the focus semantic value of this 
sentence is shown in (10).  Since both NPs are focused, 
each of them introduces an existential quantifier in the 
focus representation. Both NPs also include the feature  
MaxS in their feature structure, whose value is the pro-
positional variable 5. The following feature identities 
are being performed: 1=x, 2=y, 11=l2, 8=5, 14=5, l2=15, 
so that the maximal scopes of both existential quantifi-
ers 8 and 14 are identified with the maximal scope of 
the focused phrases 5.  This results in the underspeci-
fied representation of scope in the final representation 
shown in (11): 
 
(11) 
 
 
 
 
 
 
The two logically equivalent interpretations which re-
spect scope constraints are given in (12).  
 
(12)   λp[ p∧ some(y, 9, some(x, 12, p=date(x, y))] 
          λp[ p∧ some(x, 12, some(y, 9, p=date(x, y))] 

3.3 Deriving Scope of Quantificational NPs 

And, finally, let us consider a sentence with a quantifi-
cational NP, such as ‘Everybody likes BillF’. The set of 
alternatives in this case is the set of propositions of the 
form ‘everybody likes y’, where everybody has narrow 
scope with respect to the indefinite quantifier. The 
analysis of scope of wh-phrases is discussed in detail in 
Romero et al 2004, where right scope interpretations are 
achieved by introducing MaxS features and scope con-
straints for quantificational and wh-phrases, which are 
both analyzed as multi-component TAGs. If the focused 
constituent is not multi-component, and the indefinite 
quantifier is introduced by a NP tree, as we suggested 
above, the question which arises is whether we can de-
rive the desired scope interpretations.   
             
The multi-component representation of the quantifier 
‘everybody’ and its semantics3 is shown in (13): 
 
(13) 
            S* 
           [MaxS: 14]     
                                        
               NP[i:x,p:16]                                          

                                               
        every   N                                                          

                                                           
3 Since ‘everybody’ is not focused, its ordinary and focus 
representations are the same. 

l1: date(1, 2 ) 
q3: λp [p ∧5 ] 
l2: p= 7 
l2 ≤ 5, l1≤ 7 

l3: some(y, 9, 10) 
l3 ≤ 8, 11≤ 10         

l4: some(x, 12, 13)  
l4 ≤ 14, 15≤ 13          

q3: λp [p∧5 ]   l2 ≤ 10    
l1: date(x, y)                       l2 ≤ 5 

l2: p=7    l1 ≤ 7   
l4: some(x, 12, 13)            l4 ≤ 5 
l3: some(y, 9, 10)              l3 ≤ 5 

l5:every(x, 12, 13) l5 ≤ 14 

l4:person(x), 
l4≤12, 16≤ 13  
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The feature structures associated with the S node and 
non-focused NP are modified as follows, following 
Romero et al 2004: 
 
(14)       S  [MaxS: 7 ]              Sem 
                                                 
     NP        VP             
[i:1,p:l1]    Foc    
        date            NPF   
      [p: l2, i: 2 , MaxS: 5]          

 
 
 
 
Semantic composition of the focus semantic value of the 
sentence ‘Everybody likes BillF’ is shown below.  The 
MaxS feature of ‘everybody’ is introduced by the S-
tree, as previous analyses assume, however, the MaxS 
feature of the focused phrase is introduced by the NP-
tree. Given that the NPF constituent is semantically 
composed with the same S tree, this modification will 
not change the resulting interpretation. Performing fea-
ture unifications leads to the following feature identi-
ties: 1=x, 2=y, 11=l2, 8=5, 14=7,16=l1, so that the MaxS 
feature of the focused phrase is unified with  5, and the 
MaxS scope of the quantifier is unified with 7. 
 
(15)  Everybody likes BillF 
 
 
 
 
 
 
 
                      1  [p: l1, i: 1 ]        
                      2  [p: l2, i: 2 , MaxS: 5]        
                      3  [MaxS: 7 ] 
 
                                1     3        2 
 
 
 
 
                              
[i: x, p: 16 ]                        [i: y, p: 11, MaxS: 8]       
 
 
 
                           [MaxS: 14] 
 
The final focus representation of this sentence is shown 
below: 
 
 

Foc 
 
 
 
 
 
 
 
 
This representation gives us the desired scope interpre-
tation: 
 
(16) λp[p∧some(y, 9, p=every(y, person(y) , like(x, y))] 

4 Focusing Adverbs.  

Let us now turn to sentences with focus-sensitive quan-
tifiers, illustrated in (17a). Given the interpretation of 
this sentence in (17b), it is true in case any proposition 
of the form ‘Mary dated y’  is a proposition ‘Mary dated 
Bill’.  
 
 (17) a. Mary only dated BillF 

b. ∀q(q ∧ λp [∃y (p= date(m, y)](q) -> 
     q=date(m, b))  

 
In Rooth 1985, compositional interpretation of sen-
tences with focus-sensitive quantifiers proceeds in such 
a way that ‘only’ takes two arguments: the ordinary 
semantic value and the focus semantic value of its sister 
constituent. The ordinary semantic value of the sister of 
‘only’ specifies the nuclear scope of the universal quan-
tifier, whereas the focus semantic value specifies its 
restrictive clause. 
 
The LTAG based analysis of focus-sensitive adverbs 
proposed in this section follows this approach in assum-
ing that focusing adverbs like ‘only’ quantify over sets 
of alternatives determined by the focus representation. 
We further assume that this type of quantifiers does not 
introduce  focus semantic values.4  Specifically, the se-
mantic representation and feature structures associated 
with the elementary tree headed by ‘only’ is given in 
(18): 
 
(18)               VP  [p: 13, QF: 21]                                         
  
        only            VP*                                          

 

 

                                                           
4 This assumption does not apply to sentences with two or 
more focus-sensitive quantifiers, in which case we probably 
need two or more focus representations. The analysis of sen-
tences of this type is left for future research. 

l1: like(1, 2 ) 
q3: λp [p ∧5 ] 
l2: p= 7 
l2 ≤ 5, l1≤ 7 

l3: some(y, 9, 10) 
l3 ≤ 8, 11≤ 10         

l5:every(x, 12, 13), l5 ≤ 14 

l4:person(x), 
l4≤12, 16≤ 13 , 

l1: like(1, 2 ) 

l1: like(1, 2 ) 
q3: λp [p ∧5 ]
l2: p= 7 
l2 ≤ 5, l1 ≤ 7

q3: λp [p∧5 ]  l2 ≤ 10 ,  l1 ≤ 13 
l1 : like(x, y)                       l2 ≤ 5 

l2: p=7     l1 ≤ 7   
l4: person(y)                        l4 ≤ 12  
l3: some(y, 9, 10)               l5 ≤ 7 
l5: every(x, 12, 13 )            l3 ≤ 5        

l5: every(p, 20(p)∧p, p=13) , 20 ⊆ 21 
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The feature structure of the VP node in (18) introduces a 
new feature QF, which ranges over sets of propositions. 
Furthermore, we assume that the index ‘F’ on this fea-
ture indicates that its value is a label or a variable in the 
focus semantic representation.  
 
The feature QF  is also added to the VP node of the S-
tree, as part of its ‘top’ feature structure. Composition of 
the ordinary semantic representation under these as-
sumptions is shown in (19):     
 
(19)                                                                     
                                                    
               3 [p: 11, QF: q3]                                                        
               1 [i: 1]                                                                      
               2 [p: l2, i: 2 , MaxS: 5]                                              
 
              1             2                                                                                 
                      3                                            
    mary(x)               bill(y) 
     [i: x]                      [i: y]    
 
 
 
 
                [p: 13, QF: 21 ] 
 
Performing feature unifications leads to the following 
identities:  1=x, 2=y, 21=q3, 13= l1, where the label q3 is 
part of the focus representation of this sentence (compo-
sitional interpretation of the focus representation is 
shown in (8)). 
 
As the final ordinary and focus semantic representations 
show, the variable q3, which corresponds to the set of 
alternatives is shared by the two representations. This 
assumption contradicts our original proposal that the 
two representations are viewed as being completely 
independent of each other. 
 
Sem:     
 
 
 
 
 
 
 
 
Foc: 
 
 
 
 
 
 

The analysis of sentences with ‘only’ proposed above 
follows Rooth 1985 in assuming that the restrictive 
clause of the focus-sensitive quantifier is identified with 
the focus semantic value as the result of semantic com-
position. This approach is known as a semantic theory 
of focus. On the other hand,  Rooth 1992, 1996, von 
Fintel 1994, Schwarzschild 1997 develop pragmatic 
theories of focus interpretation, which assume that the 
restrictive clause of the quantifier ‘only’ is a pragmati-
cally determined variable, which can be optionally 
linked to the focus semantic value as the result of  
pragmatic factors. 
 
The two approaches have different consequences for the 
present analysis of focus. Under the pragmatic ap-
proach, the restrictive clause (i.e. the variable 20 in 
(19)) is not identified with the label q3 as the result of 
semantic composition, but is left as a free (i.e. pragmati-
cally determined) variable. The semantic and focus in-
terpretations can thus be viewed as being completely 
separate. The feature QF  is also not needed in this case. 
However, this approach is problematic in view of the 
data discussed in the recent paper by Beaver and Clark 
2003, who showed that there is a difference in the inter-
pretation of focus in the case of sentences with ‘only’ 
and adverbs of quantification. For example, as illus-
trated by the data in (20)-(23), presuppositions can over-
ride the placement of focus in the interpretation of 
sentences with ‘always’, but not in the case of ‘only’ : 
 
(20) Mary always managed to complete her [exams]F 

 
       Whenever Mary took exams, she completed them 
       ?Whenever Mary completed something, it was an  
        exam 
 
(21) Mary only managed to complete her [exams]F 

  
       *What Mary did when taking exams was  
        completing them 
        What Mary completed was an exam and nothing  
       else 
 
(22) Mary always remembers to go to [church]F 
 

Whenever it’s time for church, Mary remembers to 
go 
?Whenever Mary remembers to do something, it’s 
always to go to church 

 
(23) Mary only remembers to go to [church]F 
 

*The only thing Mary does when it’s time to go to 
church, is remember to go 
The only place Mary remembers to go is church. 

l1: date(1, 2 ) 

l5: every(p, 20(p)∧p, p=13) , 20 ⊆ 21 

l1: date(x, y)     
Bill(y)     
Mary(x)       
 l5: every(p, 20(p)∧p, p= l1)   
20 ⊆ q3  

q3: λp [p∧5 ]   l2 ≤ 10  
l1: date(x, y)                       l2 ≤ 5 

l2: p=7    l1 ≤ 7   
Mary(x)                 
l3: some(y, 9, 10)               l3 ≤ 5 
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Given these data as well as other contrasts in the behav-
ior of ‘only’ and ‘always’, Beaver and Clark 2003 sug-
gest that focus-sensitivity of operators like ‘only’ results 
from a grammatical mechanism,   whereas quantifiers 
like ‘always’ are focus-sensitive as the result of prag-
matic factors. In order to distinguish between the two 
types of focus-sensitivity, we proposed a semantic 
analysis of focus in the case of ‘only’, which relies on 
the assumption that some features allow us to relate a 
variable in the ordinary semantic representation with a 
label in the focus representation.  

5 Adverbs of Quantification.  

Adverbs of quantification are analyzed below as quanti-
fiers over events or situations (Berman 1987, von Fintel 
1994 among others).  These quantifiers are focus-
sensitive, as the examples in (24)-(25) illustrate. The 
sentence in (24), with ‘John’ being focused, has the 
following interpretation: ‘most minimal situations in 
which Mary took somebody to the movies are situations 
where Mary took John to the movies’. The sentence in 
(25), on the other hand, is understood as ‘most minimal 
situations where somebody took John to the movies are 
situations where Mary took John to the movies’.  
 
(24)   a. Mary usually took JOHN to the movies. 

b. most(s, ∃x (take-to-the-movies(m, x, s)),    
take-to-the-movies(m, j, s)) 

(25) a. MARY usually took John to the movies 
b. most(s, ∃x (take-to-the-movies(x, j, s)), take-
to-the-movies(m, j, s)) 

 
The semantic representation and feature structures of 
the quantifier ‘usually’ is given in (26). As in the case of 
‘only’, focus-sensitive adverbs do not have a focus se-
mantic value. Unlike ‘only’, the restrictive clause of the 
quantifier is left as a free variable:  
 
(26)               VP  [p: 13]                                         
  
      usually           VP*                                         

 

 
 
 
Composition of the ordinary semantic representation of 
the sentence ‘Mary usually dated BillF, where ‘Bill’ is 
focused, is given in (27). The semantic representations 
and feature structures in these representations include 
situation variables (see also Romero et al 2004). 
 
 
 
 
 

(27) Mary usually dated BillF 
 
                                                                    
                                                    
               3 [p: 11, S: 3]                                                        
               1 [i: 1]                                                                      
               2 [p: l2, i: 2 , MaxS: 5]                                              
 
              1             2                                                                                 
                      3                                            
    mary(x)               bill(y) 
     [i: x]                      [i: y]    
 
 
 
 
                [p: 13, S:s] 
 
Performing feature unifications leads to the following 
identities:  1=x, 2=y, 13=l1 and 3=s, and results in the 
following final interpretation: 
 
Sem:     
 
 
 
 
 
 
 
The propositional variable 20, which corresponds to the 
restrictive clause of the quantifier is left as a free, i.e. 
pragmatically determined, variable.  

6 Conclusion 

This paper proposed an analysis of focus which assumes 
alternative semantics proposed in Rooth 1985 and 
LTAG semantic unification framework, developed in 
Kallmeyer and Joshi 2003 and Kallmeyer and Romero 
2004. The analysis of focus presented in the paper as-
sumes that each elementary tree is associated with two 
semantic representations: its ordinary semantic repre-
sentation and its focus representation, and that the same 
feature structures are being used for the compositional 
interpretation of both representations.  Whereas the fo-
cus representation is analyzed parallel to questions, we 
have proposed that focused constituents differ from the 
corresponding wh-phrases in that they are not analyzed 
as multi-component TAGs, and the existential quantifier 
is introduced by the NP-tree, rather than the S-tree. We 
further have shown that given the semantic framework 
with feature structures, developed in Kallmeyer and 
Romero 2004, this modification does not present diffi-
culties for the analysis of scope. 

l1: date(1, 2, 3) 

l5: most(s, 20, 22),   13≤ 22     

l1: date(x, y, s)     
Bill(y)     
Mary(x)       
 l5: most(s, 20, 22)  
l1 ≤ 22 

l5: most(s, 20, 22),   13≤ 22     
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The present analysis of focus has also been extended to 
two types of focus-sensitive quantifiers. Following Bea-
ver and Clark 2003, it assumed that ‘only’ differs from 
adverbs of quantifications in that the restrictive clause 
of the quantifier is linked to the set of alternatives as the 
result of a grammatical mechanism. Specifically, we 
proposed to introduce a new feature which allows us to 
relate a variable in the ordinary semantic denotation 
with a label in the focus representation. And, finally, we 
suggested a possible approach to adverbs of quantifica-
tion, which were analyzed as focus-sensitive quantifiers 
over situations. 
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Abstract

In this paper we discuss the use ofintersection
as a tool for modeling syntactic phenomena and
folding of biological molecules. We argue that
intersection is useful but easily overestimated,
because intersection coordinates grammars via
their string languages, and if strong generative
capacity is given priority over weak generative
capacity, this kind of coordination turns out to
be rather limited. We give two example uses of
intersection which overstep this limit, one us-
ing CFGs and one using a range concatenation
grammar (RCG). We conclude with an analy-
sis and example of the different kinds of paral-
lelism available in an RCG.

1 Introduction

Context-free languages (as well as the language classes
of many other formalisms) are closed under union but not
under intersection (Hopcroft and Ullman, 1979), the clas-
sic example being:

(1) {a∗bncn} ∩ {anbnc∗} = {anbncn}

which is easily shown by the pumping lemma to be be-
yond the power of CFG. Since recognizing the intersec-
tion of two CFLs takes only twice as long as recognizing
a single CFL, this appears to be a way to obtain some of
the power of grammar formalisms like TAG without their
computational complexity. But this extra power appears
less significant once we consider that strong generative
capacity—the set ofstructural descriptionsgenerated by
a grammar (Chomsky, 1963)—is of primary importance
for most applications of formal grammars.

Assume that a grammarG generates a set of structural
descriptionsΣ(G), and for each such structural descrip-
tion D, a stringD can be recovered, so that the string

languageL(G) is defined as{D | D ∈ Σ(G)}. Extending
this definition to intersections, we define

(2) Σ(G1 ∩G2) = {D1 ⊗ D2 | Di ∈ Σ(Gi),D1 = D2}

where⊗ is some operation for composing structural de-
scriptions such that ifD1 = D2, thenD1 ⊗ D2 = D1 = D2,
otherwiseD1 ⊗ D2 is undefined. Note that in (2),D1 and
D2 are correlated only by their yields; they do not directly
constrain each other at all. Thus, from the point of view of
strong generative capacity, language intersection is better
thought of as adding a constraint to the tail end of other-
wise independent parallel processes. We call this type of
parallelismweak parallelismand argue that for real appli-
cations it is easy to overestimate how much control this
kind of parallelism offers. We illustrate this in our first
example, which uses CFGs for RNA pseudoknots.

We then consider the range-concatenation grammar
(RCG) formalism (Boullier, 2000), which includes an in-
tersection operation, allowing it to integrate weak par-
allelism more tightly into the operation of the gram-
mar. However, weak parallelism is still susceptible to the
caveat from above, which we illustrate with a second ex-
ample, an analysis of German scrambling. Finally, we
analyze more carefully the different kinds of parallelism
available in an RCG and illustrate how they can be com-
bined to model proteinβ-sheets.

2 Brown and Wilson’s intersected-CFL
analysis of RNA pseudoknots

Our first example comes from the RNA structure predic-
tion literature. An RNA molecule can be thought of as a
string over an alphabet ofnucleotidesor bases{a,u, c,g}.
Certain pairs of bases, calledcomplementarypairs, have
an affinity for each other:a with u, c with g. This causes
a molecule to fold up into asecondary structure, which
depends on the sequence of bases. A central problem is
predicting, given a sequence, what structure or structures
the sequence will fold into.
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Figure 1: Example CFG derivation, with superimposed
primary structure. Nonterminal symbols other thanX are
suppressed for clarity.

Searls (1992) was the first to observe similarities be-
tween this problem and syntactic analysis in natural lan-
guage and to propose the use of formal grammars for bi-
ological sequence analysis. Consider the following CFG:

(3)

S→ Z

X → aZu | uZa | cZg | gZc

Y → aY | uY | cY | gY | ε

Z → YXZ | Y

This grammar generates the languageΣ∗, but in such
a way that only complementary bases are generated in
the same derivation step (see Figure 1). RNA structures
mostly contain only nested base pairings, like thehairpin
(Figure 2a). For such structures, the above CFG is suffi-
cient. However, some structures involve crossing depen-
dencies, like thepseudoknot(Figure 2b), which crosses
the nested base pairings of one hairpin with those of an-
other.

There have been efforts to model pseudoknots using
formalisms beyond CFG (Uemura et al., 1999; Rivas
and Eddy, 2000). But Brown and Wilson (1996) attempt
a different solution. They observe that{amg∗umc∗} and
{a∗gnu∗cn} are context-free languages, but

(4) {amg∗umc∗} ∩ {a∗gnu∗cn} = {amgnumcn}

is beyond the power of CFG. Brown and Wilson propose
to exploit this fact by interpreting the language (4) as a
set of pseudoknots: them as andus form one hairpin,
and then gs andcs are the other. And unlike with syntac-
tic structures, there is an obvious way of combining the

(a) (b)

Figure 2: (a) RNA hairpin. (b) RNA pseudoknot.

structural descriptions of the two component grammars:
simply superimpose their base pairings.

However, in order for the pseudoknot to be well-
formed, the two hairpins must interlock without colliding.
That is, the base pairings must cross, but no two pairings
should involve the same base. But the only reason the
above example achieves this is because one hairpin has
only as andus and the other has onlycs andgs—that is,
each symbol indicates overtly which hairpin it belongs
to. For real molecules, both component grammars would
have to generate at least all possible hairpins, or{vwwRx}.
In that case there would be no way of preventing the com-
ponent grammars from missing each other or colliding.

Brown and Wilson recognize that there is a problem,
but it is not clear whether they appreciate how serious
it is. Their solution is to employ a special parsing strat-
egy that uses the results of parsing with the first grammar
to constrain the parse with the second; then the string is
reparsed with the first, then again with the second. This
procedure works only for their pair of grammars and only
approximates the desired computation.

The root of the problem is that intersection only oper-
ates on strings, not structural descriptions. It allows par-
allel structural descriptions to be derived independently,
then filters them on the basis of their string yields. We
therefore call this kind of parallelismweak parallelism.
The above example attempts to harness weak parallelism
to generate only well-formed pseudoknots, but in order
to do so it assumes that there is more information in the
string languages than there really is.

3 Boullier’s RCG analysis of German
scrambling

Our second example comes from the range concatena-
tion grammar (RCG) literature (Boullier, 2000). Here we
briefly present a definition of a variant of RCG as a kind
of deductive system. RCG clauses have the form

ψ D φ1, . . . , φn.

10



(meaning “ψ is provable ifφ1, . . . , φn all are”). If n = 0,
we simply write

ψ.

(which is trivially provable). Theψ and theφi in turn have
the form

A(α1, . . . , αm)

where A is a predicate (nonterminal) symbol and the
α j are strings of terminal symbols and variables (which
range over strings of terminal symbols). Everyα j in ψ
must be a substring of anα j′ in one of theφi . This con-
dition ensures that in the derivation of a stringw, all vari-
ables are instantiated only to substrings ofw. (The stan-
dard definition of RCG does not have this requirement,
because its variables range not over strings but pairs of
string positions ofw. The definition here is closer to that
of simple literal movement grammars (Groenink, 1997).)

The language defined by an RCG is the set of all
stringsw such thatS(w) is provable, whereS is a distin-
guished start predicate. The class of range-concatenation
languages (RCLs) is exactly the set of languages rec-
ognizable in deterministic polynomial time (Bertsch and
Nederhof, 2001).

Moreover, RCL, unlike CFL, is closed under intersec-
tion. The proof is very simple: given two grammars, we
rename apart their predicate symbols; letS1 andS2 be
the renamed start symbols andS be a new start symbol,
and add the new clause

S(x) D S1(x),S2(x).

Because the conjunction operator (comma) is part of the
formalism, it can be used not only to intersect whole lan-
guages, but the yields of subderivations. This means that
RCG gives finer control over weak parallelism, allowing
us to localize it and use it in concert with other mecha-
nisms in the grammar. The caveat from the previous sec-
tion still applies, however, as we illustrate below.

Boullier (1999) explores possible uses of the extra
power of RCG, and applies it to the phenomenon of Ger-
man scrambling, in which the arguments of a verb cluster
may appear in any order (see Figure 4). If we assume that
an arbitrary number of verbs is allowed and arbitrary per-
mutations of arguments is allowed, then scrambling can
be shown to be beyond the power of linear context-free
rewriting systems (Becker et al., 1992).

Boullier gives an RCG that he claims models Ger-
man scrambling (Figure 3). The predicatesS, N, and
V use intersection to call the predicateT on every
word, N′ on every noun, andV′ on every verb. This
is an instance ofindependent parallelism(Rambow and
Satta, 1999)—parallel processes in separate derivation
branches—coupled with weak parallelism, which con-
strains the predicates to operate on the same strings.

S(XY) D N(X,Y),V(Y,X).

N(nX,Y) D T(n,X),N′(n,Y),N(X,Y).

N(ε,Y).

V(vX,Y) D T(v,X),V′(v,Y),V(X,Y).

V(ε,Y).

T(a,bX) D T(a,X). a,b ∈ Σ,a , b

T(a, ε).

N′(n, vX). h(n) = v

N′(n, vX) D N′(n,X). h(n) , v

V′(v,nX). h(n) = v

V′(v,nX) D V′(v,X). h(n) , v

Figure 3: Simplified version of Boullier’s grammar. The
functionh maps from nouns to the verbs which take them
as arguments.

These three predicatesT, N′, andV′, in turn, check that
each word is properly connected to the syntactic depen-
dency structure. But as in Brown and Wilson’s pseudo-
knot analysis, these three predicates rely on nonexistent
information in the surface string.

First of all, N′ finds for each noun the verb on which
it depends, andV′ likewise finds for each verb one of
the nouns which depends on it. But whether a noun de-
pends on a verb is assumed to be determinable (by the
functionh) from the noun and verb alone. In actuality, all
that is known from a noun and verb is whether the noun
can depend on the verb (because the verb might mark a
certain case, for example), not whether it actually does.
If h simply indicated the possibility of a noun depend-
ing on a verb, then this analysis’ orchestration of its con-
straints would break down: several verbs might claim a
single noun as an argument, or a verb might claim a noun
which claims a different verb.

Second, the predicateT is used to check that all the
nouns and all the verbs in each sentence are distinct,
whereas in fact there is no reason why the same noun
or verb would not be used twice in a single sentence.
Passing over the fact that this constraint makes the gener-
ated language finite, all these constraints together indicate
that the analysis assumes that dependency information is
somehow overt. But this is not the case for real sentences.
As in Brown and Wilson’s system, this grammar tries to
make weak parallelism do more than it can by assuming
more information in the string language than is actually
there.
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(5) daß
that

bisher
so far

noch
yet

niemand
no one

dem
the

Kunden
client

den
the

Kühlschrank
refrigerator

zu
to

reparieren
repair

zu
to

versuchen
try

versprochen
promised

hat
has

that so far no one has promised to repair the refrigerator

(6) daß
that

dem
the

Kunden
client

den
the

Kühlschrank
refrigerator

bisher
so far

noch
yet

niemand
no one

zu
to

reparieren
repair

zu
to

versuchen
try

versprochen
promised

hat
has

that so far no one has promised to repair the refrigerator

Figure 4: Examples of German long-distance scrambling.

Figure 5: Proteinβ-sheet.

4 RCGs for protein β-sheets

What, then, can intersection be used for? Here we explore
the possibility of using it for proteinβ-sheets. Like RNAs,
proteins can be thought of as strings over an alphabet of
bases, only the alphabet has 20 elements (amino acids)
and the relationship between them is more complex than
the complementary pairs of RNAs, and bases come to-
gether inself-contactsto form a folded structure. In one
structural element, theβ-sheet, multiplestrandsfold into
a pattern like the one shown in Figure 5.

4.1 A multicomponent TAG analysis

A previous analysis (Abe and Mamitsuka, 1997) using
a grammar formalism loosely related to set-local mul-
ticomponent TAG (Weir, 1988) usessynchronous par-
allelism (Rambow and Satta, 1999)—parallel processes
in a single branch of a derivation—to modelβ-sheets.
An equivalent multicomponent TAG is shown in Fig-
ure 6. This method has several strengths, which we will
point out below, but two drawbacks. First, the number of
strands generated is proportional to the number of com-
ponents required; therefore the parsing complexity of a
grammar that can generatek strands will be exponential
in k. Furthermore, every grammar must impose some up-
per bound on the number of strands; no single grammar
can generate all sheets.

A second problem is that this analysis is susceptible
to a kind of spurious ambiguity in which a single struc-

ture can be derived in multiple ways. For example, con-
sider Figure 7. In order to generate theβ-sheet (a), we
need trees like (b) and (c). But either of these trees can be
used by itself to generate theβ-sheet (d). The grammar
must make room for the maximum number of strands,
but when it does not use all of it, ambiguity can arise.
It should be possible to carefully write the grammar to
avoid much of this ambiguity, but we have not been able
to eliminate all of it even for the single-component TAG
case.

4.2 An RCG analysis

RCG, like many formalisms, has both synchronous par-
allelism (multiple arguments to a predicate) and indepen-
dent parallelism (multiple predicate calls in a right-hand
side). As mentioned above, it also has weak parallelism
(multiple occurrences of a variable in a right-hand side),
which can be coupled with either of the other two types
of parallelism. We show below how these mechanisms
can be used together to create an alternative model ofβ-
sheets.

We start with some building blocks:

Anti (a1X,Ya2) D Anti (X,Y). ai ∈ Σ

Anti (ε, ε).

Par(a1X,a2Y) D Par(X,Y). ai ∈ Σ

Par(ε, ε).

Adj (X,Y) D Ant (X,Y).

Adj (X,Y) D Par(X,Y).

The predicatesAnti andPar generate pairs of antiparallel
and parallel strands, respectively. This is an instance of
synchronous parallelism, but only for pairs of strands, not
all the strands together as in the multicomponent TAG
analysis. Irregularities as in Figure 7a are also possible,
but not shown here.

Then we can use intersection to combine them into a

12
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Figure 6: Set-local multicomponent TAG analysis of proteinβ-sheet with five alternating strands.
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Figure 7: Illustration of spurious ambiguity.

sheet:

Beta(AB) D B(A, B).

B(ABY, B′) D B(A, B),Adj (B, B′).

B(BY, B′) D Adj (B, B′).

The first argument toB is aβ-sheet minus the last strand,
and the second argument is the last strand. The second
production forms a largerβ-sheet out of a smaller one by
appending a new last strand and joining it to the previous
last strand usingAdj . This production hasO(n5) possi-
ble instantiations (because it takes six indices to specify
the variables on the left-hand side, but the arguments of
B are always adjacent, eliminating one index), and there-
fore the parsing complexity of this grammar is alsoO(n5).
Crucially, this complexity bound is not dependent on the
number of strands, because each series of contacts is gen-
erated independently, not synchronously as in the multi-
component TAG analysis.

Weak parallelism is being used to ensure that each
strand is consistent—that is, no two parts of the deriva-
tion that generate the same strand will disagree about the
contents of the strand (including its length). Unlike with
Brown and Wilson’s analysis and Boullier’s analysis, this
is information that is really contained in the substring it-
self, so this is a legitimate use of weak parallelism.

Finally, even independent parallelism allows parallel
subderivations to control each other via their root nonter-

minal (predicate) symbols, as illustrated in the following
example. Aβ-sheet can be rolled into a cylinder to form a
β-barrel. We can generate these as well, but we must keep
track of the direction of each strand so as not to generate
any Möbius strips:

Barrel (ABC) D B(A, B,C),Par(A,C).

Barrel (ABC) D B′(A, B,C),Anti (A,C).

B(A, BCY,C′) D B′(A, B,C),Anti (C,C′).

B(A, BCY,C′) D B(A, B,C),Par(C,C′).

B(A,Y,A′) D Par(A,A′).

B′(A, BCY,C′) D B(A, B,C),Anti (C,C′).

B′(A, BCY,C′) D B′(A, B,C),Par(C,C′).

B′(A,Y,A′) D Anti (A,A′).

HereB has three arguments: the first strand, the middle
part, and the last strand; there is an additional predicate
symbolB′ which is the same asB, except thatB′ is for
sheets with antiparallel first and last strands, whereasB is
restricted here to sheets with parallel first and last strands.
The first clause joins the first and last strands to form a
barrel; it uses the information in theB vs.B′ distinction to
join the strands so that no M̈obius strips will be generated.

13



4.3 The importance of synchronous parallelism

The strands ofβ-sheets do not always appear in linear
order; they can be permuted as in Figure 8. We can
model such permutations by increasing the degree of syn-
chronous parallelism (that is, the number of arguments
to B), and therefore increasing parsing complexity. By
contrast, since multicomponent TAG already uses syn-
chronous parallelism to generate all the strands together,
it allows permutations of strands at no extra cost.

Suppose we envision a sheet being built up one strand
at a time, each successive strand being added to either
side of the sheet:

Beta(ABCD) D B(A, B,C,D).

B(ABC,D,Y, B′) D B(A, B,C,D),Adj (B, B′).

B(A, B,CDY, B′) D B(A, B,C,D),Adj (D, B′).

B(ε, B,Y, B′) D Adj (B, B′).

Figure 8a shows an example sheet that can be gener-
ated by this grammar but not the previous ones. In this
grammar, the second and fourth arguments toB are the
leftmost and rightmost strands (not respectively) in the
folded structure. The second clause adds a new strand on
one side, and the third clause adds a new strand on the
other. Both clauses haveO(n7) possible instantiations if
we take into account that the four arguments toB will
always be adjacent.

Suppose we always build up a sheet out of two smaller
sheets, as in Figure 9. Figure 8b shows an example sheet
that can be generated by this grammar but not the pre-
vious ones. In this grammar, the second and fourth ar-
guments are again the leftmost and rightmost strands (not
respectively) in the folded structure. The second and third
clauses join twoβ-sheets together in two different ways;
there are conceivably four ways to join them together,
but using only these two avoids spurious ambiguity. Both
clauses haveO(n12) possible instantiations if we take into
account that the five arguments toB will always be adja-
cent.

Figure 8c shows the only permutation of four strands
that the above grammar cannot generate. This does not
seem problematic, since, at least for sheets formed out of
two hairpin motifs, this permutation was not known as of
1991 to occur in nature (Branden and Tooze, 1999, p. 31).

Another way in which synchronous parallelism might
be important can be seen by comparing with some re-
sults for RNA structure prediction. Akutsu (2000) has
shown that structure prediction for a similar class of RNA
folds, “generalized pseudoknots,” is NP-hard. The proof
reduces another NP-hard problem (longest common sub-
sequence) to RNA structure prediction using the assump-
tion that in RNA structures, a single base may not partic-
ipate in multiple pairings. The RCG approach illustrated
above cannot enforce this assumption (just as Brown and

Wilson’s could not), because weak parallelism does not
allow that level of control. By contrast, the multicompo-
nent TAG analysis could enforce it easily. But for proteins
this assumption does not hold, so this is not problematic
for our grammars.

However, the weights we assign to productions must
also respect the independence of intersected derivations.
For example, the energy of a contact between two strands
must not depend on other strands or contacts with them.
Another NP-hardness result for RNA structure predic-
tion (Lyngsø and Pedersen, 2000) relies crucially on such
a dependency: it assumes that the energy of a base pairing
(i, j) can be affected by another base pairing (j−1, i′) even
if i and i′ come from different “strands,” or by (j′, i + 1)
even if j and j′ come from different “strands.” We leave
for future work the question of how important dependen-
cies of this sort are forβ-sheets, and whether a limited
amount of synchronous parallelism would suffice to ap-
proximate them.

5 Conclusion

The fundamental difficulty with the first two applica-
tions we have examined is a confusion between weak and
strong generative capacity: it is misleading to speak of
the “pseudoknot language” or the “scrambling language,”
even as abstractions, because what really matters in these
two phenomena are the structures assigned to the strings
rather than the strings themselves. This danger is height-
ened when dealing with intersected languages because
intersection provides control over strings and only indi-
rectly over structural descriptions. We have given two
examples of applications which overestimate the power
of this weak parallelismand illustrated how to use weak
parallelism in concert with synchronous and independent
parallelism in an RCG.
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Abstract

This study focuses on the class of string
languages generated by TAGs. It examines
whether the class of string languages can be
generated by some epsilon-free grammars and
by some lexicalized grammars. Utilizing spine
grammars, this problem is solved positively.
This result for spine grammars can be trans-
lated into the result for TAGs.

1 Introduction

The class of grammars called mildly context-sensitive
grammars has been investigated very actively. Since it
was shown that tree-adjoining grammars (TAG) (Joshi et
al., 1975; Joshi and Schabes, 1996; Abeillé and Ram-
bow, 2000), combinatory categorial grammars (CCG),
linear indexed grammars (LIG), and head grammars (HG)
are weakly equivalent (Vijay-Shanker and Weir, 1994),
the class of string languages generated by these mildly
context-sensitive grammars has been thought to be very
important in the theory of formal grammars and lan-
guages. This study is strongly motivated by the work of
K. Vijay-Shanker and D. J. Wier (1994) and focuses on
the class of string languages generated by TAGs.

In this paper, it is examined whether the class of string
languages generated by TAGs can be generated by some
epsilon-free grammars and, moreover, by some lexical-
ized grammars. An epsilon-free grammar is a grammar
with a restriction that requires no use of epsilon-rules,
that is, rules defined with the empty string. Because the
definitions of the four formalisms presented in the paper
(Vijay-Shanker and Weir, 1994) allow the use of epsilon-
rules, and all of the examples use epsilon-rules, it is nat-
ural to consider the generation problem by epsilon-free
grammars. Since the notion of lexicalization is very im-
portant in the study of TAGs (Joshi and Schabes, 1996),

the generation problem by lexicalized grammars is also
considered.

To solve these problems, spine grammars (Fujiyoshi
and Kasai, 2000) are utilized, and it is shown that for
every string language generated by a TAG, not only an
epsilon-free spine grammar but also a lexicalized spine
grammar that genarates it can be constructed. Spine
grammars are a restricted version of context-free tree
grammars (CFTGs), and it was shown that spine gram-
mars are weakly equivalent to TAGs and equivalent to
linear, non-deleting, monadic CFTGs. Because consider-
ably simple normal forms of spine grammars are known,
they are useful to study the formal properties of the class
of string languages generated by TAGs.

Since both TAGs and spine grammars are tree gen-
erating formalisms, they are closely related. From any
epsilon-free or lexicalized spine grammar constructed in
this paper, a weakly equivalent TAG is effectively ob-
tained without utilizing epsilon-rules or breaking lexical-
ity, the results of this paper also hold for TAGs. Though
TAGs and spine grammars are weakly equivalent, the tree
languages generated by TAGs are properly included in
those by spine grammars. This difference occurs due to
the restriction on TAGs that requires the label of the foot
node to be identical to the label of the root node in an aux-
iliary tree. In addition, restrictions on rules of spine gram-
mars are more lenient in some ways. Because rules of
spine grammars may be non-linear, non-orderpreserving,
and deleting, during derivations the copies of subtrees
may be made, the order of subtrees may be changed,
and subtrees may be deleted. At this point, spine gram-
mars are different from other characterizations of TAGs
(Möennich, 1997; Möennich, 1998).

2 Preliminaries

In this section, some terms, definitions and former results
which will be used in the rest of this paper are introduced.

Let N be the set of all natural numbers, and let N+ be
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the set of all positive integers. The concatenation operator
is denoted by ‘ · ’. For an alphabet Σ, the set of strings
over Σ is denoted by Σ∗, and the empty string is denoted
by λ.

2.1 Ranked Alphabets, Trees and Substitution

A ranked alphabet is a finite set of symbols in which each
symbol is associated with a natural number, called the
rank of a symbol. Let Σ be a ranked alphabet. For a ∈ Σ,
the rank of a is denoted by r(a). For n ≥ 0, it is defined
that Σn = {a ∈ Σ | r(a) = n}.

A set D is a tree domain if D is a nonempty finite sub-
set of (N+)∗ satisfying the following conditions:

• For any d ∈ D, if d′, d′′ ∈ (N+)∗ and d = d′ · d′′,
then d′ ∈ D.

• For any d ∈ D and i, j ∈ N+, if i ≤ j and d ·j ∈ D,
then d · i ∈ D.

Let D be a tree domain and d ∈ D. Elements in D are
called nodes. A node d′ is a child of d if there exists
i ∈ N+ such that d′ = d · i. A node is called a leaf if it
has no child. The node λ is called the root. A node that is
neither a leaf nor the root is called an internal node. The
path from the root to d is the set of nodes {d′ ∈ D | d′ is
a prefix of d}.

Let Σ be a ranked alphabet. A tree over Σ is a func-
tion α : D → Σ where D is a tree domain. The set of
trees over Σ is denoted by TΣ. The domain of a tree α
is denoted by Dα. For d ∈ Dα, α(d) is called the la-
bel of d. The subtree of α at d is α/d = {(d′, a) ∈
(N+)∗ × Σ | (d · d′, a) ∈ α}.

The expression of a tree over Σ is defined to be a
string over elements of Σ, parentheses and commas. For
α ∈ TΣ, if α(λ) = b, max{i ∈ N+ | i ∈ Dα} = n
and for each 1 ≤ i ≤ n, the expression of α/i is
αi, then the expression of α is b(α1, α2, . . . , αn). Note
that n is the number of the children of the root. For
b ∈ Σ0, trees are written as b instead of b().When the
expression of α is b(α1, α2, . . . , αn), it is written that
α = b(α1, α2, . . . , αn), i.e., each tree is identified with
its expression.

It is defined that ε is the special symbol that may be
contained in Σ0. The yield of a tree is a function from TΣ

into Σ∗ defined as follows. For α ∈ TΣ, (1) if α = a ∈
(Σ0 − {ε}), yield(α) = a, (1’) if α = ε, yield(α) = λ
and (2) if α = a(α1, α2, . . . , αn) for some a ∈ Σn and
α1, α2, . . . , αn ∈ TΣ, yield(α) = yield(α1) · yield(α2) ·
· · · · yield(αn).

Let Σ be a ranked alphabet, and let I be a set that is
disjoint from Σ. TΣ(I) is defined to be TΣ∪I where Σ ∪
I is the ranked alphabet obtained from Σ by adding all
elements in I as symbols of rank 0.

Let X = {x1, x2, . . .} be the fixed countable set of
variables. It is defined that X0 = ∅ and for n ≥ 1, Xn =
{x1, x2, . . . , xn}. x1 is situationally denoted by x.

Let α, β ∈ TΣ and d ∈ Dα. It is defined that
α〈d← β〉= {(d′, a) | (d′, a) ∈ α and d is not a prefix
of d′}∪{(d · d′′, b) | (d′′, b) ∈ β}, i.e., the tree α〈d← β〉
is the result of replacing α/d by β.

Let α ∈ TΣ(Xn), and let β1, β2, . . . , βn ∈ TΣ(X).
The notion of substitution is defined. The result of sub-
stituting each βi for nodes labeled by variable xi in α,
denoted by α[β1, β2, . . . , βn], is defined as follows.

• If α = a ∈ Σ0, then a[β1, β2, . . . , βn] = a.

• If α = xi ∈ Xn, then xi[β1, β2, . . . , βn] = βi.

• If α = b(α1, α2, . . . , αk), b ∈ Σk and k ≥ 1, then
α[β1, β2, . . . , βn] =

b(α1[β1, β2, . . . , βn], . . . , αk[β1, β2, . . . , βn]).

2.2 Context-Free Tree Grammars

The context-free tree grammars (CFTGs) were intro-
duced by W. C. Rounds (1970) as tree generating sys-
tems. The definition of CFTGs is a direct generalization
of context-free grammars (CFGs).

Definition 2.1 A context-free tree grammar (CFTG) is a
four-tuple G = (N, Σ, P, S), where:

• N and Σ are disjoint ranked alphabets of nontermi-
nals and terminals, respectively.

• P is a finite set of rules of the form

A(x1, x2, . . . , xn)→ α

with n ≥ 0, A ∈ Nn, and α ∈ TN∪Σ(Xn). For
A ∈ N0, rules are written as A → α instead of
A()→ α.

• S, the initial nonterminal, is a distinguished symbol
in N0.

For a CFTG G, the one-step derivation
G
⇒ is the rela-

tion on TN∪Σ×TN∪Σ such that for a tree α ∈ TN∪Σ and
a node d ∈ Dα, if α/d = A(α1, α2, . . . , αn), A ∈ Nn,
α1, α2, . . . , αn ∈ TN∪Σ and A(x1, x2, . . . , xn) → β is
in P , then α

G
⇒ α〈d← β[α1, α2, . . . , αn]〉.

An (n-step) derivation is a finite sequence of trees
α0, α1, . . . , αn ∈ TN∪Σ such that n ≥ 0 and α0

G
⇒

α1
G
⇒ · · ·

G
⇒ αn. When there exists a derivation α0,

α1, . . . , αn, it is writen that α0
G

n
⇒ αn or α0

G

∗
⇒ αn.

The tree language generated by G is the set L(G) =
{α ∈ TΣ | S

G

∗
⇒ α}. The string language generated by G

is LS(G) = {yield(α) | α ∈ L(G)}. Note that LS(G) ⊆
(Σ0 − {ε})∗.

Let G and G′ be CFTGs. G and G′ are equivalent
if L(G) = L(G′). G and G′ are weakly equivalent if
LS(G) = LS(G′).
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2.3 Spine Grammars

Spine grammars are CFTGs with a restriction called
spinal-formed. To define this restriction, each nontermi-
nal is additionally associated with a natural number.

Definition 2.2 A head-pointing ranked alphabet is a
ranked alphabet in which each symbol is additionally as-
sociated with a natural number, called the head of a sym-
bol, and the head of a symbol is satisfying the following
conditions:

• If the rank of the symbol is 0, then the head of the
symbol is also 0.

• If the rank of the symbol is greater than 0, then the
head of the symbol is greater than 0 and less or equal
to the rank of the symbol.

Let N be a head-pointing ranked alphabet. For A ∈ N ,
the head of A is denoted by h(A).

Definition 2.3 Let G = (N, Σ, P, S) be a CFTG where
N is a head-pointing ranked alphabet. For n ≥ 1, a rule
A(x1, x2, . . . , xn) → α in P is spinal-formed if it satis-
fies the following conditions:

• There is exactly one leaf in α that is labeled by
xh(A). The path from the root to the leaf is called
the spine of α.

• For a node d ∈ Dα, if d is on the spine and α(d) =
B ∈ N with r(B) ≥ 1, then d · h(B) is a node on
the spine.

• Every node labeled by a variable in Xn − {xh(A)}
is a child of a node on the spine.

The intuition of this restriction is given as follows.
Let α be the right-hand side of a spinal-formed rule,
and let d be a node on the spine of α. Suppose that
α/d = B(α1, α2, . . . , αn) and B ∈ Nn. Suppose also
that the rule B(x1, x2, . . . , xn) → β is applied to d.
Then, the tree α〈d← β[α1, α2, . . . , αn]〉 also satisfies
the conditions of the right-hand side of a spinal-formed
rule, i.e., the spines of α and β are combined into the
new well-formed spine. Note that every node labeled by
a variable in Xn − {xh(A)} is still a child of a node on
the new spine.

A CFTG G = (N, Σ, P, S) is spinal-formed if every
rule A(x1, x2, . . . , xn) → α in P with n ≥ 1 is spinal-
formed. To shorten our terminology, it is said ‘spine
grammars’ instead of ‘spinal-formed CFTGs’.

Example 2.4 Examples of spinal-formed and non-
spinal-formed rules are shown. Let Σ = {a, b, c} where
the ranks of a, b, c are 0, 1, 3, respectively. Let N =
{A, B, C, D, E} where the ranks of A, B, C, D, E are
4, 2, 5, 1, 0, respectively, and the head of A, B, C are
3, 1, 5, respectively. Note that r(D) = 1 and r(E) = 0
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Figure 1: Right-hand sides of rules

imply that h(D) = 1 and h(E) = 0. See Figure 1.
The rule A(x1, x2, x3, x4)→ α1 is spinal-formed though
x2 occurs twice and x4 does not occur in α1. The rule
A(x1, x2, x3, x4)→ α2 is not spinal-formed because the
third child of the node labeled by A is not on the spine
despite h(A) = 3. The rule A(x1, x2, x3, x4) → α3 is
not spinal-formed because there are two nodes labeled by
xh(A). The rule A(x1, x2, x3, x4) → α4 is not spinal-
formed because the node labeled by x4 is not a child of a
node on the spine.

For spine grammars, the following results are known.

Theorem 2.5 (Fujiyoshi and Kasai, 2000) The class of
string languages generated by spine grammars coincides
with the class of string languages generated by TAGs.

Theorem 2.6 (Fujiyoshi and Kasai, 2000) For any spine
grammar, there exists a equivalent spine grammar G =
(N, Σ, P, S) that satisfies the following conditions:

• For all A ∈ N , the rank of A is either 0 or 1.

• For each A ∈ N0, if A → α is in P , then either
α = a with a ∈ Σ0 or α = B(C) with B ∈ N1 and
C ∈ N0. See (1) and (2) in Figure 2.

• For each A ∈ N1, if A(x) → α is in P , then ei-
ther α = B1(B2(· · · (Bm(x)) · · ·)) with m ≥ 0 and
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Figure 2: Rules in normal form

B1, B2, . . . , Bm ∈ N1 or α = b(C1, C2, . . . , Cn)
with n ≥ 1, b ∈ Σn, and C1, C2, . . . , Cn such
that all are in N0 but Ci = x for exactly one
i ∈ {1, . . . , n}. See (3) and (4) in Figure 2.

A spine grammar satisfies the condition of Theorem 2.6 is
said to be in normal form. Note that for a spine grammar
in normal form, the heads assigned for each nonterminal
are not essential anymore because h(A) = r(A) for all
A ∈ N .

Theorem 2.7 (Fujiyoshi and Kasai, 2000) For any spine
grammar, there exists a weakly equivalent spine grammar
G = (N, Σ, P, S) that satisfies the following conditions:

• For all A ∈ N , the rank of A is either 0 or 1.

• For all a ∈ Σ, the rank of a is either 0 or 2.

• For each A ∈ N0, if A → α is in P , then either
α = a with a ∈ Σ0 or α = B(C) with B ∈ N1 and
C ∈ N0. See (1) and (2) in Figure 3.

• For each A ∈ N1, if A(x) → α is in P , then α is
one of the following forms:

α = B(C(x)) with B, C ∈ N1,
α = b(C, x) with b ∈ Σ2 and C ∈ N0, or
α = b(x, C) with b ∈ Σ2 and C ∈ N0.

See (3),(4), and (5) in Figure 3.

A spine grammar satisfies the condition of Theorem 2.7
is said to be in strong normal form.

3 The Construction of Epsilon-Free Spine
Grammars

According to our definition of spine grammars, they are
allowed to generate trees with leaves labeled by the spe-
cial symbol ε, which is treated as the empty string while
taking the yields of trees. In this section, it is shown
that for any spine grammar, there exists a weakly equiv-
alent epsilon-free spine grammar. Because any epsilon-
free spine grammar cannot generate a tree with its leaves

$ D $

%

&

$

x

$

x

%

&

x

$

x

E

x &

E

x&

(1) (2) 
(3) 

(4) (5) 

Figure 3: Rules in strong normal form

labeled by ε, it is clear that for a spine grammar with
epsilon-rules, there generally doesn’t exist an equivalent
epsilon-free spine grammar.

Definition 3.1 A spine grammar G = (N, Σ, P, S) is
epsilon-free if for any rule A(x1, x2, . . . , xn) → α in P ,
α has no node labeled by the symbol ε.

Theorem 3.2 For any spine grammar G = (N, Σ, P, S),
if λ 6∈ LS(G), then we can construct a weakly equiva-
lent epsilon-free spine grammar G ′. If λ ∈ LS(G), then
we can construct a weakly equivalent spine grammar G ′

whose epsilon-rule is only S → ε.

Proof. Since it is enough to show the existence of a
weakly equivalent grammar, without loss of generality,
we may assume that G is in strong normal form. We may
also assume that the initial nonterminal S doesn’t appear
in the right-hand side of any rule in P .

We first construct subsets of nonterminals E0 and E1

as follows. For initial values, we set E0 = {A ∈
N0|A → ε ∈ P} and E1 = ∅. We repeat the follow-
ing operations to E0 and E1 until no more operations are
possible:

• If A → B(C) with B ∈ E1 and C ∈ E0 is in P ,
then add A ∈ N0 to E0.

• If A(x) → b(C, x) with C ∈ E0 is in P , then add
A ∈ N1 to E1.

• If A(x) → b(x, C) with C ∈ E0 is in P , then add
A ∈ N1 to E1.

• If A(x) → B(C(x)) with B, C ∈ E1 is in P , then
add A ∈ N1 to E1.

In the result, E0 satisfies the following.

E0 = {A ∈ N0|∃α ∈ TΣ, A
G

∗
⇒ α, yield(α) = λ}

We construct G′ = (N ′, Σ′, P ′, S) as follows. The
set of nonterminals is N ′ = N ′

0 ∪ N ′
1 such that N ′

0 =
N0 ∪ {A|A ∈ N1} and N ′

1 = N1. The set of terminal
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is Σ′ = Σ ∪ {c}, where c is a new symbol of rank 1.
The set of rules P ′ is the smallest set satisfying following
conditions:

• P ′ contains all rules in P except rules of the form
A→ ε.

• If S ∈ E0, then S → ε is in P ′.

• If A → B(C) is in P and C ∈ E0, then A → B is
in P ′.

• If A(x)→ B(C(x)) is in P , then A→ B( C ) is in
P ′.

• If A(x) → b(C, x) or A(x) → b(x, C) is in P and
C ∈ E0, then A(x)→ c(x) is in P ′.

• If A(x) → b(C, x) or A(x) → b(x, C) is in P , then
A→ c(C) is in P ′.

To show LS(G′) = LS(G), we prove the following (i),
(ii), and (iii) hold by induction on the length of deriva-
tions:

(i) For A ∈ N0, A
G

′

∗
⇒ α′ and α′ ∈ TΣ if and only

if A
G

∗
⇒ α for some α ∈ TΣ such that yield(α) =

yield(α′) 6= λ.

(ii) For A ∈ N1, A(x)
G

′

∗
⇒ α′ and α′ ∈ TΣ(X1) if and

only A(x)
G

∗
⇒ α for some α ∈ TΣ(X1) such that

yield(α) = yield(α′).

(iii) For A ∈ N ′
0 − N0, A

G
′

∗
⇒ α′ and α′ ∈ TΣ if and

only if A(x)
G

∗
⇒ α for some α ∈ TΣ(X1) such that

yield(α[ε]) = yield(α′) 6= λ.

We start with “only if” part. For 0-step derivations,
(i), (ii), and (iii) clearly hold since there doesn’t exists
α′ ∈ TΣ nor α′ ∈ TΣ(X1) for each statement.

We consider the cases for 1-step derivations.
[Proof of (i)] If A

G
′
⇒ α′ and α′ ∈ TΣ, then α′ = a for

some a ∈ Σ0, and the rule A → a in P ′ has been used.
Therefore, A→ a is in P , and A

G
⇒ a.

[Proof of (ii)] If A(x)
G

′
⇒ α′ and α′ ∈ TΣ(X1), then α′ =

c(x), and the rule A(x) → c(x) in P ′ has been used. By
the definition of P ′, A(x)→ b(C, x) or A(x)→ b(x, C)
is in P for some C ∈ E0. There exists γ ∈ TΣ such
that C

G

∗
⇒ γ and yield(γ) = λ. Therefore, A(x)

G
⇒

b(C, x)
G

∗
⇒ b(γ, x) or A(x)

G
⇒ b(x, C)

G

∗
⇒ b(x, γ), and

yield(b(γ, x))= yield(b(x, γ))= yield(c(x)).
[Proof of (iii)] There doesn’t exists α′ ∈ TΣ such that
A

G
′
⇒ α′.

For k ≥ 2, assume that (i), (ii), and (iii) holds for any
derivation of length less than k.

[Proof of (i)] If A
G

′

k
⇒ α′, then the rule used at the first

step is one of the follwoing form: (1) A → B(C) or (2)
A → B. In the case (1), A

G
′
⇒B(C)

G
′

∗
⇒ β′[γ′] = α′ for

some β′ ∈ TΣ(X1) and γ′ ∈ TΣ such that B(x)
G

′

∗
⇒ β′

and C
G

′

∗
⇒ γ′. By the induction hypothesis of (ii), there

exists β ∈ TΣ(X1) such that B(x)
G

∗
⇒ β and yield(β) =

yield(β′). By the induction hypothesis of (i), there ex-
ists γ ∈ TΣ such that C

G

∗
⇒ γ, and yield(γ) = yield(γ ′).

By the definition of P ′, A → B(C) is in P . Therefore,
A

G
⇒B(C)

G

∗
⇒ β[γ], and yield(β[γ]) = yield(β′[γ′]). In

the case (2), A
G

′
⇒B

G
′

∗
⇒ α′. By the definition of P ′,

A → B(C) is in P for some C ∈ E0. There exists
γ ∈ TΣ such that C

G

∗
⇒ γ and yield(γ) = λ. By the in-

duction hypothesis of (iii), there exists β ∈ TΣ(X1) such
that B(x)

G

∗
⇒ β and yield(β[ε]) = yield(α′). Therefore,

A
G
⇒B(C)

G

∗
⇒ β[γ], and yield(β[γ]) = yield(α′).

[Proof of (ii)] If A(x)
G

′

k
⇒ α′, then the rule used at the first

step is one of the follwoing form: (1) A(x) → B(C(x)),
(2) A(x) → b(C, x) or (3) A(x) → b(x, C). Becasue
these rule are in P , the proofs are direct from the induc-
tion hypothesis like the proof of the case (1) of (i).

[Proof of (iii)] If A
G

′

k
⇒ α′, then the rule used at the first

step is one of the follwoing form: (1) A → B(C) or
(2) A → c(C). In the case (1), A

G
′
⇒B(C)

G
′

∗
⇒ β′[γ′] =

α′ for some β′ ∈ TΣ(X1) and γ′ ∈ TΣ such that
B(x)

G
′

∗
⇒ β′ and C

G
′

∗
⇒ γ′. By the induction hypothesis of

(ii), there exists β ∈ TΣ(X1) such that B(x)
G

∗
⇒ β and

yield(β) = yield(β′). By the induction hypothesis of
(iii), there exists γ ∈ TΣ(X1) such that C(x)

G

∗
⇒ γ and

yield(γ[ε]) = yield(γ ′). By the definition of P ′, A(x)→
B(C(x)) is in P . Therefore, A(x)

G
⇒B(C(x))

G

∗
⇒ β[γ],

and yield(β[γ[ε]]) = yield(β′[γ′]). In the case (2), A
G

′
⇒

c(C)
G

′

∗
⇒ c(γ′) = α′ for some γ′ ∈ TΣ such that C

G
′

∗
⇒ γ′.

By the induction hypothesis of (i), there exists γ ∈ TΣ

such that C
G

∗
⇒ γ and yield(γ) = yield(γ ′). By the defi-

nition of P ′, A(x) → b(C, x) or A(x) → b(x, C) is in P .
Without loss of generality, we may assume that A(x) →
b(C, x) is in P . Therefore, A(x)

G
⇒ b(C, x)

G

∗
⇒ b(γ, x),

and yield(b(γ, x)[ε]) = yield(c(γ ′)).
The “if” part is similarly proved as follows. For 0-

step derivations, (i), (ii), and (iii) clearly hold since there
doesn’t exists α ∈ TΣ nor α ∈ TΣ(X1) for each state-
ment.

The cases for 1-step derivations are proved.
[Proof of (i)] If A

G
⇒ α and α ∈ TΣ, then α = a for

some a ∈ Σ0, and the rule A → a in P has been used.
Therefore, A→ a is in P ′, and A

G
′
⇒ a.
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[Proof of (ii) and (iii)] There doesn’t exists α ∈ TΣ such
that A

G
⇒ α.

For k ≥ 2, assume that (i), (ii), and (iii) holds for any
derivation of length less than k.

[Proof of (i)] If A
G

k
⇒ α, then the rule used at the first step

must be of the form A → B(C). Thus, A
G
⇒B(C)

G

∗
⇒

β[γ] = α for some β ∈ TΣ(X1) and γ ∈ TΣ such that
B(x)

G

∗
⇒ β and C

G

∗
⇒ γ. Here, we have to think of the

two cases: (1) yield(γ) 6= λ and (2) yield(γ) = λ. In
the case (1), by the induction hypothesis of (ii), there ex-
ists β′ ∈ TΣ(X1) such that B(x)

G
′

∗
⇒ β′ and yield(β′) =

yield(β), and by the induction hypothesis of (i), there ex-
ists γ′ ∈ TΣ such that C

G
′

∗
⇒ γ′ and yield(γ′) = yield(γ).

By the definition of P ′, A → B(C) is in P . Therefore,
A

G
′
⇒B(C)

G

∗
⇒ β′[γ′], and yield(β′[γ′]) = yield(β[γ]).

In the case (2), C ∈ E0. Thus, A → B is in P ′. By the
induction hypothesis of (iii), there exists β′ ∈ TΣ(X1)
such that B

G

∗
⇒ β′ and yield(β′) = yield(β[ε]). There-

fore, A
G

′
⇒B

G
′

∗
⇒ β′, and yield(β′) = yield(β[γ]).

[Proof of (ii)] If A(x)
G

k
⇒ α, then the rule used at the first

step is one of the follwoing form: (1) A(x) → B(C(x)),
(2) A(x) → b(C, x) or (3) A(x) → b(x, C). The proof
of the case (1) is direct from the induction hypothesis. In
the case (2), A(x)

G
⇒ b(C, x)

G

∗
⇒ b(γ, x) = α for some

γ ∈ TΣ such that C
G

∗
⇒ γ. Here, we have to think of

the two cases: (a) yield(γ) 6= λ and (b) yield(γ) = λ.
(a) If yield(γ) 6= λ, then by the induction hypothe-
sis of (i), there exists γ ′ ∈ TΣ such that C

G
′

∗
⇒ γ′, and

yield(γ′) = yield(γ). By the definition of P ′, A(x) →
b(C, x) is in P ′. Therefore, A(x)

G
′
⇒ b(C, x)

G
′

∗
⇒ b(γ′, x),

and yield(b(γ′, x)) = yield(b(γ, x)). (b) If yield(γ) = λ,
then C ∈ E0, and A(x) → c(x) is in P ′. Therefore,
A(x)

G
′
⇒ c(x), and yield(c(x)) = yield(b(γ, x)). The

proof of the case (3) is similar to that of the case (2).

[Proof of (iii)] If A(x)
G

k
⇒ α, then the rule used at the first

step is one of the follwoing form: (1) A(x) → B(C(x)),
(2) A(x) → b(C, x) or (3) A(x) → b(x, C). In the
case (1), A(x)

G
⇒B(C(x))

G

∗
⇒ β[γ] = α for some β, γ ∈

TΣ(X1) such that B(x)
G

∗
⇒ β and C(x)

G

∗
⇒ γ. By the

definition of P ′, A → B(C) is in P ′. By the induc-
tion hypothesis of (ii), there exists β′ ∈ TΣ(X1) such
that B(x)

G
′

∗
⇒ β′ and yield(β′) = yield(β). By the in-

duction hypothesis of (iii), there exists γ ′ ∈ TΣ such
that C

G
′

∗
⇒ γ′ and yield(γ′) = yield(γ[ε]). Therefore,

A
G

′
⇒B(C)

G
′

∗
⇒ β′[γ′] and yield(β′[γ′]) = yield(β[γ[ε]]).

In the case (2), A(x)
G
⇒ b(C, x)

G

∗
⇒ b(γ, x) = α for some

γ ∈ TΣ such that C
G

∗
⇒ γ and yield(γ) 6= λ. By the def-

inition of P ′, A → c(C) is in P ′. By the induction hy-
pothesis of (i), there exists γ ′ ∈ TΣ such that C

G
′

∗
⇒ γ′ and

yield(γ′) = yield(γ). Therefore, A
G

′
⇒ c(C)

G
′

∗
⇒ c(γ′),

and yield(c(γ′)) = yield(b(γ, x)[ε]). The proof of the
case (3) is similar to that of the case (2).

By (i), we have the result LS(G′) = LS(G).

4 Lexicalization of Spine Grammars

In this section, lexicalization of spine grammars is dis-
cussed. First, it is seen that there exists a tree language
generated by a spine grammar that no lexicalized spine
grammar can generate. Next, it is shown that for any
spine grammar, there exists a weakly equivalent lexical-
ized spine grammar. In the construction of a lexical-
ized spine grammar, the famous technique to construct
a context-free grammar (CFG) in Greibach normal form
(Hopcroft and Ullman, 1979) is employed. The tech-
nique can be adapted to spine grammars because paths
of derivation trees of spine grammars can be similarly
treated as derivation strings of CFGs.

Definition 4.1 A spine grammar G = (N, Σ, P, S)
is lexicalized if it is epsilon-free and for any rule
A(x1, x2, . . . , xn) → α in P , α has exactly one leaf la-
beled by a terminal and the other leaves are labeled by a
nonterminal or a variable.

The following example is a spine grammar that no lex-
icalized spine grammar is equivalent.

Example 4.2 Let us consider the spine grammar G =
(N, Σ, P, S) such that Σ = {a, b} with r(a) = 0 and
r(b) = 1, N = {S} with r(S) = 0, and P consists of
S → a and S → b(S). The tree language generated by
G is L(G) = {a, b(a), b(b(a)), b(b(b(a))), . . .}. Suppose
that L(G) is generated by a lexicalized spine grammar
G′. Because LS(G) = {a}, all trees in L(G) have to be
derived in one step, and the set of rules of G ′ has to be
{S → a, S → b(a), S → b(b(a)), S → b(b(b(a))), . . .}.
However, the number of rules of G ′ has to be finite.
Therefore, L(G) can not be generated by any lexicalized
spine grammar.

To prove the main theorem, the following lemmas are
needed.

Lemma 4.3 For any spine grammar G, we can construct
a weakly equivalent spine grammar in normal form G ′ =
(N, Σ, P, S) that doesn’t have a rule of the form A(x)→
b(x) with A ∈ N1 and b ∈ Σ1.

Proof. Without loss of generality, we may assume that
G is in normal form. For each rule of the form A(x) →
b(x), delete it and add the rule A(x) → x. Then, a
weakly equivalent grammar is constructed.

Lemma 4.4 For any spine grammar G, we can con-
struct an equivalent spine grammar in normal form G ′ =
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(N, Σ, P, S) that doesn’t have a rule of the form A(x)→
x with A ∈ N1.

Proof. Omitted.

The following lemmas guarantees that the technique to
construct a CFG in Greibach normal form (Hopcroft and
Ullman, 1979) can be adapted to spine grammars.

Lemma 4.5 Define an A-rule to be a rule with a nonter-
minal A on the left-hand side. Let G = (N, Σ, P, S) be a
spine grammar such that r(A) ≤ 1 for all A ∈ N .

For A ∈ N0, let A → α be a rule in P such that
α(d) = B for some d ∈ Dα and B ∈ N0. Let {B → β1,
B → β2, . . . , B → βr} be the set of all B-rules. Let
G′ = (N, Σ, P ′, S) be obtaind from G by deleting the rule
A→ α from P and adding the rules A→ α〈d← βi〉 for
all 1 ≤ i ≤ r. Then L(G ′) = L(G).

For A ∈ N1, let A(x) → α be a rule in P such that
α(d) = B for some d ∈ Dα and B ∈ N1. Let {B(x) →
β1, B(x) → β2, . . . , B(x) → βr} be the set of all B-
rules. Let G′′ = (N, Σ, P ′′, S) be obtaind from G by
deleting the rule A(x)→ α from P and adding the rules
A(x) → α〈d← βi[α/d · 1]〉 for all 1 ≤ i ≤ r. Then
L(G′′) = L(G).

Proof. Omitted.

Lemma 4.6 Let G = (N, Σ, P, S) be spine grammar
such that r(A) ≤ 1 for all A ∈ N .

For A ∈ N0, let A → α1, A → α2, . . . , A → αr

be the set of A-rules such that for all 1 ≤ i ≤ r, there
exists a leaf node di ∈ Dαi labeled by A. Let A →
β1, A → β2, . . . , A → βs be the remaining A-rules. Let
G′ = (N ∪ {Z}, Σ, P ′, S) be the spine grammar formed
by adding a new nonterminal Z to N1 and replacing all
the A-rules by the rules:

1)
A→ βi

A→ Z(βi)

}

1 ≤ i ≤ s

2)
Z(x)→ αi〈di ← x〉
Z(x)→ Z(αi〈di ← x〉)

}

1 ≤ i ≤ r

Then L(G′) = L(G).
For A ∈ N1, let A(x) → A(α1), A(x) → A(α2), . . . ,

A(x) → A(αr) be the set of A-rules such that A is
the label of the root node of the right-hand side. Let
A(x) → β1, A(x) → β2, . . . , A(x) → βs be the re-
maining A-rules. Let G ′′ = (N ∪ {Z}, Σ, P ′′, S) be the
spine grammar formed by adding a new nonterminal Z
to N1 and replacing all the A-rules by the rules:

1)
A(x)→ βi

A(x)→ βi[Z(x)]

}

1 ≤ i ≤ s

2)
Z(x)→ αi

Z(x)→ αi[Z(x)]

}

1 ≤ i ≤ r

Then L(G′′) = L(G).

Proof. Omitted.

Theorem 4.7 For any spine grammar G = (N, Σ, P, S),
we can construct a weakly equivalent lexicalized spine
grammar G′.

Proof. Since it is enough to show the existence of a
weakly equivalent grammar, without loss of generality,
we may assume that G is epsilon-free and G is in normal
form without a rule of the form A(x) → b(x) with A ∈
N1 and b ∈ Σ1. We may also assume that G is in normal
form without a rule of the form A(x) → x with A ∈ N1.

Each rule in P is one of the following form:

Type 1 A→ a with A ∈ N0 and a ∈ Σ0,

Type 2 A→ B(C) with A ∈ N0, B ∈ N1, and C ∈ N0,

Type 3 A(x)→ b(C1, C2, . . . , Cn) with A ∈ N1, n ≥ 2
b ∈ Σn, and C1, C2, . . . , Cn such that all are in N0

but Ci = x for exactly one i ∈ {1, . . . , n}, or

Type 4 A(x) → B1(B2(· · · (Bm(x)) · · ·)) with A ∈
N1, m ≥ 1, and B1, B2, . . . , Bm ∈ N1.

Because of the assumption above, m ≥ 1 and n ≥ 2.
First, by the technique to construct a CFG in Greibach

normal form, we replace all type 1 and type 2 rules with
rules of the form A → B1(B2(· · · (Bm(a)) · · ·)) with
m ≥ 0, a ∈ Σ0, and B1, . . . , Bm ∈ N1 and new type 4
rules with a new nonterminal on the left-hand side. See
(1) in Figure 4.

Secondly, we consider type 4 rules of the form A(x)→
B(x). By the standard technique of formal language the-
ory, those rules can be replaced by other type 4 rules with
at least 2 nonterminals on the right-hand side.

Thirdly, by the technique to construct a CFG in
Greibach normal form, we replace all type 1 and type 2
rules with A(x) → b(γ1, γ2, . . . , γn) with γ1, γ2, . . . , γn

such that all are in N0 but γi ∈ TN1
(X1) for exactly one

i ∈ {1, . . . , n}. See (2) in Figure 4.
Lastly, the remaining non-lexicalized rules are only of

the form A(x) → b(γ1, γ2, . . . , γn). Because n ≥ 2,
the right-hand side has a node labeled by a nonterminal
in N0. This node can be replaced by the right-hand side
of the rules of the form Ci → D1(D2(· · · (Dm(a)) · · ·)).
See (3) in Figure 4.

A weakly equivalent lexicalized spine grammar G ′ is
constructed.

If G is epsilon-free and dosen’t have a rule of the form
A(x) → b(x) with A ∈ N1 and b ∈ Σ1, then the equiv-
alence of the construted grammar is preserved. The fol-
lowing corollary is immediate.

Corollary 4.8 For any epsilon-free spine grammar G =
(N, Σ, P, S) such that Σ1 = ∅, we can construct an
equivalent lexicalized spine grammar G ′.
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Figure 4: The explanation for the proof

5 The Results for TAGs

From a spine grammar, a weakly equivalent TAG is ob-
tained easily. Recall the definition of TAGs in the paper
(Joshi and Schabes, 1996). Let G = (N, Σ, P, S) be a
spine grammar in strong normal form. A weakly equiva-
lent TAG G′ = (Σ0, N ∪ (Σ − Σ0), I, A, S) can be con-
structed as follows. The set of initial trees is the smallest
set satisfying following conditions:

• The tree S ↓ is in I .

• If A → a with A ∈ N0 and a ∈ Σ0 is in P , then
ANA(a) is in I .

• If A → B(C) with A ∈ N0, B ∈ N1, and C ∈ N0

is in P , then ANA(BOA(C ↓)) is in I .

The set of auxiliary trees is the smallest set satisfying fol-
lowing conditions:

• If A(x) → B(C(x)) with A ∈ N1 and B, C ∈ N1

is in P , then ANA(BOA(COA(ANA∗))) is in A.

• If A(x) → b(C, x) with A ∈ N1, b ∈ Σ2 and C ∈
N0 is in P , then ANA(bNA(C ↓, ANA∗)) is in A.

• If A(x) → b(x, C) with A ∈ N1, b ∈ Σ2 and C ∈
N0 is in P , then ANA(bNA(ANA∗, C ↓)) is in A.

The way to construct a weakly equivalent TAG from a
spine grammar in strong normal form was shown. By a
similar way, a weakly equivalent TAG is effectively ob-
tained from any epsilon-free or lexicalized spine gram-
mar constructed in this paper without utilizing epsilon-
rules or breaking lexicality. Therefore, the results for
spine grammars also hold for TAGs.

Corollary 5.1 For any TAG, we can construct a weakly
equivalent epsilon-free TAG.

Corollary 5.2 For any TAG, we can construct a weakly
equivalent lexicalized TAG.
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Abstract

Ambiguous keyboards, i.e. several letters host
on the same key (cf. telephone keyboard), pro-
duce candidate lists with words that match the
entered code. These lists have to be disam-
biguated by the user for the intended word.
Consequently, the primary goal is to order these
candidates in a way that the most appropriate
words are placed on top of the suggestion list
for minimal selection costs or to postpone the
attention to suggestions to a final editing step.
This paper reports on promising results for this
goal by inspecting the whole sentence on the
basis of supertagging and lightweight depen-
dency analysis.

1 Introduction

Watch-sized devices which lack space for a full keyboard,
i.e. uniquely addressable keys, on the one hand, and on
the other, Asian language typing or devices for speech-
and motor-impaired people where not all letters can be
addressed directly because so many buttons are not man-
ageable in reasonable time make use of so-called ambigu-
ous or reduced or cluster keyboards (for one of the ear-
liest systems see (Witten, 1982)) — even only realized
virtually on a screen (which does not make any differ-
ence for the following considerations). Typing with am-
biguous keyboards, i.e. keyboards where several letters,
symbols or numbers, respectively, host on one and the
same button (cf. telephone keyboards), basically can be
performed in two different manners. Multi-tapping as ba-
sic encoding method for short message sending (SMS)
on cellular phones uniquely addresses a symbol by a pre-
defined number of button hits in a row. Obviously, this
method is cumbersome and time consuming.

∗The author is now affiliated with the Chair of Computer
Science VI, RWTH Aachen University, Germany.

As a consequence of an observation by (Witten, 1982),
namely that in a dictionary with 24500 words only 8% are
ambiguous if the respective button on a phone keyboard is
pressed only once, predictive methods have emerged on
the market. Predictive text entry devices (e.g., the prod-
uct T9 by Tegic Communications for SMS typing (Kush-
ler, 1998)) have been developed that reduce the number
of keystrokes needed for entering a word by proposing
possible candidates matching the current input. More-
over, the possible candidates for completion all match the
already entered prefix of the word. By selecting one of
the available suggestions (irrespective whether assuming
prediction or completion mode here), the number of key-
presses decreases but the overall time to enter the word
is not necessarily reduced due to the cognitive load that
emerges while scanning the suggested candidate list (see,
e.g., (Horstmann Koester and Levine, 1994)). Conse-
quently, the primary goal is to order these candidates in
a way that the most appropriate words are placed on top
of the suggestion list for minimal selection costs or to
postpone the attention to suggestion lists to a final edit-
ing step. This paper reports on promising results for this
goal by inspecting the whole sentence on the basis of su-
pertagging and lightweight dependency analysis (LDA).

The paper is organized as follows. Section 2 gives a
short overview on related work in the area of predictive
typing. Section 3 presents the sentence-wise approach
based on supertagging and LDA. The experiments and
results achieved with these methods are summarized in
Section 4. Section 5, finally, summarizes our approach
and the conclusions we reached.

2 State of the art in predictive typing

Only for completeness, we mention letter-wise predictive
systems here (see, e.g., LetterWise by (MacKenzie et al.,
2001)) or the Reactive Keyboard by (Darragh and Witten,
1992). For word-wise systems, the easiest way to achieve
appropriate suggestion lists is to sort the list according
to word frequencies obtained from large corpora (see the

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 24-31.



proceedings of the EACL-workshop on language model-
ing for text entry methods (Harbusch et al., 2003) for an
overview of recent n-gram systems). Tanaka et al. (2002)
propose an adaptive language model utilizing prediction
by partial match (PPM (Cleary and Witten, 1984), which
actually originates from the information theory domain
and deals with the problem of improving the compres-
sion rates of arithmetic coding) that lowers the entropy
of a language model by maintaining a list of already seen
contexts and its corresponding successors. In (Matiasek
et al., 2002), a system based on word n-grams with addi-
tional part-of-speech information is outlined. Fazly and
Hirst (2003) also impose part-of-speech information on
prediction. Surprisingly, additional part-of-speech infor-
mation hardly improves the prediction lists. Thus, other
information sources have to be investigated.

The only approach that goes beyond a word-wise step-
by-step disambiguation we are aware of is reported in
(Rau and Skiena, 1996). Instead of permanently chang-
ing between two modes, i.e. a phase where a word is
typed and a phase where it is disambiguated in a list of
current suggestions, the user can solely concentrate on
the process of text entry in a sentence-wise approach.
Here, a telephone keypad that distributes the 26 letters
and the blank character (word delimiter) on 9 keys serves
as ambiguous keyboard (i.e. 3 letters are placed on one
key at a time). The end of the sentence is marked un-
ambiguously using the “#” key. Sentence disambigua-
tion applies the Viterbi algorithm and involves word bi-
gram probabilities and part-of-speech information ex-
tracted from the Brown Corpus. The results obtained by
simulating the typing of various text samples with this
framework look promising. For various domains, the per-
centage of correct words ranges from 92.86 to 97.67%.
This is due to the relatively high number of keys and low
number of ambiguous words, respectively.

A possible way of entering commonly used expres-
sions such as “how are you” or “could you please open
the door” fast is the use of sentence compansion (see e.g.
in (Copestake, 1997; McCoy et al., 1998)). So, from the
input “open door”, the system would generate “could you
please open the door”. This cogeneration approach needs
three knowledge sources, namely a grammar and a lexi-
con, statistical information about collocations, i.e. syn-
tagmatically related words, and a set of templates. A
thinkable drawback for the user might be that the ex-
panded sentences sound monotonous by and by. In con-
trast, flexibility and individuality are valuable features of
direct and unrestricted text entry systems. Thus, the mo-
tivation of typing on a sentence level is reasonable. The
idea is to make use of the syntactic relations that exist in
the sentence the user wants to express and exploit them to
present more accurate candidate lists that allow for faster
selection by moving likely matches to the top.

a g j l m c f h k o s b d e i
q r w z ä t u v x y ü ß n p ö -
Button 1 Button 2 Button 3

Figure 1: The layout of the letter keys for German.

3 Sentence-wise predictive typing based on
Supertagging

In this paper, we report on results for a sentence-wise text
entry system with a highly reduced ambiguous keyboard
containing only three letter keys and one command key
(the setting results from needs of our disabled test sub-
jects). Nevertheless, the presented system called UKO-II
(Harbusch and Kühn, 2003) is adaptive with respect to
the number of keys, i.e. the system can be tailored to any
number of keys where the symbol distribution is matter
of definition.

The distribution of the letters on the keys that is used
in this work is language-specific by applying a genetic
algorithm which optimizes the candidate lists’ length and
overall selection costs for a given lexicon. For German
and English, the dictionaries are based on the CELEX
lexical database (Baayen et al., 1995). The current key-
board layout of the letter keys for the German language is
depicted in Figure 1. In contrast to the approach in (Rau
and Skiena, 1996), the word delimiter (space) is coded
unambiguously by entering the command mode.1 So for
example, in order to enter guten Morgen (“good morn-
ing”) the user types the code sequence 1 2 2 3 3

1 2 1 1 3 3 . For the first code, there exist 48
possible words (guten, außen, wohin, . . . ), for the second,
there are 30 entries (wollen, morgen, Morgen, . . . ). This
small example already allows for a total of 1440 sentence
hypotheses.

3.1 N-best Supertagger

The entire technique that is chosen to achieve our goal is
based on supertagging, a procedure that associates so-
called supertags, i.e. elementary trees in the grammar
formalism of Lexicalized Tree-Adjoining Grammar (see,
e.g., (Joshi and Schabes, 1997)) that code local dependen-
cies, with the corresponding words of the sentence (see,
e.g., (Bangalore and Joshi, 1999)). The core of the pre-
sented system is an n-best supertagger that is based on
a second-order Hidden Markov Model (see (Bäcker and
Harbusch, 2002)) and is able to find the n best sentence
hypotheses for a sequence of coded words.

Let tN1 = t1t2 · · · tN be a sequence of supertags for a
sentence wN

1 = w1w2 · · ·wN . We are interested in the

1In command mode, the mapping of the letter keys is
changed to commands like delete last key or space. Thus, the
command button functions as a meta key and allows for hierar-
chical menu structures which are not further discussed here.
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most probable tag sequence t̂N1 which is defined by

t̂N1 = argmaxtN
1

P (tN1 |wN
1 ). (1)

According to Bayes’ law and additional assumptions that
the words are independent of each other, the probability
of a supertag sequence given a sentence, P (tN1 |wN

1 ), can
be rewritten as

P (tN1 |wN
1 ) ≈

N∏
i=1

P (ti|ti−2ti−1)P (wi|ti), (2)

where maximum likelihood estimation (MLE) is used for
the probabilities by relative frequencies derived from an
annotated training set of supertagged sentences. For un-
known events, Good-Turing discounting in combination
with Katz’s back-off is applied.

Usually, a dynamic programming technique (i.e. the
Viterbi algorithm) finds the best supertag sequence of a
sentence (cf. Equation 1) for a given HMM efficiently by
storing the best local sequence probability and a back-
pointer to the predecessor state for each word position in
the sentence. In order to find the n best paths through
the HMM trellis, we have to allow the backpointer ta-
ble to hold not only the best predecessor, but the n best
predecessor states sorted by the corresponding log prob-
ability. Since we deal with trigrams in Equation 2, the
states of the HMM have to be coded as supertag pairs,
thus P (ti|ti−2ti−1) = P (〈ti−1, ti〉|〈ti−2, ti−1〉). This
leads to the following recurrence formula for state prob-
abilities at position k in the sentence wN

1 , 1 ≤ k ≤ N :

δk(〈ti−1, ti〉) = max
〈ti−2,ti−1〉

[
δk−1(〈ti−2, ti−1〉)·

P (〈ti−1, ti〉|〈ti−2, ti−1〉)
] · P (wk|〈ti−1, ti〉)

(3)

The values in the δ-table are used to build an additional
table which yields the n best local hypothesis scores

φk(sj , si) = δk−1(si)P (sj |si)P (wk|sj) (4)

for states si = 〈ti−2, ti−1〉 and sj = 〈ti−1, ti〉. For
each sj , the number of predecessors si can be limited
to n. The corresponding backpointers are stored in a ta-
ble ψk(sj ,m) = si where m = 1 denotes the best and
m = n the nth predecessing state.

Now, after this forward-trellis step, a backward-tree
search is applied in order to find the n most promising su-
pertag sequences which are used to adjust the candidate
lists and move likely matches to the top. The evaluation
function f(〈ti−1, ti〉) that associates the current path cost
with a state 〈ti−1, ti〉 can directly use the log probabilities
from the forward-trellis step as a heuristic h(〈ti−1, ti〉).
This approach leads to greedy search. An important note
is that the heuristic is optimal since it actually returns

the exact path costs to the goal. By also incorporating
the backward partial path costs g(〈ti−1, ti〉) of the search
process, i.e. f = g + h, we arrive at A* search. The
resulting system is able to generate the n best supertag
hypotheses for a given sentence. For a more detailed pre-
sentation of the system, see (Hasan, 2003).

3.2 Incorporating ambiguous codes

The starting point is an ambiguously coded word se-
quence typed with a reduced keyboard as introduced in
the beginning of this section. Every code generates a list
of words and every word has several supertags associated
with it. A supertagger is used to find the most likely su-
pertag sequence for the sentence and on the basis of this
information, the candidate list becomes reordered such
that the most likely words (which are the lexical anchors
of the supertags) appear at the top. Due to the ambiguous
coding, the number of supertags for a code (which corre-
sponds to the supertags of all word expansions of a code)
is so large that the best supertag sequence is not sufficient
to improve the results significantly. Therefore, we use the
n-best tree-trellis approach from Section 3.1 in order to
produce more than one hypothesis. At this point, the code
sequence of each sentence is associated with a list of the
n best supertag sequences found by the supertagger.

Every word usually has several supertags, since the
lexical items of an LTAG are almost always associated
with several elementary structures that encode the vari-
ous local dependencies of each word. And since every
code expands to several matching words, the result is a
set of supertag sets that form a trellis (cf. detailed view in
Figure 2). This trellis is the basis for the tree-trellis search
that finds the n best supertag hypotheses for a given sen-
tence. Figure 2 also shows the different expansion steps
for the sentence ich habe ein kleines Problem (“I have a
little problem”).

After typing the words of a sentence with the ambigu-
ous keyboard, the code sequence is expanded and the can-
didate list is obtained according to the CELEX lexicon.
After that, the possible supertags are looked up in the
trained language model, i.e. all supertags that occurred in
the training corpus with its corresponding lexical anchor
are primed for the n-best tree-trellis search. The hypothe-
ses that are returned by the search are then used to reorder
the candidate lists. The effect is that likely words of the
trained language model will move to the top of the match
lists and improve the overall accuracy of the system.

3.3 Filtering ungrammatical hypotheses

In a second step, a lightweight dependency analysis (Ban-
galore, 2000) on the list of supertag hypotheses found
by the n-best search is used as an additional knowledge
source in order to determine likely chunks of the sen-
tence. The dependencies coded in the elementary trees
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Figure 2: Coping with ambiguous words: disambiguation of coded words and the corresponding supertag expansion.

(supertags) can be used to actually derive a shallow parse
of the sentence in linear time.2 We use a dependency cov-
erage criterion which determines how many dependency
slots of each supertag are filled to the left and right of
its lexical anchor. The hypotheses that have a maximum
number of covered elements are used to adjust the final
candidate lists, i.e. the supertag hypotheses that span the
largest portion of the sentence and seem most “consis-
tent” are moved to the top. This method is applied in
order to discard hypotheses that have syntactic inconsis-
tencies.

Figure 3 illustrates the rearrangements of the ambigu-
ously typed sentence ich habe ein kleines Problem (“I
have a little problem”). The three marked hypotheses all
have a maximum coverage of 5, i.e. all supertags have
their dependency slots filled, whereas the other hypothe-
ses have coverages less than 5. One can see that lo-
cal word probabilities would suggest ist kann die kleines
Problem (“is can the little problem”). The information
that is provided by the surviving hypotheses is used for
additional final adjustments of the candidate lists to be
presented to the user. We call this reordering process

2We decided for LDA because it considers more syntactic
knowledge than simple chunking techniques, while still being
very efficient in comparison to full TAG parsing.

match list boosting, or shortly boosting (see Figure 3 for
an example).

4 Evaluation

For an evaluation of the techniques presented in the pre-
vious section, the ambiguous typing of a sample text is
simulated and processed with the n-best supertagger. As
performance criteria, the accuracy and the average rank
of the correct word are compared to the values obtained
from the baseline approach using the word frequencies
from the CELEX lexical database (approx. 320 000 word
types). For this purpose, a lexicalized tree adjoining
grammar is needed because of the lightweight depen-
dency analysis performed in the last step of the n-best
approach. The trigram HMM is directly trained on a cor-
pus that is annotated with supertags.

For the experiments, the corpus and LTAG developed
in (Bäcker and Harbusch, 2002) is used. It comprises 250
labeled sentences (approx. 2000 words), whereof 225 are
used for training and 25 for testing. Since the correspond-
ing LTAG is rather small, containing only 127 elementary
trees (58 initial and 69 auxiliary trees), this directly im-
pacts on the size of the trained HMM and the runtime
of the LDA. Therefore, it was possible to run the n-best
supertagger for up to 2000 hypotheses in an acceptable
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Figure 3: Example for rearranging word hypotheses according to the results of supertagging and LDA.

amount of time. On a 1.4GHz AMD Athlon, the eval-
uation of the reference test set needs approx. 10.58s for
n = 250, i.e. 423ms per sentence. The adjustments of
the match lists can therefore be performed in real-time
for smaller values of n.

Coping with unknown words in ambiguous typing is a
more complicated problem. If the word is not in the dic-
tionary, it has to be disambiguated letter by letter for all
the keys of the code. Since the primary goal was not to
simulate a specific keyboard but to evaluate whole sen-
tences with the n-best supertagging framework, the dic-
tionary was patched by adding the unknown words with
a zero-frequency and thus contained all words of the cor-
pus.

4.1 Baseline

The baseline results are achieved with the simple uni-
gram approach where the frequencies of the words that
are stored in the lexicon order the candidate list in de-
scending order, i.e. with highest frequency first. As eval-
uation criteria, the accuracy of rank r and the average
match position is chosen. More formally, let

fr(w|c) =
{

1 if w ∈ matches(c) ∧ rank(w) = r
0 else

(5)
be a binary function that returns 1 if a disambiguated tar-
get word w correctly occurs on the rth position of the can-
didate list of its code c, which is given by matches(c).

Reference test set evaluation, r̄ = 3.02
r = 1 r = 2 r = 3 r = 4 r = 5

acc(r) [%] 50.26 28.04 5.29 7.41 1.59
cac(r) [%] 50.26 78.30 83.59 91.00 92.59

Table 1: The baseline results of ambiguously typing the
test corpus.

For a test corpus containing a total of N words, the ac-
curacy of rank r for the given corpus can be computed
as

acc(r) =
∑

w fr(w|c)
N

. (6)

For a cumulative accuracy, i.e. where the target words
appear within the first r ranks of the candidate lists, the
single accuracy values are summed:

cac(r) =
r∑

i=1

acc(i). (7)

The second evaluation measure is the average rank of
words of the test corpus. It is simply computed by

r̄ =
∑

w rank(w)
N

. (8)

The results for the baseline are outlined in Table 1. Ap-
parently, the unigram approach places approx. 50% of the
target words on the first position of the candidate lists.
92.6% of the words appear within the first 5 ranks. The
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Reference test set evaluation (a)
Average for n = 1, . . . , 1000, r̄ = 2.18

r = 1 r = 2 r = 3 r = 4 r = 5
acc(r) [%] 61.84 23.01 1.84 8.38 0.55
cac(r) [%] 61.84 84.85 86.69 95.07 95.62

Single best results (b)
Overall best for n = 592, r̄ = 2.11 (b.1)
acc(r) [%] 66.67 18.52 1.59 8.47 0.53
cac(r) [%] 66.67 85.19 86.78 95.25 95.78
Best accuracy/time trade-off for n = 250, r̄ = 2.16 (b.2)
acc(r) [%] 61.90 22.75 2.12 8.47 0.53
cac(r) [%] 61.90 84.65 86.77 95.24 95.77

Trigram experiment (c)
Average for n = 1, . . . , 1000, r̄ = 2.91
acc(r) [%] 60.01 19.64 4.09 6.59 2.26
cac(r) [%] 60.01 79.65 83.74 90.33 92.59

Upper bound experiment (d)
Average for n = 1, . . . , 1000, r̄ = 2.11
acc(r) [%] 68.07 16.92 1.85 8.22 0.55
cac(r) [%] 68.07 84.99 86.84 95.07 95.62

Table 2: The improved results using the n-best supertag-
ger/LDA system and additional experiments with tri-
grams and an upper bound.

rank expectation for the reference test set is 3, i.e. the
user has to scroll two times on average before selecting
the desired word.

4.2 N-best system

This section reports on the improvements obtained with
the system using the n-best supertagger and additional
LDA. The results show that the approach yields better
rankings than the simple word-wise prediction method
(baseline) and also outperforms a trigram language
model. The overall results are shown in Table 2. The first
part (a) shows the values computed for the reference test
set, namely the average for the full evaluation runs with
hypothesis sizes ranging from 1 to 1000. When compar-
ing the values to those in Table 1, a significant improve-
ment for the reference test set is visible. The cumulative
accuracy of rank 1 raises by approx. 12%, i.e. 61.8% of
the target words are now placed on top of the candidate
lists. For the other ranks, the improvement is not as big
as for rank 1, but there is still a significant increase. With
the n-best approach, 95.6% are placed within the top 5
ranks, whereas the average rank drops down to 2.18. The
overall best run of this evaluation session is given in (b.1).
The maximum occurred for the hypothesis size n = 592,
i.e. the 592 best supertag sequence hypotheses for the
ambiguously coded sentences are used for adjusting the
candidate lists. This result also shows that the biggest
variation takes place for rank 1. The changes in cumu-
lative accuracy for ranks ≥ 2 are very small for larger
values of n. The graphs in Figure 4 give an overview
on the differences between the n-best approach and the

baseline and also show the slightly better performance of
A* search when compared to greedy search.

As can be seen in all graphs, enhancing the search from
1-best (Viterbi) to n-best has the largest effect for values
of n < 250. After approx. 250 hypotheses, the results do
not improve significantly, at least for higher cumulative
ranks. In general, a hypothesis size of n = 250 (cf. Ta-
ble 2 (b.2)) shows good results since the value for cac(5)
does not increase any more for n ≥ 250 and the compu-
tation time is quite fast.

Another method of evaluating the n-best supertagger is
the possibility to look at the target words of the sentences
that are typed ambiguously and use only the hypotheses
that match closest for adjusting the candidate lists (cf. re-
sults in Table 2 (d)). Clearly, this procedure is illegal for
an objective evaluation since we are already looking at
the desired result we want to achieve, but nevertheless
it gives an upper bound of what accuracy the n-best su-
pertagger can theoretically reach by just picking the most
promising hypotheses. The detailed evaluation graphs are
given in Figure 5. As can be seen, the accuracy between
the two approaches differs only for lower ranks (cf. (c)),
while for higher ranks (cf. (d) and (e)), the graphs are
nearly identical. This means that for the higher rank ac-
curacy, the n-best supertagger already performs in an op-
timal way for the reference test set and it actually cannot
get any better with this kind of training material. It is as-
sumed that with a larger training corpus and thus better
language model, the rankings can be further improved.

An interesting constellation is revealed in Figure 5 (a)
where the trigram approach outperforms supertagging for
lower hypothesis sizes considering rank 1, whereas the
accuracy cannot compete for higher ranks (cf. (b)). This
is possibly due to the sparseness of data, i.e. the few
learned estimations lead to overproportionally many mis-
classifications for a small hypothesis search space. This
claim has to be verified on the basis of more data.

5 Conclusion

In this paper, we have presented a sentence-wise predic-
tive typing method based on an n-best Hidden Markov
Model Supertagger for typing with a four-button ambigu-
ous keyboard. The main idea is to utilize the syntactic
dependencies that exist between the words of a sentence
and use this information to adjust the candidate lists such
that more likely words appear at the top. Instead of being
distracted by a list of proposals after every keypress, the
user has to pay attention to the prediction list only at the
end of the sentence. So the user can concentrate on what
(s)he wants to express in the first phase, i.e. the ambigu-
ous typing of the whole sentence, and disambiguate the
target words from the candidate lists in a second phase.
First evaluations show that users like this mode better
than word-wise disambiguation. Further evaluations have
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to be carried out in the future to prove this claim.
As for future work, experiments should be carried out

with an enhanced training corpus. Furthermore, a com-
parison has to be performed with the sentence-wise ap-
proach in (Rau and Skiena, 1996). Both systems have to
deploy a 9-button keyboard, the LTAG underpinning the
supertagging approach and the same lexicon. Under the
current circumstances, a direct comparison is not possi-
ble.

As it is known (see, e.g., (Baayen, 1991)) that high
frequency words often only differ in one letter, and thus,
remain highly competitive in all syntactic approaches, we
are going to add semantic features (taken from WordNet
(Miller, 1995)) to the supertags. We expect that rear-
rangements in the prediction list according to semantic
clusters will considerably improve the accuracy of pre-
dictions.
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Abstract

In thispaperweproposeasyntacticandseman-
tic analysisof complex questions.We consider
questionsinvolving pied piping andstranding
andwe proposeelementarytreesandsemantic
representationsthat allow to accountfor both
constructionsin a uniformway.

1 Intr oduction

In questionswherethewh-wordis embeddedintoalarger
NP, therearetwo structuralpossibilities,shown in (1) and
(2).

(1) (a) Thepictureof whomdoesJohnlike?

(b) Whichboy’s fatherdid you see?

(2) (a) WhomdoesJohnlike apictureof?

(b) Whichpaintingdid youseea photographof?

The larger NP containingthe questionword can be
pied-pipedasin (1) to the beginningof the sentenceto-
getherwith thewh-word. Thisrequiressomekind of syn-
tactic or semanticreconstruction, i.e.: For scopalpur-
poses,the matrix NP must contribute its semantics(at
leastin oneof the readings)approximatelyin the posi-
tion of its trace,while the wh-word itself hasof course
thewidestpossiblescope.

Native speakersjudgepied-pipingof embeddingNPs
ungrammaticalin some cases. Particularly, although
pied-piping is always fine in relative clauses,a direct
questionlike (3b) is ungrammatical.1

(3) (a) On thecornerof which streetdoeshis friend
live?

(b)
�
A pictureof whomdoesJohnlike?

1This waspointedout to usby oneanonymousreviewer.

However, asexamples(1a)and(3a)show, pied-piping
is foundwith somedeterminers.We thereforegenerally
allow this constructionin thegrammar, andattribute the
infelicity of someexamplesto independentfactors.

In anotherconstruction,shown in (2), the matrix NP
canbe strandedin its objectposition,yielding potential
problemsfor semanticcompositionalityin frameworks
thatdo not usetransformations.

Constructionsas(2) areclaimedto beonly possibleif
all embeddingNPs(thosewhich arestranded)arenon-
specific. This goesback to Fiengoand Higginbotham
(1981),who show in a muchbroadercontext thatextrac-
tion out of NPs is not possibleif an embeddingNP is
specific.Thus,wegetthefollowing judgments:

(4) (a) Whodid Johnseea pictureof?
(b)

�
Whodid Johnseethepictureof?

(c)
�
Whodid Johnseeeverypictureof?

We seethat therangeof determinersis lexically spec-
ified by the constructionthat they appearin (i.e., the
extractionconfiguration). As for the lexical restrictions
with regard to pied-pipingabove, theseeffects will not
concernus in this paper. They mustbedealtwith by in-
dependentprocesses,e.g.lexical constraints.

In this paperwe show how anapproachto theseman-
tics of TreeAdjoining Grammarthatusessemanticfea-
ture structuresand variableunification as in Kallmeyer
andRomero(2004)canprovidethecorrectvariablebind-
ingsfor bothtypesof questions.Thepaperproposesele-
mentarytreesandsemanticrepresentationsthatallow to
accountfor bothconstructions,(1) and(2), in a uniform
way.

2 LTAG Semantics

In approachesto TAG semantics(seee.g.Kallmeyer and
Joshi,2003;Joshiet al., 2003;GardentandKallmeyer,
2003)eachelementarytreeis commonlyassociatedwith
its appropriatesemanticrepresentation.In this paperwe

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.
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usethe framework presentedin Kallmeyer andRomero
(2004) that follows this line: We useflat semanticrep-
resentationswith unificationvariables(similar to MRS,
Copestake et al., 1999). The semanticrepresentations
containpropositionalmetavariables. Constraintson the
relativescopeof thesemetavariablesandpropositionalla-
belsareusedto provideunderspecifiedrepresentationsof
scopeambiguities.To keeptrack of the necessaryvari-
ableunifications,semanticfeaturestructuresareassoci-
atedwith eachnodein the elementarytree. For seman-
tic computation,the nodesin the derivation treecontain
thesemanticinformationassociatedwith theelementary
trees. Semanticfeaturestructureshave featuresPOS for
all nodepositions����� thatcanoccurin elementarytrees.2

The valuesof thesefeaturesare featurestructuresthat
consistof a T and a B feature(top and bottom) whose
valuesarefeaturestructureswith featuresI for individual
variables,P for propositionallabelsetc.

Unificationfollowstheusualdefinitionsfor unification
in Feature-basedTAG syntax:For eachedgefrom ��� to�
	 with position� : 1) theT featureof position� in ��� and
theT featureof therootof � 	 areidentified,and2) if � 	 is
anauxiliary tree,thentheB featureof thefoot nodeof � 	
andthe B featureof position � in � � areidentified. Fur-
thermore,for all � occurringin thederivationtreeandall
positions� in � suchthatthereis noedgefrom � to some
othertreewith position� : theT andB featuresof � .� are
identified.By theseunifications,someof thevariablesin
thesemanticrepresentationsgetvalues.Then,theunion
of all semanticrepresentationsis built which yields an
underspecifiedrepresentation.

At the end of a derivation, all possibledisambigua-
tions, i.e. injective functionsfrom the remainingpropo-
sitional variablesto labels,mustbe found to obtain the
differentpossiblescopingsof the sentence.The disam-
biguatedrepresentationsareinterpretedconjunctively.

3 Quantifiers

Following Joshi and Vijay-Shanker (1999); Kallmeyer
andJoshi(2003)andin particularRomeroet al. (2004),
we assumethat quantificationalNPsasevery in (5) and
alsowho in (6) have a multicomponentsetcontainingan
auxiliary treethatcontributesthescopepartandasecond
elementarytree that contributesthe predicateargument
part.

(5) Everyboy laughs.

(6) Who laughs?

However, in contrastto precedingapproaches,we as-
sumethe predicateargumenttreefor quantifiersthatare

2For thesake of readability, we usenamesnp,vp, ... for the
nodepositionsinsteadof theusualGornadresses.

������
 ������
S�
NP

Det N �
every

� ������������
������ �

boy

S����� � VP

laughs

Figure1: Syntaxof (5) Everyboylaughs.�����
laugh � � �! " # �$�%&&&&&'

S ( B ) MAXS
" *,+

NP

%' T - I �
P

���/.102 0 333332
s np� " �

every �54  6  7 � ,8 # �," � 6 �
boy � 9 �

- S ( B ) MAXS
8 * + . %&&&' N

%&&' T ) I 9 *
B ) P � 6 * 0 332 0 3332

n6 # :  7 # ;%&&&&&&&'
NP

%' B - I 4
P

; . 02
N

%' T - I 4
P

: .102
0 33333332

Figure2: Semanticsof (5) Everyboylaughs.

determinersas every in (5) to be an auxiliary tree. In
other words, we assumedeterminersto be adjoinedto
their nouns. This correspondsto a standardanalysisas
pursuedin theXTAG grammar(XTAG ResearchGroup,
1998)andalso in the FrenchLTAG (Abeillé, 2002) for
example.With semanticunification,thisapproachis pos-
siblesincetheNP treecanbelinkedto theverb treevia
featureunificationalthoughthereis no direct link in the
derivationtree.An exampleis shown in Fig. 1 and2.

The derivation in Fig. 1 seemsnon-localbecausethe
two componentsof the quantifierattachto differentele-
mentarytrees.This apparentnon-localityis however no
problem: First, we allow this kind of non-localadjunc-
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Figure3: Syntaxandsemanticsof (6) Wholaughs?

tion only for scopetrees,i.e., treeswith just onesingle
S node,and thereforethe stronggenerative capacityof
thegrammaris not affected.Second,this derivationcan
alsobe understoodin a local way: If we adoptflexible
composition(Joshiet al., 2003), then we can consider
the combinationof every andboy asa wrappingof boy
aroundevery. Theresultis a derivedeverymulticompo-
nentthat is thenattachedto laughs. Viewedin this way,
thederivationis local. Suchanon-localflexible composi-
tion analysisfor thescopepartsof quantifiershasalready
beenproposedin Joshiet al. (2003) in order to derive
certainconstraintsfor relative quantifierscopein inverse
linking configurations.In otherwords,thereis indepen-
dentmotivationfor thisanalysis.

The derivation treewith the semanticrepresentations
and the semanticfeaturestructurefor (5) is shown in
Fig.2. Theunificationsleadto thefollowing featureiden-
tities: J K 	 (adjunctionof thescopepart), � K L (sub-
stitutionof boy into laughs), L KNM and O KQP � (adjunc-
tion of determinerto boyandfinal top-bottomunification
at NP node),and R KQP5S (adjunctionof every to boyand
final top-bottomunification at N node). Replacingthe

variablesby their valuesandbuilding thenthe union of
all semanticrepresentationsleadsto (7):

(7)
P��UT laugh V$MXW , P5	YT every V$M[Z S Z \ W , P S T boy V�M�W	 ] P��^Z 	 ] P5	_Z S ] P S Z \ ] P��

There is only one disambiguation,namely 	 `P5	�Z S ` P S Z \ ` P�� , that leads to the semantics
every V�MaZ boy V$MXWbZ laugh V�M�W1W .

The featuremaximalscope(MAXS) is neededto pro-
vide the correctmaximal scopeof quantifiers. This is
importantin questions(seebelow). Furthermore,MAXS

is alsousedto makesurethatquantifiersembeddedunder
attitudeverbssuchasthinkcannotscopeovertheembed-
ding verb. This constraintis largely assumedto hold for
quantifiers(seeKallmeyerandRomero,2004,for further
discussion).

Following Romeroet al. (2004),we assumethat wh-
operatorsaresimilar to quantifiersin thesensethat they
alsohaveaseparatescopepartandthey alsohaveaMAXS

scopelimit. But their scopelimit is provided by the S’
node,not the S node. For an analysisof (6), seeFig. 3.
The MAXS featurestogetherwith the semanticsof the
questionverbmakesurethatall wh-operatorshavescope
over thequestionproposition(here P 	 ) andall quantifiers
scopebelow thisproposition.Theminimalnuclearscope
of thewh-operator(variable O ) is providedby theques-
tion propositionP 	 .
4 Stranding of Prepositions

Syntactically, the strandingexamplesin (2) are more
complex than the pied piping examplesin (1). There-
fore we considerthemfirst for developingour syntactic
analysis.

A multicomponentanalysisas proposedin (Kroch,
1989) that puts the wh-word (whom in (2a)) and the
strandedpart (a picture of in (2a)) into oneelementary
treesetis notacceptablesincethiswouldviolatetheprin-
ciple of minimality of elementarytrees: In LTAG, ele-
mentarytreesrepresentextendedprojectionsof lexical
items and encapsulateall syntactic/semanticarguments
of the lexical anchor. They areminimal in thesensethat
only theargumentsof theanchorareencapsulated,all re-
cursionis factoredaway. Theselinguistic propertiesof
elementarytreesareformulatedin the Conditionon El-
ementaryTree Minimality (CETM) from Frank (1992).
Evena separationof whomanda picture of into just two
differentelementarytreesor treesetswould violate this
principle. Therefore,we needat leastthreedifferentele-
mentarytrees(or treesets)for whom, a andpictureof.

Thereare essentiallytwo possiblesyntacticanalyses
for sentencessuchas (2a): the embeddedPP could be
seenasa modifieror a complementof thehigherNP. In
thefirst case,we would assumeanextra elementarytree
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for of, in the secondcasepicture of would not be sepa-
rated.(Kroch,1989)showsthatonly acomplementanal-
ysiscanaccountfor thereportedungrammaticalityof (8).
Thus,weproposethesyntacticstructurein Fig.4 for (2a).

(8)
�
Wheredid youmeeta friend from?

�����
 ����� S’ �
WH

whom

� ����������
NP

John

S’

WH < S

does S

NP< VP

V NP

like =

��������
 ��������
S�
NP

Det N �
a

� ����������������� ���� �
picture PP

of NP�
Figure4: SyntacticAnalysisfor (2a).

As notedabove,thenon-localattachmentof themulti-
componentsetfor a doesnotaffect thecomplexity of the
grammarsignificantly, asoneof thecomponentsis a de-
generatetree.If onewishesto avoid suchanattachment,
thederivationcanalternatively beseenasa caseof flexi-
ble composition:picture of first attachesflexibly to the
lower componentof a, and the derived a-tree set then
attachesto the treeof like. The lexicon entriesand the
semanticcompositionthat we give below doesnot de-
pendon one particularof thesesyntacticanalysis,that
may thereforebe chosenfor independent,syntacticrea-
sons.

A completelydifferentanalysisof long extractionsin
TAG thathasbeenproposedin (Kahaneet al., 2000)and
furtherpursuedfor semanticsin (Kallmeyer,2003)is the
possibility to start from the wh-word, to adjoin first all
materialinsidetheNPthatembedsthewh-wordandthen
adjointhemainverbof thequestion.Thisworksfor pied-
pipingandfor strandingcases.However, it meansdepart-
ing considerablyfrom TAG standardanalysesfor ques-
tions and relative clauses,a stepthat we would like to
avoid. Theanalyseswe proposein this paperareconsis-
tentwith theproposalsmadeso far for simplequestions
andrelativeclauses(seeKroch,1987;Abeillé,2002).

The semanticderivation of (2a) correspondingto the
proposedsyntacticanalysisis givenin Fig. 5. In thissen-
tence,thesecondparticipantin theverbalsemanticsdoes
not comedirectly from the wh-phrase.In contrast,it is
providedby theembeddedPP. We thereforeproposethe
following in order to allow interveningPPs: insteadof
passingthe argumentvariablefrom the wh-NP directly
to theverb,it is passedto thebottomfeatureof theempty
NP(nodeaddressnp2).Theverb’sargumentcomesfrom

thetop featurestructureof thatNP. Soif nothingadjoins
to the emptyNP, the wh-NP variablewill be passedup
astheargument.In ourcase,however, anotherindividual
variableintervenesandbecomestheargument.

The featureidentitiesfrom the semanticcomputation
of (2a)are O K J , �B� KNP5	 , 	 KcM , � Kcd , � \ K \ K R ,� L K 	 KeM , �1f KgP�� , L Kih , � J Kih , � O KiP L . This
leadsto thesemanticrepresentation(9):

(9)

John �5j � , ����� like �5j  lkm 1>n� , �I"o�pADCqE >HG :  EHA G 8 ,� 6 �
some �54  r  ��s � , � 7 � person �54 � ,� 8 � a � k_ �t"  � 6 � , � 9 � picture of � km 4 � ,: # ���  8 # �," , 8 # � 6 , r # � 7  ��s # �," ,: # � 8 , �t" # � 9 , � 6 # � �

There is one single disambiguation,namely J `P S , f ` P \ , �lu ` P5	 , R ` P J , �1	 ` P L ,� S ` P � which leadsto v �aw some V$MaZ person V$MXWbZ � Kv �_w a Vth�Z picture of Vth�Z!M�WbZ like V�dXZ!hxZ � W1W!W for thequestion.

5 Pied-Piping

With the sameelementarytreesand the samesemantic
representations,pied-pipingconstructionsas(1a)canbe
analysed.A derivationof that sentencecanbe found in
Fig. 6.3

Theonly additionalmodificationwe have to make is a
distinctionbetweentheminimalnuclearscopeof non-wh
quantifiersand the minimal nuclearscopeof wh quan-
tifiers, sincein (1a), both have to comefrom the same
node(thewh-NP).4 We continueto usethe featureP for
the first, andintroducea featureWP for the second.Of
course,this doesnot affect theanalysisin Fig. 5. These-
manticderivationin Fig. 6 proceedsexactlyparallel,with
all thesamefeatureidentitiesasin Fig. 5, exceptfor the
valueof 	 : here, 	 = h . But 	 doesnot occur in the
semanticrepresentations,only in the featurestructures.
Therefore,theresultingsemanticsis thesame.

6 Genitives

Anotherpossibletypeof pied-pipingsentencesarethose
with possessive pre-nominalmodifiers,suchas(1b), or
(10):

(10) Whosehousedid you see?

(Han, 2002) discussesa TAG analysis of relative
clauseswith complex wh-phrasessuchas(11)and(12):

(11) theproblemwhosesolutionis difficult

(12) theproblemwhosesolution’sproof is difficult
3We left out theattachmentsof thescopepartsandof John

in Fig. 6 becausethey proceedexactly asin Fig. 5.
4This distinction is also necessaryfor in-situ wh-words

wherethe minimal nuclearscopeof the wh-quantifiercomes
from thelower NP, seeRomeroet al. (2004).
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Figure6: Abridgedsemanticderivationfor (1a).

Thestructureof theserelative clausesis almostidentical
to our questionsabove,sosolutionsto therelativeclause
problemwill carryover to thedirectquestions.

For thesyntax,Hanproposes,similar to our treatment
for a picture of above, a different lexical entry for the
genitive ’s (andse respectively), a predicative auxiliary
treewherethe outerNP adjoinsinto the embeddedwh-
phrase.

In ordertogetthecorrectvariablebindings,Hanmakes
useof acomplex L INK predicate,whicheffectively intro-
ducesaseparatesemanticvariablefor theitemthatis pos-
sessed,andtheonethatis thepossessor(thewh-phrase),
which both have to be unified with variablesin the em-
beddingphrase.Theuseof underspecifiedfeaturestruc-

turesallowsfor asimplerrepresentation.Theelementary
treefor ’s is givenin Fig. 7, alongwith anappropriatese-
mantics.5 Thesemanticfeaturestructureensuresthat the�������������
 �������������

NP{
NP| * N }

N

’s

N <
� r �

the � km �t"  poss � �l�  ?k^�l�%&&&&&&&&&&'
NP{ ( B ) I z

* +
NP|~( T ) I �l� * +
N

%&' T ) I z
*

B ) P �t" * 0 32
0 33333333332

� ��������������������������
Figure7: Lexical entryfor ’s.

correctindividual variable[ I z ] is handedupwardsin
thetree,sothatpredicatessuchasseewill only have ac-
cessto this variable.On theotherhand,thewh-phrase’s
own variableis passeddownwards(which becomesrele-
vant if the genitive adjoinsinto a real phraselike which
boy— thenthewh’s variableis neededfor thepredicate
boy).

Thesyntacticderivationof anembeddedgenitiveques-
tion like (10)usingthis lexical entryis foundin Fig. 8.

S’* S’� � ����
NP���z< S� � ����

NP
s < VP� ���

V

see

NP
�=

NP

whoNP{� ���
NP| * N }� ���

N

se

N < � � �
house

S� ���
V

did

S*

NP

N

you

Figure8: Syntaxof (10)Whosehousedid yousee?

Theelementarytreefor thepossessiveadjoinsinto the
root nodeof the initial tree for who. It hasno scopal
effects,so the scopalpropertiesof simplequestionsare
kept. In particular, the questionword continuesto have
thewidestpossiblescope.

Fig. 9 shows the semanticderivation of the sentence
(10). The featureidentitiesfrom the semanticcomputa-
tion are � K R , \ Keh�K � S , 	 K J , L KeP�� , S K�M ,�lu K�P 	 , �B� K�d , �?	 K�P L . This leadsto the semantic
representation(13):

5We modified the semanticrepresentationHan gave to fit
with our formalismandnotation.
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(13)

you �54 � , � � � see �54  lk_ 1>n� , EHA G �  � " �!ADCFE >HG "  � 6 �
some �5j  ;  r � , � 7 � person �5j � ,� 8 � the � km � 9  poss �5j  /k^�l� , � 9 � house � k^� ," # � �  � # � "

,
� # � 6

,
; # � 7  r # � "

Thereis onedisambiguation,namely � ` P5S , O `P \ , f ` P 	 , 	 ` P � . This results in the semanticsv �aw some V�d�Z person V$d�WbZ � KNv �mw see V$M[Z!hxZ � W�� you V$M�W��
the V�hxZ house V�h�WbZ poss V�dXZ!h�W1W1W for question(10).

7 Conclusion

This paperproposesan analysisfor strandingandpied-
piping of wh-phrasesthat takesinto accountsyntaxand
semanticsof theseconstructions.As mentionedabove,
most previous approachesdealingwith thesedatahave
only consideredsyntacticaspects.They areproblematic
sincethey violatetheConditiononElementaryTreeMin-
imality (CETM). Thoseanalysesthat respecttheCETM
andthat leadto a suitablesemanticsdepartconsiderably
from standardLTAG analysesfor questionsandrelative
clauses. This is not the casefor the analysisproposed
here: we have shown that we obtain syntacticanalyses
thatextendthestandardanalysesandthatallow to derive
adequatesemanticrepresentationsfor the datain ques-
tion. The proposedanalysisis suchthat strandingand
pied-pipingconstructionsaretreatedin parallel,i.e.,with
thesameelementarytrees.
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Figure5: SemanticDerivationof (2a)WhomdoesJohnlike a pictureof?
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Abstract

Tree Adjoining Grammars (TAG) are known
not to be powerful enough to deal with scram-
bling in free word order languages. The TAG-
variants proposed so far in order to account for
scrambling are not entirely satisfying. There-
fore, an alternative extension of TAG is intro-
duced based on the notion of node sharing.
Considering data from German and Korean,
it is shown that this TAG-extension can ade-
quately analyse scrambling data, also in com-
bination with extraposition and topicalization.

1 Introduction

1.1 LTAG and scrambling

Lexicalized Tree Adjoining Grammars (LTAG, (Joshi and
Schabes, 1997)) is a tree-rewriting formalism. An LTAG
consists of a finite set of trees (elementary trees) associ-
ated with lexical items. Larger trees are derived by sub-
stitution (replacing a leaf with a new tree) and adjunction
(replacing an internal node with a new tree). LTAG el-
ementary trees represent extended projections of lexical
items and encapsulate all syntactic arguments of the lex-
ical anchor. They are minimal in the sense that only the
arguments of the anchor are encapsulated, all recursion is
factored away.

Roughly, scrambling is the permutation of elements
(arguments and adjuncts) of a sentence (we use the term
scrambling in a purely descriptive sense without imply-
ing any theory of movement). A special case is long-
distance scrambling where arguments or adjuncts of an
embedded infinitive are ‘moved’ out of the embedded VP.
This occurs for instance in languages such as German,
Hindi, Japanese and Korean. These languages are there-
fore often said to have a free word order. Consider for ex-
ample the German sentence (1). In (1), the accusative NP

es is an argument of the embedded infinitive zu reparieren
but it precedes der Mechaniker, the subject of the main
verb verspricht and it is not part of the embedded VP. It
has been argued that in German there is no bound on the
number of scrambled elements and no bound on the depth
of scrambling (i.e., in terms of movement, the number of
VP borders crossed by the moved element). (See for ex-
ample (Rambow, 1994a; Meurers, 2000; Müller, 2002)
for descriptions of scrambling data.)

(1) ... dass [es]1 der Mechaniker [t1 zu reparieren] verspricht
... that it the mechanic to repair promises
‘... that the mechanic promises to repair it’

As shown in (Becker et al., 1991), TAG are not power-
ful enough to describe scrambling in German in an ad-
equate way. By this we mean that a TAG analysis of
scrambling with the correct predicate-argument structure
is not possible, i.e., an analysis with each argument at-
taching to the verb it depends on.

Let us consider the analysis of (1) in order to get an
idea of why scrambling poses a problem for TAG. If we
leave aside the complementizer dass, elementary trees for
verspricht and reparieren might look as shown in Fig. 1.
In the derivation, the verspricht-tree adjoins to the root
of the reparieren-tree and the NP der Mechaniker is sub-
stituted for the subject node of verspricht.1 This leads to
the third tree in Fig. 1. When adding es, there is a prob-
lem: it should be added to reparieren since it is one of
its arguments. But at the same time, it should precede
Mechaniker, i.e., it must be adjoined either to the root or
to the NPnom node in the derived tree. The root node
belongs to verspricht and the NPnom node belongs to
Mechaniker. Consequently, an adjunction to one of them
would not give the desired predicate-argument structure.
If it was only for (1), one could add a tree to the grammar

1The fact that der Mechaniker is at the same time logical
subject of reparieren is accounted for in the semantics, see for
example (Gardent and Kallmeyer, 2003).
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NPnom

der M.

VP

NPnom VP∗ verspricht

VP

NPacc zu reparieren

derived tree:
VP

NPnom VP verspricht

der M. NPacc zu reparieren
Figure 1: TAG analysis of (1) dass [es]1 der Mechaniker [t1 zu reparieren] verspricht

for reparieren with a scrambled NP that allows adjunc-
tion of verspricht between the NP and the verb. But as
soon as there are several scrambled elements that are ar-
guments of different verbs, this does not work any longer.
In general, it has been shown (Joshi et al., 2000) that
adopting specific elementary trees it is possible to deal
with a part of the difficult data: TAG can describe scram-
bling up to depth 2 (two crossed VP borders). But this
is not sufficient. Even though examples of scrambling of
depth > 2 are rare, they can occur (see Kulick, 2000).

1.2 TAG variants proposed for scrambling

The problem of long-distance scrambling and TAG is
the fact that the trees representing the syntax of scram-
bled German subordinate clauses do not have the simple
nested structure that ordinary TAG generates. In TAG,
according to the Condition on Elementary Tree Minimal-
ity (CETM, (Frank, 1992)) (positions for) all of the ar-
guments of the lexical anchor of an elementary tree are
included in that tree. But in the scrambled tree the ar-
guments of several verbs are interleaved freely. All TAG
extensions that have been proposed to accommodate this
interleaving involve factoring the elementary structures
into multiple components and inserting these components
at multiple positions in the course of the derivation.

One of the first proposals made was an analysis of Ger-
man scrambling data using non-local MCTAG with addi-
tional dominance constraints (Becker et al., 1991). How-
ever, the formal properties of non-local MCTAG are not
well understood and it is assumed that the formalism is
not polynomially parsable. Therefore this approach is no
longer pursued but it has influenced the different subse-
quent proposals.

An alternative formalism for scrambling is V-TAG
(Rambow, 1994a; Rambow, 1994b; Rambow and Lee,
1994), a formalism that has nicer formal properties than
non-local MCTAG. V-TAG also use multicomponent sets
(so-called vectors) for scrambled elements, in this it is
a variant of MCTAG. Additionally, there are dominance
links between the trees of one vector. In contrast to MC-
TAG, the trees of a vector are not required to be added
simultaneously. The lexicalized V-TAGs that are of in-
terest for natural languages are polynomially parsable.
Even though the formalism does not pose the problems
of non-local MCTAG in terms of parsing complexity, it
is still a non-local formalism in the sense that, as long
as the dominance links are respected, arbitrary nodes

can be chosen to attach the single components of a vec-
tor. This makes the formalism harder to understand than
local TAG-variants since one needs a more gobal pic-
ture of what is going on in a derivation. Furthermore,
in order to formulate certain locality restrictions (e.g.,
for wh-movement and also for scrambling), one needs
an additional means to put constraints on what can in-
terleave with the different trees of a vector or in other
words constraints on how far a dominance link can be
stretched. V-TAG allows to put integrity constraints on
certain nodes that disallow these nodes to occur between
two trees linked by a dominance link. This has the effect
that these nodes act as barriers. This explicit marking of
barriers is somewhat against the original appealing TAG
idea that such constraints result from the CETM which
imposes the position of the moved element and the verb
it depends on to be in the same elementary structure, and
from the further possibilities to combine this structure.
In other words, in local formalisms with an extended do-
main of locality such as TAG or tree-local and set-local
MCTAG such constraints result from the form of the ele-
mentary structures and the locality of the derivation.

D-tree substitution grammars (DSG, Rambow, Vijay-
Shanker, and Weir, 2001) are another TAG-variant one
could use for scrambling. DSG are a description-based
formalism, i.e., the objects a DSG deals with are tree
descriptions. A problem with DSG is that the expres-
sive power of the formalism is probably too limited to
deal with all natural language phenomena: according to
(Rambow et al., 2001) it ‘does not appear to be possi-
ble for DSG to generate the copy language”. This means
that the formalism is probably not able to describe cross-
serial dependencies in Swiss German. Furthermore, DSG
is non-local and therefore, as in the case of V-TAG, addi-
tional constraints (so-called path constraints) have to be
put on material interleaving with the different parts of an
elementary structure.

Another TAG-variant proposed in order to deal with
scrambling are Segmented Tree Adjoining Grammars
(SegTAG, Kulick, 2000). SegTAG can generate the copy
language and therefore describe cross-serial dependen-
cies. But the formalism uses a rather complex opera-
tion on trees, segmented adjunction, that consists partly
of a standard TAG adjunction and partly of a kind of
tree merging or tree unification. In this operation, two
different things get mixed up, the more or less resource-
sensitive adjoining operation of standard TAG where sub-
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trees cannot be identified,2 and the completely different
unification operation. Furthermore, the formal properties
of SegTAG are not clear. Kulick suggests that SegTAGs
are probably in the class of LCFRS but there is no actual
proof of this. However, if SegTAG is in LCFRS, the gen-
erative power of the formalism is probably too limited to
deal with scrambling in a general way. In order to treat
scrambling up to a certain depth, Kulick therefore allows
certain extensions of SegTAG.

All these TAG variants are interesting with respect to
scrambling and they give a lot of insight into what kind
of structures are needed for scrambling. But, as explained
above, none of them is entirely satisfying. The most con-
vincing one is V-TAG since this formalism can deal with
scrambling, it is polynomially parsable and the set of lan-
guages it generates contains the set TAL of all tree adjoin-
ing languages (in particular the copy language). But, as
already mentioned, V-TAG has the inconvenient of be-
ing a non-local formalism. For the reasons explained
above, it is desireable to find a local TAG extension for
scrambling (as opposed to the non-locality of derivations
in V-TAG, DSG and non-local MCTAG) such that local-
ity constraints for movements follow only from the form
of the elementary structures and from the local character
of derivations. This paper proposes a local TAG-variant
that can deal with scrambling, at least with an arbitrarily
large set of scrambling phenomena, that is polynomially
parsable and that properly extends TAG in the sense that
TAL is a proper subset of the languages it generates.

In section 2, tree-local MC-TAG with shared nodes
(SN-MCTAG) and in particular restricted SN-MCTAG
(RSN-MCTAG) are introduced. Section 3 to 5 show the
analyses of different word order variations using this for-
malism, namely scrambling, extraposition and topicaliza-
tion, considering data from German and Korean.

2 Tree-local MCTAG with shared nodes
(SN-MCTAG)

To illustrate the idea of shared nodes, consider again ex-
ample (1). In standard TAG, nodes to which new ele-
mentary trees are adjoined or substituted disappear, i.e.,
they are replaced by the new elementary tree. E.g., after
the derivation steps shown in Fig. 1, the root node of the
reparieren tree does not exist any longer. It is replaced by
the verspricht tree and its daughters have become daugh-
ters of the foot node of the verspricht tree. I.e., the root
node of the derived tree is considered being part of only
the verspricht tree. Therefore, an adjunction at that node
is an adjunction at the verspricht tree. However, this stan-

2More precisely, only the root of the new elementary tree
and eventually (i.e., in case of an adjunction) the foot node get
identified with the node the new tree attaches to. But there is no
unification of whole subtrees.

dard TAG view is not completely justified: in the derived
tree, the root node and the lower VP node might as well
be considered as belonging to reparieren since they are
results of identifying the root node of reparieren with the
root and the foot node of verspricht.3 Therefore, we pro-
pose that the two nodes in question belong to both, ver-
spricht and reparieren. In other words, these nodes are
shared by the two elementary trees. Consequently, they
can be used to add new elementary trees to verspricht and
(in contrast to standard TAG) also to reparieren.

We use a multicomponent TAG (MCTAG, Joshi, 1987;
Weir, 1988). This means that the elements of the gram-
mar are sets of elementary trees. In each derivation step,
one of these sets is chosen and the trees in this set are
added simultaneously (by adjunction or substitution) to
different nodes in the already derived tree. We assume
tree-locality, i.e., the nodes to which the trees of such a
set are added must all belong to the same elementary tree.
Standard tree-local MCTAGs are strongly equivalent to
TAG but they allow to generate a richer set of derivation
structures. In combination with shared nodes, tree-local
multicomponent derivation extends the weak generative
power of the grammar.

Let us go back to (1). Assume the tree set on the left
of Fig. 2 for es. Adopting the idea of shared nodes, this
tree set can be added to reparieren using the root of the
already derived tree for adjunction of the first tree and
the NPacc node for substitution of the second tree. The
operation is tree-local since both nodes are part of the
reparieren tree.

In general, the notion of shared nodes means the fol-
lowing: When substituting an elementary tree α into an
elementary tree γ, in the resulting tree, the root node of
the subtree α is considered being part of α and of γ.
When adjoining an elementary β at a node that is part of
the elementary trees γ1, . . . , γn, then in the resulting tree,
the root and foot node of β are both considered being part
of γ1, . . . , γn and β. Consequently, if an elementary γ ′ is
added to an elementary γ and if there is then a sequence
of adjunctions at root or foot nodes starting from γ ′, then
each of these adjunctions can be considered as an adjunc-
tion at γ since it takes place at a node shared by γ, γ ′ and
all the subsequently adjoined trees. In Fig. 2 for exam-
ple the es-tree is adjoined to the root of a tree that was
adjoined to reparieren. Therefore this adjunction can be

3Actually, in a Feature-Structure Based TAG (FTAG, (Vijay-
Shanker and Joshi, 1988)), the top feature structure of the root
of the derived tree is the unification of the top of the root of
verspricht and the top of the root of reparieren. The bottom
feature structure of the lower VP node is the unification of the
bottom of the foot of verspricht and the bottom of the root of
reparieren. In this sense, the root of the reparieren tree gets
split into two parts. The upper part merges with the root node
of the verspricht tree and the lower part merges with the foot
node of the verspricht tree.
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Figure 2: Derivation of (1) using shared nodes

considered being an adjunction at reparieren. An adjunc-
tion at a node where other trees already have been added
(e.g., this adjunction of es to the root of reparieren) is
called a secondary adjunction while a first adjunction at
a node is called a primary adjunction.

Concerning formal properties, SN-MCTAG is hard to
compare to other local TAG-related formalisms since ar-
bitrarily many trees can be added by secondary adjunc-
tion to a single elementary tree. Therefore, we define a
restricted version, restricted SN-MCTAG (RSN-MCTAG)
that limits the number of secondary adjunctions to an el-
ementary tree by allowing secondary adjunction only in
combination with at least one simultaneous primary ad-
junction or substitution. E.g., in Fig. 2, es is secondarily
adjoined to reparieren while the second element of the
tree set is primarily added (substituted) to reparieren.

Obviously, all tree adjoining languages can be gener-
ated by RSN-MCTAGs since a TAG is an MCTAG with
unary multicomponent sets. It can be shown that for each
RSN-MCTAG of a specific type, an equivalent simple
Range Concatenation Grammars (RCG, (Boullier, 1998;
Boullier, 1999)) and therefore an equivalent LCFRSs
(linear context-free rewriting systems, (Weir, 1988)) can
be constructed. LCFRSs are mildly context-sensitive and
in particular polynomially parsable and therefore, this
also holds for these specific RSN-MCTAGs. For a for-
mal definition of SN-MCTAG and RSN-MCTAG and a
sketch of the proof of the mildly context-sensitivity see
(Kallmeyer, 2004). The additional restriction imposed
on RSN-MCTAG in order to obtain the equivalence to
LCFRS puts a limit on the complexity of the scrambling
data one can analyze. This limit however is variable in
the sense that an arbitrarily large limit can be chosen.
Consequently, based on empirical studies, the limit can
be chosen such that all scrambling data are covered that
are assumed to occur in real texts. In this respect, RSN-
MCTAG differs crucially from TAG where the limit is
fixed (scrambling up to depth 2 can be described and
nothing more). In this sense one can say that RSN-
MCTAG can analyze scrambling in general since it can
anlyze any arbitrarily large finite set of scrambling data.

There are mainly two crucial differences between SN-
MCTAG and V-TAG: firstly, in V-TAG the adjunctions of
auxiliary trees from the same set are not required to be
simutaneously. In this respect, V-TAG differs from stan-
dard MCTAG in general. Secondly, V-TAG is non-local

in the sense of non-local MCTAG while RSN-MCTAG
is local, even though the locality is not based on the par-
ent relation in the TAG derivation tree as it is the case in
standard local MCTAG. As a consequence of the local-
ity, in contrast to other TAG variants for scrambling, we
do not need dominance links in RSN-MCTAG. The local-
ity condition put on the derivation sufficiently constrains
the possibilities for attaching the trees from elementary
tree sets: different trees from a tree set attach to different
nodes of the same elemenary tree, so the dominance re-
lations between these different nodes are crucial for the
dominance relation between the different trees from the
tree set. Because of this dominance links are not nec-
essary. This is different of course for non-local TAG-
variants such as V-TAG or DSG where one can in prin-
ciple attach the different components of an elementary
structure at arbitrary nodes in the derived tree.

3 Scrambling

In many SOV languages, such as German, Hindi,
Japanese and Korean, constituents (argument or adjunct)
display a larger freedom in term of ordering in clauses.
This phenomenon is called scrambling. (See (Uszkor-
eit, 1987) for a description of word order in German and
(Lee, 1993) for Korean.) The constituents of the lower
clause can even occur in the upper clause, (so-called
long distance scrambling). E.g., the arguments es and
jadoncha-lul of the embedded verb move into the upper
clause in German (1), repeated as (2)a., and in the Korean
sentence (2)b.

(2) a. ... dass es1 der Mechaniker [t1 zu reparieren ] ver-
spricht

b. jadoncha-lul1 keu-ka [t1 surihakess-tako ]
the caracc henom [t1 repair-to ]

yaksokhaessta
promises
‘He promises to repair the car’

Generally, in both languages, it is assumed that there
is no bound on the number of elements that can scram-
ble in one sentence, and there is no bound on the distance
over which each element can scramble. In the follow-
ing we will show how RSN-MCTAG allows to deal with
long distance scrambling. Elementary trees for word or-
der variations of (3) are shown in Fig. 3. We propose
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Figure 3: Elementary trees for word order variations
of (3) ... dass er dem Kunden [[das Auto zu reparieren] zu
versuchen] verspricht

single trees for non-scrambled elements, and tree sets for
scrambled elements.

(3) ... dass er dem Kunden [[das Auto zu reparieren]
... that henom the customerdat the caracc to repair
zu versuchen] verspricht
to try promises
‘... that he promises the customer to try to repair the car’

(4) ... dass er das Auto1 dem Kunden [[t1 zu reparieren] zu
versuchen] verspricht

Consider (4) where the most deeply embedded NPacc

das Auto is scrambled into the upper clause. For das
Auto, the tree set is used. Further, we also use tree sets
for the NPdat dem Kunden which intervenes between the
scrambled argument and its clause, and for the VP clause
reparieren of witch argument is scrambled out over a
clause of depth ≥ 2. For the non-scrambled NPnom er,
and for the non-scrambled VP versuchen, single trees are
used. Fig. 4 shows the different derivation steps for (4).
First, verspricht and versuchen are combined by substitu-
tion. In the resulting derived tree (on the right on top of
the figure), the bold VP node is now shared by verspricht
and versuchen. Then the auxiliary tree in the tree set for
reparieren adjoins to the shared node. This is a primary
adjunction at versuchen. The initial tree is substituted
for the VP leaf of versuchen. The former root node of
the reparieren auxiliary tree, i.e., the bold VP node in
the tree in the middle of the bottom of the figure, is now
shared by verspricht, versuchen and reparieren. The next
secondary adjunctions can occur at this new shared node:
dem Kunden is added as sketched in the figure, and then

das Auto is added in the same way. The tree for er is
added into the substitution slot in the verspricht tree.

Note that a scrambled elements always adjoins to a VP
node and the scrambled element is to the left of the foot
node. Therefore it precedes everything that is below or
on the right of the VP node to which it adjoins. Conse-
quently, given the form of the verbal elementary trees in
Fig. 3 where the verb is always below or right of all VP
nodes allowing adjunction, the order x v for an x being a
nominal or a verbal argument of v is always respected.

Since all scrambled elements attach to a VP node in
the elementary tree of the verb they depend on, they can-
not attach to the VP of a higher finite verb that embeds
the sentence in which the scrambling occurs. Therefore,
this analysis correctly predicts that scrambling can never
proceed out of tensed clauses. In other words, a barrier
effect is obtained without posing any explicit barrier as it
is done in V-TAG. Instead, the locality of scrambling is
a consequence of the form of the elementary trees and of
the locality of the derivations.

In contrast to German, Korean allows scrambling out
of a tensed clause. For example, in (5) the argument
jadoncha-lul is scrambled out of a tensed clause. This
difference can be captured by using in Korean the node
label S instead of VP for the root and the foot node in the
auxiliary trees for scrambling.4

(5) jadoncha-lul1 keu-ka [ kokaek-i t1

the caracc henom [ the customernom t1

kuiphaess-tako ] malhaessta.
buy-that ] said
‘He said that the customer bought the car’

4 Extraposition

In German and Korean, clausal arguments can optionally
appear behind the finite verb. This is called extraposi-
tion. E.g., in (6), the reparieren VP occurs behind the
finite verb verspricht. The same goes for the Korean ex-
traposition (7).

(6) ... dass ernom dem Kundendat t1 verspricht, [das Autoacc

zu reparieren]1
‘... that he promises the customer to repair the car’

(7) keu-kanom kokaek-ekeydat t1 yaksokhassta, [jadoncha-
lulacc surihakess -tako]1
‘He promises the customer to repair the car’

4One aspect we did not consider in this paper but that defi-
nitely needs to be spelled out is the fact that in both languages,
German and Korean, not all verbs allow scrambling to the same
degree. In German, this is related to the difference between
obligatorily and optionally coherent verbs (see (Meurers, 2000;
Müller, 2002)). These facts probably can be modelled using
specific features that control the scrambling possibilities of a
verb.
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Figure 4: Derivation for (4) ... dass er das Auto dem Kunden zu reparieren zu versuchen verspricht



































VP

VP∗NA NPacc V

zu rep.

VPNA

ε



































VP

NPnom NPdat VP V

verspricht

;

VP

VP∗NA NPacc V

NPnom NPdat VPNA zu reparierenV

ε verspricht
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Extraposition is doubly unbounded, as it is the case for
scrambling. In order to analyze extraposition, we pro-
pose tree sets as the one for reparieren in Fig. 5. They re-
semble to those for scrambling except that the foot node
is on the left because the extraposed material goes to the
right of the finite verb. For the NP arguments in (6), we
use the single trees shown in Fig. 3. The derivation for
(6) is as sketched in Fig. 5.

The following differences between German and Ko-
rean are observed: both languages allow extraposition of
complete VPs. Furthermore, in German, infinitives with-
out their arguments can be extraposed (so-called third
construction, see (8)a), which is not possible in Korean
(see (9)a). In Korean however, arguments of embedded
verbs can be extraposed while leaving their verb behind
(see (9)b), which is not possible in German (see (8)b).5

(8) a. ... dass er es t1 verspricht, [zu reparieren]1

b. ∗... dass er [t1 zu reparieren ] verspricht, [es]1

(9) a. ∗keu-kanom jadoncha-lulacc t1 yaksokhassta,
[surihakess-tako]1

b. keu-kanom [t1 surihakess-tako] yaksokhassta,
[jadoncha-lulacc]1

5For this reason, Korean extraposition is often called right-
forward scrambling.

To account for the difference between (8a) and (9a), we
disallow the adjunction of scrambled elements at the root
nodes of Korean auxiliary extraposition trees.6 For (9b),
in Korean, we propose additional tree sets for extraposed
NPs. They are similar to the tree sets for scrambled NPs
in Fig. 3, except that the foot node is on the left. Such
tree sets do not exist in German.

5 Topicalization

Korean topicalization is realized with the topic marker
-nun(-un). The topicalized constituent has to appear in
the beginning of clauses, e.g., jadoncha-nun in (10a.):
an element marked by -nun(-un) can also appear in sen-
tence medial position e.g., jadoncha-nun in (10b.). It is
perceived, in Korean, that an element with -nun(-un) in
sentence initial position receives the theme reading, i.e.,
topicalization, and the counterpart in sentence medial po-
sition the contrastive reading. To describe topicalization
movement, a topic argument may be inserted into the ver-
bal projection tree at [Spec, CP] (see, e.g., (Suh, 2002)).

6In German, even arguments of embedded VPs can be left
behind as in ... dass er [es]1 verspricht, [[ t1 zu reparieren] zu
versuchen]. For such cases, we propose an additional VP node
on the spine of extraposed infinitives where deeper embedded
infinitives can be added. For reason of space, we will not go
into the details here.
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(10) a. jadoncha-nun1 keu-ka [t1 kuiphakess-tako]
the cartop henom [t1 buy-to]

yaksokhassta.
promises
‘As for the car, he promises to buy (it)’

b. keu-ka jadoncha-nun kuiphakess-tako yaksokhas-
sta.
‘He promises to buy the car’

German topicalization is more strict. German exhibits
the verb second effect (V2), i.e., the finite verb (main verb
or auxiliary) occupies the second position in the clause.
This divides the clause into two parts: the part before the
finite verb, the Vorfeld (VF), and the part between the
finite verb and non-finite verb, the Mittlefeld (MF). The
VF must contain exactly one constituent. This constituent
is considered having moved into the VF. This movement
is called topicalization. E.g., in (11) the auxiliary verb
hat appears in second position, the NPacc das Buch that
moved from the MF into the first position is topicalized.

(11) das Buch2 hat ihm1 niemand [t1 t2 zu geben ] versucht.
the book has him nobody [t1 t2 to give ] tried.
‘Nobody has tried to give him the book.’

In both languages, topicalization concerns exactly one
element, and the element has to appear in the beginning
of the clause, while scrambling and extraposition can oc-
cur for more than one element. I.e., no operation to add
constituents in front of topicalized element is accepted.
Furthermore, in German matrix clauses, topicalization is
obligatory. We capture these restrictions by certain fea-
tures. The last step in a derivation for a sentence ex-
hibiting topicalization is the adjunction of the topicalized
constituent. The feature of the final derived root node be-
comes [ CP

CP ]. It prevents adding other constituents at the

root.7

Topicalization and scrambling can occur simultane-
ously as in (11) where ihm is long-distance scrambled and
das Buch is long-distance topicalized. Fig. 6 shows the
derivation for (11): Starting with the initial tree for ver-
sucht, the auxiliary tree for geben is adjoined at the root
node with top category CP and bottom category VP (we
assume here feature structures as labels with different top
and bottom features), and simultaneously the initial VP
tree is added into the lower VP. After this, the [ CP

VP ] root
node is shared by versucht and geben. Then, niemand and

7We also pursued an alternative analysis, namely putting the
slot for the topicalized element (a substitution node) and the
verb it depends on in the same initial tree. I.e., the topical-
ized element is added by substitution while scrambled or extra-
posed elements are added by adjunction. This is a more obvious
way to capture the restrictions for topicalization. Unfortunately,
this approach does not work with some combinations of topi-
calization and scrambling as for example [es]1 hat er [ t1 zu
reparieren]2 dem Kunden [ t2 zu versuchen] versprochen.

ihm are subsequently added. This gives the tree on the
left of the bottom of the figure. Next, hat is adjoined at
the root which leads to a [ CP

C’ ] root node shared (among
others) by geben and versucht. Finally, the topicalized
element is adjoined to the root node.

For topicalized elements in Korean, we propose the
same kind of tree set as for German topicalized elements,
except that the category of the foot node is unspecified.
This does not fix the position of the topicalized element
between CP and C’(as in German).

6 Conclusion

Since TAG are not powerful enough to describe scram-
bling data in free word order languages, alternative for-
malisms are needed. The proposals made so far in the
litereature are not entirely satisfying. Therefore, we de-
veloped a new TAG extension, restricted MCTAG with
shared nodes (RSN-MCTAG). The basic idea is that, after
having performed an adjunction or substitution at some
node, this node does not disappear (as in standard TAG)
but instead, in the resulting derived tree, the node is
shared between the old tree and the newly added tree.
Consequently, further adjunctions at that node can be
considered being adjunctions at either of the trees. In
combination with tree-local multicomponent derivation,
this modification of the TAG derivation gives sufficient
additional power to analyse the difficult scrambling data.

Considering data from German and Korean, we
showed that RSN-MCTAG can adequately analyse
scrambling data, also in combination with extraposition
and topicalization. The analyses proposed in the paper
treat long-distance scrambling, long-distance extraposi-
tion and long-distance topicalization and they take into
account the differences German and Korean exhibit with
respect to these phenomena.
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Abstract

Several grammars have been proposed for rep-
resenting RNA secondary structure including
pseudoknots. In this paper, we introduce
subclasses of multiple context-free grammars
which are weakly equivalent to these grammars
for RNA, and clarify the generative power of
these grammars as well as closure property.

1 Introduction

Much attention has been paid to RNA secondary struc-
ture prediction techniques based on context-free grammar
(cfg) since cfg can represent stem-loop structure (Fig-
ure 1 (a)) by its derivation tree and recognition (orsec-
ondary structure predictionin biological words) can be
performed inO(n3) time wheren is the length of an in-
put sequence (primary structure). Especially, techniques
based on CKY (Cocke-Kasami-Younger) algorithm have
been widely investigated (Durbin et al., 1998).Pseu-
doknot(Figure 1 (b)) is one of the typical substructures
found in an RNA secondary structure. An alternative rep-
resentation of a pseudoknot is arc depiction in which arcs
cross (see Figure 2). It has been recognized that pseu-
doknots play an important role in RNA functions such
as ribosomal frameshifting and splicing. However, it is
known that cfg cannot represent pseudoknot structure.

In bioinformatics, a few grammars have been proposed
to represent pseudoknots (Uemura et al., 1999; Rivas and
Eddy, 2000) (also see (Condon, 2003)). In the pioneer-
ing paper, Uemura et al. (1999) define two subclasses
of tree adjoining grammar (tag) calledsl-tagandesl-tag,
and argue that esl-tag is appropriate for representing RNA
secondary structure including pseudoknots. Rivas and
Eddy (2000) provide keen observation on representation
of RNA secondary structure by a sequence with a single
“hole” and introduce a new class of grammars for deriv-
ing sequences with hole. These grammars have gener-

ative power stronger than cfg while recognition can be
performed in polynomial time. However, relation among
the generative power of these grammars and/or mildly csg
has not been clarified.

In this paper, we identify grammars for RNA sec-
ondary structure (Uemura et al., 1999; Rivas and Eddy,
2000) as subclasses of multiple context-free grammar
(mcfg) (Kasami et al., 1988a; Seki et al., 1991) and clar-
ify inclusion relation among the classes of languages gen-
erated by these grammars.

The rest of this paper is organized as follows. Section
2 reviews the grammars mentioned above. In section 3,
these grammars are characterized as subclasses of mcfg.
Generative power and closure property of these grammars
are discussed in section 4. Section 5 concludes the paper.

       U    G
    C          A
       G • C
       G • C
       A • U
5’−C        G  C  U  C  A  G−3’ 

(a)Stem-loop

5’−C  A  G  G
           •   •   • 
           U  C  C  A  G  U
                         •   •   •
                         U  C  A  G−3’

C

G

C

(b)Pseudoknot

Figure 1: Example of RNA secondary structure
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c  a  g  g  c  u  g  a  c  c  u  g  c  u  c  a  g

Figure 2: Arc depiction of Figure 1 (b)

2 Preliminaries

2.1 Tree Adjoining Grammar

We will use standard notations for tree adjoining gram-
mar (Joshi and Schabes, 1997). The empty sequence is
denoted byε. For a sequenceα ∈ S∗, let |α| denote the
length ofα.

A tree adjoining grammar(tag) is a 5-tupleG =
(N, T, S, I,A) whereN andT are finite sets of nonter-
minals and terminals respectively,S the start symbol,I
a finite set ofinitial trees (center trees) andA a finite
set ofadjunct trees(auxiliary trees). The path of an ad-
junct tree from the root node to the foot node is called
the backbone. Selective adjoining(SA), null adjoining
(NA) and obligatory adjoining(OA) are defined in the
standard way. For treess andt, if t′ is obtained by ad-
joining s into t, we writet `s t′ (or simply t ` t′). We
write the reflective and transitive closure of` as`∗. We
call t′ a derived tree(or a tree derived fromt) if t `∗ t′

for somet ∈ I ∪A. A noden is inactiveif the constraint
for the node is NA, otherwiseactive. If no active node in
a treet has OA constraint, thent is calledmature. The
tree set of a tagG is defined asT (G) = {t | s `∗ t, s ∈
I andt is mature}. T (G) can be alternatively character-
ized in a bottom up way as follows. Let us define a series
of tree setsT0(G), T1(G), . . . .

(T1) T0(G) = {t ∈ I ∪ A | t is mature}.
(T2) Tn+1(G) = Tn(G) ∪ {t | t0 `s1 t1 `s2 · · · `sk

tk = t, t0 ∈ I ∪ A, si ∈ Tn(G) (1 ≤ i ≤
k), p1, . . . , pk are different addresses oft0, si is
adjoinable tot0 atpi (1 ≤ i ≤ k) andt is mature}.

It is not difficult to show thatT (G) = {t | t ∈
Tn(G) for somen ≥ 0 and yield(t) ∈ T ∗}. This charac-
terization ofT (G) by (T1) and (T2) is frequently used in
proofs in section 3.

The language generated byG is defined asL(G) =
{w | w = yield(t), t ∈ T (G)}, which is called atree
adjoining language(tal). Let TAG denote the class of
tags and TAL denote the class of tals. We use the same
notational convention, i.e., a language generated by an
xxg is called an xxl, the class of xxgs is denoted by XXG
and the class of xxls is denoted by XXL.

We now definesimple linear tag(sl-tag) andextended
simple linear tag(esl-tag) introduced in (Uemura et al.,
1999). LetG = (N, T, S, I,A) be a tag. An elementary
tree issimple linearif it has exactly one active node, and

for an adjunct tree, the active node is on the backbone of
the tree. A tagG is asimple linear tag(sl-tag) if and only
if all elementary trees inG are simple linear. An adjunct
tree issemi-simple linearif it has two active nodes, where
one is on the backbone and the other is elsewhere. A tag
G is anextended simple linear tag(esl-tag) if and only if
all initial trees inG are simple linear and all adjunct trees
in G are either simple linear or semi-simple linear.

Example 1 (Uemura et al., 1999). Let G =
(N, T, S, I,A) be an sl-tag whereN = {S}, T =
{a, c, g, u} and elementary trees inI andA are shown
in Figure 3. In the figure,z ∈ {a, c, g, u}, (x, y) ∈
{(a, u), (u, a), (c, g), (g, c)} and an active node is de-
noted byS∗. Figure 4 shows a derivation of a pseudo-
knot.
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S*
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ε

S*
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S*
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x y

S
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Figure 3: Elementary trees in Example 1
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a  g  a  c  u  u

Figure 4: A derivation of a pseudoknot in Example 1

By definition,

SL-TAL ⊆ ESL-TAL ⊆ TAL . (∗1)

On the inclusion relation among CFL, SL-TAL and ESL-
TAL, the following has been shown in Propositions 1 to
3 of (Uemura et al., 1999):

L2 = {]ak
1bk

1]al
2b

l
2]a

m
3 bm

3 ]an
4 bn

4 ] | k, l, m, n ≥ 1}
∈ CFL \ SL-TAL, (∗2)

{anbncn | n ≥ 0} ∈ SL-TAL \ CFL, (∗3)

CFL⊆ ESL-TAL. (∗4)
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2.2 Multiple Context-Free Grammar

A multiple context-free grammar(mcfg) or linear
context-free rewriting system(Vijay-Shanker et al., 1987)
is a 5-tupleG = (N, T, F, P, S) whereN is a finite set
of nonterminals,T a finite set of terminals,F a finite set
of functions,P a finite set of (production) rules andS the
start symbol. For eachA ∈ N , a positive integer denoted
asdim(A) is given andA derivesdim(A)-tuples of ter-
minal sequences. For the start symbolS, dim(S) = 1.
For eachf ∈ F , positive integersdi (0 ≤ i ≤ k) are
given andf is a total function from(T ∗)d1×· · ·×(T ∗)dk

to (T ∗)d0 which satisfies the following condition (F):

(F) Let xi = (xi1, . . . , xidi) denote theith argument of
f for 1 ≤ i ≤ k. Thehth component of function
value for1 ≤ h ≤ d0, denoted byf [h], is defined as

f [h][x1, . . . , xk] = βh0zh1βh1zh2 · · · zhvh
βhvh

(∗)

whereβhl ∈ T ∗ (0 ≤ l ≤ vh) andzhl ∈ {xij | 1 ≤
i ≤ k, 1 ≤ j ≤ di} (1 ≤ l ≤ vh). The total number
of occurrences ofxij in the right hand sides of (∗)
from h = 1 throughd0 is at most one.

Each rule inP has the form ofA0 → f [A1, . . . , Ak]
whereAi ∈ N (0 ≤ i ≤ k) andf : (T ∗)dim(A1) × · · · ×
(T ∗)dim(Ak) → (T ∗)dim(A0) ∈ F . If k ≥ 1, then the rule
is called anonterminating rule, and if k = 0, then it is
called aterminating rule.

We define the relation
∗⇒ and derivation trees (refer to

Figure 5) recursively by the following (L1) and (L2):

(L1) If A → α ∈ P (α ∈ T ∗), thenA
∗⇒ α and a tree

with the single node labeledA : α is a derivation
tree forα.

(L2) If A → f [A1, . . . , Ak] ∈ P , Ai
∗⇒ αi =

(αi1, . . . , αi dim(Ai)) (1 ≤ i ≤ k) and t1, . . . , tk

are derivation trees forα1, . . . , αk, then A
∗⇒

f [α1, . . . , αk] where f [α1, . . . , αk] denotes the
dim(A)-tuple of terminal sequences obtained from
the right hand sides of (∗) in condition (F) by sub-
stitutingαij (1 ≤ i ≤ k, 1 ≤ j ≤ dim(Ai)) into
xij , and a tree with the root labeledA : f which has
t1, . . . , tk as (immediate) subtrees from left to right
is a derivation tree forf [α1, . . . , αk].

The language generated by an mcfgG is defined as
L(G) = {w ∈ T ∗ | S ∗⇒ w}.

To introduce subclasses of MCFG, we define a few
terminologies. LetG = (N, T, F, P, S) be an arbitrary
mcfg. The dimensionof G is defined asdim(G) =
max{dim(A) | A ∈ N}. For a functionf ∈ F , let
rank(f) denote the number of arguments off . Therank
of G is defined as rank(G) = max{rank(f) | f ∈ F}.

For a functionf : (T ∗)d1 × · · · × (T ∗)dk → (T ∗)d0 ,
let deg(f) = Σk

j=0dj , which is called thedegreeof
f . Finally, let us define the degree ofG asdeg(G) =
max{deg(f) | f ∈ F}. By definition, deg(G) ≤
dim(G)(rank(G) + 1). With these parameters, we de-
fine subclasses of MCFG. An mcfgG with dim(G) ≤ m
and rank(G) ≤ r is called an(m, r)-mcfg. Likewise, an
mcfgG with dim(G) ≤ m is called anm-mcfg.

It has been proved that

TAL ⊂ (2,2)-MCFL⊂ 2-MCFL⊂ MCFL, (∗5)

where the proper inclusion relation from left to right in
(∗5) were given by Lemma 4.15 of (Seki et al., 1991),
Theorem 1 of (Rambow and Satta, 1994) and Lemma 5
of (Kasami et al., 1988a), respectively.

Example 2. Consider the (2,2)-mcfg
G3 = ({S,A}, {a, c, g, u}, F3, P3, S) for generating
RNA sequences, whereP3 andF3 are as follows:

S → J [A],
A → XS1[A,A] | XS2[A,A] | XS3[A,A],
A → BF1[A,A] | BF2[A,A] | BF3[A,A],
A → BPαβ [A]

((α, β) ∈ {(a, u), (u, a), (c, g), (g, c)}),
A → UP 1,L

α [A] | UP 1,R
α [A] | UP 2,L

α [A] | UP 2,R
α [A]

(α ∈ {a, c, g, u}),
A → (ε, ε),
J [(x1, x2)] = x1x2,

XS1[(x11, x12), (x21, x22)] = (x11, x21x12x22),
XS2[(x11, x12), (x21, x22)] = (x11x21, x12x22),
XS3[(x11, x12), (x21, x22)] = (x11x21x12, x22),
BF1[(x11, x12), (x21, x22)] = (x11, x12x21x22),
BF2[(x11, x12), (x21, x22)] = (x11x12, x21x22),
BF3[(x11, x12), (x21, x22)] = (x11x12x21, x22),
BPαβ [(x1, x2)] = (αx1, x2β),

UP 1,L
α [(x1, x2)] = (αx1, x2),

UP 1,R
α [(x1, x2)] = (x1α, x2),

UP 2,L
α [(x1, x2)] = (x1, αx2),

UP 2,R
α [(x1, x2)] = (x1, x2α).

Functions have mnemonic names whereXS, BF , BP
and UP stand for crossing, bifurcation, base pair and
unpair, respectively. The RNA sequenceagacuu
in Figure 4 can be generated by the above rules
as follows: A

∗⇒ BPgc[(ε, ε)] = (g, c), A
∗⇒

BPau[(g, c)] = (ag, cu), A
∗⇒ BPau[(ε, ε)] = (a, u),

A
∗⇒ XS2[(ag, cu), (a, u)] = (aga, cuu) and S

∗⇒
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J [(aga, cuu)] = agacuu. G3 has a derivation tree
(Figure 5) foragacuu which represents the pseudoknot
shown in Figure 4.

S : J

A : XS2

A : BPau A : BPau

A : BPgc

A : (ε, ε)

A : (ε, ε)

Figure 5: A derivation tree inG3

Recognition problem for mcfg can be solved in poly-
nomial time:

Proposition 1 (Kasami et al., 1988b; Seki et al., 1991).
Let G be an mcfg withdeg(G) = e. For a givenw ∈ T ∗,
whetherw ∈ L(G) or not can be decided inO(ne) time
wheren = |w|.

3 Subclasses of MCFG

3.1 A Subclass of MCFG for SL-TAL

GrammarsG and G′ are called weakly equivalent if
L(G) = L(G′). Remember that each elementary tree
in an sl-tag contains exactly one active node as shown in
Figure 6 (An inactive node and an active node are denoted
like Aφ andB∗, respectively in the figure). By utilizing
this restriction, we can define a translation from an sl-tag
into a weakly equivalent (2,2)-mcfg simpler than that of
(Vijay-Shanker et al., 1986). Namely, for an adjunct tree
in Figure 6 (a), construct an mcfg ruleA → f [B] where
f [(x1, x2)] = (u1x1v1, v2x2u2). This translation moti-
vates us to define the following subclass of (2,1)-MCFG.

Aφ

Aφu1 v1 v2 u2

B*

(a)

Sφ

u1 u2

B*

u3

(b)

Figure 6: Elementary trees in sl-tag

Definition 1. A (2,1)-mcfgG = (N, T, F, P, S0) is an
sl-mcfgif G satisfies the following conditions (1) and (2):

(1) For each nonterminalA other thanS0, dim(A) = 2.

(2) Each nonterminating rule has the form of either
S0 → J [A] whereJ [(x1, x2)] = x1x2 or A →
f [B] whereA,B ∈ N \ {S0} andf [(x1, x2)] =
(u1x1v1, v2x2u2) for someuj , vj ∈ T ∗ (j = 1, 2).
Such a functionf is called asimple linear func-
tion.

Lemma 2. SL-TAL = SL-MCFL.

Proof. (SL-TAL ⊆ SL-MCFL) Let G = (N, T, S, I,A)
be a given sl-tag. We will construct an sl-mcfgG′ =
(N ′, T, F, P, S0) as follows:

(1) N ′ = N ∪{S0} wheredim(S0) = 1 anddim(A) =
2 for eachA ∈ N .

(2) P (and F ) are the smallest sets which satisfy the
following conditions (a) through (c):

(a) S0 → J [S] ∈ P andJ ∈ F .

(b) For each adjunct treet ∈ A shown in Figure 6
(a),

• A → f [B] ∈ P and f ∈ F where
f [(x1, x2)] = (u1x1v1, v2x2u2), and

• A → (u1v1, v2u2) if B in Figure 6 (a) does
not have OA constraint (i.e.,t is mature).

(c) For each initial treet ∈ I shown in Figure 6
(b),

• S → g[B] ∈ P and g ∈ F where
g[(x1, x2)] = (u1x1u2, x2u3), and

• S → (u1u2, u3) if t is mature.

We can show that there exists a treet ∈ Tn(G) for some
n ≥ 0 such that yield(t) = w1Aw2 (A ∈ N, w1, w2 ∈
T ∗) if and only if A

∗⇒G′ (w1, w2).
(SL-MCFL ⊆ SL-TAL) Let G = (N, T, F, P, S0)
be a given sl-mcfg. Construct an sl-tagG′ =
(N ′, T, S0, I,A) as follows:

(1) N ′ = N ∪ {X} whereX 6∈ N .

(2) I consists of initial trees shown in Figure 7 (a) for
S0 → J [A] ∈ P .

(3) A is the smallest set satisfying:

• For eachA → f [B] ∈ P wheref [(x1, x2)] =
(u1x1v1, v2x2u2), the adjunct tree shown in
Figure 6 (a) belongs toA.

• For eachA → (u1, u2) ∈ P , the adjunct tree
in Figure 7 (b) belongs toA.

Proof ofL(G) = L(G′) can be done in a similar way to
the converse direction.
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S0

AOA

ε

(a)

Aφ

u1 u2Aφ

X*

(b)

Figure 7: Constructed elementary trees

3.2 A Subclass of MCFG for ESL-TAL

In this subsection, we will define a subclass of (2,2)-
MCFG which exactly generates ESL-TAL. LetG =
(N, T, S, I,A) be a given esl-tag. By virtue of Property
2 of (Uemura et al., 1999), we can assume thatG is in
normal form such that for every semi-simple linear ad-
junct treet ∈ A, yield(t) ∈ N . Thus, for each leafv
of t, eitherv is the foot node or the label ofv is ε (see
Figure 8). From this observation, we define a subclass
of (2,2)-MCFG by adding rules corresponding to adjunct
trees shown in Figure 8 to the definition of sl-mcfg.

Aφ

Aφ

D*B*

ε

(1)

Aφ

Aφ

D*

B*

ε

(2)
Aφ

Aφ

D*

B*

ε

(3)

Aφ

Aφ

D* B*

ε

(4)

Figure 8: Semi-simple linear adjunct trees in normal form

Definition 2. A (2,2)-mcfgG = (N, T, F, P, S0) is an
esl-mcfgif each nonterminating rule has one of the fol-
lowing forms (1) through (3):

(1) A → J [B] wheredim(A) = 1 anddim(B) = 2.

(2) A → f [B] wheref is a simple linear function.

(3) A → g[B,D] where dim(A) = dim(D) = 2,
dim(B) = 1, g ∈ {C1, C2, C3, C4} and

C1[x1, (x21, x22)] = (x1x21, x22),
C2[x1, (x21, x22)] = (x21x1, x22),
C3[x1, (x21, x22)] = (x21, x1x22),
C4[x1, (x21, x22)] = (x21, x22x1).

Lemma 3. ESL-TAL = ESL-MCFL.

Proof. (ESL-TAL ⊆ ESL-MCFL) Let G =
(N, T, S, I,A) be a given esl-tag in normal form
(Uemura et al., 1999). We construct an esl-mcfg
G′ = (N ′, T, F, P, S0) from G as follows:

(1) N ′ = N ∪ {A′ | A ∈ N} wheredim(A′) = 1 and
dim(A) = 2 for A ∈ N .

(2) P (and F ) are the smallest sets which satisfy the
following conditions (a) through (d):

(a) For eachA ∈ N , A′ → J [A] ∈ P andJ ∈ F .

(b) Same as (2) (b) (c) in the proof of(SL-TAL ⊆
SL-MCFL) in Lemma 2.

(c) For each semi-simple linear adjunct treet
shown in Figure 8 (1),

• A → C1[B′, D] ∈ P andC1 ∈ F , and
• A → (ε, ε) ∈ P if t is mature.

(d) For each semi-simple linear adjunct tree (2)
through (4) in Figure 8, the rules usingC2, C3

andC4, respectively, instead ofC1 belong to
P .

We can show that there exists a treet ∈ Tn(G) for some
n ≥ 0 such that yield(t) = w1Aw2 (A ∈ N, w1, w2 ∈
T ∗) if and only if A

∗⇒G′ (w1, w2).
Proof of (ESL-MCFL ⊆ ESL-TAL) is similar and is
omitted here.

3.3 A Subclass of MCFG for RPL

Rivas and Eddy (2000) introducecrossed-interaction
grammar(cig) which is similar to mcfg, and defineRNA
pseudoknot grammar(rpg) as a subclass of CIG to de-
scribe RNA secondary structure including pseudoknots.
In this subsection, we reformulate RPG as a subclass of
MCFG.

Definition 3. A (2,2)-mcfgG = (N, T, F, P, S) is called
an rpg if a nonterminating rule is one of the following
forms (1) through (3):

(1) A → J [B].

(2) A → BF [E1, E2] wheredim(A) = 2, dim(E1) =
dim(E2) = 1 andBF [x1, x2] = (x1, x2).
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(3) A → f [B,D] where dim(A) = dim(B) =
dim(D) = 2, f ∈ {XS1, XS2, XS3,W},
XSi (i = 1, 2, 3) is defined in Example 2 and
W [(x11, x12), (x21, x22)] = (x11x21, x22x12).

Proposition 4.

RPL⊆ (2,2)-MCFL. (∗6)

We obtain the following property on recognition com-
plexity.

Proposition 5. For a givenw ∈ T ∗ (n = |w|), whether
w ∈ L or not can be decided inO(n6) time if L is an rpl,
O(n5) time if L is an esl-tal, andO(n4) time if L is an
sl-tal.

Proof. For an rpgG, deg(G) ≤ 6, for an esl-mcfgG,
deg(G) ≤ 5 and for an sl-mcfgG, deg(G) ≤ 4. The
proposition follows from Proposition 1, Lemmas 2 and
3.

The above complexity results were first shown in (Ue-
mura et al., 1999) for ESL-TAL and SL-TAL and in (Ri-
vas and Eddy, 2000) for RPL by providing an individual
recognition algorithm for each class. On the other hand,
by identifying these classes of languages as subclasses of
MCFL, we can easily obtain the same results as stated in
Proposition 5. Akutsu (2000) defines a structure called
a simple pseudoknot and proposes anO(n4) time exact
prediction algorithm andO(n4−δ) time approximation
algorithm without using grammar. Note that the set of
simple pseudoknots can be generated by an sl-tag.

4 Inclusion Relation

First, we summarize the inclusion relation among the
classes of languages stated in (∗1) through (∗6).

Proposition 6. (1) (CFL ∪ SL-TAL) ⊆ ESL-TAL ⊆
TAL ⊂ (2,2)-MCFL.

(2) RPL⊆ (2,2)-MCFL⊂ 2-MCFL⊂ MCFL.

In the following, we refine the above proposition.

4.1 (CFL ∪ SL-TAL ) ⊂ ESL-TAL

First, we introduce a normal form of esl-mcfg and then
show closure properties of SL-TAL and ESL-TAL. By
using sl-mcfg and esl-mcfg, we can prove these proper-
ties in a simple way. Some of these properties will be
used for proving inclusion relation between SL-TAL and
ESL-TAL.

Definition 4. An esl-mcfg is in normal form if the fol-
lowing conditions (1) and (2) hold:

(1) For each A → f [B] where f [(x1, x2)] =
(u1x1v1, v2x2u2) is a linear function,|u1v1v2u2| =
1.

(2) For eachA → (u1, u2) (u1, u2 ∈ T ∗), u1 = u2 =
ε.

Remark that a similar normal form is defined for esl-tag
in (Uemura et al., 1999). It is easy to prove the following
lemma.

Lemma 7. For a given esl-mcfgG, a normal form esl-
mcfg G′ can be constructed fromG such thatL(G′) =
L(G).

Theorem 8. SL-TAL and ESL-TAL have the following
properties.

(1) SL-TAL contains every linear language.

(2) SL-TAL is closed under union, homomorphism, in-
tersection with regular languages and regular substi-
tution, but is not closed under concatenation, Kleene
closure, positive closure or substitution.

(3) ESL-TAL is closed under intersection with regular
languages and substitution.

Proof. (1) For linear cfg rulesA → u1Bv1 and
A → u, construct sl-mcfg rulesA → f [B] where
f [(x1, x2)] = (u1x1v1, x2) andA → (u, ε), respec-
tively.

(2) (regular substitution) LetG = (N, T, F, P, S0) be
an sl-mcfg in normal form. We also assume that
each ruleA → f [B] ∈ P has a unique label, sayr,
and writer : A → f [B] ∈ P . Lets : T → 2(T ′)∗ be
a regular substitution and for eachα ∈ T , lets(α) =
L(Gα) whereGα = (Nα, T ′, Pα, Sα) is a regu-
lar grammar. We now construct an sl-mcfgG′ =
(N ′, T ′, F ′, P ′, S0) such thatL(G′) = s(L(G)) as
follows. G′ will simulate Gα by a linear function
instead of generatingα ∈ T . To do this, we intro-
duce a nonterminalX [r] in G′ whereX ∈ Nα and
r : A → f [B] ∈ P such that the definition off
containsα ∈ T .

• N ′ = N ∪{X [r] | X ∈ Nα \{Sα}, α ∈ T, r :
A → f [B] ∈ P}.

• F ′ consists ofJ , UP 1,L
β , UP 1,R

β , UP 2,L
β ,

UP 2,R
β (β ∈ T ′) of Example 2 andEPS[ ] =

(ε, ε).
• P ′ is the smallest set satisfying:

– If S0 → J [A] ∈ P , thenS0 → J [A] ∈ P ′.
– Assume thatr : A → f [B] ∈ P where

f [(x1, x2)] = (αx1, x2) (α ∈ T ). If
X → βY ∈ Pα (X, Y ∈ Nα, β ∈ T ′),
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then X [r] → UP 1,L
β [Y [r]] ∈ P ′, and if

X → β ∈ Pα (X ∈ Nα, β ∈ T ′), then
X [r] → UP 1,L

β [B] ∈ P ′ where S
[r]
α is

identified withA for simplicity.
– For the other rules inP , similar con-

struction can be defined. For example, if
f [(x1, x2)] = (x1, x2α) (α ∈ T ), then we
will useUP 2,R

β instead ofUP 1,L
β .

Proof ofL(G′) = s(L(G)) is easy.
The other closure properties can be easily proved.
(concatenation) LetL = {]ak

1bk
1]al

2b
l
2 | k, l ≥ 1}

and L′ = {]am
3 bm

3 ]an
4 bn

4 ] | m,n ≥ 1}, both of
which are sl-tals. An sl-mcfg which generatesL
is such thatS0 → J [S], S → add]][A] where
add]][(x1, x2)] = (]x1, ]x2), A → f [A] | B
wheref [(x1, x2)] = (a1x1b1, x2) andB → g[B] |
(a1b1, a2b2) where g[(x1, x2)] = (x1, a2x2b2).
Construction of an sl-mcfg which generatesL′ is
similar. The concatenation of them, i.e.,LL′ = L2

defined in (∗2) is not an sl-tal.
(Kleene closure, positive closure) By the next corol-
lary, SL-TAL is a union closed full trio. If SL-TAL is
closed under Kleene closure or positive closure, then
by Theorem 3.1 of (Mateescu and Salomaa, 1997),
SL-TAL is closed under concatenation, which is a
contradiction.
(substitution) LetL1 = {]d1]d2]d3]d4]}, which is
a finite language and thus an sl-tal, and lets be a
substitution such thats(di) = {an

i bn
i | n ≥ 1} (1 ≤

i ≤ 4), which is also an sl-tal by (1) of this theorem.
Thens(L1) = L2 defined in (∗2), which is not an
sl-tal.

(3) (intersection with regular languages) Same as the
proof of Theorem 3.9 (3) of (Seki et al., 1991).
(substitution) Easy.

Corollary 9. SL-TAL is a full trio (or cone). (That is,
SL-TAL is closed under homomorphism, inverse homo-
morphism and intersection with regular languages.) ESL-
TAL is a substitution closed full abstract family of lan-
guages (full AFL). (That is, ESL-TAL is a full trio and
closed under union, concatenation, Kleene closure and
substitution.)

Proof. (full trio) By Theorem 3.2 of (Mateescu and Sa-
lomaa, 1997) and (2) of Theorem 8. (full AFL) By Theo-
rem 3.3 of (Mateescu and Salomaa, 1997) and (1), (3) of
Theorem 8.

Now we show inclusion relation between SL-TAL and
ESL-TAL.

Theorem 10. Let L3 =
{]ak

1bk
1ck

1]al
2b

l
2c

l
2]a

m
3 bm

3 cm
3 ]an

4 bn
4 cn

4 ] | k, l, m, n ≥ 1}.
Then,L3 ∈ ESL-TAL \ (CFL∪ SL-TAL).

Proof. Let h1 be a homomorphism such thath1(a1) =
a1, h1(b1) = b1, h1(c1) = c1 andh1(x) = ε for x ∈
{ai, bi, ci | i = 2, 3, 4} ∪ {]}. Thenh1(L3) = {ak

1bk
1ck

1 |
k ≥ 1}, which is not a cfl. Since CFL is closed under
homomorphism,L3 is not a cfl. Similarly, leth2 be a
homomorphism such thath2(ci) = ε for i = 1, 2, 3 and
identity on the other symbols. Thenh2(L3) = L2 defined
in (∗2), which is not an sl-tal. By Theorem 8 (2),L3 is not
an sl-tal. We can easily give an esl-mcfg which generates
L3.

4.2 RPL = (2,2)-MCFL

We introduce a condition (S) which states that for each
argument(xi1, xi2) of a function of an mcfg, the order
of the occurrences of its componentsxi1 andxi2 is not
interchanged in the function value.

(S) Let G = (N, T, F, P, S) be a 2-mcfg andf be an
arbitrary function inF such that

f [(x11, x12), . . . , (xn1, xn2)] = (α1, α2).

For eachi (1 ≤ i ≤ n), if both of xi1 andxi2 occur
in α1α2, thenxi1 occurs to the left of the occurrence
of xi2, i.e., α1α2 = β1xi1β2xi2β3 for someβj ∈
(N ∪ T )∗ (1 ≤ j ≤ 3).

Lemma 11. For a given 2-mcfgG, we can construct a 2-
mcfgG′ satisfying condition (S) andL(G′) = L(G).

Lemma 12. Let G = (N, T, F, P, S) be a (2,2)-mcfg
satisfying condition (S). Then we can construct an rpgG′

such thatL(G′) = L(G).

Proof. Let G = (N, T, F, P, S) be an arbitrary (2,2)-
mcfg satisfying condition (S). We construct an rpgG′

weakly equivalent toG as follows. The number of func-
tions f : (T ∗)2 × (T ∗)2 → (T ∗)2 satisfying condition
(S) is 18. A half of them can be obtained from the other
half of them by interchanging the first and second argu-
ments. Among the remaining nine functions, four are
rpg functions. The others aref1 = (x11, x12x21x22),
f2 = (x11x12, x21x22), f3 = (x11x12x21, x22), f4 =
(x11, x21x22x12), f5 = (x11x21x22, x12). (We omit
variables in the left hand sides.) For example,A →
f1[B,D] can be simulated byA → XS2[B, Y1], Y1 →
BF [Y2, Y3], Y2 → ε andY3 → J [D]. The other four
functions can be simulated by rpg functions in a similar
way.

By Proposition 6 (2), Lemmas 11 and 12, we obtain the
following theorem.

Theorem 13. RPL = (2,2)-MCFL.

The following corollary follows from Proposition 6, The-
orems 10 and 13.
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Corollary 14. (CFL∪ SL-TAL) ⊂ ESL-TAL ⊆ TAL ⊂
RPL = (2,2)-MCFL.

Whether the inclusion ESL-TAL⊆ TAL is proper or not
is an open problem.

5 Conclusions

In this paper, some formal grammars for RNA secondary
structure have been identified as subclasses of MCFG and
their generative powers have been compared. To the au-
thors’ knowledge, the exact definition of pseudoknot in a
biological or geometrical sense is not known and then it
is difficult to answer which class of grammars is the min-
imum to represent pseudoknots. However, SL-TAG can-
not generate RNA sequences obtained by repeating a sim-
ple pseudoknot shown in Figure 2 by (∗2), and ESL-TAG
(or ESL-MCFG) can be the minimum grammars which
can represent such a class of pseudoknots.

Meanwhile, Satta and Schuler (1998) introduce a sub-
class of TAG (, which we will callSS-TAG) and show that
ss-tals are recognizable inO(n5) time. The definition of
ss-tag is slightly more general than that of esl-tag while
keeping the constraint such that there exists (at most) one
active node in the backbone. We conjecture that the gen-
erative power of ESL-TAG, SS-TAG and (2,2)-MCFG
with deg(G) ≤ 5 are all the same.

Secondary structure is represented by a derivation (or
derived) tree (see Figures 4 and 5). Comparison of the
tree generative power of esl-tag and rpg is an interest-
ing problem. To apply these grammars to RNA structure
prediction, a probabilistic model should be introduced by
extending these grammars such as stochastic cfg (Durbin
et al., 1998), which is left as future work.
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Université Paris 7 Columbia University
Paris, France New York, NY, USA

alexis.nasr@linguist.jussieu.fr rambow@cs.columbia.edu

Abstract

We investigate an approach to parsing in which
lexical information is used only in a first phase,
supertagging, in which lexical syntactic prop-
erties are determined without building struc-
ture. In the second phase, the best parse tree is
determined without using lexical information.
We investigate different probabilistic models
for adjunction, and we show that, assuming
hypothetically perfect performance in the first
phase, the error rate on dependency arc attach-
ment can be reduced to 2.3% using a full chart
parser. This is an improvement of about 50%
over previously reported results using a simple
heuristic parser.

1 Introduction

Over the last ten years, there has been a great increase
in the performance of parsers. Current parsers use the
notion of lexical head when generating phrase structure
parses, and use bilexical dependencies – probabilities that
one particular head depends on another – to guide the
parser. Current parsers achieve an score of about 90%
when measuring just the accuracy of choosing these de-
pendencies (Collins, 1997; Chiang, 2000; Clark et al.,
2002; Hockenmaier and Steedman, 2002). Interestingly,
the choice of formalism (headed CFG, TAG, or CCG)
does not greatly change the parsers’ accuracy, presum-
ably because in all approaches, the underlying informa-
tion is the same – word-word dependencies.

Supertagging followed by “lightweight” parsing has
been proposed as an alternative to full parsing. The idea
behind supertagging (Bangalore and Joshi, 1999) is to ex-
tend the notion of “tag” from a part of speech or a part
of speech including morphological information to a tag
that represents rich syntactic information as well, in par-
ticular active valency including subcategorization (who
can/must be my dependents?), passive valency (who can
be my governor?), and notions specific to particular parts

of speech, such as voice. If words in a string can be
tagged with this rich syntactic information in a supertag,
then, Bangalore and Joshi (1999) claim, the remaining
step of determining the actual syntactic structure is trivial.
They propose a “lightweight dependency parser” (LDA)
which is a heuristically-driven, very simple program that
creates a dependency structure from the sequence of su-
pertags. It uses no information gleaned from corpora at
all, and performs with an (unlabeled) accuracy of about
95%, given the correct supertag.

The question arises how much better we can do if we
use a more sophisticated way of determining the parse
from the supertags, such as a chart parser. Of course, we
do not want to give up the notion of a parsing stage which
is relatively simple. In this paper, we extend the parsing
stage by using a chart parser and probabilistic models, but
we use only models that relate supertags to each other.
In fact, such models are also used during supertagging,
except that in supertagging, the only relation between su-
pertags we are interested in modeling probabilistically is
linear precedence, while for parsing we will use struc-
tural dependency as well. Thus, our approach conserva-
tively extends the supertagging-and-LDA approach, and
remains quite different from the current work on parsing
based on bilexical probability models following (Collins,
1997). A secondary question we investigate in this paper
is the issue of how best to model multiple adjunctions at
a same node.

The paper is structured as follows. In Section 2, we
provide some more motivation for this work. We present
our formalization of TAG and discuss how to derive such
a grammar formalized in that way from a corpus in Sec-
tion 3. We present the parser in Section 4. In Section 5
we discuss three different ways in which we we estimate
parameters for the statistical models. In Section 6, we
present two baselines, and our main results. We discuss
related work in Section 7, and conclude in Section 8.
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2 Motivation

In this paper, we assume we have the correct supertag
and we investigate the quality of the resulting parse. The
state of the art in supertagging is currently in the 80%-
85% range, depending on the grammar (see for example
(Chen, 2001)). Thus, the task we set out to examine is
not a realistic “real-world” task, and the question arises
why we should be interested in the question at all. In
this section, we try to motivate our research agenda by
first arguing why supertag-based non-lexical parsing is
interesting, and then by arguing why we need to show it
is feasible.

2.1 Supertag-Based Parsing Is Interesting

There are several reasons to investigate supertag-based
parsing. The main point is that the models involved are
potentially simpler than those in bilexical parsing: no
bilexical structural information is needed for deriving the
parsing model. This holds the promise that when port-
ing a supertagger-based parser to a new domain, a non-
lexical structural model can be reused from a previous do-
main, and only a supertagged corpus in the new domain
is needed (to train the supertagger), not a structurally an-
notated corpus.

Furthermore, this approach uses an explicit lexicalized
grammar. As a consequence, when porting a parser to a
new domain, learned parser preferences in the supertag-
ger can be overridden explicitly for domain-idiosyncratic
words before the parse happens. This overriding can hap-
pen through manually written or learned rules. By way of
anecdotal example, in a recent application of the parser of
Collins (1997) in which the WSJ-trained parser was ap-
plied to rather different text, sentences such as John put
the book on the table were mostly analyzed with the PP
attached to the noun, not the verb (as was always required
in that domain). In the application, this had to be fixed
by writing special post-processing code to rearrange the
output of the parser; in our approach, we could simply
state that put should always have a PP argument before
the parse, and correct any output of the supertagger using
simple hand-written rules.

And finally, we point out that is is a different approach
from the dominant bilexical one, and it is always worth-
while to pursue new approaches, especially as the perfor-
mance of the bilexical parsers seems to be plateauing. In
fact recent work has questioned to what extent bilexical
parsers even profit from bilexical information that they
use (Gildea, 2001; Klein and Manning, 2003).

2.2 But Is Supertag-Based Parsing Feasible?

Bangalore and Joshi (1999) claim that supertagging is
“almost parsing”. What this means is that the syntactic
information provided by supertags is so rich that there
is little structural ambiguity left and the parse is almost

entirely determined by the supertags. In fact, since the
supertags determine both active and passive valency, the
only remaining ambiguity is related to attachment of trees
to nodes with the same label; for example, the standard
PP-attachment ambiguity of see a man with a telescope is
resolved in the supertags, as the tag for with specified ad-
junction to a VP or an NP. The remaining issues of struc-
tural ambiguity which are not resolved by supertags in-
clude conjunctions, noun-noun compounds (which how-
ever are not given meaningful analyses in the PTB), at-
tachment of adjuncts in sentences with several clauses
(such as John told Mary to leave today), and so on.

There is thus both a practical and a theoretical interest
in knowing how much ambiguity remains after supertag-
ging, or, put differently, to what extent supertagging is
in fact “almost parsing”. Practically, the performance of
a parser with correct supertags as input gives us an up-
per bound on supertag-based parsing. The current figure
of 95% (using the heuristic LDA) may seem a bit low as
an upper bound. Theoretically, it is interesting to know
to what extent, in a corpus, syntactic structure is disam-
biguated by specifying both active and passive valency of
words.

3 Representing a TAG as a Set of FSMs

For the purpose of our parser, we represent a Tree Ad-
joining Grammar as a set of finite-state machines (FSMs).
The FSMs form a (lexicalized) Recursive Transition Net-
work (RTN). To extract an RTN from the Penn Treebank
(PTB), we first extract a TAG, and then convert it to an
RTN. This first step does not represent the research re-
ported in this paper, and we describe it only for the sake
of clarity. We use the approach of (Chen, 2001) (which
is similar to (Xia et al., 2000) and (Chiang, 2000)). We
use sections 02 to 21 of the Penn Treebank. However,
we optimize the head percolation in the grammar extrac-
tion module to create meaningful dependency structures,
rather than (for example) maximally simple elementary
tree structures. For example, we include long-distance
dependencies (wh-movement, relativization) in elemen-
tary trees, we distinguish passive transitives without by-
phrase from active intransitives, and we include strongly
governed prepositions (as determined in the PTB annota-
tion, including passive by-phrases) in elementary verbal
trees. Generally, function words such as auxiliaries or
determiners are dependents of the lexical head,1 conjunc-
tions (including punctuation functioning as conjunction)
are dependent on the first conjunct and take the second
conjunct as their argument, and conjunction chains are
represented as right-branching rather than flat.

1This is a linguistic choice and not forced by the formal-
ism or the PTB. We prefer this representation as the resulting
dependency tree is closer to predicate-argument structure.
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In the second step, we directly compile a set of FSMs
which are used by the parser. To derive a set of FSMs
from a TAG, we do a depth-first traversal of each el-
ementary tree in the grammar (but excluding the root
and foot nodes of adjunct auxiliary trees) to obtain a
sequence of nonterminal nodes. As usual, the elemen-
tary trees are tree schemas, with positions for the lexi-
cal heads. Substitution nodes are represented by obliga-
tory transitions, adjunction by optional transitions (self-
loops). (Note that in this paper, we assume adjunction as
defined by Schabes and Shieber (1994).) Each node be-
comes two states of the FSM, one state representing the
node on the downward traversal on the left side (the left
node state), the other representing the state on the up-
ward traversal, on the right side (the right node state).
For leaf nodes, the two states immediately follow one an-
other. The states are linearly connected with ε-transitions,
with the left node state of the root node the start state, and
its right node state the final state (except for predicative
auxiliary trees – see below). We give a sample grammar
in Figure 1 and the result of converting one of its trees to
an FSM in Figure 2.

For each pair of adjacent states representing a substitu-
tion node, we add transitions between them labeled with
the names of the trees that can substitute there. For the
lexical head, we add a transition on that head. For foot-
nodes of predicative auxiliary trees which are left auxil-
iary trees (in the sense of Schabes and Waters (1995), i.e.,
all nonempty frontier nodes are to the left of the footn-
ode), we take the left node state as the final state. Finally,
in the basic model in which adjunctions are modeled as
independent, we proceed as follows for non-leaf nodes.
(In Section 5, we will see two other models that treat
non-leaf nodes in a more complex manner.) To each non-
leaf state, we add one self loop transition for each tree in
the grammar that can adjoin at that state from the speci-
fied direction (i.e., for a state representing a node on the
downward traversal, the auxiliary tree must adjoin from
the left), labeled with the tree name. There are no other
types of leaf nodes since we do not traverse the passive
valency structure of adjunct auxiliary tees. The result of
this phase of the conversion is a set of FSMs, one per el-
ementary tree of the grammar, whose transitions refer to
other FSMs.

Note that the treatment of footnodes makes it impossi-
ble to deal with trees that have terminal, substitution or
active adjunction nodes on both sides of a footnode. It
is this situation (iterated, of course) that makes TAG for-
mally more powerful than CFG; in linguistic uses, it is
very rare, and no such trees are extracted from the PTB.2

2Our construction cannot handle Dutch cross-serial depen-
dencies (not surprisingly), but it can convert the TAG analysis
of wh-movement in English and similar languages, because the
predicative auxiliary verbal trees do not have terminal or substi-

As a result, the grammar is weakly equivalent to a CFG.
In fact, the construction treats a TAG as if were a Tree
Insertion Grammar (TIG, Schabes and Waters (1995)), or
rather, it coerces a TAG to be a TIG: during the traversal,
both terminal nodes and nonterminal (i.e., substitution)
nodes between the footnode and the root node are ignored
(because the traversal stops at the footnode), thus impos-
ing the constraint that the trees may not be wrapping trees
and that no further adjunction may occur to the right of
the spine in a left auxiliary tree.

4 Parsing with FSMs

The parsing algorithm is a simple extension of the chart
parsing algorithm for CFG. The difference is in the use
of finite state machines in the items in the chart. In the
following, we will call t-FSM an FSM M if it is derived
from tree t in the original TAG (or TIG) grammar G. If
T is the parse table for input sentence W and GDG G,
then Ti,j contains (M, q) where M is a t-FSM, and q

is one of the final states of M , iff we have a complete
derivation of substring wi · · ·wj in G such that the root
of the derivation tree is labeled t.

Before starting the parse, we create a tailored grammar
by selecting those trees associated with the words in the
input sentence, and substituting the actual words for the
positions of the lexical head. (Note that the crucial issue
is how to associate trees with words in a sentence; in this
paper, we assume that the correct tree is used.)

Initialization: We start by adding, for each i, 1 ≤ i ≤
n, wi to Ti,i.

Completion: If Ti,j contains either the input symbol
w or an item (M, q) such that q is a final state of M , and
M is a t-FSM, then add to Ti,j all (M ′, q′) such that M ′

is a FSM which transitions from a start state to state q′ on
input w or t.

Add a single backpointer from (M ′, q′) in Ti,j to
(M, q) or w in Ti,j .

Scanning: If (M1, q1) is in Ti,k, and Tk+1,j contains
either the input symbol w or the item (M2, q2) where q2

is a final state and M2 is a t-FSM, then add (M1, q) to
Ti,j (if not already present) if M1 transitions from q1 to q

on either w or t.
Add a double backpointer from (M1, q) in Ti,j to

(M1, q1) in Ti,k (left backpointer) and to either w or
(M2, q2) in Tk+1,j (right backpointer).

Note that because we are using a dependency gram-
mar, each scanning step corresponds to one attachment
of a lexical head to another. At the end of the parsing
process, a packed parse forest has been built. The non-
terminal nodes are labeled with pairs (M, q) where M

is an FSM and q a state of this FSM. Obtaining the de-
pendency trees from the packed parse forest is performed

tution nodes on both sides of the foot node.
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t2 t4 t28 t30

S

NP↓ VP

V♦

HEAD

NP↓

NP

N♦

HEAD

VP

VP∗ AdvP

Adv♦

HEAD

VP

VP∗ PP

P♦

HEAD

NP↓

Figure 1: Sample small grammar: trees for a transitive verb, a nominal argument, and two VP adjuncts from the right

has t4t4

t28

t30

Figure 2: FSM derived according to Model 1 for tree t2 from the grammar in Figure 1, instantiated for the verb has

in two stages. In a first stage, a forest of binary phrase-
structure trees is obtained from the packed forest and in
a second stage, each phrase-structure tree is transformed
into a dependency tree.

5 Probabilistic Models

The parser introduced in Section 4 associates to a su-
pertag sequence S = S1 . . . Sn one or several analyses.
Each analysis A can be seen as a set of n − 1 attach-
ment operations and the selection of one supertag token
as the root of the analysis (the single supertag that is not
attached in another supertag). For the sake of uniformity,
we will consider the selection of the root as a special kind
of attachment, A is therefore of cardinality n. In the fol-
lowing, LEFT (x, y) (respect. RIGHT (x, y)) denotes
the set of attachments that occurred on the left (respect.
right) side of node y of supertag x. For an attachment op-
eration A, O(A) returns its type (adjunction, substitution,
root). Root designates the unique event in A that selects
the root.

From a probabilistic point of view, each attachment op-
eration is considered as an event and an analysis A as the
joint event A1, . . . , An. A large range of different models
can be used to compute such a joint probability, from the
simplest which considers that all events are independent
to the model that considers that they are all dependent.
The three models that we descibe in this section vary in
the way they model multi-adjunction (when several aux-
iliary trees are attached to a single node from the same di-
rection). The reason to focus on this phenomenon comes

from the fact that it is precisely at this level that much of
the structural ambiguity occurs. For example, in a sen-
tence containing three or more conjoined NPs (such as
dogs, hamsters, cats, and bats), there is massive ambigu-
ity of attachment, as each conjunction can attach to any
of the preceding nouns. However, only one structure (in
our corpus, the right-branching one) is correct. Thus, a
precise model is needed. The three models described be-
low consider that substitution operations are independent
of all the other attachments that make up an analysis. The
general model is therefore:

P (A) = P (Root)

×
∏

A∈A|O(A)=subst

P (A)

×
∏

s∈S,i∈nodes(s)

P (LEFT (s, i))

×
∏

s∈S,i∈nodes(s)

P (RIGHT (s, i))

This basically follows (Resnik, 1992; Schabes, 1992).
The models we discuss here differ in how to compute the
terms P (RIGHT (s, i)) and P (LEFT (s, i)).

The probability of each attachment is estimated by
maximum likelihood (the counts are obtained in the same
step as the grammar extraction), and are added to the cor-
responding transition in the governor’s automaton as its
weight. When the probabilistic model associates different
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a,P(a)

p, P(b)

a,P(a|a)

b,P(b|b)

a,P(a|b) b,P(b|a)

a,P(a|START)

b,P(b|START) P(END|b)

P(END|a)

b,P(b,pos=1)

a,P(a,pos=1) a,P(a,pos=2)

b,P(b,pos>2)

b,P(b,pos>2)

P(pos=0)

P(pos=1)

P(pos>2)

b,P(b,pos=2)

0 0

1

2

3 0 1 2 3

P(END|START)

Figure 3: Three models of adjunction; these correspond to the last node of the FSM in Figure 2, with the model on the
left exactly as shown in Figure 2; here, a represents t30 of Figure 2 and b, t28

probabilities to attachments that were not distinguished in
an automaton, the structure of the latter will be changed
in order to account for this difference. This change in the
structure will, of course, leave unchanged the language
recognized by the automaton . The three models for ad-
junction will be illustrated on a simple example where
two supertags a and b are candidate for adjunction at a
given node. In the following models, we estimate pa-
rameters from the corpus obtained by running the TAG
extraction algorithm over the PTB training corpus. We
can then easily count the relevant events.

5.1 Model 1: Independent Adjunctions

In this model, an adjunction on one node is considered in-
dependent from the other adjunctions that can take place
on the same node. The probability of each adjunction
depends on the dependent supertag, on the governor su-
pertag, and on the node of the governor supertag at which
the attachment takes place. However, it is independent of
the order of the attachment. The model does therefore not
distinguish between attachments that only differ in their
order. This model corresponds to the left part of figure 3,
the attachment of an a, for example, does not depend
on what was attached before and how many attachment
took place. For example, the probability of the sequence
abab being adjoined is modeled as follows (we use here
and subsequently a simplified notation where P (a) des-
ignates the adjunction of a at the relevant node in the rel-
evant tree):

P (abab) = P (a)P (b)P (a)P (b)

5.2 Model 2: Positional Model

This model adds to the first one the knowledge of the
order of an attachment. But when modeling the prob-

ability that supertag a attaches on a given node at or-
der i, it does not take into account the attachments that
happened for order < i. Such models also add a new
parameter which is the maximum number of attachment
that are distinguished. The graphical representation of
the model as a finite state automaton, as it appears to the
right in Figure 3, gives an intuitive account of the nature
of the model. It is made of a series of transitions between
consecutive pairs of nodes. The first “bundle” of tran-
sitions models the first attachment on the node, the sec-
ond bundle, the second attachment, and so on, until the
maximum number of attachments is reached. This limit
on the number of attachments concerns only the proba-
bilistic part of the automaton, more attachment can oc-
cur on this node, but their probabilities will not be distin-
guished. These attachments correspond to the loops on
state 2 of the automaton. ε-transitions allow the attach-
ments to stop at any moment by transitioning to state 3.
(The ε-transitions are shown as dotted lines for reading
convenience, they are formally regular transitions in the
FSM.) Under Model 2, the probability of the sequence
abab being adjoined is:

P (abab) = P (a, pos = 1)

× P (b, pos = 2)

× P (a, pos > 2)

× P (b, pos > 2)

5.3 Model 3: N-Gram Model

The previous model takes into account the order of an
attachment and disregards the nature of the attachments
that happened before (or after) a given attachment. The
model described here is, in a sense, complementary to
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the previous one since it takes into account, in the proba-
bility of an attachment, the nature of the attachment that
occurred just before and ignores the order of the current
attachment. The probability of a series of attachments
on the same side of the same node will be computed by
an order-1 Markov chain, represented as a finite state au-
tomaton in the central part of Figure 3. The transitions
with probabilities P (x|START ) (respect. P (END|x))
correspond to the occurrence of supertag x as the first (re-
spect. the last) attachment at this node and the transition
with probability P (END|START ) corresponds to the
null adjunction (the probability that no adjunction occurs
at a node). The probability of the sequence abab being
adjoined is now:

P (abab) = P (a|START )

× P (b|a)

× P (a|b)

× P (b|a)

× P (END|b)

5.4 Finding the n-best parses

We extend our parser by augmenting entries in the parse
table with probabilities. As usual, only the highest prob-
ability is retained for a given analysis. The algorithm for
extracting parses is augmented to choose the best parse
(or n-best parses) in the usual manner. Note that the dif-
ferent models discussed in this section only affect the
manner in which the TAG grammar extracted from the
corpus is converted to an FSM; the parsing algorithm (and
code) is always the same.

6 Results

In this study, we are interested in exploring how parsing
performs in the presence of the correct supertag. As a re-
sult, in the following, we report on data which has been
correctly supertagged. We used Sections 02 to 21 of the
Penn Treebank for training, the first 800 sentences of Sec-
tion 00 for development, and Section 23 for testing only.
The figures we report are accuracy figures: we evaluate
how many dependency relations have been found. The
root node is considered to have a special dependency re-
lation. There is no need to report recall and precision,
as each sentence always has a number of dependency re-
lations which is equal to the number of words. In the
evaluation, we disregard true (non-conjunction) punctua-
tion. The figures for the LDA are obtained by using the
LDA as developed previously by Bangalore Srinivas, but
using the same grammar we used for the full parser. Note
that none of the numbers reported in this section can be
directly compared to any numbers reported elsewhere, as

this task differs from the tasks discussed in other research
on parsing.

We use two different baselines. First, we use the per-
formance of the LDA of (Bangalore and Joshi, 1999).
The performance of the LDA on Section 00 is about
94.3%, on Section 23 95.1%. Second, we use the full
chart parser, but randomly choose a parse from the parse
forest. This baseline measures to what extent using a
probabilistic model in the chart parser actually helps.
The performance of this baseline is 94.7% on Section
00, 94.6% on Section 23. As we can see, the supertags
provide sufficient information to result in high baselines.
The results are summarized in Figure 4.

There are several clear conclusions to be drawn from
Figure 4. First, a full parse has advantages over a heuris-
tic parse, as even a random choice of a tree from the
parse forest in the chart (i.e., without use of a probabilis-
tic model) performs nearly as well as the heuristic LDA.
Second, the use of even a simple probabilistic model us-
ing no lexical probabilities at all, and modeling adjunc-
tions as entirely independent, reduces the error rate over
the non-probabilistic baseline by 22.8%, to 4.04%. Third,
the modeling of multiple adjunctions at one node as in-
dependent is not optimal, and two different models can
further reduce the error rate substantially. Specifically,
we can increase the error reduction to 53.0% by mod-
eling the first adjunction (from left to right) separately
from all subsequent ones. However, presumably due to
sparseness of data, there is no major advantage to using
more than one position (and modeling the first and second
adjunction separately). Furthermore, switching to the n-
gram model in which an adjunction is conditioned on the
previously adjoined supertag as well as the governing su-
pertag, the error reduction is further increased slightly to
56.6%, with an error rate of 2.27%. This is the best result
obtained on the development corpus.

7 Related Work

We are not aware of any other work that directly investi-
gates the extent to which supertagging determines pars-
ing. Chiang (2000) also parses with an automatically
extracted TIG, but unlike our approach, he uses stan-
dard TAG/TIG parsing techniques (i.e., he reconstructs
the derived tree in the chart, not the derivation tree).
Rogers (1994) proposes a different context-free variant,
“regular-form TAG”. The set of regular-form TAGs is a
superset of the set of TIGs, and our construction can-
not capture the added expressive power of regular-form
TAG. Our conversion to FSMs is very similar to that of
Evans and Weir (1997). One important difference is that
they model TAG, while we model TIG. Another differ-
ence is that they use FSMs to encode the sequence of ac-
tions that need to be taken during a standard TAG parse
(i.e., reconstructing the derived tree), while we encode
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Method Accuracy on Sec 00 Accuracy on Sec 23
Baseline: LDA 94.35% 95.14%
Baseline: full parse with random choice 94.73% 94.69%
Model 1 (Independent Adjunction) 95.96%
Model 2 (Positional Model): 1 position 97.54%
Model 2 (Positional Model: 2 position 97.49%
Model 2 (Positional Model: 3 position 97.57%
Model 3 (N-Gram Model), using Supertag 97.73% 97.61%
Model 3 (N-Gram Model), using Category 97.29%

Figure 4: Results (accuracy) for different models using the Gold-Standard supertag on development corpus (Section
00, first 800 sentences) with add-0.001 smoothing, and for the best performing model as well as the baselines on the
test corpus (Section 23)

the active valency of the lexical head in the FSM. A re-
sult, in retrieving the derivation tree, each item in the
parse tree corresponds to an attachment of one word to
another, and there are fewer items. Furthermore, our
FSMs are built left-to-right, while Evans and Weir only
explore FSMs constructed bottom-up from the lexical an-
chor of the tree (not unlike (Eisner, 2000)). As a result,
we can perform a strict left-to-right parse, which is not
straightforwardly possible in standard TAG parsing using
FSMs.

Our parsing algorithm is similar to the work of
Alshawi et al. (2000). They use cascaded head automata
to derive dependency trees, but leave the nature of the
cascading under-formalized. Eisner (2000) provides a
formalization of a system that uses two different automata
to generate left and right children of a head. His formal-
ism is very close to the one we present, but we use a single
automaton. Also, the relation to an independently pro-
posed syntactic formalism such as TAG is less obvious.

In related work (Rambow et al., 2002), we have used
the same automata constructed from an extracted TAG
for parsing, but instead of using them in a chart parser,
we have used them to construct a single large FSM that
produces a dependency tree. Needless to say, the number
of embeddings allowed by such an approach is limited.

8 Conclusion

We have provided further evidence for the claim of
Bangalore and Joshi (1999) that supertagging is “almost
parsing”, and we have quantified the “almost” to be
97.7%.3 This figure represents the dependency accuracy
that can be obtained when the input is represented as a
sequence of supertags, with no lexical information used
in the parse (and hence not in the training of the parser,
either). This shows that an architecture is viable in which
all information related to the specific lexemes is assigned

3We note that this figure holds for the particular grammar
that we used; other grammars may result in different figures.

in a first pass before structure is constructed, and structure
is constructed only in a second pass in which no lexical
information is used (other than the lexical emit probabil-
ity for supertags). This result motivates further research
into supertagging accuracy. If supertagging accuracy is
improved, a lightweight parser in conjunction with su-
pertagging may perform as well as a full bilexical parser,
or even better. Furthermore, for certain applications, a
lightweight parser may be appealing because only the su-
pertagger needs to be retrained which can be done with
less effort. Finally, the explicit and declarative nature
of the grammar used makes it easy to write hand-written
rules to override the supertagger in cases in which the ap-
plication designer wishes to correct a systematic parser
error.
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Abstract

This paper proposes a process to build semantic
representation for Tree Adjoining Grammars
(TAGs) analysis. Being in the derivation tree
tradition, it proposes to reconsider derivation
trees as abstract terms (λ-terms) of Abstract
Categorial Grammars (ACGs). The latter of-
fers a flexible tool for expliciting composition-
ality and semantic combination. The chosen
semantic representation language here is an un-
derspecified one. The ACG framework allows
to deal both with the semantic language and
the derived tree language in an equivalent way:
as concrete realizations of the abstract terms.
Then, in the semantic part, we can model lin-
guistic phenomena usually considered as diffi-
cult for the derivation tree approach.

Introduction

When dealing with the computation of semantic repre-
sentation for TAG analysis, two main approaches are usu-
ally considered. The first one gives the derivation trees
a central role for the computation (Schabes and Shieber,
1994; Candito and Kahane, 1998; Kallmeyer, 2002; Joshi
et al., 2003), and the second one relies on a direct compu-
tation on the derived tree (Frank and van Genabith, 2001;
Gardent and Kallmeyer, 2003).

The present article wants to explore the intuition that
the two approaches are indeed bound: derivation trees are
a specification of the operations that are to be processed,
but the derived trees hold the precise descriptions of these
operations. We propose to exhibit those operations by
separating them from the syntactic trees. Then, under the
specifications given by the derivation trees, we show how
to build the semantic representations.

The tools we use for this purpose are Abstract Cate-
gorial Grammars (ACGs) (de Groote, 2001). The main

feature of an ACG is to generate two languages: anab-
stract languageand anobject language. Whereas the ab-
stract language may appear as a set of grammatical or
parse structures, the object language may appear as its
realization, or the concrete language it generates. For in-
stance, (de Groote, 2002) proposes as object language the
tree language of TAGs (encoded in linearλ-terms) and,
as abstract language, a tree language (also encoded in
linearλ-terms) andvery close to the derivation tree lan-
guage. In this paper, we use the same abstract language,
and, as object language,λ-terms that encode underspeci-
fied semantic representation as in (Bos, 1995; Blackburn
and Bos, 2003). Thus, we realize our program to sepa-
rate the computation specification and the operation def-
inition. As for Montague’s semantics, missing informa-
tion is represented by boundλ-variables and replacement
and variable catching by application instead of unifica-
tion (as in (Frank and van Genabith, 2001; Gardent and
Kallmeyer, 2003)).

The next section briefly describes the underlying prin-
ciples of ACGs. Then we show how syntactic parts of
TAGs are modelled and how we translate, through the
abstract terms (our derivation trees), the combination of
intial and auxiliary trees to their semantic representations
by means of some examples.

1 ACG Principles

An ACG G defines:

1. two sets of typedλ-terms: Λ1 (based on the typed
constant setC1) andΛ2 (based on the typed constant
setC2);

2. a morphismL : Λ1 → Λ2;

3. a distinguished typeS.

(de Groote, 2001) defines bothΛ1 andΛ2 as sets oflin-
ear λ-terms. In this paper, we use simply typedλ-terms
for Λ2, using the translation of intuitionnistic logic into
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linear logicA → B = (!A) ( B (Girard, 1987; Danos
and Cosmo, 1992). We don’t elaborate on that subject in
this paper, but it does not change the main properties of
ACGs1. Then the abstract languageA(G) and the object
languageO(G) are defined as follows:

A(G) = {t ∈ Λ1|t : S}
O(G) = {t ∈ Λ2|∃u ∈ A(G) t = L(u)}

Note thatL binds the parse structures inA(G) to the
concrete expressions ofO(G). Depending on the choice
of Λ1, Λ2 andL, it can map for instance derivation trees
and derived trees for TAGs (de Groote, 2002), derivation
trees of context-free grammars and strings of the gener-
ated language (de Groote, 2001), derivation trees ofm-
linear context-free rewriting systems and strings of the
generated language (de Groote and Pogodalla, 2003). Of
course, this link between an abstract and a concrete struc-
ture can apply not only to syntactical formalisms, but also
to semantic formalisms.

The main point here is that ACGs can be mixed in dif-
ferent ways: in a transversal way, were two ACGs use the
same abstract language, or in a compositional way, were
the abstract language of an ACG is the object language
of an other one. In this paper, as described in figure 1,
we use different ACGs and some composition withG:
Λ2 is the tree language of TAGs,Λ1 the tree language of
our derivation trees. For G′, we have the same abstract
language andΛ′

2 is the underspecified representation lan-
guage. In dotted lines is a composition presented in (de
Groote, 2001) between strings and derivation trees we do
not use here.

Derivation trees
Λ1

Derived trees
Λ2

Λ′
2

representations
Underspecified semantic

Strings
Λ3

G′G

Figure 1: Moving from an object language to another

1In particular, this means that, provided there is no vacuous
abstraction inL(C1) and everyc ∈ L(C1) is such that it has
t ∈ C2 as subterm, we can decide if, foru ∈ Λ2 if u ∈ O(G)
and what is (are) the antecedent(s) (Pogodalla, 2004).

2 TAGs as ACGs

This section refers to (de Groote, 2002), which proposes
to encode TAGs into ACGs. Given a TAGG, Λ1 is build
as follows:

• for every non-termninal symbolX, there are two
typesXS and XA standing for places where sub-
stitution and adjunction can occur respectively;

• for every elementary treeγ, there is a constantcγ ∈
C1. Moreover, for every non-terminal symbolX,
there is a constantIX : XA.

For instance, given the trees of table 1, we have the con-
stants and their types (for concision, we suppress param-
eters that are not used in the next examples of this paper,
namely nodes where no adjunction occur2):

cevery : NA

cdog : NA ( NS

cchases : SA ( VPA ( NS ( NS ( SS

cusually : VPA ( VPA

N

every N∗ dog

N

S

N VP

chases N

VP

usually VP∗

Table 1: Examples of elementary trees

To completely define the ACGG, we need to define
Λ2 andL. The types ofΛ2 are made of the single type
τ , representing the type of trees. For any non-terminal
symbolX, there are constantsX0, . . . , Xi wherei is the
maximal number of children of theX nodes in the ele-
mentary trees. For any terminal symbolX in G, there is
a constantX : τ ∈ C2. ThenL is defined by sending
anyXS type to the typeτ , and anyXA types to the type
τ ( τ . Corresponding to the trees of table 1, we have
for instance:

L(IX) = λx.x : τ ( τ
L(cevery) = λx.N2(every x) : τ ( τ
L(cdog) = λN.N(N1dog ) : (τ ( τ) ( τ

L(cchases) = λSV.λx.λy.S(S2x(V
(VP2chases y)))
: (τ ( τ) ( (τ ( τ) ( τ ( τ ( τ

Note that in the adjunction operation, the auxiliary tree
is a parameter. But it also has a higher-order type, that

2For instance, the type ofcevery should beDetA ( NA (
NA.
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is a function from trees to trees. We let the reader check
thatL(cchasesISIVP(cdogcevery)(ccatcsome)) correspond the
derived tree associated toevery dog chases some catof
figure 2.

S

N VP

every chasesN

dog

N

some N

cat

Figure 2: L(cchasesIVP(cdogcevery)(ccatcsome)) =
S2(N2 every(N1 dog))(VP2 chases(N2 some(N1 cat )))

We note two important things. First, the abstract terms,
as cchasesISIVP(cdogcevery)(ccatcsome) can be represented
by a tree structure where the children of a node are its
arguments. Then erasing theIX arguments, and direct-
ing the edges downward if the argument is of typeXS

and upward if the argument is of typeXA, we get the
usual notion of derivation tree. Second, the auxiliary trees
are modelled as higher-order function. We use the same
approach in our semantic modelling, getting some type
raising, as in Montague’s semantics. But let us precise
the ACG we use for the semantic representation.

3 Semantic representation for TAGs as
ACGs

The semantic representation language we use is an un-
derspecified one presented in (Bos, 1995; Blackburn and
Bos, 2003): the predicate logic “unplugged”. The aim
of this language, theunderspecified representation lan-
guage(URL) is to specify in a single formula the pos-
sible formulas (of thesemantic representation language
(SRL)) associated to an ambiguous expression. For in-
stance, the expressionevery dog chases a cathas the two
possible meanings:

∀x(dog (x) ⇒ ∃y(cat(y) ∧ chases (x, y)))
∃y(cat(y) ∧ ∀x(dog (x) ⇒ chases (x, y)))

To mark the difference between the SRL and the URL,
both being first order languages, we translate the usual
first order logic symbols of SRL. This translation is
straightforward, using boldface symbols (e.g,All , And ,
Imp , etc.). In SRL, the two previous formulas are re-
stated as follows:

All (x, Imp(dog (x), Some(y, And (cat(y), chases (x, y)))))
Some(y, And (cat(y), All (x, Imp(dog (x), chases (x, y)))))

Both these formulas have the property that:

• they have at leat two subformulas: one quantified by
All , one quantified bySome ;

• chases (x, y) is a subformulas of the two quantified
subformulas.

The URL relies on the speficication of subformula con-
straints that the SRL formulas have to satisfy, and the two
SRL formulas above can be described by the following
URL formula:

∃h0h1h2l1l2l3l4l5l6l7xy(l1 : All (x, l2)
∧l2 : Imp(l3, h1) ∧ l3 : dog (x) ∧ l4 : Some(y, l5)
∧l5 : And (l6, h2) ∧ l6 : cat(y)
∧l7 : chases (x, y) ∧ h1 ≥ l7 ∧ h2 ≥ l7 ∧ h0 ≥ l1
∧h0 ≥ l4)

illustrated in figure 3. The syntax of URL is basically the
same that first-order logic, except that if atomic formu-
las remain the same, formulas are built fromholesand
labels, the latter being used as place holder for logical
formulas in the underspecified representation language.
We use the usual logical symbols (∃, ∧), an infix predi-
cate≥ to specify the constraints and an infix operateur:
for URL. The symbolh ≥ l imposes the constraint for a
formula that is associated tol to be a subformula of the
one associated toh. l : p indicates that a predicatep of
SRL is labelled in URL byl.

l1 : All (x, l2) l4 : Some(y, l5)

l5 : And (l6, h2)l2 : Imp(l3, h1)

l3 : dog (x) l6 : cat(y)

h0

l1 l4

l7

l7 : chases (x, y)

Figure 3: URL formula forevery dog chases a cat

We want to underline the difference between URL and
SRL because our concern in this paper is not to build and
manage SRL formulas, but only URL formulas, that is
underspecified representations. So that the object lan-
guage of the ACG we are designing is URL.

Coming back to the figure 1, we established in the pre-
vious section theG ACG to encode TAGs. We know want
to rely on the common abstract language,Λ1, the one of
derivation trees, to build theG′ ACG that model the se-
mantic behaviour, with URL asΛ′

2. So let us now define
G′.

First isΛ′
2:
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• the types we use aree, h, l, p, t wheree stands for
entities,h for holes,l for labels,p for predicate of
the logical language andt for truth values;

• the constants are≥, :, ∃l, ∃e, ∃h, ∧, Imp , And ,
Some , All and the set of the predicate symbols of
the logical language (dog , chases , etc. in the ex-
amples). Their types are described in table 2.

Note we have three existential quantifiers∃l, ∃h and∃e,
but we usually note them only∃. Moreover, to keep
with the usual logical notation we write∃xP instead of
∃(λx.P ) wherex is a free variable ofP .

Finally, to define the ACGG′, we need the lexiconL′.
It transforms the types fromΛ1 as follows:

L′(NS) = (e → h → l → t) ( (h → l → t)
L′(NA) = (e → h → l → t)

( (e → h → l → t) ( (h → l → t)
L′(SS) = h → l → t
L′(SA) = (e → h → l → t)

( (e → h → l → t)
L′(VPA) = (h → l → t) ( (h → l → t)

Contrary toΛ2, that model derived trees and generates
linear terms, we use inΛ′

2 non-linear terms, as the intu-
itionnistic → shows. The definition ofL′ on the terms
justifies it. We shall introduce this definition in the next
sections, illustrating different linguistic phenomena.

3.1 Quantification

We start with the classical example of quantitification.
When dealing with quantifiers as adjunct (Abeillé, 1993),
where quantifier is adjoined to the noun, quantifiers are
separated from the verb by the noun in the derivation
trees. Then the problem of the proposition coming from
the VP to be part of the scope of the quantifiers arises.
(Kallmeyer, 2002) proposes to enrich the derivation trees
with additional links to take this kind of linking into ac-
count.

We propose to deal with this kind of problems fol-
lowing the Montague’s approach of quantification (Mon-
tague, 1974): the subject is an argument of the verb, but
it is also a higher order function which has the verb pred-
icate as argument. So the lexicon for the ACGG′ could
define :

L′(cdog) = λq.q(λxhl.h ≥ l ∧ l : dog (x))
L′(ccat) = λq.q(λxhl.h ≥ l ∧ l : cat(x))

L′(cchases) = λbaso.s(b(λx.a(o(λyh′l′.h′ ≥ l′

∧l′ : chases (x, y)))))
L′(cevery) = λrp.λhl.∃h1l1l2l3v1(h ≥ l2

∧l2 : All (v1, l3) ∧ l3 : Imp(l1, h1)
∧h1 ≥ l ∧ r v1 h l1 ∧ p v1 h l)

L′(csome) = λrp.λh′l′.∃h′
1l

′
1l

′
2l

′
3v

′
1(h

′ ≥ l′2
∧l′2 : Ex(v′

1, l
′
3) ∧ l′3 : And (l′1, h

′
1)

∧h′
1 ≥ l′ ∧ r v′

1 h′ l′1 ∧ p v′
1 h′ l′)

It’s easy to check that the translation from the ab-
stract term, or the derivation tree in our sense,t =
cchasesISIVP(cdogcevery)(ccatcsome) by L′ has the expected
form:

L′(cdogcevery) = λp.λhl.∃h1l1l2l3v1(h ≥ l2
∧l2 : All (v1, l3) ∧ l3 : Imp(l1, h1)
∧h1 ≥ l ∧ h ≥ l1 ∧ l1 : dog (v1)
∧p v1 h l)

L′(ccatcsome) = λp.λh′l′.∃h′
1l

′
1l

′
2l

′
3v

′
1(h

′ ≥ l′2
∧l′2 : Ex(v′

1, l
′
3) ∧ l′3 : And (l′1, h

′
1)

∧h′
1 ≥ l′ ∧ h′ ≥ l′1 ∧ l′1 : cat(v′

1)
∧p v′

1 h′ l′)
L′(cchasesISIVP) = λso.s(λx.o(λyh′l′.h′ ≥ l′

∧l′ : chases (x, y)))

Hence forL′(t) we have:

λhl.∃h1l1l2l3v1(h ≥ l2 ∧ l2 : All (v1, l3)
∧l3 : Imp(l1, h1) ∧ h1 ≥ l ∧ h ≥ l1 ∧ l1 : dog (v1)
∧∃h′

1l
′
1l

′
2l

′
3v

′
1(h ≥ l′2 ∧ l′2 : Ex(v′

1, l
′
3)

∧l′3 : And (l′1, h
′
1) ∧ h′

1 ≥ l ∧ h ≥ l′1 ∧ l′1 : cat(v′
1)

∧h ≥ l ∧ l : chases (v1, v
′
1)))

recovering the one from the figure 3 (modulo variable
renaming). To deal with quantification in this exam-
ple, we don’t add any extra-link to the derivation tree
(or abstract term) ones, contrary to (Kallmeyer, 2002).
Both the subject (thes variable inL′(cchases)) and the
object parameter (theo variable) are considered as the
real functors, applyed to the relationchases as in
s(· · · (o(· · · chases (x, y) · · · ))). This implies thatNs
andNPs have higher-order types (see also the semantic
term associated to entities in section 3.4). This is remi-
niscent to Montague’s approach (Montague, 1974).

A term like L′(cchases) also shows the exact contribu-
tion of every node. For instance, theb variable stands for
the semantic contribution of theS node, whereas thea
variable stands for the semantic contribution of theVP.
That is the former can act both on the predicate and its
argument (see the type ofL′(SA)), whereas the latter can
only modify the whole relation. The next sections illus-
trate this point, with adverbs and raising verbs. Then,
modelling verbs with phrasal arguments, we show how
theb variable can act.

In the sequel of the paper, whenever we introduce a
new term which has a similar constrution to a previous
one, we don’t give its explicit definition (e.g.loves, simi-
lar tochases).

3.2 Adverbs

In the semantic representation we associate tocchasesin
the previous section, we see, between the subjects and
the “VP relation”, an argumenta. Its type (L′(VPA) =
(h → l → t) ( (h → l → t)) shows it is a verb mod-
ifier. So let us introduce a new consantcusually : VPA (
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≥ : h → l → t specifies the underspecification constraints
: : l → p ( t labels the logical predicates
∧ : t ( t ( t conjunct of descriptions
∃l : (l → t) ( t existential quantifier on labels
∃h : (l → t) ( t existential quantifier on holes
∃e : (e → t) ( t existential quantifier on entities

And , Imp : l → h → p conjonction and implication in the embedded logical language
dog , cat : e → p predicates in the embedded logical language
chases : e → e → p predicate in the embedded logical language

Table 2: Typing of constants ofΛ′
2

VPA ∈ C1. We can associate it, withL′, to the term:

λa.λr.λhl.∃h1l1(r h l ∧ h ≥ l1 ∧ l1 : U(h1)
∧h1 ≥ l ∧ a(λh′l′.h′ ≥ l′)h l1)

Its first argument,a, correspond to the verb modifier that
could also be adjoined to this node (for instance an other
adverballedgelly). The second argument,r, corresponds
to the verb predicate it modifies. Here, it isl that the ad-
verbU should also dominate (h1 ≥ l). Then, to express
that usually is an opaque modifier is just indicating that
the labell1 of U has to be the lowest point in the modifi-
cation induced bya. That isl1 is also the label argument
of a.

Socusually(calledgedlyIVP) is mapped to

λr.λhl.∃h1l1(r h l ∧ h ≥ l1 ∧ l1 : U(h1)
∧h1 ≥ l ∧ ∃h′

1l
′
1(h ≥ l1 ∧ h ≥ l′1 ∧ l′1 : A(h′

1)
∧h′

1 ≥ l1))

where every subformula ofh′
1 is a subformula ofA. Since

h′
1 dominatesl1 which is the label ofU, U(h1) is always

a subformula ofA.
As mentionned in (Gardent and Kallmeyer, 2003),

there are adverbs that would not have this opaque be-
haviour and rather pass the label of the verb predicate to
other possibles modifiers. In this case, the argument ofa
is notl1, but simplyl. We illustrate it in the next example,
even if not on adverbs.

3.3 Raising Verbs

Raising verbs likeseemshave been modelled in TAGs as
adverbs. We can use exactly the same semantic encoding
as for adverbs, except that this time it is not considered as
opaque. Hence its associated term inΛ′

2 is:

λa.λr.λhl.∃h1l1(r h l ∧ h ≥ l1 ∧ l1 : seems (h1)
∧h1 ≥ l ∧ a(λh′l′.h′ ≥ l′)h l)

3.4 Verbs with Phrasal Arguments

Going upward in the syntactic tree, we can now try to
model expressions that act onS nodes likeclaims (see

table 3). Coming back to our modelling ofchases, we
had ab argument of typeL′(SA) = (e → h → l →
t) ( (e → h → l → t). So we can associate to a term
cclaims : NS ( SA ( SA ∈ Λ1 a term inΛ′

2:

λspr.λy.p(s(λxhl.∃l1h1(h ≥ l1∧
l1 : claims (x, h1) ∧ ryh1l)))

which specifies thatx claims something, the latter being
dominated byh1 (henceclaims ).

So for instance, an expressionPaul claims
John loves Mary would give the abstract term
cloves(cclaimscPaulIS)IVPcJohncMary and its underspeci-
fied representation (L′(cPaul) = λP.Pp):

λhl.∃l1h1(h ≥ l1 ∧ l1 : claims (p, h1)
∧h1 ≥ l ∧ l : loves (j, m)))

because

L′(cclaimscPaul) = λr.λy.λhl.∃l1h1(h ≥ l1
∧l1 : claims (p, h1) ∧ ryh1l)

L′(clovestIVP

cJohncMary) = (λP.P j)(t(λx.(λQ.Qm)
(λyh′l′.h′ ≥ l′∧
l′ : loves (x, y))))

= (λP.P j)(t(λx.λh′l′.h′ ≥ l′

∧l′ : loves (x, m)))

S

N VP

claims S∗

VP

seems VP∗

S

N S

VP

to love

N

Table 3: Few more trees

Let us now illustrate the long distance dependancy be-
haviour, together with phrasal arguments. We can see that
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if the syntactic properties of the infinitiveto love(see ta-
ble 3) really differs from the ones ofloves, their semantic
counterpart only differs in the order of argument (and an
extraL′(SA) whose role should be precised). We can
naturally associate toL′(cto love) the term:

λbaos.s(b(λx.a(o(λyh′l′.h′ ≥ l′ ∧ l′ : loves (x, y)))))

Then analyzing a long distance dependencyMary Paul
claims John seems to loveis the same as analyzing the
previous example, except that theIVP term is replaced by
cseemsand the order of the other arguments is exchanged:
cloves(cclaimscPaul)(cseemsIVP)cMarycJohn. The contribution
ofL′(cseemsIVP) toL′(clove) is just adding the conjonction
of (modulo the variable renaming)∃h2l2(h1 ≥ l ∧ l :
loves (j, m) ∧ h1 ≥ l2 ∧ l2 : seems (h2) ∧ h2 ≥ l)
instead of onlyh1 ≥ l ∧ l : loves (j, m))) so that we
finally have:

λhl.∃l1h1(h ≥ l1 ∧ l1 : claims (p, h1)
∧∃h2l2(h1 ≥ l ∧ l : loves (j, m) ∧ h1 ≥ l2
∧l2 : seems (h2) ∧ h2 ≥ l)

which is the expected result.

3.5 Wh-questions

This section provides an example of an adjunction oc-
curring on the root node of an auxiliary tree which
is itself adjoined to a third tree. The expressionwho
does Paul think John said Bill liked, can be analyzed
with the constantscwho : WHS ∈ Λ1 and cliked :
SA ( VPA ( WHS ( NS ( SS ∈ Λ1, that
correspond to the trees of figure 4. The two other
constantscdoes think and csaid, corresponds to the auxil-
iary trees of the same figure and the derivation tree is
cliked(csaidcJohn(cdoes thinkcPaulIS))IVPcwhocBill .

Then, we can extendL′ as follows:

L′(cwho) = λphl.∃v1h
′′
1 l′′1 (h ≥ l′′1

∧ l′′1 : W(v1, h
′′
1) ∧ h′′

1 ≥ l ∧ pv1h
′′
1 l)

L′(cliked) = λbaos.o(b(λy.a(s(λxh′l′.h′ ≥ l′

∧ l′ : liked (x, y)))))
L′(csaid) = λsbr.b(λy.s(λxhl.∃h1l1(h ≥ l1

∧ l1 : S(x, h1) ∧ h1 ≥ l ∧ ryh1l)))
L′(cdoes think) = λsbr′.b(λy.s(λxhl.∃h′

1l
′
1(h ≥ l′1

∧ l′1 : T(x, h′
1) ∧ h′

1 ≥ l ∧ r′yh′
1l)))

who

WH

S

N VP

S

liked

WH

S

N VP

said S∗

S

N VP

think S∗

S

does

Figure 4: Wh-question example

Then, we have :

L′(cdoes thinkcPaulIS) = L′(t0)
= λr′λyhl.∃l′1h′

1(h ≥ l′1

∧ l′1 : T(p, h′
1) ∧ h′

1 ≥ l

∧ r′yh′
1l)

L′(csaidcJohnt0IS) = L′(t1)
= λr.λyhl.∃l′1h′

1(h ≥ l′1

∧ l′1 : T(p, h′
1) ∧ h′

1 ≥ l

∧ ∃h1l1(h′
1 ≥ l1 ∧ l1 : S(j, h1)

∧ h1 ≥ l ∧ ryh1l))

This yields the following result:

L′(clikedt1IVPcwhocBill ) = (λo.o(λyhl.∃l′1h′
1(h ≥ l′1

∧ l′1 : T(p, h′
1) ∧ h′

1 ≥ l

∧ ∃h1l1(h′
1 ≥ l1 ∧ l1 : S(j, h1)

∧ h1 ≥ l ∧ h1 ≥ l

∧ l : liked (b, y)))))L′(cwho)
= λhl.∃v1h

′′
1 l′′1 (h ≥ l′′1

∧ l′′1 : W(v1, h
′′
1) ∧ h′′

1 ≥ l

∧ ∃l′1h′
1(h

′′
1 ≥ l′1

∧ l′1 : T(p, h′
1) ∧ h′

1 ≥ l

∧ ∃h1l1(h′
1 ≥ l1 ∧ l1 : S(j, h1)

∧ h1 ≥ l ∧ h1 ≥ l

∧ l : liked (b, v1))))

which is the expected one, withW binding the variablev1

and dominatingT, itself dominatingS, itself dominating
liked (b, v1).

3.6 Control Verbs

Control verbs, as presented in (Gardent and Kallmeyer,
2003) or (Frank and van Genabith, 2001), with adjunc-
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tion on aS node (see table 4) to produce an expression
like John tries to sleep, with the adjunction oftries toon
sleep, is a problem for our approach.

Indeed, it is build from the term
csleep(ctries toIVPcJohnIS)IVP and the typing discipline
makest = ctries toIVPcJohnIS of type SA, henceL′(t) of
type (e → h → l → t) ( e → h → l → t. If it is
clear that the first argument of type(e → h → l → t)
concerns thesleep predicate (with something like
λxhl.h ≥ l ∧ l : sleep (x)), the result should not have
anye possible argument (it has been filled withj).

In other worlds, if we look at adjunctions onS nodes
in previous sections, the subtrees always lack anN (John
seems to lovex, or John said Bill likedx) and are al-
ways transformed into a subtree lacking anN too (Paul
claims John seems to lovex, or does Paul think John said
Bill liked x). This is not the case anymore with control
verbs where the subtree forx sleepturns intoJohn tries
to sleep.

So control verbs cannot be dealt with directly that way
with our techniques. We need for instance to differentiate
the SA type into the usual one(e → h → l → t) (
e → h → l → t and another one(e → h → l →
t) ( h → l → t. This could be done with a special
SPro node, or with an extended type system (for instance
additives of linear logic to manage disjunctive types). But
this requires further investigation and goes beyond this
article.

S

N VP

tries to S∗

S

VP

sleep

Pro

Table 4: Derived trees for control verbs

Conclusion

We propose to reconsider semantic representation com-
putation for TAG from the derivation trees. But deriva-
tion trees here are understood as abstract terms of ACGs,
even if the informations born by each of the formalism are
essentially the same. Whereas they hold the specification
of how trees should combine, the locality of computing
the meanings held by the different nodes is described in
the object vocabulary. It obviates the addition of extra
links to manage scoping and shows that derivation trees,
by themselves, are enough, even if further investigation
are required to handle control verbs.

It also clearly defines the compositional aspects of
building semantic representations with a clear and mod-
ular distinction between syntax and semantics. The latter

point lacks in the derived tree approaches. Moreover, the
mathemetical primitives we use are very simple (if ex-
pression not always are) and are the same both on the
syntactic and the semantic side, and no external princi-
ples need to be added.

So, from the ACG point of view, both syntax and se-
mantics are dealt with in an equivalent way: as object
languages of the same abstract language. This is interest-
ing because the computation engine to go from the object
language to the abstract language in an ACG does not de-
pend on the object language. So the underlying process
remains the same for all that cases:

• to compute a derived tree, then a derivation tree,
from a string;

• to compute a derivation tree from a URL formula;

• to compute a derived tree, then a string, from a
derivation tree;

• to compute an URL formula from a derivation tree.

So that going from one to the other (parsing or generation,
in the usual sense) is as difficult (or as easy) as going the
other way. Of course, on the semantic side, it means the
initial point is an URL formula, and it gives no hint on
how to build it from an SRL formula, nor on how to deal
with the logical equivalence (be it on the SRL or on the
URL level).

Finally, it underlines the interesting feature of ACG
to transport or transmit structures from one language to
anoher, illustrated between a syntactic formalism and
a semantic formalism for TAGs. As suggested by an
anonymous referee, the same approach could be used
to provide semantic representations to expressions be-
longing tom-linear context-free languages, since abstract
terms have already been proposed for them (de Groote
and Pogodalla, 2003).
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Abstract

This paper explores an optimality-theoretic
approach to syntax based on Tree-Adjoining
Grammars (TAG), where two separate opti-
mizations are responsible for the construc-
tion of local pieces of tree structure (ele-
mentary trees) and the combination of these
pieces of structure. Thelocal optimization
takes a non-recursive predicate-argument struc-
ture (PA-chunk) as an underlying representa-
tion and chooses the best tree structure real-
izing it. The linking optimization takes as an
underlying representation a tree whose nodes
are labeled by PA-chunks and chooses among
a set of structurally isomorphic TAG deriva-
tion trees. We provide formal definitions of the
OTAG system and prove equivalence in strong
generative capacity between OTAG and TAG.
Finally, we apply the mechanics of the formal
system to the analysis of cross-serial dependen-
cies in Swiss-German.

1 Introduction

Optimality Theory (OT) claims that linguistic expres-
sions are restricted by a set of universal, mutually incon-
sistent and violable constraints (Prince and Smolensky,
1993). Conflicts result in the satisfaction of higher ranked
constraints at the expense of their lower ranked adver-
saries. The variations among languages are attributed to
differences in the constraint rankings. In OT, a gram-
matical linguistic expression is a winner of an optimiza-
tion. Given an underlying representation (UR), a gener-
ator function (Gen) produces a (potentially infinite) set
of surface realizations (SRs), and a process of optimiza-
tion picks the SRs that minimally violate the constraints
according to a language-particular ranking.

OT is a general framework that can give rise to a va-
riety of specific formal instantiations depending on the
types of representations and constraints invoked, but it
is a largely unresolved question just what sort of for-
malism is appropriate for OT syntax. Since natural lan-
guage syntax permits recursively embedded structures,
this suggests that the OT optimizations ought to apply
to unbounded domains. However, optimization over such
structures can give rise to a system with excessive gener-
ative capacity, if the number of violations of a constraint
can grow without bound as well (Frank and Satta, 1998;
Wartena, 2000). Moreover, if we look at the properties
of natural language syntax, it appears that the structural
tradeoffs that arise from the resolution of constraint con-
flict take place over local domains.

We therefore propose an OT formalism based on Tree
Adjoining Grammar, which we call Optimality Tree Ad-
joining Grammar (OTAG), where separate optimizations
are responsible for the construction of local pieces of tree
structure (elementary trees) and the combination of these
pieces of structure.The first optimization (which we call
local optimization) takes as UR a non-recursive predicate
argument structure (PA-chunk) and chooses among a set
of local trees generated by Gen as candidate SRs of this
PA-chunk. The local optimization yields a finite tree lan-
guage which serves as a set of elementary trees. The sec-
ond type of optimization (which we refer to aslinking
optimization) takes as UR a tree whose nodes are labeled
by PA-chunks (a derivation tree of sorts) and chooses
among a set of structurally isomorphic TAG derivation
trees, where each node in these trees is labeled by an ele-
mentary tree that is among the locally optimal outputs for
the corresponding PA-chunk.

2 Definitions

Let us begin with a formal definition of an OT system,
adapted from (Frank and Satta, 1998).

Def. 1 An optimality system is a 4-tuple OS =
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{Σ,Γ, Gen, C} whereΣ and Γ are the finite input and
output alphabets, Gen is a relation overΣ∗ × Γ∗, andC
is a finite set of total functions fromΣ∗ × Γ∗ to N .

As seen in this definition, Gen maps a UR to a set of SRs,
while a constraint is a function from a candidate UR-SR
pair to a natural number, which we take to represent the
degree of violation incurred by that candidate on that con-
straint. An OS gives rise to a set of optimality grammars
(OG), defined in (2):

Def. 2 An optimality grammarOG is an OS together
with a total orderingR onC, called aranking.

Frank and Satta’s definition is not directly applicable to
OT syntax because it defines the URs and the SRs as
strings. We assume that in syntax, the SRs are trees,
while the URs are predicate-argument (PA) structures in
tree form. A PA structure may contain simple and nested
predicates. A simple predicate is a predicate applied over
atomic arguments, i.e., arguments that do not contain
predicates, as in example (1).

(1) loves(John, Mary)

A nested predicate is a predicate applied to other predi-
cates, likesaysin example (2).

(2) says(Bill, (loves(John, Mary)))

We postulate a grammatical component, the
PA− chunker, which breaks down a complex PA
structure into simple PA structures by substituting
non-atomic arguments with predicate labels, which are
treated as atomic arguments in the local optimization.

Def. 3 A PA-chunkeris a function from a nested PA
structure P to a set of pairs containing a simple PA-
structure (PA-chunks)S and a labell for that structure,
such that

i. each predicate inP is a predicate in exactly one of
the PA-chunks inS;

ii. the atomic arguments of each predicate inP are the
same as the arguments of that predicate in corre-
sponding PA-chunk inS; and

iii. each complex argumentA of a predicateπ in P is
replaced in the PA-chunk containingπ in S by the
label uniquely associated with the simple PA-chunk
in S corresponding toA.

For example, the nested PA structure in (2) will give rise
to the set of simple PA structures in (3) (where X and Y
are predicate labels).

(3) {([says (Bill, X)], Y), ([loves (John, Mary)], X)}

In our setting, PA-chunks are the URs for optimizations
over bounded domains whose outputs are local trees. The
URs for optimizations over unbounded domains are tree

structures over nodes labeled by a PA-chunk and all win-
ning surface realizations of that PA-chunk (in the form of
syntactic trees).

With this in mind, we define Optimality Tree Adjoin-
ing Systems (OTAS) as follows:

Def. 4 An Optimality Tree Adjoining Systemis a 9-
tuple
OTAS = {Σ,Γ,Π, Chunk, Loc,GenC , GenK , C,K}
where

• Σ andΓ are finite input and output alphabets;
• Π is a set of predicate labels;
• Chunk and Loc are finite sets of finite trees la-
beled byΣ ∪Π andΓ respectively;
• GenC is a relation overChunk × Loc;
• GenK is a relation overΨ× Ξ, where

i. Ψ is the set of finite trees each of whose nodes
are labeled by members ofChunk×Π× 2Loc

where for eachτ ∈ Ψ, a node labeled(σ, π, γ)
is a daughter of node(σ′, π′, γ′) iff σ′ contains
labelπ;

ii. Ξ is the set of finite trees labeled byΓ;

• C is a finite set of total functions fromChunk ×
Loc to N ;
• K is a finite set of total functions fromΨ×Ξ to N
(with Ψ andΞ defined as above).

The alphabetsΣ andΓ are the sets of symbols in the rep-
resentations making up the UR and SR, respectively. In
our current conception,Σ consists of the set of predicate
and argument symbols, whileΓ contains the set of termi-
nal and non-terminal symbols.1 Chunk will contain the
set of URs that feed the local optimization, the set of PA-
chunks, whileLoc contains the SRs that can be the out-
put of this process, the possible syntactic realizations of
the PA-chunks.GenC maps a PA-chunkσ ∈ Chunk to
corresponding SRγ ∈ Loc. GenK maps any tree struc-
ture whose nodes are labeled by (local-UR, pred-label,
locally-optimal-SRs) triples to a recursive surface tree re-
alization.C is the set of constraints on local trees, while
K is the constraints over recursive trees.2 According to
definition (2), an OT grammar is obtained by imposing
a unique ranking on the set of constraints. In OTAG, a
ranking must be specified for each type of optimization.

Def. 5 An OTAG Grammar(OTG) is an OTAS with a
pair of rankingsRC , RK onC andK.

1To keep things relatively simple, our definition neither
enforces the arity requirements of predicate symbols nor the
proper placement of predicate labels, terminal and non-terminal
symbols in building members ofChunk or Loc.

2Note that we are assuming that set of possible realizations
of a member ofChunk is finite. This is reasonable under
the assumption that there is a finite set of winners for each
optimization.

73



Grammar A. YNA

�� HH
a Y

c

Y
�� HH
b Y

L = ab∗c

Grammar B. Y
�� HH
a YNA

c

Y
�� HH
b Y

L = b∗ac

Figure 1: Related TAG grammars.

With these definitions in place, we can now define the
notion of optimization in an OTG. Let us begin with local
optimization:

Def. 6 The local optimum, LOpt(p), associated with
a simple predicate argument structurep is defined recur-
sively, as in (Frank and Satta, 1998):

LOpti(p) =
{

GenC(p) if i = 0;
argminci

(LOpti−1(p)) if i ≥ 1

LOpt(p) = LOptm(p) wherem = |C|

Given such a set of local optima, we can now define the
linking optimization process. Assume that we have a re-
cursive predicate argument structureΠ. The input to the
linking optimization is a tree whose labels are taken from
the following set of locally optimal pairings:

Λ = {(p, π, LOpt(p))|(p, π) ∈ PA-Chunk(p)}

Given such aΛ, there will be a unique treeτ such that
(p, π, γ) is a daughter of node(p′, π′, γ′) iff p′ contains
predicate labelπ. Linking optimization is now defined
over thisτ as in definition 6, usingGenK and constraint
setK.

3 Substitution, adjoining and the Linking
Optimization

In traditional TAG, grammars sharing the same set of lo-
cal trees can generate different languages. An example of
this situation is depicted in Figure 1, where we see two
grammars that differ only in the locus of adjoining con-
straints and generate distinct languages. Since the link-
ing optimization in OTAG constrains how the elementary
trees that result from the local optimization are put to-
gether, the languages of these grammars could also gener-
ated by two OTAGs derived from the same OTAG system
with different constraint rankings (Figure 2).

The constraints on adjoining are implemented in the
set of violable constraints K, which prohibit or require

adjoining at a set of nodes. In the grammar illustrated
here,C1 requires some adjoining to take place,C2 for-
bids adjoining at the root Y node of theac elementary
tree, andC3 forbids adjoining at the lower Y node of the
same tree. WhenC1 is ranked above either or both ofC2

or C3, the higher ranked of this latter pair of constraints
determines where adjoining applies, whereas whenC1 is
lowest ranked, no adjoining takes place at all. Constraint
reranking, then, achieves the effect of altering the loci
of adjoining constraints. In principle, the linking opti-
mization may apply globally, evaluating the whole UR
against a derivation, but that would lead to the possibil-
ity of conditioning an adjunction at high levels on lower
level adjunctions. In order to limit the generative power
of OTAG, we require that the linking optimization apply
cyclically. Each cycle adjoins a set of auxiliary trees into
a single local tree, and these cycles proceed in a bottom-
up fashion through the PA-chunk structure that is the in-
put to the linking optimization. The result of a linking
optimization may be used for a subsequent cycle, when a
derived auxiliary is adjoined. This constraint enforces a
strong parallelism between the OTAG derivation and the
TAG derivation. They differ only by the presence of an
optimization step in OTAG, which determines where the
auxiliary tree is adjoined into another elementary tree. In
other words, an OTAG derivation tree represents a series
of optimal adjoining operations.

With this restriction in place, it turns out that the result-
ing formalism is exactly as powerful as the TAG formal-
ism. Specifically, we can prove the following theorems
(see appendix for proofs):

Theorem 1 For any TAG G, there is a OTAG G’ such
that T(G) = T(G’).

Theorem 2 For any OTAG G’, there is a TAG G such
that T(G’) = T(G).

4 OTAG in action: An illustrative example

To illustrate the practical application of the formalism,
we will go through the steps of a derivation of the Swiss-
German cross-serial construction, and the corresponding

C1 >> C2 >> C3

Y
�� HH
a Y

��HH
Y

b

c

C1 >> C3 >> C2

Y
�� HH
b Y

��HH
Y

a

c

{C2, C3} >> C1

Y
�� HH
a Y

c

Figure 2: Output of OTAG grammars that differ only in
constraint ranking.
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German and English constructions. Swiss-German ex-
hibits cross-serial dependencies that can be modeled by
the languageLCross = anbmcndm|m,n ∈ N (Shieber,
1985).

(4) De Jan
John-NOM

säit,
says

dass
that

mer
we

em Hans
Hans-DAT

es
the

huus
house

hälfed
helped

aastriiche.
paint

(Swiss German)

‘John says that we helped Hans paint the house.’

Compare this to the English and German equivalents.

(5) John says that we helped Hans paint the house.

(6) Jan
John

sagt,
says

daß
that

wir
we

Hans
Hans

das
the

Haus
house-Acc

anstreichen
paint

hilften.
helped

(German)

‘John says that we help Hans paint the house.’

The German sentence exhibits center embedding - the in-
nermost verb case-marking the innermost noun, the out-
ermost verb case-marking the outermost noun. In the En-
glish case, there is no embedding at all: verbs always
immediately precede their associated arguments.

Let us consider the necessary steps in an OTAG analy-
sis of these data. First, we must isolate the local winners.
As we know, they are SRs corresponding to PA-chunks.
Table 4 shows the simple predicates and the correspond-
ing yield of the local winners in English, German, and
Swiss-German. The symbolmarks the insertion site for
the other SR. The question we need to tackle is what kind
of trees yield these strings. We notice that the German
and Swiss-German cases differ from the English case by
the position of the verb with respect to its arguments. One
way to account for this difference would be to invoke a
Headedness constraint on the local trees, Head-Left, and
a counter-constraint, e.g., Head-Right. We also invoke
a local Markedness constraint such as “Move V” which
conflicts with a Faithfulness constraint “*trace” (a.k.a.
“Stay!”, cf. Grimshaw1977). These constraints are de-
fined as follows:
• Move V: Raise V to T.
• *trace: No traces.

In German, unlike English, “*trace” is ranked lower than
“Move V”. Note that the overt difference between En-
glish and German can be explained by assuming the verb
help raises to node Y, without assuming anything about
the verbpaint. However, our OTAG analysis forces us
to make a theoretical commitment thatpaint also raises,
since the tree it is part of is a winner of a local optimiza-
tion under the same constraint hierarchy.

We can now characterize the Swiss-German case in a
way consistent with our theory of the English and Ger-
man cases. At this point, we are going to make use of the

X1

�
����

H
HHHH

we �
��

H
HH

��� HHH

�� HH
Hans thelp

X2

help

X3

����

HHHH

PRO ���
HHH

X4

�� HH
house tpaint

paint

Figure 3: Adjoining occurs atX4 in Swiss-German,X3

in German

linking optimization to distinguish German from Swiss-
German in particular. Descriptively, Swiss-German dif-
fers from German by the fact thathelpintervenes between
paint and its argument. This is exactly what we expect if
we assume that adjoining in Swiss-German takes place at
a lower node than adjoining in German. In the analysis of
English and German, the nodeX3 was the adjoining site.
By supposing that instead, the adjoining site for Swiss-
German isX4, we obtain the desired cross-serial depen-
dency. To enforce this difference in adjoining sites, we
need to postulate two constraints that play a role in the
linking optimization by favoring nodesX3 andX4, re-
spectively. A linguistically motivated constraint favoring
X3 may be related to the relationship between Hans and
PRO resulting from the adjoining. In English and Ger-
man, but not in Swiss-German, Hans c-commands PRO
in the output of the linking optimization. Another plausi-
ble constraint is a subcategorization constraint on the ad-
joining tree. Suppose the adjoining tree is of type A and
nodeX3 is of a particular type N. Thus, the linking opti-
mization may involve a constraint “C-PRO: PRO must be
c-commanded” and a constraint “A-to-N: Adjoin trees of
type A to nodes of type N” ranked differently with respect
to each other. In our case, let us suppose “trees of type A”
means “Auxiliary trees of type VP” and “Nodes of type
N” means “Highest VP node of initial tree.” To recount,
here is how our model analysis would play out. Table
4 presents the local optimizations with candidate struc-
tures, including the winners for English (E), German (G)
and Swiss-German (SG).

Note that at this point the local optimization contains
two constraints more than necessary to account for the
data. We can prune the analysis by removing any pair of
constraints that favor opposite candidates. For example,
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PA-chunks English German Swiss-German
([paint(Hans, house)], X) paint the house das Haus anstreichenes huus aastriiche
helped(we, Hans,X) We helped Hans wir Hans hilften mer em Hanshälfed

Table 1: PA-chunks

(paint(Hans, house)],X) Head-Left Head-Right *trace Move V
E: [PRO [paint house]] * *
G, SG:[PRO [[ tpaint house] paint]] * *
help(we, Hans, X)
E: [we [[help Hans]]] * *
G, SG:[we [[[thelp Hans]] help]] * *

Table 2: Local optimizations

paint(Hans, house) Head-Left Head-Right
E: [PRO [paint [tpaint house]]] *
G, SG: [PRO [[ tpaint house ] paint]] *
help(we, Hans,X)
E: [we [help [thelp Hans]]] *
G, SG: [we [[[thelp Hans ]] help]] *

Table 3: Local optimization simplified

we have the option of scrapping either the pair Head-Left,
Move V or the pair Head-Right, *trace from the con-
straint set. If we get rid of the former pair, we will essen-
tially be claiming that movement of the verb happens in
order to position the head to the right of the verb phrase.
Alternatively, if we remove the latter constraint pair, we
will be suggesting that movement of the verb can only
happen to the right and hence necessarily violates Head-
Left. There is no reason to dismiss either scenario right
away. On the other hand, some new data might discredit
either alternative and persuade us to keep all constraints
in the set. Finally, a third scenario may involve obliga-
tory verb movement in both English and German/Swiss-
German. In this case, the only relevant players in the
constraint set are Head-Left and Head-Right, which force
the movement to take the preferred direction. The op-
timization would include only candidate representations
in which movement has occurred (i.e. Loc would be re-
stricted to such structures, Table 3).

Another issue in the local optimization is the realiza-
tion of the argument “Hans” as PRO in one sentence, but
asHans in the other. This issue can only be solved by
exploiting the possibility of multiple winners in the local
optimizations. In other words PRO and the full argument
must be indistinguishable from the point of view of the
local optimization, but one or the other must be preferred
in the linking optimization. The argument is simple. By
virtue of our definition of the PA chunker, the predicate
argument structurepaint(Hans, house)is independent of

the larger complex predicate it was embedded in. Con-
sequently, the same predicate argument structure would
qualify as an UR ofHans paints the housesince the lat-
ter is a grammatical structure, Hans may equally surface
as PRO or simplyHans. We need to update our Table
once again by adding two more competitors, as shown
in Table 4. This competition is resolved in the subse-
quent linking optimizations as seen in Table 5. The con-
straint “*Repeat” penalizes the repetition of a nominal
element. Admittedly, this is a very crude way of enforc-
ing the presence of PRO in the final structure. A more
sophisticated way of defining *Repeat could refer to the
relationship between trees with argument Arg in SpecVP
on one hand, and trees with the same argument Arg in
a complement position on the other. For example: *Re-
peat: Do not adjoin trees with complement Arg to trees
with Arg in SpecVP This formulation is a better match
for the type of constraints we have used in our formal
treatment of OTAG so far.

The role of *Repeat here is to show how multiple win-
ners in the local optimization allow us to sneak in solu-
tions to differences in the form of main versus embedded
clauses. Recall that, if the PA-chunker is only given the
simple predicate argument structure to start with, the link-
ing optimization will involve adjoining of the null tree.
Consequently, “*Repeat” will not play a role, as shown
in Table 6. At the same time, any constraint related to
PRO would disadvantage PRO in this setting and the full
argument would surface. This completes our illustrative
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paint(Hans, house) Head-Left Head-Right
E: [PRO [paint [[ tpaint house]]] *
G, SG: [PRO [[ tpaint house] paint]] *
E: [Hans [paint [tpaint house]]] *
G, SG: [ Hans [[tpaint house] paint]] *

Table 4: Full NP andPRO are tied in the local optimization

help(we, Hans,X). paint(Hans, house) C − PRO A-to-N *Repeat
E: [ we [[help Hans] [PRO [paint house]]]] *
G: [ we [[[ Hans t help] [PRO [[housetpaint] paint ]]]help]] *
SG: [PRO [[ we [[[ Hans thelp] [housetpaint]] help]]paint]] *
* [ we [[help Hans] [Hans [paint house]]]] * *
* [ we [[[ Hans thelp] [Hans [[housetpaint] paint ]]]help]] * *
* [ Hans [[ we [[[Hans thelp] [housetpaint]]help]]paint]] * *

Table 5: Linking optimization licensesPRO in subordinate clause

∅ . paint(Hans, house) C − PRO *Repeat
* [ PRO [ paint house]] *
*[ PRO [[ housetpaint] paint ]] *
E: [ Hans [ paint house]]
G, SG: [ Hans [[ housetpaint] paint ]]

Table 6: Linking Optimization eliminates PRO in main clause

analysis of the Swiss-German construction and its cross-
linguistic counterparts. The important points to remem-
ber are:
• When analyzing a complex structure, complex PA

structures are broken into chunks.
• Predicate labels in the PA chunks constrain what ad-

joins into what in the linking optimization.
• Adjustments in the ranking among constraints in the

local optimization permit different structural vari-
ants to win.

• Both main clause and the embedded clause variants
of a PA chunk must be possible winners in the local
optimization.

• If the embedded clause is not grammatical as a main
clause, the linking optimization must include a con-
straint that favors the embedded clause over the
main clause.

5 Conclusion

Our proposal is a step towards a restrictive and adequate
framework for handling syntactic phenomena in the spirit
of OT. We have demonstrated that the generative power
of any grammar specified within the framework is lim-
ited to the class of MCSLs, which many believe is the
complexity class of natural languages. The main theo-
retical advantage of the OTAG formalism is the locality

imposed by the optimization over simple predicates in
the first stage of the derivation of an arbitrarily complex
structure. Another, more practical advantage stems from
the relative transparency of the components of the frame-
work. Our formalism relies on a specific kind of under-
lying representation, a specific way to handle recursion,
and a general template for constraints. Clearly, further
work is needed to test the viability of this framework for
a broader range of empirical phenomena.
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Appendix: Proofs of theorems

We define a TAG G as a tuple(A, I, R), whereA is the
set of auxiliary trees,I is the set of initial trees, andR
is the set of adjoining constraints associated with nodes
of A ∪ I. We require thatA contain a distinguished null
auxiliary treeε, capable of adjoining at any node. With
such anε tree, we can assume without loss of generality
that every legal TAG/OTAG derivation involves adjoin-
ing to every node of every tree involved in the derivation.
An adjoining constraintr ∈ R specifies a set of treesS
and a noded such thatS cannot adjoin atd (r = ∗S@d).
Such a constraint corresponds to the usual notion of se-
lective adjoining constraint. Obligatory adjoining con-
straints can be modeled as a constraint which forbids ad-
joining of ε. Null adjoining constraints permit adjoining
of only the treeε. On the OTAG side, we will assume
a constraint *NIL that penalizes SRs in the linking op-
timization in which trees present in the UR do not par-
ticipate in the TAG derivation yielding the surface tree.
Finally, we use the notationT (G) to refer to the set of
well-formed derivation trees in a TAG or OTAG.
Theorem 1. For any TAG G, there is a OTAG G’ such
that T(G) = T(G’).
Given a TAGG = (I,A, R), we define OTAGG′ =
(Σ,Γ,Π, Chunk, Loc, C,K), such thatLoc = A ∪ I
andKG′ = {∗NIL} ∪ {kr|r ∈ R} wherekr penalizes
a candidate if it involves an adjoining that would violate
TAG adjoining constraintr.3

Claim 1 D ∈ T (G) → D ∈ T (G′)
Proof by induction on the depth ofD (represented(D)):
Base caseLet (D) = 0.D consists of a nodet whose only
children are instances of the empty treeε. Let t be a tree
with nodes{1...n}. D /∈ T (G′) iff one of the following
is true:

1. {t, ε} /∈ Loc. But ε is always in A. Moreover,D ∈
T (G) by hypothesis, which is true only ift ∈ A∪ I.
SinceLoc = A ∪ I, t ∈ Loc.

2. ∃k1...kn ∈ K|ki = ∗{ε}@i, for i a node∈ t. This is
true only if ∃{r1...rn} ∈ R|ri = ∗{ε}@i, i a node
∈ t. But if {r1...rn} ∈ R was trueD ∈ T (G) would
be false.

Hence{k1...kn} do not exist andD ∈ T (G′)
Induction hypothesis Suppose Claim 1 is true for all

3We do not defineΣ, Π, Chunk, or C since the there is
no counterpart to the local optimization in TAG. Since the set
of elementary trees is finite, we can assume the existence of
some set of constraintC that will produce this set of trees from
appropriate URs.

(D) ≤ k. Let t be the root ofD and {1...n} the set
of nodes int. Let {D1...Dn} be a set of derivations with
roots{a1...an} ∈ A such thatai is adjoined to nodei in
t. Observe that(Di) ≤ k for 1 ≤ i ≤ n. D /∈ T (G′) iff
one of the following is true:

1. t /∈ Loc. But D ∈ T (G) by hypothesis, which is
true only if t ∈ A∪ I. SinceLoc = A∪ I, t ∈ Loc;

2. {D1...Dn} /∈ T (G′).But {D1...Dn} ∈ T (G′) by
the induction hypothesis;

3. ∃ki ∈ K|ki = ∗ai@i. This is true only if∃ri ∈
R|ri = ∗ai@i. But if this were true,D ∈ T (G)
would be false.

Henceki do not exist andD ∈ T (G′)
Claim 2 W ∈ T (G′) → W ∈ T (G)
Proof by induction on the depth of W:
Base case(W) = 0. W consists of one optimization ad-
joining the empty treeε into somew ∈ Loc. W /∈ T (G)
iff one of the following is true:

1. w /∈ A ∪ I. But Loc = A ∪ I andw ∈ Loc. Hence
w ∈ A ∪ I.

2. ∃r1...rn ∈ R|ri = ∗{ε}@i, for i a node∈ t. This
is true only if∃{k1...kn} ∈ K|ki = ∗{ε}@i, for i
a node∈ t. But if {k1...kn} ∈ K was true,W ∈
T (G′) would be false.

Hence{r1...rn} do not exist andW ∈ T (G)
Induction hypothesis Suppose Claim 2 is true for any
derivation W,(W ) ≤ k. Let w be the root ofW and
{1...n} the set of nodes inw. Let {W1...Wn} be a set
of derivations with roots{z1...zn} ∈ Loc such that
zi is adjoined at nodei. Observe that(Wi) ≤ k for
all 1 ≤ i ≤ n. W /∈ T (G) iff one of the following is true:

1. w /∈ A ∪ I. But w ∈ T (G′) by hypothesis, which is
true only ifw ∈ Loc. SinceLoc = A∪I, w ∈ A∪I;

2. {W1...Wn} /∈ T (G).But {W1...Wn} ∈ T (G) by
hypothesis;

3. ∃ri ∈ R|ri = ∗zi@i. This is true only if∃ki ∈
K|ki = ∗zi@i. But if ki ∈ K was trueW ∈ T (G′)
would be false.

Henceri do not exist andW ∈ T (G).
Theorem 2. For any OTAG G’, there is a TAG G such
that T(G’) = T(G).
Here, we will also give a general procedure for convert-
ing a OTAG into an equivalent TAG. Before we proceed,
it would be useful to informally consider the two cases
that cause complications in this conversion. Both cases
are easily illustrated with a minimal OTAG. Suppose Loc
contains only two trees: the initial tree t and the aux-
iliary tree a. In addition, let t contain only two non-
terminal nodes (n1, n2). Case 1: Now suppose that the
constraint set K of our OTAG G contains two OA con-
straints,k1 andk2, such thatk1 andk2 require the ad-
joining of the same treea at different nodes(n1, n2) of
the treet (k1 = ∗(A − a)@n1; k2 = ∗(A − a)@n2; ).
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Furthermore, suppose∗Null >> k1 >> k2. This
constraint ranking would enforce the adjoining ofa into
n2(t) only if another instance ofa is adjoined atn1(t).
Case 2 is similar: Suppose that the constraint set K of our
OTAG G contains two NA constraints,k1 andk2 against
adjoining any auxiliary treea at either one of two dif-
ferent nodes(n1, n2) of the same treet. Furthermore,
suppose∗Null >> k1 >> k2. This constraint rank-
ing would allow adjoining inton1(t) only if adjoining
has taken place already atn2(t). It is clear from these
cases that a simple translation of constraints into adjoin-
ing constraints is not sufficient. The violated OA con-
straintk2 cannot be emulated by an OA constraint forc-
ing a to adjoin atn2 (because the adjoining fails when
a is not adjoined atn1); nor does it correspond to a SA
constraint that merely allows adjoining ofa at n2 (be-
cause it the adjoining is obligatory whenever an instance
of a is already adjoined atn1). Thus, instead of pick-
ing a single type of constraint to place on each elemen-
tary tree, we need to multiply out the trees in Loc af-
fected by problematic constraint sets of this type. The
treet corresponds to a subset of two trees in the elemen-
tary tree set of the corresponding TAG: One tree has an
OA constraint on noden1. The other has an NA con-
straint on noden2. Similarly, the violated NA constraint
k2 cannot be emulated by a NA constraint againsta on
n1 (because the adjoining could occur if an instance ofa
is already adjoined atn2). Neither can it be completely
disregarded, because it preventsa from adjoining inton1

if a has not adjoined ton2 beforehand. The treet maps
to a subset of two trees in the elementary tree set of the
corresponding TAG: One tree has an NA constraint on
n1, the other has an OA constraint onn2. Let G’ be a
OTAG = {Σ,Γ,Π, Chunk, Loc,GenC , GenK , C,K}
with rankingsRC andRK . Then TAGG = {A, I, R},
obtained based on the outcome of all linking optimiza-
tions involving the adjoining of a setS of trees fromLoc
into some treet in Loc (note that|S| ≤ the number of
non-terminals int).
Conversion algorithm:
Step 1: Create a tableTt of sizen×p associated with each
treet in Loc, wheren is the number of nodes int, andp is
the number of possible multisets of treesZ drawn from
Loc of cardinalityn. In each cell(j, k), enter all trees
z ∈ Z adjoined to nodej in some linking optimization
over Υ, whereΥ is a UR tree whose nodes are labeled
with triples(σi, π, γi) and∪(γi) = k.

Step 2: For every treet ∈ Loc, create a set of elementary
treesEt containing distinct copies oft for each cell of
Tt. For each sucht(i,j) ∈ Et, create adjoining constraints
r = ∗A−Tt(i, j)@h, whereh is the name of the copy of
nodei in t(i,j).

Claim 1: W ∈ T (G′) → W ∈ T (G)
Proof by induction on depth ofW .

Base caseLet (W ) = 0. W involves one optimization
adjoining of only instances of the empty treeε into some
w ∈ Loc. W /∈ T (G) iff one of the following is true:

1. w /∈ A ∪ I. But A ∪ I ⊇ Loc andw ∈ Loc. Hence
w ∈ A ∪ I.

2. ∃r1...rn ∈ R|ri = ∗{ε}@i, i a node∈ t. This is true
only if ε never adjoins into w in the linking optimiza-
tion of G’. But if this were the case,W ∈ T (G′)
would be false.

Hence{r1...rn} do not exist andW ∈ T (G)
Induction hypothesis Suppose Claim 1 is true for any
derivation (W ) ≤ k. Let w be the root ofW and
{1...n} the set of nodes inw. Let {W1...Wn} be a set
of derivations,(Wi) ≤ k with roots{z1...zn} ∈ Loc such
that zi is adjoined at nodei. W /∈ T (G) iff one of the
following is true:

1. w /∈ A ∪ I. But w ∈ T (G′) by hypothesis, which is
true only if w ∈ Loc. SinceA ∪ I contains copies
of all the trees inLoc,w ∈ A ∪ I;

2. {W1...Wn} /∈ T (G). But {W1...Wn} ∈ T (G) by
hypothesis;

3. ∃ri ∈ R|ri = ∗zi@i. This is true only if G’ disal-
lows adjoining ofzi to i, in which caseW ∈ T (G′)
would be false.

Henceri do not exist andW ∈ T (G).
Claim 2: D ∈ T (G) → D ∈ T (G′)
Proof by induction on depth ofD:
Base caseLet (D) = 0. D consists of a nodet whose
only children are the empty treeε. Let t be a tree with
nodes{1...n}. D /∈ T (G′) iff one of the following is
true:

1. {t, ε} /∈ Loc. But ε is always in A. Moreover,D ∈
T (G) by hypothesis, which is true only ift ∈ A∪ I.
SinceA∪ I contains only copies of trees inLoc, t ∈
Loc.

2. ∃k1...kn ∈ K|ki = ∗{ε}@i, i a node∈ t. This is
true only if ∃{r1...rn} ∈ R|ri = ∗{ε}@i, i a node
∈ t. But if {r1...rn} ∈ R was trueD ∈ T (G) would
be false.

Hence{k1...kn} do not exist andD ∈ T (G′)
Induction hypothesis Suppose Claim1 is true for any
(D) ≤ k. Let t be the root ofD and{1...n} the set of
nodes int. Let {D1...Dn} be a set of derivations,(Di) ≤
k with roots{a1...an} ∈ A such thatai is adjoined to
nodei. D /∈ T (G′) iff one of the following is true:

1. t /∈ Loc. But D ∈ T (G) by hypothesis, which is
true only if t ∈ A ∪ I. SinceA ∪ I contains only
copies of trees inLoc, t ∈ Loc;

2. {D1...Dn} /∈ T (G′).But {D1...Dn} ∈ T (G′) by
hypothesis;

3. ∃ki ∈ K|ki = ∗ai@i. This is true only if∃ri ∈
R|ri = ∗ai@i. But if ri ∈ R was trueD ∈ T (G)
would be false.

Henceki do not exist andD ∈ T (G′).
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Abstract

In thispaper, weshow how to formalizerecon-
structioneffectsin anLTAG semantics.Wede-
rive a lexical entry andsemanticspecification
for how many, which introducestwo quantifi-
cationalelements.We alsoshow how they in-
teractcompositionallywith otherscopalitems,
e.g.modalandattitudeverbsin aquestion.The
useof an underspecifiedsemanticsallows the
compactrepresentationof scopeambiguities.
We demonstratehow this also enablesus to
obtainthe correctreadingsin embeddedques-
tions.

1 Intr oduction

Semanticreconstructionis aneffect thatis appealedto if
a scopalelementseemsto be interpreted“further down”
in the syntactictreethanit actuallyoccurs. Oneexam-
plearecomplex wh-questions,in whichapartof thewh-
phrasesometimesmustbeinterpretedasif it occurredin
theapproximatepositionof its trace(in a transformation-
basedanalysis).

How many-questionsaresuchcomplex wh-questions,
becausehowmanyintroducestwo quantifiers(basically,
what n and n-many). Thus, sentence(1) is ambigu-
ous with respectto whetherreconstructionof the sec-
ond quantifier(n-many) into the object position occurs
or not.1

1Notethatreconstructionof aquantifierinto alowerposition
in thetreedoesnotdeny thatquantifierthepossibilityto raiseby
normalquantifierraising. In fact, in thecaseof howmany, the
whatn is a wh quantifierwhich hasto take thewidestpossible
scope. The n-manyquantifier is a normal non-wh quantifier
which canbe interpretedin the usual“scopewindow” for NP
quantifierssuchas“some” and“every”. Alternatively, by way
of appearingtogetherin one word with the wh quantifier, n-
manycantake thehigherwh-scopehere.

(1) How many studentsdid Mary interview?
For whatn: therearen-many people��� , suchthat
Mary interviewed ��� .�����	�

some 
���
�������
 ���������
some 
 � 
 stud ��
 ������ � � � ��
 interview 
! "
 � 
 � �#���%$ 2 & 3

This ambiguity is madeapparentif other scopalele-
ments,like modalverbs,adjoin to the sentence.Exam-
ple (2) hastwo separatemeanings,with differentrelative
scopeof n-manyandshould.

(2) How many studentsshouldMary interview?

(a) For what n: it shouldbe the casethat therearen-
many students� � suchthatMary interviewed � � .�����	�

some 
���
�������
 ���������
should 
 some 
 � 


stud �'
 �(� �)� � � � ��
 intv 
�*�
 � 
 � � � mary 
�* ���#���%$
(b) For whatn: therearen-many students��� suchthatit

shouldbethecasethatMary interviewed ��� .�����	�
some 
���
�������
 ���������

some 
 � 
 stud ��
 ��� �� � � � ��
 should 
 intv 
�*+
 � 
 � � � mary 
�* �#���#�%$
The first meaningmight be intendedwhen Mary is

known to make a representative survey amongstudents,
and the speaker wantsto know how many students(no
matterwho they are)have to be interviewedin orderfor
Mary to beableto makevalid judgments.Meaning(b) is
moresalientif Mary hasbeenassignedto askcertainstu-
dents(e.g.,Bill, Bob,andSusan),andthespeaker wants
to know how big thegroupof peoplewhomMary hasto
interview is exactly.

In earlier approachesto suchsemantics,the effect is
accountedfor by postulatinga tracein thecanonicalpo-
sition of the wh-element(Cresti, 1995). A part of the

2We loosely follow the view of (Karttunen,2003) on the
meaningof questions,which analysesa questiondenotationas
a setof propositions,namelyall thosepropositionsthatanswer
thequestion.

3stud , means“a plurality of students”.
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wh-phraseis then said to be reconstructedin that po-
sition, from which it can optionally raiseacrossother,
higherscopalelements.Thus,an ambiguityariseswith
respectto therelative scopingsof scopalelementsin the
sentence.

Thesephenomenaseemto poseproblemsfor aseman-
tics interface on top of a syntactic theory which, like
TAG, doesnot make useof tracesor movement. How-
ever, we demonstrateherethat the useof featurestruc-
turesnot only makesan accountpossible,but alsopro-
videsuswith a compactunderspecifiedrepresentationof
scopeambiguitiesthatarisedueto the optionalityof re-
construction.

2 LTAG Semantics

It is commonlyarguedthatsemanticcompositionin TAG
shouldbe donewith respectto the derivation tree, not
the derived tree. This is possiblebecauseeachelemen-
tarytreeis associatedwith its appropriatesemanticrepre-
sentation,andthesemanticsof thesentenceis composed
incrementallyin parallelwith the syntacticcomposition
(seee.g.Kallmeyer andJoshi,2003;Joshiet al., 2003;
GardentandKallmeyer,2003).

In this paper we use the framework presentedin
Kallmeyer and Romero(2004): We use a flat seman-
tic representationwith unification variables(similar to
MRS, Copestake et al., 1999). In addition to predica-
tions,thesemanticscontainpropositionalmetavariables.
Constraintsontherelativescopeof themetavariablesand
propositionallabelsare usedto provide underspecified
representationsof scopeambiguities.Thesemanticrep-
resentationis storedin semanticfeaturestructuresthat
arepartof thelexical entry, togetherwith theelementary
tree.To keeptrackof thenecessaryvariableunifications,
semanticfeaturesareassociatedwith eachnodeposition
in theelementarytree.4 Thevaluesof thesefeaturesare
featurestructuresthatconsistof a T anda B feature(top
andbottom)whosevaluesarefeaturestructureswith fea-
turesI for individual variables,P for propositionallabels
etc.

Thesemanticcompositionfollowstheusualdefinitions
for unification in Feature-BasedTAG syntax: For each
edgein thederivationtreefrom elementarytree -�. to -(/
with position

�
: (1) the T featureof position

�
in -�. and

theT featureof theroot of -0/ areidentified,and(2) if -(/
is an auxiliary tree, then the B featureof the foot node
of -0/ andthe B featureof position

�
in -�. areidentified.

Furthermore,at theendof a syntacticderivation,thetop
andbottomfeaturestructuresateachnodeareunified.By
theseunifications,someof the variablesin the semantic
representationsgetvalues.Then,theunionof all seman-

4For thesake of readability, we usenamesnp,vp, ... for the
nodepositionsinsteadof theusualGornadresses.

tic representationsis built whichyieldsanunderspecified
representationwith scopeconstraints.

To obtain the different possiblescopingsof the sen-
tence,all possibledisambiguations, i.e. injective func-
tionsfromtheremainingpropositionalvariablesto labels,
mustbefound.Thedisambiguatedrepresentationsarein-
terpretedconjunctively.

Quantifiers Following Joshi and Vijay-Shanker
(1999); Kallmeyer and Joshi (2003) and in particular
Romeroet al. (2004), we assumethat quantificational
NPsasevery in (3) andalsowho in (4) aresyntactically
split into two partsof onemulticomponentset. Onetree
is substitutedinto theappropriateNP nodeandprovides
the predicate-argumentinformation; the other tree is a
degenerateauxiliary tree that consistsonly of a single
S node,andwhich contributesthe scopepart. Figure1
shows thesyntaxfor sentence(3).

(3) Everydogbarks.

(4) Who laughs?

1222223 222224
S,
NP

Det N ,
every

5 222226222227 N

dog

S

NP8 VP

barks

Figure1: Syntaxof (3) Everydog barks.

Thesemanticderivationfor thesimplequantifiedsen-
tence(3) is shown in figure 2. The unificationsleadto
the following featureidentities: . � 9

(adjunctionof
the scopepart), : � * and ; �=< : (substitutionof dog
into determiner), / � * and > �?< . (substitutionof the
NP into barks). Replacingthe variablesby their values
and building then the union of all semanticrepresenta-
tionsleadsto (5):

(5)
< .A@ bark 
�* � , < /B@ every 
�*+
 C 
 D � , < : @ dog 
E* �. F < . 
 C F < : 
 D F < . 
 . F < /

There is only one disambiguation, . G < /'
 C G< : 
 D G < . , which leadsto the final semanticrepresen-
tation: every 
�*+
 dog 
�* � 
 bark 
E* �#� .
Questions The feature maximal scope (MAXS) is
neededto provide the correctmaximalscopeof quanti-
fiers. This is importantin questions,aswe will seelater.
Furthermore,MAXS is alsousedto make surethatquan-
tifiers embeddedunderattitudeverbssuchas think can-
not scopeover the embeddingverb (seeKallmeyer and
Romero,2004,for furtherdiscussion).
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H�IKJ
barks L M N , I O HEIPQQQQQR S S B T MAXS

I UWV
NPX PR T Y I M

P l
I#Z#[\ [ ]]]]]\

H M J every LW^`_ a _ b N ,c O H MY S S B T MAXS
c U V Z

Sd a O e _ b O fPQQQQQQQR
NP

PR B Y I x
P

f Z [\
N

PR T Y I x
P

e Z [\
[ ]]]]]]]\

NPX

HhgiJ
dog L g NPR N PR T Y I g

P l
g Z [\j[\

N

Figure2: Semanticderivationof Everydog barks.

Following Romeroet al. (2004),we assumethat wh-
operators,likequantifiers,alsohaveaseparatescopepart
andthey alsohave a MAXS scopelimit. But their scope
limit is providedby the S’ node,not the S node. For an
analysisof the questionWhich studentsdid Mary see?,
seefigures3 and4.

The MAXS featurestogetherwith thesemanticsof the
questionverbmakesurethatall wh-operatorshavescope
over thequestionproposition(here

< / ) andall quantifiers
scopebelow thisproposition.Theminimalnuclearscope
of thewh-operator(variable / ) is providedby theques-
tion proposition

< / .
3 A Lexical Entry for how many

In this section,we give Multicomponent-TAG elemen-
tary treesand appropriatesemanticrepresentationsthat
show how to derive themeaningof howmanysentences
in TAG.

As notedabove, the phrasehow manyintroducestwo
existential quantifiers. Both appeartogetherin the se-
mantic representation.As for all (wh-)quantifiers,the
contribution is split up into a predicate-argumentanda
scopepart. Here, the predicate-argumentpart is empty
and containsonly someconstraints. This makes how

S* Skl l lmmm
NPnpo'q Srs s sttt

NPuvq VPw wxx
V

see

NP.y
NPz z{{

Det

which

N q
N

students

S| |}}
V

did

S*

NP

N

Mary

Figure 3: Syntactic derivation of Which studentsdid
Mary see?1222222222222222222222222223 222222222222222222222222224

S’*

H c J some LW~p_%~�����_ � N�_H g J
some LW��_�� ���v��~�� I X _ I a N�_I b O H c _ I a O I �Y S’ S B T MAXS

I b UhV Z
NP� ���

Det� ���
howmany

N 8
I g � H g _ I X O I�I _ � O I gPQQQQQQQQQQR

NP

PQQQR T Y WP
I g

P
I � Z

B T I y
U [ ]]]\

N

PR T Y I y
P

I�I Z [\
[ ]]]]]]]]]]\

5 222222222222222222222222226222222222222222222222222227
Figure5: Lexical entryfor howmany.

manyanalogousto which (seethe derivation in figure 4
above),in thattherestrictionis providedby thenounthat
substitutesinto the quantifier. The lexical entrywe pro-
posefor howmanyis shown in figure5.

Theadditionalcomplicationof this lexical item is that
the two quantifiersit contributesdo not have exactly the
samescope. One (

< 9 ) is a wh-quantifierthat needsto
take scopeover the questionpropositionin the verbal
tree. The constraint � F . : guaranteesthat the wh-
quantifieritself muststayon top of the treeandnot be
reconstructed.

Theotherquantifieris a “normal” onewhoseminimal
scopeis the elementarypredicationof the verbal tree.
Thus,it is not enoughto have onesinglefeatureP in the
root nodeof the predicate-argumentpart to provide the
minimal scopefor bothquantifiers(aswasstill sufficient
in the caseof which above). We introducea featureWP
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�v� g _ H M J�� � ��� aH I J
see L I b _ I X _ � Na O HEI _ g O H M _ I O H MPQQQQQQQQQQQQQQQQQQQQQQQQQQR

S� S T T MAXS
I UhV

NP��� PR T Y I I X
P l M Z�[\

Sd PQR T T P I U
B T MAXS l

I U [ ]\
NPX PR T Y I I b

MAXS l
I Z [\

VP

PQR T T P I U
B T MAXS l

I U [ ]\

[ ]]]]]]]]]]]]]]]]]]]]]]]]]]\
HhgiJ

some LW�(_ I M _ M NI g � H gY S S T T MAXS
I g U V Z

S� M O I b _ I M O I aPQQQQQQQR
NP

PR T Y I y
P

I b Z [\
N

PR T Y I y
P

I a Z [\
[ ]]]]]]]\

NP�#�

H b J student , LW��NPR N PR T Y I I�I
P l b Z [\v[\

N

L did NPQQQQQQQQR
R

PQR T T P f U
B T MAXS � U [ ]\

F

PR T Y P f
MAXS � Z [\

[ ]]]]]]]]\

S�
mary LW^�NY NP S T T I x

U	V Z
NP�

Figure4: Semanticderivationof Which studentsdid Mary see?

for this purpose,which providesthe minimal scopefor
thewh-quantifier. FeatureP is keptfor thenon-whmini-
mal scope. . � will unify with theverb’sbasicpredicate.

On the otherhand,non-whquantifiersareusuallyre-
strictedby theMAXS featureof theSnodetheirscopepart
adjoinsinto, which in turn is usedduringembeddingun-
der attitudeverbs: In Mary thinksJohn likeseverybody,
theuniversalquantifiercannotscopeover thinks. For the
non-whpartof howmany, however, this restrictiondoes
not seemto hold: How manystudentsdoesMary think
John likes? is ambiguousbetweenmanyscopingover
think, or think over many.5 This fact is capturedin the
proposedlexical entryby not giving a maximalscopere-
strictionfor thenon-whquantifier

< : . Of course,thecon-
5This wasalsopointedoutby onereviewer.

straints � F . : and . : � < : ensurethat
< : is in the

nuclearscopeof thewh-quantifier
< 9 .

4 Interaction with other ScopalElements

Theinterestingproblemof scopalreconstructionis to ob-
tain thetwo possiblereadingsof a sentencelike (2). The
meaningin (b) is easilyderivable,becausenoreconstruc-
tion occurs.Reading(a), however, mustbe obtainedby
reconstructingsome 
 � 
��¡ �¢"£(�'
 �(� ��� � � � ��
 �¤�h� � under
should 
 �h�h� � .6 Figure6 shows thesemanticderivationfor
sentence(2).

6For simplicity, anabbreviatednotationfor thesemanticsof
should is usedin this paper. More accurately, the modalverb
shouldintroducea universalquantifierover situations.We will
notdealwith thecomputationsrelatedto situationshere.
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Scopeunderspecificationis obtainedin the follow-
ing way: both the many-quantifier and should’s mini-
mal scopesare restrictedby constraints( . C F . � and. 9 F . ; , respectively), which makesthemboth scope
over

< . eventually. Furthermore,thetwo scopalelements
aremaximallyrestrictedto bein thescopeof thequestion
proposition.Their relativescopeis left undetermined.

The featureidentitiesthat are derived during the se-
manticcomputationof (2) are . D � . 
 . : �¥< /'
 . � �< .¦
 C � � , .§/ � � 
 .�. �¨< D 
 / � . > � 9 
 . ; � ; ,: � *+
 ; �©< . . Building theunionof all semanticrep-
resentationsandsubstitutingvaluesfor metavariablesas
possibleleadsto theunderspecifiedsemanticrepresenta-
tion (6):

(6)

�v� I _ H M J�� � ��� M ,
H I J

intv LW^�_%�(_ � N ,H c J some LW~ª_�~�����_ � N ,H g J
some LW�(_«� ���¦��~�� I X _ I a N , H b J student , LW��N ,H	e�J
should L I c N , mary LW^�NI O H M _ M O HEI , I O H c _ I a O HEI _ H M � H g _I X O H b _ � O H M , I c O H I _ M O H	e

There is are two possibledisambiguations,namely:
(a) . G < 9 (b) . G < 9� G < / � G < // G < ; / G < :. 9 G < : .§u G < D.§u G < D . C G < ;. C G < . . 9 G < .

which resultin the two appropriatereadingsfor thesen-
tence:

(a)
�����	�

some 
���
�������
 ���������
should 
 some 
 � 
� � � � � � stud ��
 ��� 
 intv 
�*�
 � 
 � � � mary 
�* ���#���%$

(b)
�����	�

some 
���
�������
 ���������
some 
 � 
 � � � � � �

stud �'
 �(� 
 should 
 intv 
E*�
 � 
 � � � mary 
�* ���#���%$
Attitude Verbs In TAG, predicatesthat take clausal
complementsanchorauxiliary treesthatadjoininto their
embeddedsentences.Figure7 showsthelexical entryfor
theverbthink7.

A verblike think functionsasaboundaryfor MAXS by
projectinga differentvariableupwards.However, aswe
haveseenabove,themaximalscopeof thenon-whquan-
tifier of howmanyis notrestrictedby theMAXS featureof
the S node. This ensuresthateven if a how-many ques-
tion is embeddedunderan attitudeverb, thereis some
freedomfor the quantifier’s scopewith respectto other
scopalelements,e.g.,shouldand think. Therefore,sen-
tence(7) still hasat leastthe two meaningsgiven along
with it in (a)and(b). In addition,onemeaningshouldbe

7For simplicity, wehavealreadycombinedthinkwith doand
youin thisfigure.Sofor all practicalpurposes,thiswouldnotbe
alexical entryfor any broadTAG-grammar, althoughnothingin
thetheoryprohibitssuchlexical items.

Ss s sttt
V

do

Ss s sttt
NP

you

VP| |}}
V

think

S*

H¤f�J
think LW¬`_ M X N�_

you LW¬(NM I O Hhf _ M X O M�MPQQQR Sd S T T MAXS M I U	V
S­®S B T MAXS M�M U V [ ]]]\

Figure7: Lexical entryfor think.

obtainablewheremanyscopesoverboththinkandshould
(c). This readingshallnot concernushere.

(7) How many studentsdo you think Mary should
interview?

(a)
�����	�

some 
���
�������
 ��������
think 
�¢�
 should 
 some 
 � 
 stud ��
 ��� ��� � � � ��


intv 
�*+
 � 
 � � � mary 
E* �#���#���%$
(b)

�����	�
some 
���
�������
 ��������
think 
�¢�
 some 
 � 
 stud �'
 ��� ��� � � � ��


should 
 intv 
E*�
 � 
 � � � mary 
E* ���#�#���%$
(c)

�����	�
some 
���
�������
 ���������

some 
 � 
 stud ��
 ��� �� � � � ��
 think 
�¢�
 should 
 intv 
E*�
 � 
 � � �
mary 
�* ���#���#�%$

Thesyntacticanalysisof example(7) is depictedin fig-
ure 8. The semanticderivation for the sentenceis very
similar to the non-embeddedsentence(2), shown in fig-
ure6. Theonly differenceis theadditionaladjuntionof
thesemanticrepresentationasshown in figure6 with the
semanticformulaeandfeaturestructureshown in figure
7, at theSr nodeof the interview tree.

The feature unifications triggered by the semantic
derivation are: . D � . 
 . : �¯< / 
 . � �°< . 
 C � � ,.§/ � � 
 .�. �±< D 
 . > � 9 
 . ; � ; , : � *�
 ; �±< . ,/�. � / 
 /�/ � 9

. (Note thatbecauseof theadjunction,
somepreviousunificationsarenot carriedout any more:/ ²� 9

.) This yields the following semanticrepresenta-
tion for thecompletesentenceHowmanystudentsdoyou
think Mary shouldinterview?:

(8)

�v� I _ H M J�� � ��� M ,
HEI³J

intv LW^�_%�(_ � N ,H c J some LW~ª_�~�����_ � N ,H g J
some LW�(_«� ���¦��~�� I X _ I a N , H b J student ,´LW��N ,H	e�J
should L I c N , mary LW^�N ,HhfiJ
think LW¬`_ M X N�_ you LW¬�NI O H M _ M O HEI , I O H c _ I a O HEI _ H M � H g _I X O H b _ � O H M , I c O H I _ c O H	e , M O Hhf _ M X O c

Therepresentationaccountsfor thefactthatthink nec-
essarilyscopesover should, but the many-quantifiercan
scopeout of it.
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Two of thepossibledisambiguations(wherethink has
widest scope)are shown below, and they representthe
two readings(a)and(b):

(a) . G < 9 (b) . G < 9� G < / � G < // G < > / G < >/#u G < ; /#u G < :. 9 G < : .�u G < D.�u G < D . C G < ;. C G < . . 9 G < .
Islands Reconstructionis not alwayspossible. In ex-
amplessuchas (9) with extraction out of weak islands
(Ross,1967),only thenon-reconstructedreading(where
Mary shouldinterview specificstudents)is possiblefor
howmany.

(9) How many studentsdo youwonderwhetherMary
shouldinterview?

(b)
�����	�

some 
���
�������
 ���������
wonder 
�¢�
 some 
 � 


stud �'
 �(� �)� � � � ��
 should 
 intv 
�*+
 � 
 � � �
mary 
�* ���#���#�%$

The statusof weak islands is not completelyclear.
Many studiessuggestthatthefactorthatprohibitsoneof
thepossibleinterpretationsin sentencessuchas(9), and
which is traditionallyattributedto thefailureof students
to reconstructacrossa weak island barrier (seeCresti,
1995), is really a pragmaticratherthansyntacticor se-
manticphenomenon.

The issuewhether this effect can be accountedfor
compositionallywith LTAG or whetherit hasto be re-
solvedby a pragmaticprocessis left for furtherwork.

5 Conclusion

In this paperwe showed that using recentlydeveloped
frameworksfor representingsemanticsin LTAG, we can
accountfor ambiguitiesthatarisein howmanyquestions
in an elegantway. The useof underspecifiedsemantics
and the featureunificationprocessasemployed also in
the syntacticcompositionin TAG togetherallow the re-
constructionof non-whquantifierlower in thetree.

Weproposedalexical entryandsemanticspecification
for how manywhich introducestwo quantifiers,oneof
the wh type, andonenon-wh quantifier. We presented
how thesequantifiersobtainexactly theright scopalpos-
sibilities in simple and embeddedquestions. Further-
more,weshowedhow theproposedlexical entryinteracts
compositionallywith otherscopalelementsin questions,
suchasmodalverbs,andhow two readingsareobtained
from a singlesemanticrepresentation.

An accountfor weakislandconstraintsis left for future
work. We proposethatweakislandbarriersin thesecon-
texts may actuallybe a pragmaticeffect that shouldnot
affectoursemanticanalysis.
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Abstract

Tree transducer formalisms were developed
in the formal language theory community
as generalizations of finite-state transduc-
ers from strings to trees. Independently,
synchronous tree-substitution and -adjoining
grammars arose in the computational linguis-
tics community as a means to augment strictly
syntactic formalisms to provide for parallel se-
mantics. We present the first synthesis of
these two independently developed approaches
to specifying tree relations, unifying their re-
spective literatures for the first time, by using
the framework of bimorphisms as the gener-
alizing formalism in which all can be embed-
ded. The central result is that synchronous tree-
substitution grammars are equivalent to bimor-
phisms where the component homomorphisms
are linear and complete.

1 Motivation

The typical natural-language pipeline can be thought of
as proceeding by successive transformation of various
data structures, especially strings and trees. For in-
stance, low-level speech processing can be viewed as
transduction of strings of speech samples into phoneme
strings, then into triphone strings, finally into words
strings. (Because of nondeterminism in the process,
the nondeterministic string possibilities may be repre-
sented as a single lattice. Nonetheless, the underlying
abstract operation is one of string transduction.) Morpho-
logical processes can similarly be modeled as character
string transductions. For this reason, weighted finite-state
transducers (WFST), a general formalism for string-to-
string transduction, can serve as a kind of universal for-
malism for representing low-level natural-language pro-
cesses (Mohri, 1997).

Higher-level natural-language processes can also be
thought of as transductions, but on more highly struc-

tured representations, for instance trees. Semantic inter-
pretation can be viewed as a transduction from a syntactic
parse tree to a tree of semantic operations whose simpli-
fication to logical form can be viewed as a further trans-
duction. This raises the question as to whether there is
a universal formalism for NL tree transductions that can
play the same role there that WFST plays for string trans-
duction.

In this paper, we investigate the formal properties of
synchronous tree-substitution and -adjoining grammars
(STSG and STAG) from this perspective. In particu-
lar, we look at where the formalisms sit in the pantheon
of tree transduction formalisms. As a particular result,
we show that, contra previous conjecture, STSG is not
equivalent to simple nondeterministic tree transducers,
and place for the first time STSG and STAG into the tree
transducer family. Essential to this unification of the two
types of formalisms is the bimorphism characterization of
tree transducers, little known outside the formal language
theory community.

We begin by recalling the definitions of nondetermin-
istic top-down tree transducers (↓TT ), and their descrip-
tion in terms of bimorphisms, and also provide a defini-
tion of STSG and STAG. We show that ↓TT and STSG
differ in their expressive properties; these differences ar-
gue in favor of the synchronous formalisms for NL use.
Finally, we prove the equivalence between STSG and a
new kind of bimorphism, which characterization makes
some of the properties of STSG trivial. This view of
STSG generalizes to provide a bimorphism characteriza-
tion of STAG as well.

This work makes several contributions to our under-
standing of tree transducers and the synchronous for-
malisms. First, it provides the first unification of the two,
placing both in a consistent framework, that of bimor-
phisms. Second, it provides intuition about appropriate
properties of such formalisms for the purpose of natural-
language processing applications, which may help inform
the search for a universal NL tree transduction formalism.

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 88-95.



2 Preliminaries

We start by defining the terminology and notations that
we will use for strings, trees, and the like.

We will notate sequences with angle brackets, e.g.,
〈a, b, c〉, with the empty string written ε. The number of
elements in a set or sequence x will be notated |x|.

Trees will have nodes labeled with elements of a
RANKED ALPHABET, a set of symbols F , each with a
non-negative integer RANK or ARITY assigned to it, say
by a function arity, determining the number of children
for nodes so labeled. Symbols with arity zero are called
NULLARY symbols; with arity one, UNARY; with arity
two, BINARY. We write Fn for the set of symbols in
F with arity n. To express incomplete trees, trees with
“holes” waiting to be filled, we will allow leaves to be
labeled with variables, in addition to nullary symbols.

The set of TREES OVER A RANKED ALPHABET F AND

VARIABLES X , notated T (F ,X ), is the smallest set such
that

Nullary symbols at leaves f ∈ T (F ,X ) for all f ∈
F0;

Variables at leaves x ∈ T (F ,X ) for all x ∈ X ;

Internal nodes f(t1, . . . , tn) ∈ T (F ,X ) for all f ∈
Fn, n ≥ 1, and t1, . . . , tn ∈ T (F ,X ).

We abbreviate T (F , ∅), where the set of variables is
empty, as T (F), the set of GROUND TREES over F . We
will also make use of the set of n numerically ordered
variables Xn = {x1, . . . , xn}, and write x, y, z as syn-
onyms for x1, x2, x3, respectively.

Trees can also be viewed as mappings from TREE AD-
DRESSES, sequences of integers, to the labels of nodes at
those addresses. The address ε is the address of the root,
〈1〉 the address of the first child, 〈1, 2〉 the address of the
second child of the first child, and so forth. We will use
the notation t@p to pick out the label of the node at ad-
dress p in the tree t, that is, (using · for the insertion of an
element on a list)

f(t1, . . . , tn)@ε = f

f(t1, . . . , tn)@(i · p) = ti@p

for 1 ≤ i ≤ n .

We can use trees with variables as CONTEXTS in which
to place other trees. A tree in T (F ,Xn) will be called a
context, typically denoted with the symbol C. The nota-
tion C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the tree
in T (F) obtained by substituting for each xi the corre-
sponding ti.

For a context C ∈ T (F ,Xn) and a sequence of n trees
t1, . . . , tn ∈ T (F), the SUBSTITUTION OF t1, . . . , tn

INTO C, notated C[t1, . . . , tn], is defined inductively as
follows:

(f(u1, . . . , um))[t1, . . . , tn]
= f(u1[t1, . . . , tn], . . . , um[t1, . . . , tn])

xi[t1, . . . , tn] = ti .

A tree t ∈ T (F ,X ) is LINEAR if and only if no vari-
able in X occurs more than once in t.

3 Tree Transducers and Bimorphisms

The variation in tree transducer formalisms is extraordi-
narily wide and the literature vast. For the purpose of
this paper, we restrict attention to simple nondeterminis-
tic tree transducers operating top-down, which transform
trees by replacing each node with a subtree as specified
by the label of the node and the state of the transduction
at that node.

A NONDETERMINISTIC TOP-DOWN TREE TRANS-
DUCER (↓TT ) is a tuple 〈Q,Fin,Fout, ∆, q0〉 where

• Q is a finite set of STATES;

• Fin is a ranked alphabet of INPUT SYMBOLS;

• Fout is a ranked alphabet of OUTPUT SYMBOLS;

• ∆ is a set of TRANSITIONS each of the form

q(f(x1, . . . , xn)) → C[q1(x1), . . . , qn(xn)]

for some f ∈ Fin of arity n, q, q1, . . . , qn ∈ Q,
x1, . . . , xn ∈ Xn, and C ∈ T (Fout,Xn);

• q0 ∈ Q is a distinguished INITIAL STATE.

Given a tree transducer 〈Q,Fin,Fout, ∆, q0〉 and two
trees t ∈ T (Fin ∪ Fout ∪ Q) and t′ ∈ T (Fin ∪ Fout ∪
Q), tree t DERIVES t′ IN ONE STEP, notated t ` t′ if
and only if there is a transition u → u′ ∈ ∆ with u ∈
T (Fin∪Q,Xn) and u′ ∈ T (Fout∪Q,Xn) and trees C ∈
T (Fin∪Fout∪Q,X1) and u1, . . . , un ∈ T (Fin∪Fout),
such that

t = C[u[u1, . . . , un]]

and
t′ = C[u′[u1, . . . , un]] .

The TREE RELATION defined by a ↓TT

〈Q,Fin,Fout, ∆, q0〉 is the set of all tree pairs
〈s, t〉 ∈ T (Fin) × T (Fout) such that q0(s) `∗ t.

For instance, the following rules specify a transducer
that “rotates” subtrees of the form f(t1, f(t2, t3)) to the
tree f(f(t1, t2), t3). (By convention, we take the left-
hand state of the first rule as the start state for the trans-
ducer.)

q(f(x, y)) → f(f(q(x), q1(y)), q2(y))
q1(f(x, y)) → q(x)
q2(f(x, y)) → q(y)
q(a) → a

q(b) → b
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Figure 1: Local rotation computed by a nonlinear tree
transducer

S
HHH

���
NP1

I

V P
ll,,

V2

like

NP3

cake

S
aaa

!!!
NP3

Kuchen

V P
QQ��

V2

gefällt

NP1

mir

(a) (b)

Figure 2: Example of local rotation in language transla-
tion divergence. Corresponding nodes are marked with
matched subscripts.

The tree f(f(a, f(b, a)), f(a, b)) is transduced to
f(f(f(f(a, b), a), a), b) (as depicted graphically in fig-
ure 1) according to the following derivation:

q(f(f(a, f(b, a)), f(a, b)))

` f(f(q(f(a, f(b, a))), q1(f(a, b))), q2(f(a, b)))

` f(f(f( f(q(a), q1(f(b, a))),
q2(f(b, a)) ), q(a)), q(b))

` f(f(f(f(a, q(b)), q(a)), a), b)

` f(f(f(f(a, b), a), a), b)

3.1 Nonlinearity Deprecated

Note that intrinsic use is made in this example of the
ability to duplicate variables on the right-hand sides of
rewrite rules. Transducers without such duplication are
linear. Linear tree transducers are incapable of perform-
ing local rotations of this sort.

Local rotations are typical of natural-language appli-
cations. For instance, many of the kinds of translation
divergences between languages, such as that exemplified
in Figure 2, manifest such rotations. Similarly, semantic
bracketing paradoxes can be viewed as necessitating ro-
tations. Thus, linear tree transducers are insufficient for
NL modeling purposes.

Nonlinearity per se, the ability to make copies during
transduction, is not the kind of operation that is character-
istic of natural-language phenomena. Furthermore, non-
linear transducers are computationally problematic. The
following nonlinear transducer generates a perfect binary
tree whose height is identical to that of its single-strand
input.

q(f(x)) → g(q(x), q(x))
q(a) → a

For instance, the tree of height and size four, f(f(f(a))),
transduces to g(g(g(a, a), g(a, a)), g(g(a, a), g(a, a))),
of height four but with fifteen symbols. The size of this
transducer’s output is exponential in the size of its input.
(The existence of such a transducer constitutes a simple
proof of the lack of composition closure of tree transduc-
ers, as the exponential of an exponential grows faster than
exponential.)

In summary, nonlinearity seems inappropriate on com-
putational and linguistic grounds, yet is required for tree
transducers to express the kinds of simple local rotations
that are typical of natural-language transductions. By
contrast, STSG, as described below, is intrinsically a lin-
ear formalism but can express rotations straightforwardly.

3.2 Tree Automata and Homomorphisms

Two subcases of tree transducers are especially impor-
tant. First, tree transducers that implement the identity
relation over their domain are TREE AUTOMATA. A tree
is in the language specified by a tree automaton if it is
transduced to itself by the automaton. The tree languages
so recognized are the regular tree languages (or recogniz-
able tree languages), and are coextensive with those de-
finable by context-free grammars. We take tree automata
to be quadruples by dropping one of the redundant alpha-
bets from the corresponding tree transducer quintuple.

Second, TREE HOMOMORPHISMS are essentially tree
transducers with only a single state, so that the replace-
ment of a node by a subtree proceeds independently
of its context. A homomorphism h : T (Fin) →

T (Fout) is specified by its kernel, a function ĥ :

Fin → T (Fout,X∞) such that ĥ(f) is a tree in
T (Fout,Xarity(f)) for each symbol f ∈ Fin. The kernel

ĥ is extended to the homomorphism h by the following
recurrence:

h(f(t1, . . . , tn)) = ĥ(f)[h(t1), . . . , h(tn)]

that is, ĥ(f) acts as a context in which the homomor-
phic images of the subtrees are substituted. Further re-
strictions can be imposed: A tree homomorphism h is
LINEAR if ĥ(f) is linear for all f ∈ Fin; is COM-
PLETE if ĥ(f) contains every variable in Xarity(f) for all

f ∈ Fin; is ε-FREE if ĥ(f) 6∈ Xarity(f) for all f ∈ Fin;
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is SYMBOL-TO-SYMBOL if ĥ(f) has exactly one symbol,
for all f ∈ Fin; and is a DELABELING if h is complete,
linear, and symbol-to-symbol.

The import of these two subcases of tree transduc-
ers lies in the fact that the tree relations definable by
tree transducers have been shown also to be character-
izable by composition from these simplified forms, via
an alternate quite distinct formalization based on bimor-
phisms. A BIMORPHISM is a triple 〈L, hin, hout〉 con-
sisting of a regular tree language and two tree homo-
morphisms. The tree relation defined by a bimorphism
consists of all pairs of trees generable by applying the
homomorphisms to elements of the tree language, that
is, {〈hin(t), hout(t)〉 | t ∈ L}. Depending on the type of
tree homomorphisms used in the bimorphism, different
classes of tree relations are defined. In particular, if we
restrict hin to be a delabeling, the tree relations defined
are exactly those definable by ↑TT . As a convenient no-
tation for bimorphisms, we write B(X, Y ) for the class
of bimorphisms where hin is restricted to have property
X and hout to have property Y . We use the following
abbrevations for the properties: L[inear], C[omplete], [ε-
]F [ree], S[ymbol-to-symbol], D[elabeling], M [orphism
without restriction]. Thus the tree relations B(D, M)
are exactly those definable by ↑TT . (See the survey by
Comon et al. (1997) and works cited therein.) Though
many classes of bimorphisms have been studied, to our
knowledge, the class B(LC, LC) investigated below has
not.

4 Synchronous Grammars and
Bimorphisms

Tree-substitution grammars are composed of a set of
elementary trees over a nonterminal and terminal vo-
cabulary, allowing for nonterminal nodes at the leaves
at which substitution of other elementary trees can oc-
cur (SUBSTITUTION NODES). They can be thought
of as tree-adjoining grammars with substitution but no
adjunction (hence no auxiliary trees). A synchronous
tree-substitution grammar extends a tree-substitution
grammar with the synchronization idea presented by
Shieber (1992). In particular, grammars are composed of
pairs of elementary trees, and pairs of substitution nodes,
one from each tree in a pair, are linked to indicate that
substitution of trees from a single elementary pair must
occur at the linked nodes.

4.1 Tree-Substitution Grammars

A TREE-SUBSTITUTION GRAMMAR (TSG) comprises a
set of ELEMENTARY TREES over a ranked alphabet F ,
where certain frontier nonterminal (non-zero arity) nodes
are marked as sites of substitution. The ability to have
such nonterminal nodes with no children means that we

must augment the definition of well-formed trees. We de-
fine the set of SUBSTITUTABLE TREES OVER A RANKED

ALPHABET F , notated T↓(F) as the smallest set such that

Nullary symbols at leaves f ∈ T↓(F) for all f ∈ F0;

Substitution nodes at leaves f↓ ∈ T↓(F) for all f ∈
Fn, n > 0;

Internal nodes f(t1, . . . , tn) ∈ T↓(F) for all f ∈ Fn,
n ≥ 1, and t1, . . . , tn ∈ T↓(F).

The marker ↓ marks the substitution nodes. In order to
refer to the substitution nodes of a substitutable tree, we
define the substitution paths of a tree t, ↓paths(t) to com-
prise the paths to substitution nodes in t.

A tree-substitution grammar, then, is a triple, 〈F , P, S〉
where F is a ranked alphabet comprising the vocabulary
of the grammar, S ∈ F is the start symbol of the gram-
mar, and P ⊆ T↓(F) is a set of elementary trees. In
order to allow reference to a particular tree in the set P ,
we associate with each tree in P a unique index, conven-
tionally notated with a subscripted α. This further allows
us to have multiple instances of a tree in P , distinguished
by their index. (We will abuse notation by using the index
and the tree that it names interchangably.) Furthermore,
we will assume that each grammar comes with an arbi-
trary ordering on the substitution node paths of a tree αi,
notating this permutation of ↓paths(αi) by ↓paths(αi).
We use this to mandate the child ordering of the children
in derivation trees.

As a simple example, we consider the grammar with
three elementary trees

α1 S(NP↓, V P (V (like), NP↓))

α2 NP (I)

α3 NP (cake)

and start symbol S. The arities of the symbols should be
clear from their usage.

A DERIVATION for a grammar G = 〈F , P, S〉 is a
tree whose nodes are labeled with (indexes of) elemen-
tary trees, that is, a tree D in T (P ), satisfying the follow-
ing conditions:

1. For each node α in the tree D with substitution paths
↓paths(α) = 〈p1, . . . , pn〉, the node must have n

immediate children α1, . . . , αn.

2. The root node of each child tree must match the cor-
responding substitution node in the parent, that is,

α@pi = (αi@ε)↓ (1)

for all i, 1 ≤ i ≤ n.
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3. The tree αr at the root of the derivation tree must
be labeled at its root by the start symbol, that is,
αr@ε = S.

For example, the derivation tree α1(α3, α2) is a well-
formed derivation tree for the sample grammar above,
assuming that ↓paths(α1) = 〈〈2, 2〉, 〈1〉〉. Note, for in-
stance, that α1@〈2, 2〉 = NP = α3@ε.

The derived tree for a derivation tree D is gener-
ated by performing all of the requisite substitutions.
This can be defined directly, but to highlight the re-
lationship with homomorphisms, we define it by map-
ping the substitutable trees into contexts, using a ho-
momorphism kernel ĥD. For each tree α ∈ P , with
↓paths(α) = 〈p1, . . . , pn〉, ĥD(α) is the tree generated
by replacing each node at address pi by the variable
xi. For example, the context corresponding to the ele-
mentary tree S(NP↓, V P (V (like), NP↓)) with respect
to the assumed substitution path ordering 〈〈2, 2〉, 〈1〉〉 is
S(x2, V P (V (like), x1)). Because the substitution nodes
of a tree all occur at its frontier, ĥD(α) is always a tree
in T (F ,Xn), and by construction is linear and complete.
Hence, the associated homomorphism hD is also linear
and complete.

We define the derived tree corresponding to a deriva-
tion tree D as the application of this homomorphism to
D, that is hD(D). For the example above, the derived
tree is that shown in Figure 2(a):

hD(α1(α3, α2))

= ĥD(α1)[hD(α3), hD(α2)]
= S(x2, V P (V (like), x1))[α3, α2]
= S(NP (I), V P (V (like), NP (cake)))

4.2 Synchronous Tree-Substitution Grammars

We perform synchronization of tree-substitution gram-
mars as per the approach taken for synchronizing tree-
adjoining grammars in earlier work (Shieber, 1992). Syn-
chronous grammars consist of pairs of elementary trees
with a linking relation between nodes in one tree and
nodes in the other. Simultaneous composition operations
occur at linked nodes. In the case of synchronous tree-
substitution grammars, the composition operation is sub-
stitution, so the linked nodes are substitution nodes.

We define a synchronous tree-substitution grammar,
then, as a quintuple G = 〈Fin,Fout, P, Sin, Sout〉,
where

• Fin and Fout are the input and output ranked alpha-
bets, respectively,

• Sin ∈ Fin and Sout ∈ Fout are the input and output
start symbols, and

• P is a set of elementary linked tree pairs, each of
the form 〈t, t′, _〉, where t ∈ T↓(Fin) and t′ ∈

T↓(Fout) are input and output substitutable trees and
_ ⊆ ↓paths(t) × ↓paths(t′) is a relation over sub-
stitution nodes from the two trees.

In order to guarantee that derivations for the syn-
chronized grammars are isomorphic, we need to im-
pose consistent orderings on the substitution nodes for
paired trees. We therefore choose an arbitrary order-
ing 〈pin,1 _ pout,1, . . . , pin,n _ pout,n〉 over the linked
pairs, and take ↓paths(t) = 〈pin,1, . . . , pin,n〉 and
↓paths(t′) = 〈pout,1, . . . , pout,n〉.

We define Gin = 〈Fin, Pin, Sin〉 where Pin =
{t | 〈t, t′, _〉 ∈ P}; this is the left projection of the syn-
chronous grammar onto a simple TSG. The right projec-
tion Gout can be defined similarly.

A synchronous derivation was originally defined as a
pair 〈Din, Dout〉 where (following Shieber (1992)):1

1. Din is a well-formed derivation tree for Gin, and
Dout is a well-formed derivation tree for Gout.

2. Din and Dout are isomorphic.

The derived tree pair for a derivation 〈Din, Dout〉 is then
〈hD(Din), hD(Dout)〉.

5 The Bimorphism Characterization of
STSG

The central result we provide relating STSG to tree trans-
ducers is this: STSG is equivalent to B(LC, LC). To
show this, we must demonstrate that any STSG is re-
ducible to a bimorphism, and vice versa.

5.1 Reducing STSG to B(LC, LC)

Given an STSG G = 〈Fin,Fout, P, Sin, Sout〉, we need
to construct a bimorphism characterizing the same tree
relation. All the parts are in place to do this. We start
by recasting derivations as single derivation trees from
which the left and right derivation trees can be projected
via homomorphisms. Rather than taking a derivation to
be a pair of isomorphic trees Din and Dout, we take it to
be the single tree D isomorphic to both, whose element
at address p is D@p = 〈Din@p, Dout@p〉. Condition (2)
on the well-formedness of a synchronous derivation thus
being trivially satisfied, we simply need to require that the
trees obtained by projecting this new derivation tree on its
first and second elements are well-formed derivation trees
in the projected TSGs. These projections Din and Dout

can be reconstructed by homomorphisms extending hin

1In the earlier version, a third condition required that the iso-
morphic operations are sanctioned by links in tree pairs. This
condition can be dropped here, as it follows from the previous
definitions. In particular, since the substitution path orderings
are chosen to be compatible, it follows that the isomorphic chil-
dren of isomorphic nodes are substituted at linked paths.

92



that projects on the first component and hout that projects
on the second, respectively. These homomorphisms are
trivially linear and complete (indeed, they are mere dela-
belings). Then the paired derived trees can be constructed
as hD(hin(D)) and hD(hout(D)), respectively. Thus the
mappings from the derivation tree to the derived trees
are the compositions of two linear complete homomor-
phisms, hence linear complete homomorphisms them-
selves. We take the bimorphism characterizing the STSG
tree relation to be 〈LD, hD ◦ hin, hD ◦ hout〉 where LD

is the language of well-formed synchronous derivation
trees.

To show that the language LD is a regular tree lan-
guage, we construct a top-down nondeterministic au-
tomaton 〈QG,FG, ∆G, qG〉 recognizing it. The states
of the automaton QG are elements of Fin × Fout, ex-
pressing the allowable pair of symbols labeling the roots
of the tree pair dominated by the state. The start state
is q0 = 〈Sin, Sout〉. The alphabet FG of the trees is
composed of pairs 〈αin, αout〉 of elementary trees, such
that 〈αin, αout, _〉 ∈ P , the arity of which is the num-
ber of substitution nodes in each tree, or equivalently,
|_|. For each elementary tree pair 〈αin, αout, _〉 ∈ P ,
where ↓paths(αin) = 〈p1, . . . , pn〉 and ↓paths(αout) =
〈r1, . . . , rn〉, there is a single transition in ∆G of the
form:

〈αin@ε, αout@ε〉(〈αin, αout〉(x1, . . . , xn))
→ 〈αin, αout〉( 〈αin@p1, αout@r1〉(x1), . . . ,

〈αin@pn, αout@rn〉(xn) )

We must verify that for any tree D recognized by this
automaton hin(D) and hout(D) are well-formed deriva-
tion trees for their respective TSGs.

To show that hin(D) is a well-formed derivation tree
(and symmetrically, for hout(D)), we must demonstrate
that the three definitional conditions hold. Consider a
node in the tree of the form 〈αin, αout〉. This node must
have been admitted by virtue of some transition of the
form above.

1. By construction, there must be an elementary tree
pair 〈αin, αout, _〉 ∈ P , and the node must have n

immediate children corresponding to ↓paths(αin) =
〈p1, . . . , pn〉.

2. Each child node, say the i-th, which we can
notate 〈αin,i, αout,i〉, again by construction,
must be admitted by a transition of the form
〈αin@pi, αout@ri〉(〈αin,i, αout,i〉(· · ·)). Any
matching transition enforces the requirement
that 〈αin@pi, αout@ri〉 = 〈αin,i@ε, αout,i@ε〉
hence that αin@pi = (αin,i@ε)↓ and
αout@ri = (αout,i@ε)↓, as required.

3. Since the start state is 〈Sin, Sout〉, the root of the
derivation tree must be a node 〈αin,r, αout,r〉 such
that αin,r@ε = Sin and αout,r@ε = Sout.

Thus, each of the two projection trees hin(D) and
hout(D) are well-formed derivation trees for their respec-
tive grammars, and the tree relation defined by the STSG
is in B(LC, LC).

5.2 Reducing B(LC, LC) to STSG

The other direction is somewhat trickier to prove,
but can be done. Given a bimorphism 〈L, hin, hout〉
over input and output alphabets Fin and Fout, re-
spectively, we construct a corresponding STSG G =
〈F ′

in,F ′
out, P, Sin, Sout〉. By “corresponding”, we mean

that the tree relation defined by the bimorphism is ob-
tainable from the tree relation defined by the STSG via
delabelings of the input and output that map F ′

in to Fin

and F ′
out to Fout. (Recall that delabelings are just many-

to-one renamings of the symbols.)
As the language L is a regular tree language, it is gen-

erable by a nondeterministic top-down tree automaton
〈Q,Fd, ∆, q0〉. We use the states of this automaton in
the input and output alphabets of the STSG. The input al-
phabet of the STSG is F ′

in = Fin∪(Q×Fin), composed
of the input symbols of the bimorphism, along with some
special symbols that pair states with the input symbols,
and similarly for the output alphabet. The pair symbols
mark the places in the tree where substitutions occur, al-
lowing control for appropriate substitutions. In order to
generate the trees actually related by the original bimor-
phism, the nodes labeled with such pairs can be projected
on their second component by a simple delabeling.

The basic idea of the STSG construction is to construct
an elementary tree pair for certain sequences of transi-
tions from ∆. However, it is easiest understood by start-
ing with the construction for the special case in which the
homomorphisms are ε-free. In this case, as we will see,
the pertinent sequences are just the single transitions. For
the nonce, then, we assume hin and hout to be ε-free,
relaxing this assumption later.

We define a simple nondeterministic transformation on
trees in T (F ,Xn) controlled by a sequence of n+1 states
in Q:

C(f(t1, . . . , tk), q, q1, . . . , qn)
= {〈q, f〉(t1, . . . , tk)[〈q1, N1〉↓, . . . , 〈qn, Nn〉↓]

| N1, . . . , Nn ∈ F}

In essence, the transformation replaces the root symbol
by pairing it with the state q, and replaces the n variables
with new pairs of a state qi and an arbitrarily chosen sym-
bol Ni. (The nondeterminism arises in the choice of the
Ni.) These latter symbols are taken to be substitution
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Figure 3: Example of bimorphism construction

nodes in the generated tree. Importantly, this transforma-
tion is partial; it applies to any tree in T (F ,Xn), with the
exception of those trees that consist of a variable alone.

We use the transformation C to generate elementary
tree pairs corresponding to transitions in ∆. For each
transition q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)) ∈
∆, we construct the elementary tree pairs 〈tin, tout, _〉,
where tin ∈ C(ĥin(f), q, q1, . . . , qn) and tout ∈

C(ĥout(f), q, q1, . . . , qn) and _ links the corresponding
paths in the two trees, that is, the paths at which corre-
sponding variables occur in the trees ĥin(f) and ĥout(f).
Since hin and hout are linear and complete, this notion is
well-defined. The applications of C are well-defined only
when ĥin(f) and ĥout(f) are in the domain of C, that is,
it is not a lone variable, hence the requirement that hin

and hout be ε-free.
An example may clarify the construction. Take the lan-

guage of the bimorphism to be defined by the following
two-state automaton:

q(f(x, y)) → f(q′(x), q′(y))
q(a) → a

q′(g(x)) → g(q(x))

This automaton uses the states to alternate g’s with f ’s
and a’s level by level. For instance, it admits the middle
tree in Figure 3. With input and output homomorphisms
defined by

ĥin(f) = F (x, y) ĥout(f) = D(y, D(x, N))

ĥin(g) = G(x) ĥout(g) = E(x)

ĥin(a) = A ĥout(a) = N

the bimorphism so defined generates the tree relation in-
stance exemplified in the figure.

The construction given above generates the schematic
elementary tree pairs in Figure 4 for this bimorphism.
(The tree pairs are schematic in that we use a ∗ to stand
for an arbitrary symbol in the appropriate alphabet.) The
reader can verify that the grammar generates a tree pair

whose delabeling is that shown in Figure 3 generated by
the bimorphism.

Now, we turn to the considerably more subtle consid-
erations of non-ε-free homomorphisms. In a linear com-
plete homomorphism, the only possible case of non-ε-
freeness that is possible is for unary function symbols,
that is ĥ(f) = x, so that h(f(x)) = h(x). Intuitively
speaking, such cases in bimorphisms should (and will)
correspond to STSG elementary trees that have just a sin-
gle node, so that they contribute no structure to the de-
rived trees.

If, for some symbol f , both hin and hout are non-
ε-free, then any tree rooted in such a symbol, f(t), is
mapped, respectively, to hin(t) and hout(t). But in that
case, we can eliminate the unary symbol f , eliminat-
ing transitions in the automaton of the form q(f(x)) →
f(q′(x)) by adding, for all transitions with q′ on the left
hand side, identical transitions with q on the left-hand
side. We then construct the STSG for the simplified au-
tomaton.

The situation is more complicated if only one of the
two homomorphisms, say hin, is non-ε-free. In this case,
we have that hin(f(x)) = hin(x) but hout(f(x)) =
C[hout(x)] for nontrivial context C, thus introducing
structure on the output with no corresponding structure
on the input. We will call such a unary symbol ASYM-
METRIC. A sequence of asymmetric symbols can intro-
duce unbounded amounts of material on the output with
no corresponding material on the input (or vice versa).
The key is thus to construct all possible such sequences
of asymmetric symbols and chop them into a bounded set
of minimal cycles, using these to generate single elemen-
tary tree pairs. We arrange that in such cycles, the state
and symbol at the root will be identical to the state and
symbol at the end of the sequence. For example, sup-
pose we have asymmetric symbols f and g and an ε-free
symbol k with the following automaton transitions:

q(k(x)) → k(q(x))

q(f(x)) → f(q(x))

q(g(x)) → g(q′(x))

q′(f(x)) → f(q′(x))

q′(f(x)) → f(q′′(x))

q′(g(x)) → g(q′(x))

q′′(k(x)) → k(. . .)

There is a minimal cycle such that q′(f(g(f(x)))) =
f(g(q′(f(x)))). Note that the state q′ and symbol f at
the root are duplicated at the bottom. There is a simi-
lar cycle of the form q′(f(f(x))) = f(q′(f(x))). For
each such cycle, we construct a linked tree pair with a
trivial input tree labeled with a pair of the state and an
arbitrary symbol N from the input alphabet—〈q′, N〉 in
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Figure 4: Generated STSG for example bimorphism

the example. The corresponding output tree is generated
by composing the nontrivial output trees and applying C
to this compound tree in the obvious way. Since the path
language in the tree language of a tree automaton is regu-
lar, a decomposition of the paths into a bounded number
of bounded-length cycles can always be done, leading to
a finite number of elementary tree pairs. Note that since
the label of the root for the appropriate input tree 〈q′, f〉
is identical to the label to replace the (single) variable, the
tree pair is constructed in a way consistent with C, hence
the workings of the rest of the STSG.

In addition, for each minimal sequence start-
ing with a symbol that is non-ε-free on the input
and leading to such a cyclic state/symbol pair, a
tree pair is similarly generated. In the example,
the sequence corresponding to the automaton sub-
derivation q(k(f(g(f(x))))) = k(f(g(q′(f(x)))))
would lead us to generate a tree pair with
〈C(ĥin(k), q, q′), C(ĥin(k)[ĥout(f)[ĥout(g)]], q, q′), _〉
where _ links the two leaf nodes labeled with
state/symbol pairs.

Similarly, we require elementary tree pairs correspond-
ing to minimal tails of sequences of asymmetric sym-
bols starting in a cyclic state/symbol pair and ending in
a symbol non-ε-free on the input. These three types of
sequences can be pieced together to form any possible
sequence of unary symbols admitted by the automaton,
and the corresponding tree pairs correspond to the com-
positions of the homomorphism trees.

6 Discussion

By placing STSG in the class of bimorphisms, which
have already been used to characterize tree transducers,
we provide the first synthesis of these two independently
developed approaches to specifying tree relations, unify-
ing their respective literatures for the first time. The rela-
tion between a TAG derivation tree and its derived tree is
not a mere homomorphism. The appropriate morphism
generalizing linear complete homomorphisms to allow
adjunction can presumably be used to provide a bimor-
phism characterization of STAG as well, further unifying
these strands of research.

The bimorphism characterization of STSG has imme-
diate application. First, the symmetry of the tree rela-
tions defined by an STSG is a trivial corollary. Second,
it has been claimed in passing that synchronous tree-
substitution grammars are “equivalent to top-down tree
transducers.” (Eisner, 2003). This is clearly contravened
by the distinction between B(LC, LC) and B(D, M).
Third, the bimorphism characterization of tree transduc-
ers has led to a series of composition closure results. Sim-
ilar techniques may now be applicable to synchronous
formalisms, where no composition results are known. For
instance, the argument for the lack of composition clo-
sure in B(LCF, LCF ) (Arnold and Dauchet, 1982) may
be directly applicable to a similar proof for B(LC, LC),
hence for STSG; the conjecture remains for future work.
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Abstract

Tree adjoining grammar parsers can use a su-
pertagger as a preprocessor to help disam-
biguate the category1 of words and thus speed
up the parsing phase dramatically. However,
since the errors in supertagging propagate to
this phase, it is vital to keep the error rate of the
supertagger phase reasonably low. With very
large tagsets coming from extracted grammars,
this error rate can be of almost 20%, using stan-
dard Hidden Markov Model techniques. To
combat this problem, we can trade a higher pre-
cision for increased ambiguity in the supertag-
ger output. I propose a new approach to in-
troduce ambiguity in the supertags, looking for
a suitable trade-off. The method is based on
a representation of the supertags as a feature
structure and consists in grouping the values,
or a subset of the values, of certain features,
generally those hardest to predict.

1 Introduction

This paper deals with supertagging2 as a preprocessing
step before full parsing.

A TAG parser has too many elementary trees to choose
from if they are not at least partially disambiguated be-
forehand (Joshi and Bangalore, August 1994): the com-
binatorics at the parsing level are huge. As suggested
in Srinivas Bangalore’s Ph.D. thesis (Bangalore, 1997),
supertagging may be used to reduce the high number of
trees associated with each word. But to tag and parse
real-world text, we need a sufficiently sized grammar.
One convenient way to constitute a large TAG is to ex-
tract it from a hand-corrected treebank. Naturally, the re-
sulting tagset for supertagging is also large. The problem

1Specifically, a rich description of the syntactic properties of
words.

2Supertagging consists in assigning an elementary tree (of a
TAG) to each word of a sentence.

thus becomes the fact that when the tagset is very large
(e.g. about 5,000 different trees), the precision of the su-
pertagger output is so low (about 80%) that the parser
fails on most sentences.

The supertagger we use is based on a Hidden Markov
Model (HMM) tagger trained on a grammar extracted
(Chen, 2001) from the Wall Street Journal part of the
Penn Treebank (Marcus et al., 1993) and the parser is the
one described in (Nasr et al., 2002).

2 Supertagging and Very Large Tagsets

If HMM part of speech tagging has been proven quite
successful, supertagging is more problematic for two
main reasons.

• (A) The large number of categories which charac-
terizes supertagging entails statistical problems, but
for the result to be useful in helping parse real-
world texts, a medium-sized or small grammar (with
e.g. 300 or 400 different elementary trees) seems in-
sufficient.

• (B) The non-local nature of the information included
in the supertag clashes with the local vision of the
HMM tagger (e.g. a three-word window). Indeed,
supertags locally represent dependencies not repre-
sented in parts of speech. For instance, the supertag
assigned to the verb brought in I brought their chil-
dren my son’s old bicycle will include a slot for each
of the two complements, the second of which (my
son’s old bicycle) is beyond the three-word window
in this sentence.

With a tagset of about 5,000 trees, HMM tagging tech-
niques suffer from severe training data sparseness. Sta-
tistical problems arise that are little or not encountered in
a regular part of speech tagging context. Indeed, various
types of events are never seen in the training corpus. The
simplest type is the supertag itself. Some supertags are
new in the test corpus. Obviously, standard techniques
cannot guess them.

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
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A more frequent type of unseen events is the associa-
tion of known words with known supertags that did not
occur together in the training corpus. About 5% of the
word-supertag pairs are new, these pairs being involved
in about a quarter of the errors3. John Chen (Chen, 2001)
has addressed this problem and has designed tree families
to automatically extend the grammar. In (Hockenmaier
and Steedman, 2002), a Combinatory Categorial Gram-
mar is extracted from the Penn Treebank and the authors
have found a 26% reduction of “unseen pairings of seen
words and seen categories” (from 3% to 2.2%) thanks to a
reduction of the category inventory, and a 50% reduction
(from 3% to 1.5%) when combining the reduced category
inventory with a more elaborate treatment of unknown
words (using the part of speech instead of a single token
for unknown words).

Other existing solutions include reranking (Chen et al.,
2002) and class tagging (Chen et al., 1999) (Chen, 2001),
but either they are applied to smaller grammars (between
300 and 500 different trees) or they face problems similar
to ours.

The reranking technique notably is not bound to a lim-
ited context and is thus complementary with an n-gram
tagger.

3 Ambiguous Supertags

Failing to find the correct supertag often enough for the
parse to succeed, we resort to allowing some ambiguity
in the supertagger output. The main idea is to relieve the
supertagger from a part of its disambiguating duty, defer-
ring it to the parser which will make the final decisions
(given that it has information about the whole sentence).
The key point is finding a good trade-off between preci-
sion rate (for successful parses) and ambiguity (to keep
the parsing phase tractable).

With the n-best tagging technique (Bangalore and
Joshi, 1999), the supertagger outputs several trees (the
most probable n supertags) and the parser chooses among
them. One drawback is that the output consists in the
same number of supertags for each word, regardless of
its type (e.g. verb or adjective), whereas it seems attrac-
tive to keep more possible supertags for a verb than for
less ambiguous words, for instance.

Previously we tested a kind of n-best supertagging on
our grammar, but failed to achieve an error rate below
9.5%, which was unsatisfactory and led us to imagine
harder ways to produce an ambiguous output.

3The results presented here have been computed from a su-
pertagged portion of the Penn Treebank consisting of 1,939
sentences (about 50K words), the training corpus consisting of
37,858 sentences (about 980K words).

3.1 Underspecification Using a Feature Structure

The solution I propose introduces underspecification at
the supertag level. In other words, the supertag con-
veys less information, but still more than in mere parts
of speech. To do this I represent the trees as a feature
structure in which the salient characteristics of a supertag
are encoded, as was initially suggested in John Chen’s
Ph.D. (for another purpose) (Chen, 2001)4.

The results presented here are from experiments using
a structure of 18 features, among which are:

• the part of speech of the root node (26 possible val-
ues),

• the subcategorization (more than one hundred pos-
sible values),

• several transformational features,

• the two ordered lists of the nodes on the left and right
frontiers,

• the list of internal nodes (neither the root nor the
nodes on the frontier),

• the list of co-anchors (more than one hundred possi-
ble values),

• the part of speech of the modified word if this is a
modifier,

• the direction of the modification if this is a modifier.

3.2 More on Two Features

Two features are of particular interest (both are pertinent
only for modifier trees): one specifies the part of speech
of the modified word and the other specifies the direc-
tion of the modification. It must be noted that both these
features have an extra value (NIL) which means non-
pertinent, for the case of a non-modifier word: thus pre-
dicting this feature involves predicting whether the word
is a modifier. These are the most difficult features to pre-
dict (error rates of about 12.6% for the first with 38 pos-
sible values and almost 9% for the second with only 3
possible values). Moreover, predicting them makes the
supertagging process much longer. However, as is shown
below, knowing their values for a given supertag helps
predict other features, including the part of speech.

3.3 Neutralizing Features

By neutralizing certain features describing the trees
(i.e. not specifying the value for those features), we ob-
tain an underspecified supertag (the tagset is therefore re-
duced), which is thus ambiguous but easier to predict.

4For my experiments I used John Chen’s feature structures
but my plans for future work involve the use of others.
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This approach allows us to control the amount of infor-
mation we are able and willing to supply the parser with5.
This is particularly interesting since the error comes from
a relatively small number of features each time (but the
features which are incorrectly predicted are not always
the same). Table 1 shows that 42% of the errors on trees6

involve only up to two features.

Table 1: Cumulated proportion or errors due to n features
incorrectly predicted (the remaining 6.3% is due to co-
anchors).

# of
features

% of errors
(cumulated)

1 19.972
2 42.038
3 54.429
4 62.934
5 74.584
6 82.122
7 85.440
8 89.660
9 91.485

10 92.290
11 93.386
12 93.611

13 to 18 93.697

It is important to state that the feature neutralization
must take place only after training and supertagging. In-
deed, if the supertagger is trained on an “underspecified”
annotated corpus, it gives worse results than if it is trained
on a corpus annotated with regular supertags, its output
then being modified to change the regular supertags into
their underspecified versions. For instance, there is a 15%
relative reduction of the error rate for the part of speech
feature when we tag the whole supertag. This is due to
the dependencies between the features: learning on more
features helps predict one particular feature. Of course,
if it is just to tag with part of speech, the whole process
takes much more time than regular part of speech tag-
ging. On the other hand, the precision is higher (the two
features mentioned above are in a large part responsible
for this).

3.4 Experiments on (Almost) All the Combinations

As a first trial in this direction I conducted experiments
consisting in neutralizing series of sets of features to
study the coordinated behavior of both the error rate and
ambiguity according to the features neutralized. The

5To do this we can neutralize certain features altogether or
tag with a set of values for certain features instead of only one
value for those features.

6not including errors on a co-anchor.

combinatorics are rather large7, but evaluating the error
rate and ambiguity of the supertagged output with a given
set of neutralized features takes very little time (about one
or two seconds on a personal computer). Indeed, since
the input text is tagged with the full supertag, there is no
need to supertag the text for each set of neutralized fea-
tures. We only have to extract the reduced information
from the supertags in both the hypothesis and the refer-
ence and run the evaluation on it.

I decided never to neutralize the part of speech feature
(numbered 0); I thus gathered the resulting 131,072 error
rate/ambiguity pairs. To find a good trade-off between er-
ror rate and ambiguity, one needs to consider some candi-
date sets of neutralized features; a simple method to pre-
select some candidates is to search for the set of neutral-
ized features yielding the lowest ambiguity for a (small)
number of given maximum error rates. Figure 1 and Ta-
ble 2 show the lowest ambiguity for each given maximum
entire error rate, from 19% to 4%. These boundaries
come from the error rate associated with no neutraliza-
tion at all (18.64%) and the one associated with all the
features neutralized except part of speech (3.67%).

The ambiguity figures are the average number of su-
pertags (from the original tagset) represented by the un-
derspecified tag for each word in the test corpus. Thus it
depends on the tags chosen for each word, it is not just
the ambiguity of the simplified grammar with regard to
the original grammar.

The lowest error rate is a bit under 4%, associated with
an average ambiguity above 450, and corresponds to a tag
representing (a little more than) part of speech. We hope
to find at least one set of neutralized features allowing for
acceptable error rate and ambiguity. Error rates of 6%
or 5% would seem suitable, but they are associated with
an ambiguity of about 212 and 306 respectively. It is not
sure that such high ambiguity can be handled by a pro-
cessor with such input; in the case of a statistical parser,
the resulting combinatorics would make it necessary to
use an appropriate beam search. However, the accuracy
of the parser is not guaranteed to be preserved with such
a beam search.

3.5 The Incremental Method

Exploring the whole set of possible combinations is af-
fordable when each test mainly involves translating tags.
However, the performance of the supertagger in itself is
not the only relevant measure when it comes to use its
output as an input for a parser. To find the best trade-off
between error rate and ambiguity, the most natural test
is the performance of the parser. We would need both
the accuracy of its output and the average time it takes to
parse a sentence. These experiments are yet to be done,

7A structure of 18 features entails 2
18

= 262144 possible
sets of neutralizations.
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Figure 1: Lowest ambiguity per WER (from full set of combinations).

Table 2: Lowest ambiguity per WER (from full set of
combinations). The third column (#) represents the num-
ber of neutralized features for the given set (detailed in
the fourth column). The word error rate is given in %.

WER Ambig. # Neutralized features
18.635 1.014 1 9
17.998 3.944 5 1 2 6 11 15
15.948 5.810 1 16
15.948 5.810 1 16
14.993 14.699 2 11 16
13.347 16.012 2 16 17
12.999 17.394 10 3 4 6 7 8 12 13 15 16 17
11.917 28.162 10 2 3 5 7 8 12 14 15 16 17
10.928 45.532 3 11 16 17
8.950 67.129 6 1 2 11 13 16 17
8.950 67.129 6 1 2 11 13 16 17
7.935 119.928 8 1 2 11 13 14 15 16 17
6.778 167.370 9 1 2 3 11 12 13 14 16 17
5.903 212.301 10 1 2 3 11 12 13 14 15 16

17
4.994 306.446 13 1 2 3 4 7 9 11 12 13 14 15

16 17
3.984 450.421 15 1 2 3 4 5 6 7 9 11 12 13

14 15 16 17

but one can already guess that the same thorough series
of tests will probably not be tractable when testing the
parser every time. Not only the tests will take the time
of parsing, but this time will increase exponentially with
the ambiguity. As a matter of fact, achieving a test in a
limited time is a result in itself: it means the parser can
handle the ambiguity.

Consequently, the tests must be run in the order of
fastest to slowest. Also, we will not run all the tests but
only those that have the best chances to reveal interesting
results. That is, we need a method to select the combina-
tions.

With this objective in mind, I designed an incremental
method to choose which features are to be neutralized in
order to minimize the error rate. I applied this method to
the supertagger output, which gives a preview of its use-
fulness (I hope it will be as useful with the parser eval-
uation). There again, the result is a graduated trade-off
between precision and ambiguity. We will compare it to
our previous combinations.

I now describe the incremental method as I applied it
on the supertagger output. The goal is to construct a num-
ber of sets of neutralized features, from a set of one fea-
ture to a set of 17 features (for a structure of 18 features).
The main idea is follow the optimum “path” by select-
ing the most interesting feature to neutralize at each step,
adding it to the previous set. Let S be the current set of
neutralized features. I first decided to always keep the
feature representing the part of speech of the anchor of
the tree. So the second step was to add one of the 17
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remaining features to the (yet empty) set S. To choose
this feature, each of the candidate features is temporarily
added to S and the corresponding error rate and ambigu-
ity are computed. The feature leading to the best result is
then selected and permanently added to S. The process
is repeated with the remaining features until there are no
more features to neutralize and only the part of speech
(which is our baseline) remains.

The number of tests required by this method is only∑17

i=1
i = 154 instead of 2

17
= 131, 072 for the full set

of combinations.

The search for the next feature to neutralize can be
driven by three types of criteria: the error rate, the am-
biguity, or a combination of the two. I tried the first two
criteria, which selected different features but yielded sim-
ilar trade-offs.

3.6 Experiments on the Incremental Method
Applied to the Supertagger

Figure 3 shows the linked progression of the error rate
and ambiguity, using the error rate criterium to select
each feature to neutralize. Here the relevant curves are
those marked as feature. We will see values below.

It is interesting to see how the incremental method be-
haves compared with the full set of combinations. Figure
2 compares the two corresponding curves (features be-
ing either fully neutralized or not at all). Let us first note
that the incremental method’s curve is very similar to the
curve obtained by selecting the lowest error rate per num-
ber of neutralized features, as opposed to the average er-
ror rates per number of neutralized features. Indeed, only
4 out of 17 sets of neutralized features are different in the
two curves.

Let’s take a closer look at those four couples of sets in
Table 3. What happened is that for the lowest error rate
from the full set of combinations, the set of 6 neutral-
ized features (1 2 11 13 16 17) has only 3 features (11 16
17) in common with the set of 5 neutralized features (11
12 14 16 17). Of course, the incremental method can-
not compete with this performance because it keeps the
whole previous set by design.

What’s more, both the error rate and the ambiguity are
lower for the set of 6 features than for the set of 5 features.
For the other sets, the balance between error rate and am-
biguity is regular again, and new features are just added
to the previous set, just like in the incremental method.

The combinations of error rate and ambiguity drop
from 18.64%/1 with no neutralization at all to 3.67%/509
for just part of speech. The point of the method is to
choose an intermediate value (the best trade-off). For ex-
ample, with 11 neutralized features, we have 5.17%/284,
and for 10 neutralized features, 5.9%/212.

3.7 Refinement

A slight improvement of this method can be achieved by
neutralizing only part of the features as opposed to the
features altogether. In other words, instead of grouping
all the values for a given feature, we can group some val-
ues. For instance, consider the three-value feature direc-
tion of modification. The three possible values are left,
right or NIL (in case this is not a modifier). We could
group the first two values, which would result in a binary
feature simply indicating whether this is a modifier. The
selection of values to group can be done according to er-
ror analysis. We group the values which the supertagger
most often confuses.

To evaluate the power of this improved method, I used
the same test corpus for both the error analysis and the
new evaluation with grouped values, which one cannot
do when (super)tagging new text but this shows the max-
imum gain we can get thanks to this refined method.

On Figure 3, the relevant curves are those marked as
values. The error rate curve is the same as the old one,
since all values which were confused by the supertagger
on this test corpus, and only these values, were grouped.
Only ambiguity is different, and naturally always lower
or equal, since the supertags represented by the under-
specified tags have all their features present, only with
ambiguous values for some of them.

To compare with the previous results, with 11 neutral-
ized features, ambiguity drops from 284 down to 248, and
for 10 features, from 212 down to 185.

As we can see, the ambiguity associated with accept-
able error rates is still quite large, even with the refined
method. This seems to indicate that this kind of approach
is not sufficient. Replacing the error rate criterium with
the parser’s accuracy, as was explained above, will proba-
bly highlight better trade-offs, but it seems likely that the
improvement will be limited.

3.8 Feature Structures

All my experiments were based on John Chen’s various
feature structures. I believe the choice of a feature struc-
ture must have a noticeable (but somewhat limited) in-
fluence on the results one can get from playing with am-
biguity in the way described in this paper. But there is
more to it: the extracted grammar itself is determined by
the feature structure. The grammar I used is very close to
what was seen in the training corpus. A good deal of gen-
eralization can be done, though, and this would probably
entail lower error rates for the same amount of ambiguity.
Metagrammars (Candito, 1999) and their associated fea-
ture structures are designed in this spirit. First, features
are drawn, then a generalization phase takes place, and
finally the grammar is extracted. Thus unseen supertags
are less likely to appear in a test corpus.
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Figure 2: Linked progression of error rate and ambiguity, for whole feature neutralization, to compare the incremental
method with the full set.

Table 3: Different sets between incremental method and whole combination (lowest error rate).
Whole combination Incremental

# WER Ambig. Neutralized features WER Ambig. Neutralized features
6 8.95 67.129 1 2 11 13 16 17 9.81 76.959 16 17 11 14 12 3
7 8.52 107.972 1 2 11 13 14 16 17 9.55 78.925 16 17 11 14 12 3 2
8 7.36 151.844 1 2 11 12 13 14 16 17 9.22 92.238 16 17 11 14 12 3 2 1
9 6.62 184.199 1 2 11 12 13 14 15 16 17 6.78 167.370 16 17 11 14 12 3 2 1 13
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Figure 3: Linked progression of error rate and ambiguity, using only the incremental method, to compare whole feature
neutralization and selected values neutralization. The error rate is the same in both cases. Here the selection of values
is driven by error analysis on the same test corpus (to show the theoretical maximum gain we could get with this
precise method).

4 Conclusion

The incremental method, while not being perfect, can of-
fer a good approximation at a low cost.

Having applied various Hidden Markov-derived mod-
els on supertagging with large extracted grammars, I be-
lieve that with such a large tagset it is impossible to
achieve a precision rate acceptable for parsing in a sin-
gle process. Consequently, underspecification imposes
itself as one of the most promising directions in this re-
spect. Hopes for future work on this subject mainly lie
in a grammar less dependent on the treebank from which
it is extracted, in a feature structure better structured (us-
ing Metarules (Xia, 2001) or inspired by (Kinyon, 2000)
which rely on a Metagrammar (Candito, 1999)), and
more importantly in a shallow parsing phase eliminating
supertags which would not fit in, thanks to a global con-
sideration of the sentence.

In this last respect, it must be noted that many su-
pertagged sequences are inconsistent: I have observed
that a third of them contained at least a supertag which
required a certain category before or after it that was not
in the relevant part (either to the left or to the right) of the
sequence. It is clear that a global vision of the sentence
can help reduce the ambiguity of the supertags. The dif-
ficulty is to keep the computation simple and fast enough
to be used efficiently before full parsing.
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Abstract

This paper presents a method of improving the
quality of subcategorization frames (SCFs) ac-
quired from corpora in order to augment a lexi-
con of a lexicalized grammar. We first estimate
a confidence value that a word can have each
SCF, and create an SCF confidence-value vec-
tor for each word. Since the SCF confidence
vectors obtained from the lexicon of the tar-
get grammar involve co-occurrence tendency
among SCFs for words, we can improve the
quality of the acquired SCFs by clustering vec-
tors obtained from the acquired SCF lexicon
and the lexicon of the target grammar. We ap-
ply our method to SCFs acquired from corpora
by using a subset of the SCF lexicon of the
XTAG English grammar. A comparison be-
tween the resulting SCF lexicon and the rest of
the lexicon of the XTAG English grammar re-
veals that we can achieve higher precision and
recall compared to naive frequency cut-off.

1 Introduction

Recently, a variety of methods have been proposed for
automatic acquisition of subcategorization frames (SCFs)
from corpora (Brent, 1993; Manning, 1993; Briscoe
and Carroll, 1997; Sarkar and Zeman, 2000; Korhonen,
2002). Although these research efforts aimed at enhanc-
ing lexicon resources, there has been little work on evalu-
ating the impact of acquired SCFs on grammar coverage
using large-scale lexicalized grammars with the excep-
tion of (Carroll and Fang, 2004).

The problem when we combine acquired SCFs with
existing lexicalized grammars is lower quality of the ac-
quired SCFs, since they are acquired in an unsupervised
manner, rather than being manually coded. If we attempt
to compensate for the lack of recall by being less strict in
filtering out less likely SCFs, then we will end up with a
larger number of lexical entries. This is fatal for parsing

with lexicalized grammars, because empirical parsing ef-
ficiency and syntactic ambiguity of lexicalized grammars
are known to be proportional to the number of lexical en-
tries used in parsing (Sarkar et al., 2000). We therefore
need some method to improve the quality of the acquired
SCFs.

Schulte im Walde and Brew (2002) and Korho-
nen (2003) employed clustering of verb SCF (probabil-
ity) distributions to induce verb semantic classes. Their
studies are based on the assumption that verb SCF distri-
butions are closely related to verb semantic classes. Con-
versely, if we could induce word classes whose element
words have the same set of SCFs, we can eliminate SCFs
acquired in error from the corpora and predict plausible
SCFs unseen in the corpora. This kind of generalization
would be useful to improve the quality of the acquired
SCFs.

In this paper, we present a method of generalizing
SCFs acquired from corpora in order to augment a lex-
icon of a lexicalized grammar. For words in the ac-
quired SCF lexicon and the lexicon of the target lexical-
ized grammar, we first estimate a confidence value that a
word can have each SCF. We next perform clustering of
SCF confidence-value vectors in order to make use of co-
occurrence tendency among SCFs for words in the lex-
icon of the target lexicalized grammar. Since each cen-
troid value of the obtained clusters indicate whether the
words in that class have each SCF, we eliminate implausi-
ble SCFs and add unobserved but possible SCFs accord-
ing to that value. In other words, we can generalize the
acquired SCFs by the reliable lexicon of the target lexi-
calized grammar.

We applied our method to SCFs acquired from mo-
bile phone news groups corpus by a method described
in (Carroll and Fang, 2004), in order to generalize the
acquired SCFs by using a training portion of the SCF
lexicon of the XTAG English grammar (XTAG Research
Group, 2001), a large-scale Lexicalized Tree Adjoining
Grammar (LTAG) (Schabes et al., 1988). We evaluated
the resulting SCF lexicon by comparing it to the rest of

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.
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(#S(EPATTERN :TARGET |ftp|
:SUBCAT (VSUBCAT NONE)
:CLASSES (22 2985)
:RELIABILITY 0
:FREQSCORE 0.01640195
:FREQCNT 2
:TLTL (VVD VV0)
:SLTL (((|ssh| NN1)))
:OLT1L NIL
:OLT2L NIL
:OLT3L NIL :LRL 0))

Figure 1: An acquired SCF for a verb “ftp”

the lexicon of the XTAG English grammar, and then com-
pared the results with those obtained by naive frequency
cut-off.

2 Background

2.1 Acquisition of SCFs for Lexicalized Grammars

We start by acquiring SCFs for a lexicalized grammar
from corpora by the method described in (Carroll and
Fang, 2004).

In their study, they first acquire fine-grained SCFs by
the method proposed by (Briscoe and Carroll, 1997; Ko-
rhonen, 2002). Figure 1 shows an example of one ac-
quired SCF entry for a verb “ftp.” Each acquired SCF en-
try has several fields about the observed SCF. We explain
here only its portion related to this study. TheTARGET
field is a word stem (|ftp| in Figure 1), the first number in
theCLASSES field indicates an SCF ID (22 in Figure 1),
andFREQCNT shows how often words derivable from the
word stem had the SCF identified by the SCF ID (2 times
in Figure 1) in the training corpus. The obtained SCFs
comprise the total 163 types of relatively fine-grained
SCFs, which are originally based on the SCFs in the
ANLT (Boguraev and Briscoe, 1987) and COMLEX (Gr-
ishman et al., 1994) dictionaries. In this example, the
SCF ID 22 corresponds to an SCF of intransitive verb.

They then obtain SCFs for the target lexicalized gram-
mar (the LINGO English Resource Grammar (Flickinger,
2000) in their study) by using a handcrafted translation
map from these 163 types to one of the types of SCFs in
the target grammar. They report that they could achieve a
coverage improvement of 4.5% (52.7% to 57.2%) with a
parsing time double (9.78 sec. to 21.78 sec.).

This approach is easily extensible to any lexicalized
grammars, if the grammars have an organized architec-
ture of lexicon, which derive possible lexical entries from
each SCF the grammar defines. Existing lexicalized
grammars usually are equipped with this kind of orga-
nization,e.g., lexical types in LINGO ERG and tree fam-
ilies in the XTAG English grammar.
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Figure 2: Probability distributions of SCFs forapply

2.2 Clustering of Verb SCF Distributions

There are some related work on clustering of SCF prob-
ability distributions (Schulte im Walde and Brew, 2002;
Korhonen et al., 2003). These studies aim at obtaining
verb semantic classes, which closely related to syntactic
behavior of argument selection.

Schulte im Walde and Brew (2002) employed cluster-
ing of verb SCF distributions to induce verb semantic
classes. They first represent a verb SCF distribution by
an n-dimensional vector for each verb. Each element in
the SCF distribution represents a probability that a verb
appears with the corresponding SCF. They then perform
k-Means clustering (Forgy, 1965) of these vectors in or-
der to obtain verb semantic classes.

Korhonen et al. (2003) also conducted clustering
of verb SCF distributions using a different clustering
method including the nearest neighbors clustering and the
Information Bottleneck clustering (Tishby et al., 1999).
They investigated the effect of polysemic verbs on clus-
tering.

Although these studies demonstrated that there is a cer-
tain classification of verbs by clustering of verb SCF dis-
tributions, they do not focus on the improvement of the
quality of the SCF lexicon. In this paper, we focus on the
problem to identify whether a word can have each SCF
and try to obtain word classes whose element words have
the same set of SCFs.

3 Method

The basic idea of our method is first to obtain word
classes whose element words have the same set of SCFs,
using not only acquired SCFs but also existing SCFs in
the target grammar. We then eliminate implausible ac-
quired SCFs and add plausible unseen SCFs according to
the set of SCFs represented by the centroids of the result-
ing clusters.

3.1 Representation of Confidence Values for SCFs

We representan SCF confidence-value vector of each
word wi with a vectorvi, an object for clustering. Each
elementvi j in vi represents the confidence value of SCF
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s j for wi, which expresses how reliable a wordwi has
SCFs j. We should note that the confidence value is not
the probability that a wordwi appears with SCFs j but a
probability of existence of SCFs j for the wordwi. In this
study, we assume that a wordwi can have each SCFs j

with a certain (non-zero) probabilityθi j(= p(si j|wi) > 0
where∑ j θi j = 1), but only SCFs whose probabilities ex-
ceed a certain threshold are recognized as SCFs for the
word in the lexicon. We hereafter call this threshold
recognition threshold. Figure 2 exemplifies a probabil-
ity distribution of SCFs forapply. In this context, we
can regard a confidence value of each SCF as the possi-
bility that a probability of a SCF exceeds the recognition
threshold.

One intuitive way to estimate a confidence value is to
assume an observed probability,i.e., relative frequency,
is equal to a probabilityθi j of SCF s j for a word wi

(θi j = f reqi j/∑ j f reqi j wheref reqi j is a frequency count
that a wordwi have the SCFs j in corpora1). We simply
assign 1 to a confidence valuecon fi j when the relative
frequency ofs j for a word wi exceeds the recognition
threshold, and otherwise assign 0 to a confidence value
of con fi j. However, an observed probability is totally
unreliable for infrequent words. For example, when we
use a confidence value derived from a relative frequency
as above, we cannot distinguish cases where a wordw1

appears once with a SCFs j and a wordw2 appears 100
times, always with the SCFs j, which are both the rela-
tive frequency 1. Moreover, even when we would like to
encode confidence values of reliable SCFs in the target
lexicalized grammar, it is also problematic to distinguish
the confidence value of those SCFs with confidence val-
ues of acquired SCFs.

The other promising way to estimate a true probability
θi j is to regard it as a stochastic variable in the context of
Bayesian statistics (Gelman et al., 1995). In this context,
a posteriori distribution of the probabilityθi j of a SCFs j

for a wordwi is given by:

p(θi j|D) =
P(θi j)P(D|θi j)

P(D)

=
P(θi j)P(D|θi j)∫ 1

0 P(θi j)P(D|θi j)dθi j
, (1)

whereP(θi j) is a priori distribution, andD is the data we
have observed. Since every occurrence of SCFs in the
dataD is independent with each other, the dataD can be
regarded as Bernoulli trials in this case. When we observe
the dataD that a wordwi appearsn times and has SCF
s j x(≤ n) times, its conditional distribution is therefore

1We used values ofFREQCNT to obtain frequency counts of
SCFs.

represented by binominal distribution:

P(D|θi j) =
(n

x

)
θx

i j(1−θi j)(n−x). (2)

To calculate thisa posteriori distribution, we need to
define thea priori distribution P(θi j). The question is
which probability distribution ofθi j can appropriately re-
flect prior knowledge. In other words, it should encode
knowledge we use to estimate SCFs for an unknown word
wi. We simply determine it from distributions of proba-
bility values ofs j for known words. We use distributions
of observed probability values ofs j for all words acquired
from the corpus by using a method described in (Tsu-
ruoka and Chikayama, 2001). In their study, they assume
a priori distribution as thebeta distribution defined as:

p(θi j|α ,β) =
θα−1

i j (1−θi j)β−1

B(α ,β)
, (3)

whereB(α ,β) =
∫ 1

0 θα−1
i j (1−θi j)β−1dθi j. The value of

α andβ is determined by moment estimation.2 By sub-
stituting Equations 2 and 3 into Equation 1, we finally
obtain thea posteriori distributionp(θi j|D) as:

p(θi j|α ,β ,D) =

θα−1
i j (1−θi j)β−1

B(α ,β)

( n
x

)
θx

i j(1−θi j)(n−x)

∫ 1
0 P(θi j)P(D|θi j)dθi j

= c ·θx+α−1
i j (1−θi j)n−x+β−1 (4)

wherec =
( n

x

)
/(B(α ,β)

∫ 1
0 P(θi j)P(D|θi j)dθi j).

When we determine the value of the recognition
threshold ast, we can calculate a confidence valuecon fi j

that a wordwi can haves j by integrating thea posteriori
distributionp(θi j|D) from the thresholdt to 1:

con fi j =
∫ 1

t
c ·θx+α−1

i j (1−θi j)n−x+β−1dθi j (5)

By using this confidence value, we can express an SCF
confidence-value vectorvi for a wordwi in the acquired
SCF lexicon (vi j = con fi j).3

In order to combine SCF confidence-value vectors for
words acquired from corpora and those for words in the

2The expectation value and variance of the beta distribution
are made equal to those of the observed probability values.

3By using the fact that
∫ 1
0 P(θi j|α ,β) = 1, we can calculate

con fi j as follows.

con fi j =

∫ 1
t c ·θx+α−1

i j (1−θi j)n−x+β−1dθi j∫ 1
0 c ·θx+α−1

i j (1−θi j)n−x+β−1dθi j

=

∫ 1
t θx+α−1

i j (1−θi j)n−x+β−1dθi j∫ 1
0 θx+α−1

i j (1−θi j)n−x+β−1dθi j
(6)
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Input: a set of SCF confidence-value
vectors V = {v1,v2, . . . ,vn} ⊆ Rm

a distance function d : Rm ×Zm → R
a function to compute a centroid

µ : {v j1 ,v j2 , . . . ,v jl
}→ Rm

Output: a set of clusters Cj

while cluster members are not stable do
foreach cluster Cj

Cj = {vi|∀cl ,d(vi,c j) ≤ d(vi,cl)}
end foreach
foreach clusters Cj

c j = µ(Cj)
end foreach

end while

return Cj

Figure 3: Clustering algorithm for SCF confidence-value
distributions

lexicon of the target grammar, we also represent SCF
confidence-value vectors for the words in the target gram-
mars. In this paper, we express SCF confidence-value
vectorsv′i for words in the SCF lexicon of the target gram-
mar by:

v′i j =
{

1− ε wi has s j in the lexicon
ε otherwise

(7)

whereε expresses an unreliability of the lexicon. In this
study, we simply set it to the machine epsilon. In other
words, we trust the lexicon as much as possible.

3.2 Clustering Algorithm for SCF
Confidence-Value Distributions

We next present a k-Means-like clustering algorithm for
SCF confidence-value vectors, as shown in Figure 3.
Given an initial assignment of data objects tok clusters,
our algorithm computes a representative value of each
cluster calledcentroids. Our algorithm then iteratively
updates clusters by assigning each object to its closest
centroid and recomputing centroids until cluster members
become stable.

Although our algorithm is roughly based on the k-
Means algorithm, it is different in an important respect.
We define the elements of the centroid values of the ob-
tained clusters as a discrete value of 0 or 1 because we
want to obtain clusters which include words that have the
exactly same set of SCFs. We then derive a distance func-
tion d to calculate the distance from a data objectvi to
each centroidcm. Since the distance function is used to
determine the closest cluster forvi, we define the func-
tion d to output the probability thatvi has the SCF set
expressed by centroidcm as follows:

d(vi,cm) = ∏
cm j=1

vi j · ∏
cm j=0

(1− vi j). (8)

By using this function, we can determine the closest clus-
ter as argmax

Cm

d(vi,cm).

After every assignment, we determine a next centroid
cm of each clusterCm as follows:

cm j =




1 when ∏
vi∈Cm

vi j > ∏
vi∈Cm

(1− vi j)

0 otherwise
(9)

We then address the way to determine the number of
clusters and initial assignments of objects. In this paper,
we assume that the most of the possible set of SCFs for
words are included in the target lexicalized grammar, and
make use of the existing sets of SCFs for the words in the
lexicon of the target grammar to determine the possible
set of SCFs for words out of the lexicon. We first ex-
tract SCF confidence-value vectors from the lexicon of
the target grammar by regardingε = 0 in Equation 7.
By eliminating duplications from them, we obtain SCF
centroid-value vectorscm. We then initialize the number
of clustersk to the number ofcm and use them as initial
centroids.4

We finally update the acquired SCFs using each ele-
ment’s value in the centroid of each cluster and the confi-
dence value of SCFs in this order. We first eliminate SCF
s j for wi in a clusterm when the valuecm j of the centroid
cm is 0, and add SCFs j for wi in a clusterm when the
valuecm j of the centroidcm is 1. This is becausecm j rep-
resents whether the words in that class can have SCFs j.
We then eliminate implausible SCFss j for wi from the
resulting SCFs according to its corresponding confidence
valuecon fi j. We call this eliminationcentroid cut-off. In
the following experiments, we compare this cut-off with
naivefrequency cut-off, which uses only relative frequen-
cies to eliminate SCFs andconfidence cut-off, which uses
only confidence values to eliminate SCFs. Note that fre-
quency cut-off and confidence cut-off use only corpus-
based statistics to eliminate SCFs.

4 Experiments

We applied our method to an SCF lexicon acquired
from 135,902 sentences of the mobile phone news group
archived by Google.com, which is the same data used
in (Carroll and Fang, 2004). The number of the result-
ing SCFs is 14,783 for 3,864 word stems. We then trans-
lated them to an SCF lexicon for the XTAG English gram-
mar (XTAG Research Group, 2001) by using a translation
map manually defined by Ted Briscoe. It defines a map-
ping from 23 out of 163 possible SCF types into 13 out of
57 XTAG SCFs calledtree families listed in Table 1. The
number of resulting SCFs for the XTAG English gram-
mar was 6,742 for 2,860 word stems.

4When a lexicon of the grammar is not comprehensive or
less accurate, we should determine the number of clusters using
other algorithms (Bischof et al., 1999; Hamerly, 2003).
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Table 1: Tree families of the XTAG English grammar
mapped from 23 out of 163 SCF types

Tree family Explanation
Tnx0Ax1 Adjective small clause
Tnx0Vnx1 Transitive
Tnx0Vs1 Sentential complement
Tnx0Vnx2nx1 Ditransitive
Tnx0Vnx1Pnx2 Multiple anchor ditransitive with PP
Tnx0Vnx1pnx2 Ditransitive with PP
Tnx0Vplnx1 Transitive verb Particle
Tnx0Vpl Intransitive verb Particle
Tnx0Vnx1s2 Sentential complement with NP
Tnx0Vpnx1 Intransitive with PP
Ts0Vnx1 Transitive sentential subject
Tnx0Vax1 Intransitive with adjective
Tnx0Vplnx2nx1 Ditransitive verb Particle

In order to evaluate our method, we split the SCF lexi-
con of the XTAG English grammar into the training por-
tion and the test portion. The training portion includes
9,427 SCFs for 8,399 words, while the test portion in-
cludes 433 SCFs for 280 words The test portion is se-
lected from the SCF lexicon for words that are observed
in the acquired SCF lexicon. We extract SCF confidence-
value vectors from the training portion and combine them
with the SCF confidence-value vectors obtained from the
acquired SCFs. The number of the resulting data objects
is 8,679.5 We also make use of the SCF confidence-value
vectors obtained from the training SCF lexicon as an ini-
tial centroid by regardingε as 0. The total number of
them was 35.6 We then performed clustering of these
8,679 data objects into 35 clusters.

We finally evaluate precision and recall of the resulting
SCFs by comparing them with the test SCF lexicon of the
XTAG English grammar.

We first compare confidence cut-off with frequency
cut-off to investigate effects of Bayesian estimation. Fig-
ure 4 shows precision and recall of the resulting SCF sets
using confidence cut-off and frequency cut-off. We mea-
sured precision and recall of the SCF sets obtained using
confidence cut-off whose recognition thresholdt = 0.01
(confidence cut-off 0.01), 0.03 (confidence cut-off 0.03),
and 0.05 (confidence cut-off 0.05) by varying threshold
for the confidence value from 0 to 1. We also measured
those for the SCF sets obtained using frequency cut-off
by varying threshold for the relative frequency from 0
to 1. The graph apparently indicates that the confidence
cut-offs outperformed the frequency cut-off. When we

5We used the SCF confidence-value vectors for words which
are included in the XTAG English grammar. When both the
training SCF lexicon and the acquired SCF lexicon have the
same words, we simply used an SCF confidence-value vector
obtained from the acquired SCF lexicon.

6We used the SCF confidence-value vectors that appear with
more than two words.
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Figure 4: Precision and recall of the resulting SCFs using
confidence cut-off and frequency cut-off
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Figure 5: Precision and recall of the resulting SCFs using
confidence cut-off and frequency cut-off

compare confidence cut-offs with different recognition
thresholds, we can improve precision using higher recog-
nition threshold while we can improve recall using lower
recognition threshold. This result is quite consistent with
our expectations.

We then compare centroid cut-off with confidence cut-
off to observe effects of clustering using information in
the lexicon of the XTAG English grammar. Figure 5
shows precision and recall of the resulting SCF sets using
centroid cut-off and confidence cut-off with the recogni-
tion thresholdt = 0.03 by varying the threshold for the
confidence value. In order to show the effects of infor-
mation of the training SCF lexicon, centroid cut-off 0.03*
is SCFs obtained by clustering of SCF confidence-value
vectors in the acquired SCFs only with random initial-
ization. The graph apparently shows that clustering is
meaningful only when we make use of the reliable SCF
confidence-value vectors obtained from the manually tai-
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SCF # SCFs frequency cut-off confidence cut-off 0.03 centroid cut-off 0.03
Precision Recall Precision Recall Precision Recall

Tnx0Ax1 12(1) na (0 / 0) 0.000 (0 / 12) na (0 / 0) 0.000 (0 / 12) na (0 / 0) 0.000 (0 / 12)
Tnx0Vnx1 267(222) 0.959 (212 / 221) 0.794 (212 / 267) 0.958 (253 / 264) 0.948 (253 / 267) 0.956 (260 / 272) 0.974 (260 / 267)
Tnx0Vs1 38(29) 0.357 (10 / 28) 0.263 (10 / 38) 0.381 (8 / 21) 0.211 (8 / 38) 0.323 (10 / 31) 0.263 (10 / 38)
Tnx0Vnx2nx1 21(16) 0.105 (6 / 57) 0.286 (6 / 21) 0.185 (10 / 54) 0.476 (10 / 21) 0.122 (9 / 74) 0.429 (9 / 21)
Tnx0Vnx1Pnx2 8(4) 0.200 (3 / 15) 0.375 (3 / 8) 0.200 (2 / 10) 0.250 (2 / 8) 0.250 (2 / 8) 0.250 (2 / 8)
Tnx0Vnx1pnx2 5(1) 0.024 (1 / 41) 0.200 (1 / 5) 0.029 (1 / 34) 0.200 (1 / 5) na (0 / 0) 0.000 (0 / 5)
Tnx0Vplnx1 40(23) 0.538 (7 / 13) 0.175 (7 / 40) 0.667 (6 / 9) 0.150 (6 / 40) 0.778 (7 / 9) 0.175 (7 / 40)
Tnx0Vpl 20(0) na (0 / 0) 0.000 (0 / 20) na (0 / 0) 0.000 (0 / 20) na (0 / 0) 0.000 (0 / 20)
Tnx0Vnx1s2 11(6) 0.083 (1 / 12) 0.091 (1 / 11) 0.200 (1 / 5) 0.091 (1 / 11) 0.200 (1 / 5) 0.091 (1 / 11)
Ts0Vnx1 8(1) 0.000 (0 / 2) 0.000 (0 / 8) na (0 / 0) 0.000 (0 / 8) na (0 / 0) 0.000 (0 / 8)
Tnx0Vax1 2(1) 0.000 (0 / 9) 0.000 (0 / 2) 0.000 (0 / 3) 0.000 (0 / 2) 0.000 (0 / 1) 0.000 (0 / 2)
Tnx0Vplnx2nx1 1(0) 0.000 (0 / 2) 0.000 (0 / 1) na (0 / 0) 0.000 (0 / 1) na (0 / 0) 0.000 (0 / 1)

Table 2: Precision and recall for 400 SCFs obtained from freqency cut-off, confidence cut-off 0.03, and centroid cut-off
0.03

lored lexicon. The centroid cut-off using the lexicon
boosted precision and recall compared to the confidence
cut-off and the centroid cut-off without the lexicon.

We finally investigate precision and recall of the re-
sulting SCFs for every SCF type in order to evaluate ef-
fects of our method on each SCF. Table 2 shows preci-
sion and recall of the SCFs by using frequency cut-off
(the threshold for the relative frequency 0.092), confi-
dence cut-off 0.03 (the threshold for the confidence value
0.953), centroid cut-off 0.03 (the threshold for the confi-
dence value 0.889)7 by using thresholds for the relative
frequency and the confidence value that preserve exactly
400 SCFs. The numbers in curly brackets in # of SCFs
colum show the number of SCFs in the test SCF lexicon
that are acquired from the training corpus. The left and
right numbers in curly brackets in the precision columns
show the number of correct SCFs against all SCFs in the
resulting SCF lexicon while those in the recall columns
show the number of correct SCFs against all SCFs in the
test SCF lexicon. We can observe a tendency that the
confidence cut-off and the centroid cut-off preserve more
transitive (Tnx0Vnx1) SCF. This is because some SCFs
of Tnx0Vnx1 in the test SCF lexicon are not observed
in the training corpus but are predicted bya priori dis-
tribution for SCF Tnx0Vnx1. Also, the centroid cut-off
tends to reduce implausible SCFs of Tnx0Vnx1Pnx2 and
Tnx0Vax1. Since the threshold for the confidence value
of the centroid cut-off 0.03 (0.889) is smaller than that of
the confidence cut-off 0.03 (0.953), the clustering could
eliminate implausible SCFs without reducing recall.

In short, one reason why the centroid cut-off outper-
forms the confidence cut-off (or the frequency cut-off) is
due to the way how the centroid cut-off eliminate SCFs
not existed in the lexicon. When we eliminate SCFs with
lower relative frequency under the assumption that those
SCFs tend to be wrongly acquired SCFs, it must also
eliminate correct SCFs with low relative frequencies. By
using co-occurrence tendency among SCFs as another

7Since no word takes SCF Tnx0Vpnx1 in the test SCF lexi-
con, we omit it here.

criteria to judge the implausibility of the SCFs, we can
eliminate more wrongly acquired SCFs because they tend
to violate the co-occurrence tendency. Another reason
why the centroid cut-off and the confidence cut-off out-
perform the the frequency cut-off is due to the way how
those cut-offs add new unseen SCFs. We can add plausi-
ble SCFs from those SCFs which is reliable according to
theira priori distribution. Furthermore, since the centroid
cut-off makes use of the co-occurrence tendency among
SCFs, it adds only SCFs which are plausible in terms of
corpus-based statistics (confidence value) under the re-
striction provided by the co-occurrence tendency among
SCFs in the lexicon of the target grammar.

5 Concluding Remarks and Future Work

In this paper, we presented a novel way to improve the
quality of SCFs acquired from corpora in order to aug-
ment a lexicalized grammar with them. By applying our
method to the acquired SCF lexicon using the XTAG En-
glish grammar, we showed that our method improved
both precision and recall of the resulting SCFs compared
to the naive frequency-based cut-off.

In future work, we are going to investigate the pars-
ing performance of the XTAG English grammar aug-
mented with SCFs obtained by our method. We will
apply our method to lexicalized grammars with rela-
tively smaller lexicon,e.g., the LINGO English Resource
Grammar (Flickinger, 2000).
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Abstract 

A central component of Kallmeyer and Joshi 
2003 is the idea that the contribution of a 
quantifier is separated into a scope and a 
predicate argument part. Quantified NPs are 
analyzed as multi-component TAGs, where 
the scope part of the quantifier introduces the 
proposition containing the quantifier, and the 
predicate-argument part introduces the restric-
tive clause. This paper shows that this as-
sumption presents difficulties for the 
compositional interpretation of NP coordina-
tion structures, and proposes an analysis 
which is based on LTAG semantics with se-
mantic unification, developed in Kallmeyer 
and Romero 2004. 

1 LTAG Semantics with Semantic Unifi-
cation.  

In LTAG framework (Joshi and Schabes 1997), the ba-
sic units are (elementary) trees, which can be combined 
into bigger trees by substitution or adjunction. LTAG 
derivations are represented by derivation trees that re-
cord the history of how the elementary trees are put 
together. Given that derivation steps in LTAG corre-
spond to predicate-argument applications, it is usually 
assumed that LTAG semantics is based on the deriva-
tion tree, rather than the derived tree (Kallmeyer and 
Joshi 2003).  
 
Semantic composition which we adopt is based on 
LTAG-semantics with Semantic Unification (Kallmeyer 
and Romero 2004). In the derivation tree, elementary 

trees are replaced by their semantic representations and 
corresponding feature structures.  Semantic representa-
tions are as defined in Kallmeyer and Joshi 2003, except 
that they do not have argument variables. These repre-
sentations consist of a set of formulas (typed λ-
expressions with labels) and a set of scope constraints. 
The scope constraints x ≤ y are as in Kallmeyer and 
Joshi 2003, except that both x and y are propositional 
labels or propositional variables.    
 
Each semantic representation is linked to a feature struc-
ture. Feature structures, as illustrated by different exam-
ples below, include a feature i, whose values are 
individual variables, and features p and MaxS, whose 
values are propositional labels. Semantic composition 
consists of feature unification. After having performed 
all unifications, the union of all semantic representations 
is built. Consider, for example, semantic representa-
tions and feature structures associated with the elemen-
tary trees of the sentence shown in (1).   
 
(1)  Mary dates Bill 
 
             S                         
                                                                                      
    NP          VP             
[i: 1]             
       date             NP    [i: 2]          
 
   NP                            NP           
         mary(x)                      
 
  Mary                       Bill            
  [i: x]                        [i: y]  
 
The derivation tree that records the history of how ele-
mentary trees are put together is shown in (2): 

l1: date(1, 2 ) 

mary(x) bill (y) 

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 111-117.
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May 20-22, 2004, Vancouver, BC, CA.

Pages 111-117.



 
(2)             date 
               1       2 
        mary            bill 
 
Semantic composition proceeds on the derivation tree 
and consists of feature unification2:  
 
(3)     l1: date(1, 2 )                                                               
                                           
            1 [i: 1]                                                                      
            2 [i: 2 ]                                               
 
              1             2                                                                                 
                                                                  
    mary(x)               bill(y) 
     [i: x]                      [i: y]    
                   
Performing two unifications,  1=x, 2=y, we arrive at the 
final interpretation of this sentence: 
     
(4)     
     
       
 
This representation is interpreted conjunctively, with 
free variables being existentially bound.                                                               
 
Quantificational NPs are analyzed as multi-component 
TAGs, where the scope part of the quantifier introduces 
the proposition containing the quantifier, and the predi-
cate-argument part introduces the restrictive clause. The 
multi-component representation of the quantifier ‘eve-
rybody’, for example, and its semantics, is shown in (5): 
 
(5) 
            S* 
                
                                        
               NP[i:x, p:16]                                          

                                               
        every   N                                                          

 
 
The use of multi-component representations for quanti-
fiers in Kallmeyer and Joshi 2003 is motivated by the 
desire to generate underspecified representations for 
scope ambiguities. Consider, for example, composi-
tional interpretation of the sentence in (6), shown in (7). 
 
 
 
 
                                                           

2 For simplification, top-bottom feature distinction is omit-
ted. 

(6)       Everybody likes someone. 
 
.       S*                                        S                                    S*             
                                                
         NP                       NP     VP                         NP  

                                               
  every   N                         like      NP                   some  N   

 
 
(7) 
 
 
                      
                           1  [p: l1, i: 1 ]        
                           2  [p: l1, i: 2 ]        
                       
                                1    3 4      2 
 
 
 
 
        [i: x, p: 16 ]                            [i: y, p: 11 ]       
                                            
 
 
 
 
Performing unifications leads to the feature identities 
1=x, 2=y, 11=l1, 16=l1 and the following final repre-
sentation of this sentence: 
 
(8)  
 
 
 
 
 
 
 
The semantic representation in (8) is underspecified for 
scope, and there are two possible disambiguations of 
scope constraints (i.e. functions from propositional vari-
ables to propositional labels that respect the scope con-
straints in the sense of Kallmeyer and Joshi 2003), 
shown in (9a) and (9b). 
 
(9)  a. 10 -> l1,  13 -> l5   

          b.   13 -> l1,  10 -> l4    

 
In (9a), the proposition l1 is identified with the nuclear 
scope of the quantifier ‘some’, and the proposition l5 
with the nuclear scope of ‘every’. The quantifier ‘every’ 
has a wide scope interpretation  in this case. In (9b), the 
quantifier ‘every’ is identified with the nuclear scope of 
‘some’, and thus has a narrow scope interpretation.  

l1: date(1, 2 ) 

l1: date(x, y) 
bill(y) 
mary(x) 

l5:every(x, 12, 13) 

l4:person(x), 
l4≤12, 16≤ 13  

l1: like(1, 2 ) 

l3: person(y)  
l3 ≤ 9, 11≤ 10          

l4:every(x, 12, 13)

l2: person(x), 
l2≤12, 16≤ 13  

l5:some(y, 9 ,10) 

l5: some(y, 9, 10),  
l4: every(x, 12, 13), 
l2: person(x), l3: person(y),  
l1: like(x, y)  
l1≤ 10, l1≤ 13, l2≤ 12 l3≤ 9 
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2 Problems for NP-Coordination 

Structures with conjoined quantified NPs, of the type 
illustrated in (10) and (11), present difficulties for this 
analysis.  
 
(10) Every man and every woman smiled. 
(11) Every man and every woman solved a puzzle. 
 
 First, separating scope part and predicate-argument part 
presents a challenge for a compositional interpretation 
of conjoined structures, since the conjunction ‘and’ is 
composed with the NP-parts of the quantified NPs, 
which specify the restrictive clause (as the derivation 
tree in (12) illustrates3). On the other hand, the desired 
interpretation of this sentence is ‘every man smiled and 
every woman smiled’, where the two quantifiers are 
conjoined, rather than just their restrictive parts.  Fur-
thermore, under the analysis presented above these 
structures are expected to show scope ambiguities, 
whereas it is well known that conjoined structures are 
islands for quantifier scope (Ross 1967, Morrill 1994, 
among others). 
 
 (12)                                        S 
 
.       S*                             ConjNP      VP                             S*             
                                       
         NP                   NP                     V                NP  

                                   and       NP       smile 
 every   N                                                              every  N   
                                                                                      
      N                                                                  N 
    man                                                          woman 

 
The second problem concerns the fact that the interpre-
tation of this sentence involves two ‘copies’ of the 
proposition introduced by the verb: 
 
(13) Every(x, man(x), smile(x)) ∧  

every(y, woman(y), smile(y)) 
 
In LTAG semantics, as developed in Kallmeyer and 
Joshi 2003, the representation of each elementary tree is 
a proposition. The semantic representation of a tree for 
‘smile’, for example, denotes a proposition smile(1), 
where 1 is identified with a variable introduced by the 

                                                           
3 The tree in (12) represents shorthand for the derivation tree 
of this sentence. ConjNP is a separate elementary tree, and 
in order for the derivation to be local, the NP tree should be 
first composed with the ConjNP, then the derived tree is 
combined with the second NP-tree, and then the resulting 
multi-component TAG is combined with the S-tree (as de-
scribed in flexible composition approach in Joshi et al 
2003). The order of syntactic derivation is not relevant for 
the semantic analysis and therefore is not represented here. 

NP. In order to derive a compositional interpretation of 
the sentence in (10), on the other hand,   S-tree should 
denote a property, which can be predicated of either x or 
y (as has been proposed for the analysis of this type of 
constructions in Montague-style semantic frameworks, 
(e.g. Partee and Rooth 1983), as well as Categorial 
Grammars (e.g. CCG, Steedman 1996)).  This option, 
however, is not directly available in the LTAG seman-
tics, given that the nuclear scope of quantifiers which 
are adjoined to S should be unified with a proposition 
supplied by the S-tree. 
 
This problem becomes more apparent when we try to 
analyze the sentence in (11). This sentence has two pos-
sible interpretations:  
 
(14) Every man and every woman solved a puzzle. 

 
a. every(x, man(x), some(z, puzzle(z), solve(x, z))) 

   ∧every(y, woman(y), some(z,puzzle(z),solve(y, z))))  
 b. some(z, puzzle(z), every(x, man(x), solve(x, z)))  
      ∧every(y, woman(y), solve(y, z)))) 
 
In the interpretation in (14a), the nuclear scope of both 
quantifiers ‘every’ has to be identified with the quanti-
fier ‘some’. However, since quantifiers are introduced 
as propositions, we cannot identify the same proposition 
with the nuclear scopes 4 and 6 of both quantifiers 
every in every(x, man(x), 4) and every(y, woman(y), 6). 
The proposition ‘some’ has to be ‘copied’ at some point 
of compositional interpretation, so that  4 and 6 will be 
identified with different copies of ‘some’. In the  inter-
pretation (14b), on the other hand, what is being ‘cop-
ied’ is the proposition introduced by the verb, i.e. 
solve(1,2).  
 
Let us consider possible assignments for nuclear scopes 
of the three quantifiers: 
 
(15) every (x, 3, 4):    
       a. some(z, puzzle(z), solve(x, z))=4   or 

b. solve(x, z) = 4   
          

every (y, 5, 6 ),   
   a. some(z, puzzle(z), solve(y, z))=6 or 
 b solve(y, z) = 6  
 
some(z, 7, 8): 

a. solve(v, z) = 8,  
          where v can be either x or y, or 
b. every(x, man(x), solve(x, z) ∧  
     every(x, man(x), solve(x, z)) = 8 

 
As (15) shows, it does not seem possible to find a single 
proposition which could be viewed as ‘being in the nu-
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clear scope’ of the three quantifiers. Furthermore, in the 
case of the (a) reading of the quantifier ‘some’, we need 
to account for the clause ‘where v can be either x or y’, 
which given the present framework implies that we 
should be able to map the same variable 22 to two dif-
ferent propositions, specifically: solve(x, z) and solve(y, 
z). This is undesirable, given that disambiguations are 
viewed as functions from propositional variables to pro-
positional labels. 
 
The question which arises therefore is what kind of un-
derspecified representation and copying mechanism can 
we use to achieve the desired scope ambiguities?  

3 Coordination of Quantified NPs 

To solve the first problem, we propose that the NP part 
of a quantifier has an additional feature (called NP-S 
below), which is identified with the proposition in the 
scope part.4  
 
(16) 
            S* 
                                          
               NP[i:x, p:16,NP-S: l5 ]                                        

                                               
        every   N  [ i: x,  p: 11 ]                                                

 
 
                                                                                    
 
Given this modification, the NP parts of the quantifiers 
can now compose with conjunction ‘and’ in such a way 
that the conjoined expressions are identified with propo-
sitions in the scope part of the quantifier.  
 
Compositional interpretation of the sentence in (10) is 
shown in (17). The semantic representation of the con-
junction ‘and‘ includes a proposition l1, which is a con-
junction of propositional variables 2 and 3. In the case 
of quantificational NPs, as illustrated by the example 
above, the variables 2  and 3 are identified with l5 and 
l6, which are provided by using feature NP-S.  
 
The representation of the conjunction ‘and’ also con-
tains two propositions l2 and l3, which are of the  form 
λv 25(5) and λv25(6, where the variable 25 is a 
propositional variable, and 5 and 6 are individual 
variables.  It is important, however, that the proposi-
tional variable 25 is not unified with any propositional 
label in the final representation, as we will show below.                                                             

4 This feature can possibly be unified with MaxS, a scope 
feature proposed in Romero et al 2004  to account for differ-
ent types of island constraints. The difference is that MaxSc 
is a feature associated with S trees, whereas NP-S, as de-
scribed above, specifies the scope of NPs.   

representation, as we will show below.  
 
It is also critical for this analysis that the propositional 
variable which corresponds to the nuclear scope of the 
quantifier is introduced as part of the NP-tree, not S-tree 
(as Joshi et al 2003 independently argue, contra Kall-
meyer and Joshi 2003).  If this variable were part of the 
S-tree, then the nuclear scope would be identified with a 
proposition l0, which is introduced by the S-tree headed 
by the verb. The desired interpretation, however, is such 
that the nuclear scopes of the two quantifiers are identi-
fied with the propositions l2 and l3, introduced by the 
ConjNP (as the constraints l2≤8 and l3≤10 below show). 
This interpretation can be achieved, as shown in (17), 
under the assumption that the feature structures and 
scope constraints which are responsible for the identifi-
cation of the nuclear scope of the quantifier are part of 
the NP tree that attaches to the ConjNP.   
 
(17) 
                    
                             1  [p: l0, i: 0 ]        
                       
                                        1             
 
 
 
 
                                            
 
 
                              
                               0  [p: 4, i: v] 
                        1 [p: l2, i: 5, NP-S: 2]    
                        2 [p: l3, i: 6, NP-S:3] 
 
 
                           1                  2 
 
 
 
0 [p: 16, i: x, NP-S: l5]       0 [p: 12, i: y, NP-S: l6] 
1  [i: x, p: 11 ]                     1 [i: y, p: 13 ]       
 
                   1                                    1 
 
 
       [p: l7, i:17]                       [p: l8, i: 18] 
 
Performing feature unification leads to the following 
final interpretation of this sentence: 
 
 
 
 

l5:every(x, 12, 13) 

11≤12, 16≤ 13  

l0: smile(0)

l5:every(x, 7, 8) l6:every(y, 9 ,10) 

l1: 2∧3,  l2:λv 25(5),  l3:λv 25(6), 4≤ 25, l2≤ 2,  l3≤ 3

16 ≤ 8,  11 ≤ 7 13 ≤ 9,  12 ≤ 10  

  l7: man(17)  l8: woman(18) 
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(18)  
 
 
 
 
 
 
 
 
 
 
 
There is only one possible disambiguation of the re-
maining variables, such that 25 -> l0 , 8 ->l2,  10-> l3 , 
7-> l7, 9 ->l8 . This disambiguation results in the desired 
interpretation of the sentence. 
 
As the interpretation in (18) shows, the propositions l2 
and l3 in the final representation are underspecified in 
the sense that the propositional variable 25  is not linked 
to any propositional label. This assumption, as we will 
see below, allows us to derive an underspecified 
representation for the scope ambiguities of the sentence 
in (11).    
  
Semantic representations and feature structures for the 
sentence in (11) are parallel to the semantic representa-
tions in (17), except that there is an additional quanti-
fier.  
 
(19)                                        S 
        everyS1 
                                  ConjNP      VP                someS                         
             everyS2                          
                           NP           V      NP  

                                   and     NP           
                      everyNP1                                                                                                                                                                  

                                      everyNP2                someNP                             
                     man 
                                     woman                  puzzle 
 
 
As the derivation tree is (19) shows, the NP part of the 
quantifier ‘some’ is substituted to the NP node  of the S 
tree, whereas the NP-parts of the quantifiers ‘every’ are 
substituted to the ConjNP. The scope parts of all three 
quantifiers are adjoined to S.  
 
The compositional analysis of this sentence which we 
propose is shown in (20). 
 
 
 
 
 
 

(20) 
 
                      
                            
                         1 [p: l0, i: 0 ] 
                          2[p: l0, i: 1, NP-S:25]        
                       
                                                     
                                            2 
 
 
                                               
                                     1 
 
 
 
                                                [p: 23, i: z, NP-S:l9]              
 
                                            
 
 
                              
                               0  [p: 4, i: v] 
                       1 [p: l2, i: 5, NP-S: 2]    
                       2 [p: l3, i: 6, NP-S: 3] 
 
 
                           1                  2 
 
 
 
0  [p: 16, i: x, NP-S: l5]      0 [p: 12, i: y, NP-S: l6] 
1  [i: x, p: 11 ]                     1 [i: y, p: 13 ]       
 
                   1                                    1 
 
 
       [p: l7, i:17]                       [p: l8, i: 18] 
 
Performing unifications leads to the following final rep-
resentation: 
 
(21)  
 
 
 
 
 
 
 
 
 
 
 
 

l1: l5 ∧ l6 

l0: smile(v)  l0≤25 
l2: λv 25(x)  l2≤8 
l3: λv 25(y)    l3≤10 
l7: man(x)  l7≤7 
l8: woman(y)  l8≤9 
l5: every(x, 7, 8)       
l6: every(y, 9, 10)         

l0: solve(0, 1) 

l5:every(x, 7, 8) l6:every(y, 9 ,10) 

l1: 2∧3,  l2:λv 25(5),  l3:λv 25(6), 4≤ 25, l2≤ 2,  l3≤ 3

16 ≤ 8,  11 ≤ 7 13 ≤ 9,  12 ≤ 10  

  l7: man(17)  l8: woman(18) 

l9:some(z, 21 ,22)

  l10: puzzle(z) 
  l10 ≤ 21 ,23 ≤ 22

l1: l5 ∧ l6  
l2: λv 25(x)  l2 ≤ 8        
l3: λv 25(y)  l3 ≤ 10           
l7: man(x)  l7 ≤ 7             
l8: woman(y)  l8 ≤ 9             
l5: every(x, 7, 8)       
l6: every(y, 9, 10)               
l9: some(z, 21, 22)                      
l0: solve(v, z)          l0 ≤ 22 , l0 ≤ 25  
l1o: puzzle(z)                    l10  ≤ 21          
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This representation has two possible disambiguations.   
 
The first disambiguation is 22 -> l0, 25 -> l9,  8 -> l2,  
10 -> l3, 7 ->l7, 9->l8, 21 ->l11, where the variable 25 is 
identified with the existential quantifier ‘some’ (i.e. 
proposition l9), and l0 is identified with its nuclear 
scope.  The propositions l2 and l3 in this case are as fol-
lows:  
 
(22) l2: some(z, puzzle(z), solve(x, z)) 

l3: some(z, puzzle(z), solve(y, z)) 
 
Given that l2 and l2  are identified with the nuclear 
scopes of the quantifiers ‘every’, the final interpretation 
is as in (23):  
 
(23) every(x, man(x), some(z, puzzle(z), solve(x, z))) ∧ 
        every(y, woman(y), some(z, puzzle(z), solve(y, z))) 
 
Another possible disambiguation is 25 -> l0, 22 -> l1,  8 
-> l2, 10 -> l3, 7 ->l7, 9->l8, 21 ->l11,,where 25 is identi-
fied with the proposition l0, so that the propositions l2 
and l3 are as in (24): 
 
(24) l2: like(x, z) 

l3: like(y, z) 
 
The nuclear scope of ‘some’ in this case is identified 
with l1, and the final representation represents the sec-
ond interpretation:  
 
(25) some(z, puzzle(z), every(x, man(x), l2) ∧ 

every(y, woman(y), l3) 
 
As this example illustrates, the desired interpretations 
are achieved under the assumption that the propositions 
which correspond to two ‘copies’ remain underspecified 
in the final representation. 

4 Coordination of non-quantified NPs 

Finally, let us extend this analysis to the semantic inter-
pretation of the sentence in (26). 
 
(26) John and Mary smiled.  
 
The desired interpretation of this sentence is ‘John 
smiled and Mary smiled’. To derive this interpretation,  
the variables 2 and 3 should be identified with the prop-
ositions ‘smile(x)’ and ‘smile(y)’, as opposed to the 
coordinated structures with quantified NPs, where these 
variables were identified with quantifiers.  
 
In order to derive the correct interpretation of this sen-
tence, we introduced constraints l2≤ 2 and  l3≤ 3  to the 

interpretation of the conjunction ‘and’.  These con-
straints did not play any role in the analysis of coordi-
nated NPs. If the NPs are not coordinated, however, 
then these constrains are needed to get the right inter-
pretation. 
 
The derivation tree and compositional interpretation of 
the sentence in (26) is shown in (27) and (28) below: 
 
(27)                                         S 
         
                                  ConjNP      VP                                       
                                       
                           NP                   V  

                                   and     NP      smile     
                      John                                                                                                       

                                      Mary                                          
                     
 
(28) 
                      
                            
                          1  [p: l0, i: 0 ]        
                                         
                                                     
 
 
                               0  [p: 4, i: v] 
                        1 [p: l2, i: 5, NP-S: 2]    
                        2 [p: l3, i: 6, NP-S:3] 
 
 
                           1                  2 
 
 
       [p: l7, i:17]                       [p: l8, i: 18] 
 
Performing feature unification leads to the following 
final interpretation of this sentence. 
 
(29) 
 
 
 
 
 
 
There is only one possible disambiguation of the re-
maining variables: 25 -> l0, 2 ->l2, 3 -> l3. This disam-
biguation results in the desired interpretation of the 
sentence. 

5 Conclusion 

This paper proposed an analysis of coordinated quanti-
ficational and non-quantificational NPs within LTAG 

l1: 2∧3,  l2:λv 25(5),  l3:λv 25(6), 4≤ 25, l2≤ 2,  l3≤ 3

  l7: john(17)  l8: mary(18) 

l1: 2 ∧ 3  l0:  smile(v)       l0≤ 25              
l2: λv 25(x) l7: john(x) l2≤2  
l3: λv 25(y) l8: mary(y) l3≤3   

l1: smile(0) 
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semantic unification framework. It was shown that the 
analysis of quantifiers which separates scope part and 
predicate-argument part (e.g. Kallmeyer and Joshi 2003) 
presents a challenge for a compositional interpretation 
of conjoined structures. To solve this problem, we pro-
posed to add a new feature to the NP-part of a multi-
component quantifier, which would take as its value the 
propositional label introduced by the scope part.   
 
Another problem discussed in the paper  is getting the 
right scope ambiguities of sentences of the type “Every 
man and every woman solved a puzzle”. Under the 
analysis of scope ambiguities as resulting from under-
specified representation, as proposed in Kallmeyer and 
Joshi 2003 (alternative ways of analyzing scope ambi-
guities are discussed in Szabolsci 1997 and Steedman 
1999, for example), the question which was raised is to 
find the right underspecified representation which 
would account for the two readings of this sentence. 
Specifically, it was shown that one of the representa-
tions of this sentence may require a propositional vari-
able to be identified with two different propositional 
labels. To solve this problem, we proposed that proposi-
tions in the final interpretation that are linked to the 
nuclear scope of quantifiers are ‘underspecified’, and 
are computed   in the process of disambiguation. 
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Abstract

This paper proposes to give an analysis of VP
coordination in the LTAG semantics framework
of (Kallmeyer and Joshi, 2003). First the syn-
tax of VP coordination is described using an
operation called conjoin. Then we discuss in-
teractions of coordination scope and quantifier
scope in simple sentences and their analysis in
LTAG. Finally we point out coordination scope
ambiguities in embedded sentences that present
a problem for the present analysis.

1 Introduction

Perhaps the most natural account of coordination is given
in Combinatory Categorial Grammar where the fact that
sentences are assigned ambiguous structures not only
provides an explanation for all kinds of coordination con-
structions but also leads to a fully compositional and ap-
propriate semantics.

(Joshi and Schabes, 1991) and (Sarkar and Joshi, 1996)
have shown that it is possible to provide a CCG-like ac-
count for coordination while preserving the fixed phrase
structure of LTAGs by introducing a notion of derivation
that allows for the flexibility needed for handling coordi-
nation phenomena.

This paper proposes a compositional semantics for VP
coordination in LTAG using the notion of derivation as
defined by (Sarkar and Joshi, 1996).

The term VP coordination is not fully appropriate to
describe the range of phenomena considered here which
also includes V- and S-coordination. We will use the term
VP coordination to describe coordination phenomena that
requires the identification of the shared arguments of two
(verbal) predicates.

2 Background

2.1 Syntax of Coordination in LTAG

Because of the locality of arguments in LTAG, it is nec-
essary to introduce a notion of argument sharing in order
to handle coordination in this framework.

Making the notation of substitution and adjunction ex-
plicit, (Sarkar and Joshi, 1996) represent LTAG trees as
an ordered pair of a tree structure and an ordered set of
substitution/adjunction nodes from its frontier (see Fig.
1).

0S

�
�

�

H
H

H

1NP↓ 2VP

�
��

H
HH

2.1N

cooked

2.2NP↓

〈αcooked, {1, 2.2}〉

Figure 1: αcooked represented as an ordered pair

Identification of shared arguments is achieved through
building contraction sets with the operation build-
contraction.

Build-contraction takes an elementary tree 〈γ, S〉,
places a subset s ⊂ S from its second projection into
a contraction set and assigns the difference S − s to the
second projection of the new elementary tree: 〈γ ′, S −
s〉. For example, applying build-contraction to the NP
node at address 2.2 in the tree 〈αcooked, {1, 2.2}〉 yields
a tree with contraction set {2.2}: 〈αcooked{2.2}, {1}〉
(αcooked{2.2} for short). The output of build-contraction
is shown on Fig.(2).

Coordination is handled by a general coordination
schema illustrated in Fig. 3 and a new operation called
conjoin (in addition to substitution and adjunction). Con-
join takes three trees and combines them to give a de-
rived tree. One of the trees is always obtained by spe-
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αcooked{2.2} αcooked{1,2.2}
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V

cooked

NP

S

�
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H
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NP VP
�

�
H

H

V

cooked

NP

Figure 2: Output of build-contraction

X

�
��

H
HH

X Conj X

Figure 3: Coordination schema

cializing the coordination schema for a particular cate-
gory and lexicalizing it with the conjunction. The two
trees being coordinated are substituted into the conjunc-
tion tree in a special way: the node that is substituted
into the conjunction tree is not necessarily the root node
but can be some internal node, given by an algorithm
called FindRoot. FindRoot takes into account the con-
traction sets of the two trees and returns the lowest node
dominating all nodes in the second projection of the el-
ementary tree. E.g. FindRoot(αcooked{1,2.2}) will return
node address 2.1, corresponding to the V Conj V instan-
tiation of the coordination schema, FindRoot(αcooked{1})
will return address 2, corresponding to VP Conj VP and
FindRoot(αcooked{2.2}) will return the root node, corre-
sponding to S Conj S coordination.

The conjoin operation substitutes two elementary
trees, T1 and T2 into an instance of the coordination
schema C using the FindRoot algorithm, creates edges
between identical nodes in the contraction sets of T1

and T2 and contracts each edge. For example, applying
conjoin to Conj(and), αeats{1} and αdrinks{1} gives the
derivation tree and derived structure in Fig. 4 and Fig. 5.

Conj(and)

αeats{1}

1
�

�
�

αdrinks{1}

3
�

�
�

αcookies

2.2

�

�

αbeer

2.2

�

�

Figure 4: Derivation tree

The contraction set corresponds to a set of arguments
that remain to be supplied to a functor. A node in a deriva-
tion tree with a non-empty contraction set indicates that

S V P S

NP↓

����

������������������������
V P

���������

� � � � �

and V P

� � � � � � � �

� � � � �

V

					

NP


 
 
 
 


V

�����

NP

� � � � �

eats cookies drinks beer

Figure 5: Derived structure

the derivation is incomplete.
A consequence of introducing contraction and the con-

join operation is that the derivation tree has to be ex-
tended to an acyclic derivation graph. If a contracted
node in a tree (after the conjoin operation) is a substitu-
tion node, then the argument is recorded as a substitution
into both elementary trees simultaneously as illustrated in
Fig. 6.

(1) Chapman eats cookies and drinks beer

Conj(and)

αeats

1 






αdrinks

3
�

�
�

αcookies

2.2

�

�

αChapman

1
�

�
�

1 






αbeer

2.2

�

�

Figure 6: Derivation tree for (1)

An alternative way of viewing the conjoin operation
is as a construction of an auxiliary structure from an
elementary tree. For example, the conjoin operation
would create 〈βdrinks{1}, {2.2}〉 from the elementary
tree 〈αdrinks, {1, 2.2}〉. In this case, the adjunction op-
eration would create contractions between nodes in the
contraction sets of the two trees it applies to.

〈βdrinks{1}, {2.2}〉

V P S

� � � � �

V P ∗

�����

and NP V P

� � � � � � � � � � � � � � �

� � � � �

V

�����

NP ↓

� � � � �

drinks

Figure 7: Representing conjoin as adjunction

Although this approach requires the same machinery
to determine the instantiation of the coordination schema
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αeats{1}

βdrinks{1}

2

αcookies

2.2
�

�
�

�

αbeer

2.2

�

�

Figure 8: Conjoin as adjunction - derivation tree

and to identify shared arguments, it has the advantage that
it only uses the traditional LTAG operations of substitu-
tion and adjunction. A consequence of this perspective is
that the right conjunct is treated as a kind of “modifier”
on the left conjunct.

Since we associate semantic representations with indi-
vidual elementary trees in the lexicon, creating a seman-
tics “on the fly” for the second conjunct combined with
the tree for coordination seems less attractive than select-
ing three elementary trees from the lexicon and combin-
ing them with the conjoin operation.

In the rest of the paper we will use the conjoin opera-
tion to represent the syntax of coordination.

2.2 Semantics in LTAG

We give an analysis in a variant of (Kallmeyer and Joshi,
2003)’s framework. Basic semantic representations are
associated with individual elementary trees in the lexi-
con. They consist of a set of formulas, a set of scope
constraints of the form x ≥ y (where x,y are proposi-
tional labels or propositional variables) and semantic fea-
ture structures linked to specific node addresses in the el-
ementary tree (see Kallmeyer and Romero, this volume).
Each feature structure linked to a node in the elementary
tree consists of a top and a bottom feature structure. Each
top and bottom feature structure consists of a feature p

and a feature i. The possible values of p are propositional
labels and propositional variables, and the possible values
for i are individual variables.

Compositional semantics is computed based on the
derivation tree. At a substitution or adjunction step, the
feature structures are unified just like in a feature-based
LTAG (see (Vijay-Shanker and Joshi, 1991))1

These unification operations result in value-
assignments to some of the variables in the elementary
semantic representations. At the end of the derivation,

1At a substitution step, the top feature of the substitution
node in the host tree is unified with the top feature of the root
node in the substituting tree. At an adjunction step, the top fea-
ture of the root of the adjoined tree is unified with the top feature
of the node where adjunction takes place and the bottom feature
of the foot node is unified with the bottom feature structure of
the adjunction site.

some of the variables will not be assigned a value,
therefore the final representation will be underspecified.

The constraints in the final representation specify a
partial order on variables and labels (corresponding to
the partial ordering on holes and labels in (Kallmeyer and
Joshi, 2003)). Disambiguation is performed by assigning
values to the remaining variables.

Quantifiers are assigned a multicomponent representa-
tion that contains an empty scope tree and a regular NP
tree for predicate argument structure2. Fig.9 shows the
derivation tree for a sentence containing two quantifiers.

αlikes

αevery

1 �����
βevery

0

�����

βsome

0

� � � � �

αsome

2.2
� � � � �

αstudent

2

�

�

αcourse

2

�

�

Figure 9: Derivation tree for “Every student likes some
course”

Following (Kallmeyer and Romero, 2004) (this vol-
ume), the semantic representation of quantifiers contains
a feature called MaxS to make sure that in a sentence
like “Mary thinks that John likes everybody” the quan-
tifier can’t take scope over thinks. The value of the MaxS
feature of a quantifier will be identified with the MaxS
feature linked to the S node of the tree where the scope
part adjoins. Fig.10 illustrates the semantic features as-
sociated with the derivation tree in Fig.9. When the two
nouns are substituted into the NP parts of the two quanti-
fiers, the individual variables x and y are identified with
variables 6 and 7 and when the quantifier is combined
with the verb tree the propositional variables 81 and 31

are identified with l5 and l3 respectively. Other feature
unifications during semantic composition include 41 =
l1, 91 = l1, MaxS 21 = MaxS 23 , MaxS 20 = MaxS 23 .
The final (underspecified) representation along with the
two possible disambiguations is given on Fig.11.

3 Interactions of Quantifier scope and
Coordination scope

Analogously to the two perspectives on the syntax of
coordination in LTAG (conjoining or creating an auxil-
iary tree from the left conjunct), there have been two
approaches to coordination phenomena in the litera-
ture: conjunction reduction (deriving coordination from
deletion within conjoined sentences) and base generated
phrasal conjunction.

2In this paper, we adopt a substitution analysis for deter-
miners, i.e. nouns are substituted into the determiner tree (as
opposed to the determiner tree being adjoined onto the noun)
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αlikes

l1: likes( 1 , 2 )
MaxS 23 ≥ 25
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2
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T
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]

B
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]

]
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[

T

[
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] ]
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T
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αevery
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4 ≥ 41
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] ]
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βevery

l2 : every( x, 3 , 4 )
MaxS 20 ≥ l2

[

0

[

B
[

MaxS : 20
] ] ]

0

�
�

�
�

�
�

�
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βsome

l4: some( y, 8 , 9 )
MaxS 21 ≥ l4

[

0

[

B
[

MaxS : 21
] ] ]

0

�
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�
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�
�

� αsome

8 ≥ 81

9 ≥ 91

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0
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p : 91

i : y

] ]
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T
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i : y

] ]
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
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�
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�
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αstudent

l3 : student( 6 )
[

0

[

T

[

p : l3
i : 6

] ] ]

2

�
�

αcourse

l5 : course( 7 )
[

0

[

T

[

p : l5
i : 7

] ] ]

2

�
�

Figure 10: Derivation tree enhanced with semantic features for “Every student likes some course”

l4 : some(y, l5, 9 )
l5 : course(y)
l2 : every(x, l3, 4 )
l3 : student(x)
l1 : like(x,y)

23 ≥ l2, 23 ≥ l4
23 ≥ l1, 9 ≥ l1
4 ≥ l1

I. 23 → l2
9 → l1
4 → l2

every(x, l3, some(y, l5, l1 ))

II. 23 → l4
9 → l2
4 → l1

some(y, l5, every(x, l3, l1))

Figure 11: Semantics for “Every student loves some
course”

Based on evidence from e.g. agreement and binding
phenomena in various languages, it has been argued that
the two conjuncts are not syntactically equivalent. One
example is (Munn, 1993) which presents arguments for
treating coordinate structures structurally identical to ad-
juncts. However, semantically the arguments of coordi-
nation seem to be of the same type. Various researchers
(e.g. (Keenan and Faltz, 1978), (Partee and Rooth, 1983))
have shown that conjunction can be generalized to pro-
vide a uniform meaning for and and or. Although it
has also been suggested (e.g. (Larson, 1985), (Winter,
1995), (Winter, 2000) ) that conjunction and disjunction
have different scopal properties, in this paper we will fol-
low the former line of analysis and assign them equivalent
denotations.

First we consider the interaction of quantifier scope
and coordination in simple sentences. We say that coordi-
nation has wide scope in a construction Y [X1 coord X2]
if the meaning of the construction can be paraphrased as
[Y X1] coord [Y X2].

In cases like (2) the wide scope and the narrow scope
readings are logically equivalent, therefore impossible to
distinguish.
(2) a Every girl sang and danced.

b Some girl sang or danced.
c John sold or bought a car.
d John caught and ate every fish.

However, coordination scope should be in principle
visible in case of disjunction in scope of a universal (ev-
ery(A, B ∪ C)) and in case of conjunction in the scope of
an existential (some(A, B∩ C))3. (3) illustrates two such
contexts with the quantifier occurring in subject position.

(3) a Some girl sang and danced.
∃x[ girl(x) ∧ sang(x) ∧ danced(x) ]

b Every girl sang or danced.
∀x[ girl(x) → sang(x) ∨ danced(x) ]

In both cases only the narrow scope reading is available
(i.e. the quantifier has scope over the coordination). The
same effect can be observed if we replace some and every
with any of the following quantifiers: no girl, not every
girl, at least/most five girls, exactly five girls, most girls.
Similar scope relations can be observed in (4) where the
quantifiers occur in object position.

3We are not concerned here with coordination in the restric-
tion of quantifiers. For an account of NP coordination in this
framework see (Babko-Malaya, 2004), this volume.
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l1: and/or( 2 , 3 )
MaxS 11 ≥ 12

2 ≥ 15 , 3 ≥ 16

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H
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X and/or X

Figure 12: Semantics for and/or

(4) a John sold or bought every house in this
neighborhood.
∀x[house(x) → sell(j, x) ∧ buy(j, x)]

b John caught and ate a fish.
∃x[fish(x) ∧ caught(j, x) ∧ ate(j, x)]

However, world knowledge often influences the pre-
ferred interpretation. C.f. (5) where the wide scope read-
ing (5b) is prominent.

(5) John sold and bought a car.

a ∃x[car(x) ∧ sell(j, x) ∧ buy(j, x)]

b ∃x[car(x)∧sell(j, x)]∧∃x[car(x)∧buy(j, x)]

As a first approximation, we will assume that quanti-
fiers take highest scope in the clause 4 and delegate sen-
tences like (5) to world knowledge or pragmatic factors.

Fig.12 illustrates the elementary semantic representa-
tions assigned to and and or. Note how the MaxS fea-
tures of both conjuncts are identified with the MaxS of
the coordination, resulting in one single MaxS value for
the coordinated sentence. This means that the quanti-
fiers that are attached to both conjuncts will automatically
have scope over the coordination.

Since coordination doesn’t target the root node but
takes place at the lowest node that dominates the non-
shared arguments of the conjoined elementary trees we
need to add the same MaxS feature to all the nodes where
coordination can potentially take place (i.e. to V and VP
nodes in addition to S)5.

Fig.13 illustrates the derivation tree extended with se-
mantic features for (4b) and Fig.14 shows the final se-

4We assume for the moment that there are no other scope-
taking elements (e.g. wh-phrases) in the clause.

5Alternatively, we could define a different kind of semantics
for conjoining that would have access to the features from the S
nodes of the two conjuncts as well as to the features of the node
where conjoining takes place.

mantic representation after feature unification and dis-
ambiguation. Notice how the desired scope relations are
achieved by identifying the MaxS feature of the quanti-
fier with both of the conjuncts and the coordination. The
relevant feature identities are 11 = 21 = 31 = 14 .

l1: and( 2 , 3 )
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l5: fish( 8 )
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i : 8

] ] ]
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Figure 13: Semantics for “John caught and ate a fish”

This analysis of coordination has the consequence that
whenever two quantifiers are shared between the two VPs
like in (6), both will have scope over the coordination but
their relative scope will be underspecified. The resulting
semantic representation after feature unification is under-
specified for the two readings in (6a) and (6b). Fig.15
shows the semantics and the two possible disambigua-
tions for (6).

(6) Most girls dated and kissed a guy from the
neighborhood.

a most(x,girl(x), some(y,guy(y),and(date(x,y),kiss(x,y))))

b some(y,guy(y), most(x,girl(x),and(date(x,y),kiss(x,y))))

The two readings result from identifying the “highest”
MaxS ( 11 ) with either the label of some or the label of
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l1: and(l2, l3)
l2: caught(j,x)
l3: ate(j,x)
l4: some(x, 6 , 7 )
S1 = 14 = 21 = 31 = 11

S1 ≥ l4, S1 ≥ l3
S1 ≥ l2, S1 ≥ l1
7 ≥ 71 = l3, l2
6 ≥ 61 = l5

S1 → l4
7 → l1
6 → l5
l4: some(x, l5, l1)
l1: and(l2, l3)
l2: caught(j,x)
l3: ate(j,x)

Figure 14: Final semantic representation for (4b)

l1: and(l2,l3)
l2: dated(y,x)
l3: kissed(y,x)
l4: some(x, guy(x), 7 )
l5: most(y, girl(y), 17 )

MaxS 11 ≥ l1,
11 ≥ l2, 11 ≥ l5
11 ≥ l3, 11 ≥ l4
7 ≥ l2, 7 ≥ l3
17 ≥ l2, 17 ≥ l3

I. 11 → l5
17 → l4
7 → l1

most >> some >> and

II. 11 → l4
17 → l1
7 → l5

some >> most >> and

Figure 15: Final representation for (6)

most. If we give some highest scope ( 11 → l4) that will
force most to appear in the scope of some and the coordi-
nation to be identified with the scope of most (since both
quantifiers have to have scope over the coordination). The
reverse scope reading is computed analogously.

(7) illustrates a sentence where both conjuncts have
two quantified arguments but only one of the arguments is
shared by the two verbs. Our analysis predicts that in this
case the shared quantified argument will take scope over
the coordination while the two non-shared arguments will
have scope below the coordination, i.e. we will get the
reading most >> and >> some1,2.

(7) Most girls dated a student but had a crush on a
teacher.
most(y,girl(y),
∃(x, stud(x), date(y,x))∧∃(z,tea(z),crush(y,z)))

The semantic representation of (7) after feature uni-
fication is illustrated in Fig.16. There is only one pos-
sible disambiguation in this case. Theoretically, either
some1, some2, and or most could have widest scope
in the sentence. However, if we identified 11 with l4 or
l6 we would end up with a contradiction where an ar-
gument variable (e.g. 8 ) would be identified with the

l1: and( 2 , 3 )
l2: dated(y,x)
l3: crush(y,z)
l4: some1(x,student(x), 7 )
l5: most(y, girl(y), 17 )
l6: some2(z,teacher(z), 8 )

MaxS 11 ≥ l1,
11 ≥ l2, 11 ≥ l3
11 ≥ l4, 11 ≥ l6
11 ≥ l5, 17 ≥ l2, l3
7 ≥ l2, 8 ≥ l3

11 → l5
17 → l1
1 → l4
7 → l2
2 → l6
8 → l3

most >> and >> some1,2

Figure 16: Final representation for (7)

label of the proposition it occurs in (l6). Identifying 11

with l1 (i.e. giving the coordination widest scope) would
result in a representation where one occurrence of y is
outside of the scope of the quantifier that introduced it:
[most(y, girl(y), some1(x, student(x, date(y,x))))] AND
[some(z, teacher(z), crush(y,z))]. The only possible dis-
ambiguation (illustrated in Fig.16) is when most takes
widest scope, i.e. 11 is identified with l5.

4 Other Coordination scope ambiguities

Unfortunately, the above analysis of coordination only
works for simple sentences. There are several contexts
when coordination can have a wide scope reading. The
most famous examples are cases of wide scope readings
of or in intensional contexts. (Rooth and Partee, 1982),
(Larson, 1985) pointed out that when or is embedded
under one or more intensional operators multiple scopal
readings are possible similar to quantified NPs. Most fa-
mous examples involve NP coordination (e.g “Mary is
looking for a maid or a cook”) but there are also cases of
wide scope or readings for VP disjunction, like the sen-
tence in (8) which is three ways ambiguous.

(8) John believes that Bill said that Mary was drinking
or playing video games.

a J. believes B. said [drink(m) ∨ play(m) ]

b J. believes ([B. said drink(m)] ∨ [B. said play(m)])

c [J. believes B. said drink(m)] ∨
[ J. believes B. said play(m)]

Although they are harder to find, there are also unex-
pected wide scope readings of and (example from (Win-
ter, 1995)):

(9) A woman discovered Radium but a man invented
the electric light bulb and developed the theory of
relativity.
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(9) doesn’t attribute the invention of the light bulb and
developing the theory of relativity to the same person,
rather it says that a man invented the electric light bulb
and a man developed the theory of relativity.

There are also examples of wide scope or outside of
intensional contexts as (10) shows.

(10) (The girls didn’t all do equally well in the exam
but) every boy failed or got an A.

Unlike the scope of quantifiers, the scope of coordina-
tion can appear over a that-clause as well. Consider the
scope of or in (11) (from (Winter, 1995)).

(11) Mary says that [S1
John is going to marry Sue] OR

[S2
Sue is going to divorce Bill ].

a Mary says “S1 or S2”
b Mary says S1 or Mary says S2

A critical situation that distinguishes the two possi-
ble readings illustrated in (11a) and (11b) would be the
following: Mary says: “ Sue and John are going to get
married.”. Reading (11a) would be false in this situation
whereas the sentence in (11) would be true which shows
that reading (11b) is attested.

The same phenomenon can be observed with the scope
of and in (12).

(12) Mary denies that [S1
John is going to marry Sue]

AND [S2
Sue is going to divorce Bill ].

a Mary denies “S1 or S2”

b Mary denies S1 or Mary denies S2

A critical situation here would be the following: Mary
says:”I don’t think John and Sue are going to get married
but I’m sure Sue and Bill are going to get divorced”. Sen-
tence (12) would be false in this situation, whereas (12a)
would be true which means reading (12b) is attested.

The above examples show that the scope of coordina-
tion doesn’t always obey the syntactic restriction on the
scope of quantifiers.

It seems that all the instances of wide scope coordina-
tion involve embedding under a matrix verb or some other
contextually determined operator (e.g. possible generic
reading in (9)). However, not all such embeddings re-
sult in scope ambiguities. Complex NPs for example are
islands for coordination scope as the unambiguous sen-
tence in (13a) (cf. the ambiguous ((13)b)) shows.

(13) a John maintains the claim that Bill should
resign or retire.

b John maintains that Bill should resign or retire.

Since an account of the wide scope readings of coor-
dination would require a more complex semantic theory,

I will not attempt to give a full analysis of the examples
discussed above. In the rest of this paper I will settle for
pointing out some potential problems that an analysis in
the LTAG semantics framework would have to face deal-
ing with these facts.

The first problem our analysis would encounter would
be picking an S node where a matrix verb could be ad-
joined. In a derived tree containing VP coordination (see
e.g. Fig.5) there are two available S nodes. We could
simply equate the two nodes and adjoin a matrix verb on
top. This would have the consequence that nothing else
could come in between the matrix verb and the coordi-
nated trees, i.e. nothing else could be adjoined onto either
of the conjuncts.

Another solution would be to extend the coordination
schema and add an S node on top of the coordination for
each possible instantiation of the schema. This would
have the advantage that the S nodes of the two conjuncts
would be distinct and still available for adjunction in case
something else (e.g. an adverb) adjoins to one of the
conjuncts. The extended instances of the coordination
schema are illustrated in Fig.17.

To decide between these two alternatives we would
need to consider more data about sentences that involve
adjunction at the S node in addition to coordination.

S

VP

�
�
�

H
H

H

VP and VP

S

VP

�
��

H
HH

V and V

Figure 17: Extended coordination schema

Keeping quantifier scope separate from coordination
scope constitutes another challenge for the semantic the-
ory. In a sentence like (8) we need to make sure that
coordination can scope over the verb tree it is substituted
into, i.e. we need to derive the following scope relations:
believe >> or >> said and or >> believe >> said.
At the same time we also have to make sure that the scope
of quantifiers that are embedded in the conjuncts doesn’t
get passed up the derivation tree. One way to ensure this
is to define a feature for coordination scope that is differ-
ent from the MaxS feature used for representing quanti-
fier scope.

Finally, another problem is that in order to account for
the wide scope readings of sentences like (8) we need
more than one copy of a formula, instantiated with differ-
ent arguments.

To model readings (8b) and (8c) we would need the
following variable assignments given the simplified se-
mantic representation in Fig.18. To give or scope over
said we need to identify both arguments of the coor-
dination with the label of said, yielding the formula
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l1: believe(j, 1 )
l2: said(b, 2

l3: and( 3 , 4 )
l4: drink(m)
l5: pvg(m)

b) c)
l1 >> l3 >> l2 l3 >> l1 >> l2

1 → l3 3 → l1
3 → l2; 2 → l4 1 → l2; 2 → l4
4 → l2; 2 → l5 4 → l1

1 → l2; 2 → l5

Figure 18:

believe(or(said(l)4), said(l5)). Similarly, in the case of
reading c) where or has widest scope, we need to identify
both of its arguments with the label of believe resulting in
the reading or(believe(said(l4)), believe(said(l5))).

However, this doesn’t mean simply assigning the same
value to two different variables: in both cases the most
embedded arguments of the formula have to be different
(l4 and l5). This means that for reading b) we need two
copies of l2 (said) and for reading c) we need two copies
of l1 (believe) and two copies of l2 (said), each time with
a different argument, as if the two verbs were ’distributed’
over the arguments of or..

5 Conclusions

We have defined a compositional semantics for VP coor-
dination in LTAG using the framework of (Kallmeyer and
Joshi, 2003) extended with semantic features. We have
discussed interactions between quantifier scope and coor-
dination scope in simple sentences, proposed an elemen-
tary semantic representation for coordination and showed
that it yields the correct interpretation for basic scope in-
teractions.

The analysis predicts that in simple sentences quanti-
fiers that are shared arguments of two coordinated ele-
mentary trees will have scope over coordination whereas
quantifiers that are attached to only one of the conjuncts
will have narrow scope with respect to the coordination.

We have discussed cases of wide scope disjunction and
conjunction in complex sentences that present a problem
for this account and pointed out directions for further im-
proving the analysis.
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Abstract

One approach to verification and validation of
language processing systems includes the ver-
ification of system resources. In general, the
grammar is a key resource in such systems. In
this paper we discuss verification of lexicalized
tree adjoining grammars (LTAGs) (Joshi and
Schabes, 1997) as one instance of a system re-
source, and as one phase of a larger verification
effort.

1 Introduction

The work presented here is part of a larger project that has
the goal of developing a suitable automated approach to
verification and validation of natural language processing
(NLP) systems, including structural (white-box) (Beizer,
1990) testing techniques that are suitable for language ap-
plications. In previous work (Barr and Klavans, 2001) we
established that it is worthwhile to adapt for NLP systems
the standard verification, validation, and testing practices
that have been developed in the software engineering and
intelligent systems communities. These new techniques
will supplement the evaluation practices currently car-
ried out and, in many cases, will not require significantly
larger test sets.

For our working definitions we combine definitions
from the intelligent systems community (e.g. (Gonza-
lez and Barr, 2000)) and from the software engineering
community (e.g. (Voas and Miller, 1995)), as follows:

• Verification – the process of ensuring 1)that the
intelligent system conforms to specification, and
2) its knowledge base is consistent and complete
within itself; the application of dynamic software
testing techniques involving both functional (black-
box) and structural approaches.

• Validation – the process of ensuring that the output
of the intelligent system is equivalent to that of hu-
man experts when given the same input.

As we have noted elsewhere (Barr and Klavans, 2001)
there are a number of diagnostic evaluation methods that
do a validation check on a system by carrying out a func-
tional test and comparing actual results to expected re-
sults (provided by and compared by humans). There
are also evaluation methods that allow us to determine
whether a system conforms to its specification.

There are a number of methods that are still needed,
however. First, we need to determine whether the knowl-
edge represented within an NLP system is consistent and
complete. The research presented in this paper begins
to address this topic. Specifically, we detail work we
have done on the verification of Lexicalized Tree Adjoin-
ing Grammars (LTAGs), specifically as implemented in
the XTAG formalism (Joshi and Schabes, 1997). As de-
scribed in the body of the paper, we have constructed a
set of structural and relational tests for a LTAG that iden-
tify certain lexical and syntactic errors. We applied these
tests to subsets of XTAG for English (as examples of a
sublanguage in the XTAG formalism), using off-the-shelf
database software.

In addition to the above, we need to determine ways by
which we can obtain the benefits of structural testing for
NLP systems and their components. This will be the sub-
ject of future research we plan to carry out. An additional
open question, which we do not address here, is whether a
more complete verification process will facilitate greater
automation of the validation process.

NLP systems are built for a large number of application
areas, such as speech recognition, language understand-
ing, language generation, speech synthesis, information
retrieval, information extraction, and inference (Jurafsky
and Martin, 2000). Systems built for these application
areas will differ in terms of the resources they include,
the kind of input they expect, and the kind of output they
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generate. In order to narrow the scope of our work at this
stage, we focus initially on natural language generation
(NLG) systems.

2 Overview of Verification of NLG Systems

Dale and Mellish (Dale and Mellish, 1998) have sug-
gested a direction for improving evaluation of NLG sys-
tems. Their proposal is that, rather than attempt to eval-
uate a complete system, the evaluation effort address the
component tasks of the NLG process. They suggest a
breakdown of the NLG process (Reiter and Dale, 2000;
Dale and Mellish, 1998) into the six tasks of content de-
termination, document structuring, lexical selection, re-
ferring expression generation, aggregation, and surface
realization. This approach is consistent with our proposal
(Barr and Klavans, 2001) that we carry out a component
performance evaluation, in order to determine the impact
on overall system performance of each subpart or sub-
task. In other work (Barr, 2003) we began to address the
verification and validation questions relevant for each of
these generation tasks. (The components of interest will
differ across different types of language systems. See
(Webber et al., 2002) for an example in the Question-
Answering domain).

Another important area to consider is the issue of uti-
lization of linguistic resources by a language processing
system. This is an area that we believe cannot be ade-
quately addressed by traditional testing approaches. Typ-
ically a language processing system has numerous re-
sources within it, such as the lexicon, the grammar, mor-
phological rules, a pragmatics component, and semantic
knowledge (both formal and lexical).

There are a number of aspects of system behavior
that are affected by the various resources. For exam-
ple, it would be useful to clarify exactly how an incom-
plete lexicon affects system behavior. Or there may be
sub-processes within a language generation system that
should be verified separately because they utilize only a
subset of the available resources. We are also interested in
how the various resources participate in the input-output
relationship. For example, can we determine which of a
system’s linguistic resources contributes to the transfor-
mation of an input to an output? Can we pinpoint exactly
how each element of an output is affected by each lin-
guistic resource? If the grammar in a generation system
is capable of parsing a sentence, is there some context in
which the system will generate that sentence?

Developing mechanisms for addressing these issues
will enable us to more accurately assess the overarching
verification issue, which is whether the system does the
task, and only the task, for which it was intended. As part
of our larger project we intend to define what it means
to evaluate all the linguistic resources for completeness
and consistency. As a first step in this aspect of verifica-

tion, we focus on an assessment of the completeness and
consistency of the grammar alone.

Previous testing approaches have attempted to iden-
tify grammar errors through evaluation of parse system
coverage using test-suite or corpus-based methods (Do-
ran et al., 1994; Doran et al., 1997; Bangalore et al.,
1998; Prasad and Sarkar, 2000). While these testing ap-
proaches are vital to a complete test plan, the source of er-
rors identified through these methods must be manually
researched and categorized as a grammar or application
defect. If a grammar error is suspected, the underlying
grammar must be examined to determine if the error is a
coverage issue or grammar fault. Our structural approach
to grammar verification insures that grammar defects are
identified and corrected early in the testing cycle, before
the grammar is embedded in a component application,
such as a parser. Our expectation is that this will improve
grammar reliability, and subsequent test efforts may then
focus on coverage and application defect issues.

3 Grammar Verification

The first step in verifying a grammar is to assess con-
sistency and completeness. We cannot necessarily do
this by applying existing methods from other domains.
How we do it depends on the kind of grammar used. We
have, from the expert systems’ realm, methods and tools
that are suitable for rule-based systems (for example, the
TRUBAC tool (Barr, 1999)). However, the rule formal-
ism, while used in some aspects of NLP, is frequently
not used for grammar representation. Yet adapting to the
grammar of an NLP system the underlying approach used
for rule-based systems may give us the ability to deter-
mine consistency and completeness of a grammar.

The grammar formalism we focus on initially is the
Lexicalized Tree Adjoining Grammar (LTAG), based on
the original TAG formalism(Joshi et al., 1975; Joshi,
1987; Joshi and Schabes, 1997). Analysis of the consis-
tency and completeness of an LTAG will serve as a first
step toward the full verification and validation of the gen-
eration system in which the LTAG is used.

Our motivation to work with LTAGs, particularly with
the XTAG formalism (XTAG Research Group, 2001), is
threefold. First, we chose XTAG for English as a vehicle
to demonstrate proof of concept of our verification ap-
proach. Certainly, given the extensive work that has been
done on the XTAG for English, we did not anticipate that
we would find any errors in the grammar. However, our
expectation is that a verification methodology for XTAG
grammars could also be adapted to other key grammar
formalisms as well. Second, we assume that there are
language systems for which a smaller, domain specific,
grammar and sub-language would be desired. The gram-
mar might be a subset of an existing XTAG, such as the
XTAG for English, or it might be a newly constructed
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grammar that employs the XTAG formalism (Kinyon and
Prolo, 2002). The verification steps we propose would be
able to detect errors or potential problems in such a gram-
mar. Finally, any language system will be tested with a
domain specific test suite. However, a set of static ver-
ification tests can serve as a useful and important step
before a black-box test is carried out, and can potentially
unearth grammar problems that might be masked in func-
tional test results.

4 LTAG Verification

While it is possible that existing mechanisms for evaluat-
ing the consistency and completeness of the antecedent-
consequent rules in an expert system could be used to
do the same for the rewrite rules making up a phrase-
structure grammar (PSG), these are not relevant for a
grammar made up of trees, not rules. Given a grammar
made up of trees, we cannot directly apply the charac-
teristics that are used in evaluating rule-bases for consis-
tency and completeness (conflict, redundancy, circularity,
subsumption, unreachability, dead-ends, etc.), but rather
must adapt the concepts of completeness and consistency
for use with LTAGs.

The characteristics we currently check for in an LTAG
can be divided into two categories, structural and rela-
tional. Structural tests include ensuring that each elemen-
tary tree is properly lexicalized, structurally correct and
unique. This includes checking for proper tree hierarchy
(e.g. unique root, one parent for each child node, proper
tree level and node order) as well as TAG specific checks
(e.g. each tree is properly anchored, leaf nodes marked
with a phrasal label are substitution sites, no adjunction
nodes exist in initial trees, label of adjunction node and
root must be the same in an auxiliary tree). Trees with
identical structures are flagged. Generally, structural er-
rors will arise from incorrect coding or errors in the trans-
lation of the LTAG into a machine representation.

Relational tests look at the relationships between tree
structures to identify that:

1. Each auxiliary tree can adjoin in at least one derived
tree structure, i.e. every auxiliary tree can be used.

2. Each non-S rooted initial tree can substitute in at
least one derived tree structure, i.e. every initial tree
can be used.

3. At least one substitution operation can be performed
at every substitution node in a derived tree, i.e. a tree
exists for each substitution node.

4. All derived trees built using substitution operations
are finitely bounded with no recursive end nodes (no
recursive sentences or phrases). We cannot elimi-
nate recursion, since adjunction allows unbounded

sentences. However, if we consider only substitu-
tion, we can insure that a tree substituted at a node
does not contain a node with the same phrasal label
as an ancestor node.

5. Every sentence that can be built using substitution
operations alone has a unique derivation tree struc-
ture. While the existence of multiple derivation tree
structures does not necessarily represent a grammar
error if part-of-speech ambiguity is considered, it
could indicate conflicting semantic representations
if tree anchors are not properly chosen with respect
to linguistic relevance.

These checks on the grammar enable us to identify po-
tential grammar errors such as

1. superfluous trees, which could be indicative of miss-
ing trees or errors in other trees. (A tree T may be
superfluous, or unusable, because there is no other
tree that presents a suitable adjunction or substitu-
tion use for T, or because there are errors that pre-
vent a suitable adjunction or substitution site from
being identified as such).

2. invalid tree structures, a grammar error which could
cause an incorrect generation path to be chosen.

3. missing trees, which may indicate incom-
plete/inaccurate linguistic realization or com-
municative intent compromised.

4. duplicate trees, which will violate consistency.

5. redundant trees, which may indicate conflicting lin-
guistic interpretations of anchor. This could hap-
pen if the linguistic assumptions on how elementary
trees should be formed are not consistently followed
in the grammar.

We are presently working on an extension of the work
presented here that will identify relational problems in
feature based LTAGs. (A static analysis approach that
identifies structural problems with feature structures in
XTAG (typographical errors, reference of undefined fea-
tures, equating of incompatible features) is introduced in
(Sarkar and Wintner, 1999)).

5 Implementation

We have constructed a system that carries out the above
verification checks for an LTAG, employing a relational
data representation of LTAG tree structures using the
Oracle Database Management System. This relational
database model provides the benefits of data indepen-
dence (with the ability to separate the physical imple-
mentation from the logical view), multiple views of the
same data (through structured queries across tables), data
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consistency (enforcing completeness and consistency of
schema), and management of data relationships (via ta-
ble indexes, primary and foreign keys). In addition, the
DBMS approach allows us to efficiently manage and ac-
cess large quantities of structured data which insures fu-
ture scalability for large grammars. Data verification is
performed using SQL*PLUS, the PL/SQL language and
reporting tool of the Oracle Database Client/Server prod-
uct.

The system operates in four stages: tree conversion,
structural testing, relational testing and reporting. Ora-
cle tables are used to store type, classification, and node
information about each tree. Tree structures in the gram-
mar are automatically converted into the SQL Data Ma-
nipulation Language format to systematically build the
associated Oracle tables. Structural tests are performed
on each converted table to insure tree and lexical consis-
tency. Relational tests perform comparisons on groups
of tree structures to identify missing trees, unused trees
and, using substitution operations alone, recursive and
non-unique derivations. Control and error information is
generated during the verification process.

Initially, tree structures are converted to a non-indexed
database table set. This enables structural tree errors such
as duplicate nodes to be identified and classified by our
testing tool, not the DBMS product. A second conversion
is then performed to assign primary and foreign keys to
tables, encapsulating the data relationships into the struc-
tures. Tree nodes are stored as separate table rows, with
identifying tree hierarchy represented as three-tuples of
(level, order, parent order). Tree traversals may be ac-
complished in any order using either the indexed keys or
identifying node characteristics (e.g. substitution nodes).
Substitution and adjunction operations are performed us-
ing constrained table join operations.

6 Results

We have used the XTAG for English to test our gram-
mar verification tool. Since XTAG system releases have
been extensively utilized and broadly tested (Doran et al.,
1994; Doran et al., 1997; Bangalore et al., 1998; Prasad
and Sarkar, 2000; XTAG Research Group, 2001), we did
not expect our verification tool to uncover any structural
grammar defects in the current release of XTAG. We did,
however, expect to identify non-unique derivation struc-
tures due to inherent sentence ambiguity in the English
language. Additionally, we expected to identify as du-
plicates certain tree structures that are unique when node
features are taken into account.

The results from our grammar verification on XTAG
are encouraging. We ran our grammar verification tool on
an XTAG set of 1,135 trees with a total of 11,514 nodes.
We are able to make the following observations from our
results:

• There are no errors in tree hierarchy. Every tree has
one unique root node. Each non-root node has one
parent node and consistent tree node level and order-
ing.

• Two tree structures have unidentified part of speech
node values. Both trees have internal nodes of ’p’.
Since we consider case in our validation of POS,
these nodes were flagged as errors.

• There were 128 duplicate tree structures in the gram-
mar. This was an anticipated result. Our expectation
is that when we consider node features these trees
will be identified as unique structures.

• Every tree was properly lexicalized. That is, there
was at least one anchor node identified for each tree
structure.

• There were three errors in tree classification. One
tree was classified as an auxiliary tree but struc-
turally looks like an initial tree. Two trees were clas-
sified as initial trees but structurally look like auxil-
iary trees. We used XTAG tree naming conventions
as alpha or beta to drive our classification scheme. It
must be determined if the conversion requirements
must be modified or if this is a tree classification
discrepancy in XTAG.

• Other than the three trees with classification dis-
crepancies, every elementary tree was structurally
correct. Every non-terminal node on the frontier
marked with a phrasal label was identified as a sub-
stitution node. There were no internal nodes marked
for substitution, and in the initial trees no internal
nodes were marked as adjunction nodes . For auxil-
iary trees, there was one unique adjunction node per
tree. This adjunction node was on the frontier and
matched the POS node value of the tree root.

• Every non-S rooted initial tree was able to substitute
in at least one derived tree structure. All initial trees
could be used in the grammar.

• Every auxiliary tree was able to adjoin in at least
one derived tree structure. All auxiliary trees could
be used in the grammar.

• There exists at least one tree eligible for substitution
at each substitution node in the grammar. Substitu-
tion operations may be performed until all frontier
nodes are terminals.

• Application performance could be improved by
database performance and tuning techniques. While
proof of concept, not processing efficiency, was the

129



initial motivation for this work, subsequent devel-
opment efforts should consider performance as an
implementation requirement.

Identifying non-unique derivation structures using the
full XTAG has proven more difficult. While the use of
Oracle as our implementation paradigm allows us to ef-
ficiently retrieve, manipulate and store large amounts of
data, our attempt to build all possible sentence derivations
for a complete grammar proved too exhaustive. We mod-
ified our approach to maintain derived tree structures and
linearize the nodes for comparison. This worked for sim-
ple sentence structures but did not scale up to more com-
plex sentences. We continue to work on a viable solution
for this problem. It may be that we are facing a limitation
inherent in our choice of the database management sys-
tem approach. A more recursive-based implementation
strategy may be necessary.

One motivation of this work is to provide a tool for ver-
ification of smaller, domain specific grammars that may
be subsets of larger grammars, such as XTAG. We sim-
ulated such a grammar by extracting a subset of XTAG
trees and applying our verification tool to this grammar.
Since the tree subset was randomly chosen without lin-
guistic significance, we expected our verification tool to
identify gaps in the grammar. Our verification tool re-
ported several defects in the grammar including missing
trees for substitution nodes and unused elementary trees.
Working with a subset of 105 trees from XTAG, our sys-
tem was able to identify 5 duplicate tree structures, 7
missing trees for substitution nodes and one superfluous
tree. The complete verification process on this subset of
105 trees with an average of 12 nodes per tree took less
than 20 seconds.

We expanded our test subset to simulate additional
grammar errors. Duplicate tree structures were identified
when node features were ignored. Extracted tree struc-
tures were manually changed to generate structural er-
rors. Tree nodes were added to produce recursive phrases.
Trees needed for sentences with multiple parses were se-
lected for the grammar subset.

Our verification tool successfully identified all gram-
mar defects with this handcrafted grammar subset. While
some implementation issues remain for large grammars,
we have shown that stand-alone grammar verification can
be a useful initial test strategy in a complete NLP struc-
tural test plan. Grammar errors can be identified and cor-
rected at their source, before the grammar is embedded
in a component application. This improves grammar re-
liability so subsequent test efforts may focus on coverage
and application defect issues.

7 Conclusions and Future Work

The set of structural and relational checks we have de-
scribed can serve as the first stage of verification analysis
for an LTAG. At present we have a stand-alone system,
easily usable by an NLG researcher, that will convert a
grammar into the DBMS format and perform the LTAG
verification checks. More experimentation needs to
be done to determine how the static identification of
grammar errors affects the overall system development
process and the quality of the final system. In addition,
as these grammar checks do not guarantee any kind
of semantic coherence, we are presently extending our
approach to feature-based LTAGs, where elements of se-
mantic coherence are enforced within the structure of the
grammar components, so that a verified grammar is more
likely to generate semantically coherent sentences. Much
work remains to address the larger issues of resource
verification, verification of generation tasks, and the
application of structural testing to language processing
systems. Finally, we plan to apply our verification
approach to more complex grammars, including one that
generates text combined with gestures for an embodied
conversational agent.
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Abstract

This paper describes work on creating elemen-
tary trees for adjective and predicative noun
families (Barrier, 2002; Barrier and Barrier,
2003) using Metagrammars, for the FTAG
grammar (Abeillé, 1991; Abeillé, 2002). Based
on the Candito’s work on Metagrammars (Can-
dito, 1996; Candito, 1999a), it adds a fourth
dimension, specially designed for word order
specification.

1 The metagrammar compiler

Metagrammars represent a TAG as a multiple inheritance
network, whose classes specify syntactic properties. An
important aspect of classes is that they are all related to
one another. Inheritance enables classes that are logi-
cally related to one another to share the behaviors and
attributes that they have in common.

Our metagrammar imposes an overall organization for
syntactic data and formelizes the well-formedness con-
ditions on elementary tree sketches (Vijay-Shanker and
Schabes, 1992; Rogers and Vijay-Shanker, 1994).

Each syntactic property of the hand-written inheritance
network – the hierarchy – is declared as a complete syn-
tactic set of partial descriptions. Those partial descrip-
tions can be seen as syntactic constraints (dominance, lin-
ear precedence, ...) which may leave underspecified the
relation between two nodes – the relation can be further
explained by adding constraints in sub-classes of the net-
work.

In concrete terms, data are defined as global variables
augmented with specific meta-features, constraining for
instance the possible part of speech of a node, or function
for argument ones.

Structures sharing the same initial subcategorization
frame may only differ in the surface realization of the fi-

nal syntactic function of the arguments nodes, according
to their redistribution.

The hand-written hierarchy was initially divided into
3 dimensions, and has been more recently extended to 4
dimensions (Barrier and Barrier, 2003):

� Dimension 1 : initial subcategorization.

� Dimension 2 : redistribution of functions.

� Dimension 3 : Surface realizations of syntactic func-
tions.

� Dimension 4 : word order specification of surface
realizations of syntactic functions.

Contrary to (Vijay-Shanker and Schabes, 1992), we do
not have explicit lexical rules: diathesis alternations are
represented by classes of dimension 2, whereas marked
and unmarked cases are represented by classes of dimen-
sion 3. Dimension 4 allows to express word order in a
directly readable and not confusing way: classes of di-
mension 1 and 2 were clearly inappropriate (word order
has nothing to deal with declaration of grammatical func-
tions), whereas classes of dimension 3 couldn’t predict
the existence or the lack of another argument.

In order to automatically generate elementary trees,
the compiler creates additional classes, named ”crossing-
classes”. Each crossing class inherits from one class of
dimension 1, then inherits from one class of dimension
2, and lastely inherits from classes of dimension 3, repre-
senting the realizations of every function of the final sub-
categorization. Classes of dimension 4 are not crossed
automatically: all the crossings are declared manually
by the metagrammar’s writer so that he can only express
the crossings, which are necessary. Crossings are accord-
ingly only done when all the relevant classes are involved.

Finally each crossing class is translated into one
or more elementary trees, satisfying all inherited con-
straints.

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
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Dimension 1
The class (DI-TRANS) inherits

from (SUBJ), (OBJ) and (IND-OBJ)
(SUBJ) Class (OBJ) Class (IND-OBJ) Class

Variable ������� stands for �	��

� Variable ������� stands for �	����� Variable ������� stands for �����
and bears Subject function and bears Object function and bears Indirect Object function

Dimension 2
The class (NO-REDIS) inherits from (VB-MORPH)

(VB-MORPH) Class
Variable ��� stands for �

Variable ������� stands for  !�
Variable ��"$#%�'&(� stands for  �)

���

���*���

��"$#��'&(�

Dimension 3
The class (SUBJ-CAN) inherits The class (OBJ-CAN) inherits The class (IND-OBJ-CAN) inherits

from (POS-SUBJ) from (POS-OBJ) from (POS-IO)
(POS-SUBJ) allows to group all (POS-OBJ) allows to group all (POS-IO) allows to group all
the realizations of the Subject the realizations of the Object the realizations of the Indirect Object

(SUBJ-CAN) Class (OBJ-CAN) Class (IND-OBJ-CAN) Class
Variable "$� bears Subject function Variable "�� bears Object function Variable �+� bears Indirect Object function

Variable �,�.-/� stands for 01&()
Variable "2� stands for �	�3�4�

���

"$� �������

�������

��"$#%�'&(� "��

�������

��"$#%�'&.� �+�

�'�.-/� "2�

Dimension 4
(OBJ 5 IO) Class

This class will be used when both (OBJ-CAN) and (IND-OBJ-CAN) will appear

���*���

"�� ���

Table 1: Verbal hierarchy for di-transitive verbs
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An inheritance hierarchy such as the one shown in Ta-
ble 1, allows to represent the relevant tree sketch for the
english sentence Max gives a book to Peter. It will be
compiled out of an initial subcategorization with subject,
direct object and indirect object (dimension 1), an active
canonical redistribution (dimension2), canonical realiza-
tions of subject, direct object and indirect object (dimen-
sion 3), and a special word order, specifying indirect ob-
ject follows direct object (dimension 4).

The compiler will automatically cross (DI-TRANS),
(NO-REDIS), (SUBJ-CAN), (OBJ-CAN) and (IND-
OBJ-CAN) classes. As (OBJ-CAN) and (IND-OBJ-
CAN) are crossed, (OBJ � IO) will also be crossed with
the other classes. The resulting tree sketch will be the
conjunction of all quasi-tree descriptions contained in
each class. The nodes with same variables will unify;
the variables with same function will also unfify.

�

������� 	 �

	�
 ���
��� �����

��� 
 ��� � �

Figure 1: Elementary tree for Mary gives a book to Peter

Note that the metagrammar compiler makes use of
variables as global variables. There is no way to use local
variables. Linear precedence can’t be expressed without
reference to dominance.

The Metagrammar compiler we use was first devel-
oped by (Candito, 1999a) in Lucid Common Lisp and has
been in part reimplemented in CLISP by (Barrier, 2002).
It generates tree sketches in both XTAG or TAGML2 for-
mat with t-feature structures (see below).

2 Choices and implementation

2.1 Linguistics principles and general choices

As mentionned in (Abeillé et al., 2000), FTAG elemen-
tary trees respect the following well-formedness princi-
ples :

� Strict lexicalization: all elementary trees are an-
chored by at least one lexical element (the empty
string cannot anchor a tree by itself)

� Semantic consistency: no elementary tree is seman-
tically void

� Semantic minimality: elementary trees correspond
to no more than one semantic unit

� Predicate argument cooccurence principle : an ele-
mentary tree is the minimal syntactic structure that
includes a leaf node for each realized semantic argu-
ment of the anchor(s)

Semantic minimality and consistency imply that func-
tion words appear as co-anchors.

Most of the linguistic analyses follow those of
(Abeillé, 1991; Abeillé, 2002) (except that clitic argu-
ments are substituted and not adjoined), complemented
by (Candito, 1999a). We dispense with most empty cate-
gories, especially in the case of extraction. Semantically
void (or non autonomous) elements, such as complemen-
tizers, argument marking prepositions or idiom chunks
are co-anchors in the elementary tree of their governing
predicate.

Passive is characterized by a particular morphology,
with a substitution node for the auxiliary verb. Causative
constructions are analyzed as complex predicates, with a
flat structure, with a substitution node for the causative
verb.

For oblique complements, we distinguish between a-
objects, de-objects, locatives and other prep-objects, de-
pending on the pronominal realization of the comple-
ment.

2.2 New families for FTAG

We have chosen not to reuse Candito’s verbal hierarchy
because of inconsistencies: it was not fully documented
and hard to understand. Some classes of dimension 3 in-
herit from classes of dimension 1 or 2, which is normally
not allowed by the metagrammar concept. Furthermore,
this verbal hierarchy contains some empty classes.

We developed 34 new families: 16 adjectival families
allow us to create 2690 tree sketches, whereas 18 support
verb families allow us to create over 10.000 tree sketches.

2.2.1 Adjectival families

We regard the adjective as the local head of the ad-
jectival predicate, and consider object predicate’s con-
structions as an alternative of causative constructions. An
unique family provides tree sketches for both predicative
and attibutive adjectives, so that we can encode relative
clauses or clitics for different kind of adjective comple-
ments. We describe the concept of subject as the cate-
gory modified by the adjective. No object function can
be found: all the complements of the adjectival predicate
are always indirect ones.

Our grammar covers the following types of redistribu-
tion :

� Predicative adjective : Jean est barbu
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� Causative : Sarah Vaughan rend les gens heureux

� Passive causative : Des gens sont rendus heureux

� Impersonal causative passive : Il est rendu impossi-
ble de faire cela

� Impersonal : Il est inacceptable de dormir ici

� Attributive adjective : Un homme heureux

The syntactic realizations covered are canonical po-
sition, extraction (cleft and relativized), clitic or non-
realized.

2.2.2 Predicative noun families
The lexical head is only the predicative noun, whereas

the support verb is substituted into the tree associated
with the noun. This differs from the light verb fami-
lies from XTAG (and also from the previous versions of
FTAG) where the verb and the noun both anchor the tree.
An unique family provides tree sketches for support verb
constructions and nominal phrases.

Our grammar covers the following types of redistribu-
tion :

� Active: Max commet un crime contre Luc

� Passive: Un crime est commis par Max contre Luc

� Middle: Un crime se commet contre Luc en 5 min-
utes

� Causative: Léa fait commettre une crime à Max con-
tre Luc

� Passive Impersonal: Il est commis un crime par Max
contre Luc

� Impersonal Middle: il se commet un crime toutes les
5 minutes

� Nominal phrase: le crime de Max contre Luc

The syntactic realizations covered are canonical posi-
tion, extraction (cleft, relativized and questionned), clitic
and non-realized.

Datasheet for adjective and predicative noun hierar-
chies can be found at the end of this article. Each page
represents Dimension 1, 2 and 3. Dimension 4 is not
shown since it is not particular to these hierarchies. It
is specially used for clitic word order.

2.3 Main difficulties

A typical error consists in encoding more than a class
expects. One may de facto limit the syntactic proper-
ties sharing. Metagrammars do not exempt from study-
ing syntactic phenomena but force ones to understand
what classes share with in terms of syntactic properties.

Since arguments are realized as independent functions the
metagrammar’s writer not only has to find a way to ar-
range them correctly inside the tree but has to encode his
classes so that they can be reused for another category.

Another place metagrammars and inheritance net-
works go wild is in making very deep hierarchy. It can
be very tedious to look many levels up to the tree to find
out what a particular inherited variable is supposed to be:
it is easy to create complex hierarchy that is hard to un-
derstand, even for the metagrammer’s writer who created
it. Inheritance, just like many other elements of OOP is
just a tool. If the problem calls for it, it seems interest-
ing to use it, but one doesn’t see it as a solution to all
problems. With proper usage, metagrammars will save
the writer from retyping and will show him that different
linguistic objects are related.

3 Current and future work

To take advantage of the hierarchical representation of
tree sketches within our metagrammar, we characterize
tree sketches as feature structures we call t-feature struc-
tures (Abeillé et al., 1999).

Figure 2: Tree sketch for a causative construction used
for an adjectival predicate

While the automatic generation of the grammar in-
sures consistency, errors may still propagate but on a
larger scale, with dramatic effects if it remains unde-
tected. These feature-structures keep track of the succes-
sive mapping steps that are performed during the genera-
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Un homme fier de sa fille Max qui est fier de sa fille
A man proud of his daughter Max who is proud of his daughter
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C’est de sa fille qu’est fier Max
It is of his daughter that Max is proud

Table 2: Some elementary trees taken from n0A(den1) family
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Max commet un crime contre Luc Un crime est commis par Max contre Luc
Max commits a crime against Luc A crime is commited by Max against Luc
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Un crime contre Luc est commis par Max Le crime de Max contre Luc
A crime against Luc is committed by Max Max’s crime against Luc

Table 3: Some elementary trees taken from the :<;�= �?>A@ :)BDC family
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tion process.
Characterizing tree sketches as a combination of fea-

tures allows us to refer to a set of tree sketches simply by
under specifying a feature structure.

It could also be interesting to merge all the hierachies
into one. But this will probably be a hard task1. Each
Metagrammar’s writer has indeed his own view of spe-
cific problems.

We hope to evaluate our grammar in few weeks by us-
ing treebank ’Le Monde’ developed at Paris 7 University
(Abeillé et al., 2003).
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editor, Treebanks: building and using parsed corpora,
pages 165–188. Kluwer academic publishers.
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métagrammaire pour les noms prédicatifs du français.
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Annexe A - Datasheet for Adjectives

Family Example Family Example

n0A Jean est barbu n0A(as1) Jean est attentif à ne blesser personne
John is bearded John is cautious not to hurt anyone

n0A(pn1) Jean est fort en histoire n0A(des1) Jean est certain qu’ils viendront
John is good at history John is convinced they will come

n0A(an1) Jean est sourd à cette proposition n0A(an1)(des2) Jean est reconnaissant à Marie de faire ses devoirs
John is deaf to this proposal John thanks Mary for doing his homework

n0A(den1) Jean est amoureux de Marie s0A Prendre le thé sur la pelouse est inacceptable
John is in love with Mary Having tea out on the lawn is unacceptable

n0A(an1)(pn2) Jean est supérieur à Marie en histoire s0A(pn1) Prendre le thé est bon pour la santé
John is higher than Mary at history Having tea is good for health

n01(an1)(den2) Jean est redevable de 10 � à Marie s0A(ps1) Faire du sport est bon pour éviter les crises cardiaques
John owes Mary 10� Doing sport is good to prevent heart attacks

n0A(den1)(pn2) Jean est quitte de ses dettes envers la société s0A(an1) Prendre le thé est nécessaire aux hommes
John has paid his debt to society Having tea is necessary to men

n0A(ps1) Boire du thé est bon pour le mal de tête s0A(den1) Faire du sport est indépendant de vos autres activités
Having tea is good for headaches Doing sport is independant from your other activities

Table 4: Adjectival families

Initial subject
Construction N Cl S Redistribution Example
Predicative adjective + + + No redistribution Jean est barbu
Causative + + - Subject � Object Sarah Vaughan rend les gens heureux

Causer � Subject
Passive causative + + + Causer � Par obj Des gens sont rendus heureux (par Sarah)

Object � Subject
Impersonal causative passive + + + Causer � empty Il est rendu impossible de faire cela

Impersonnal � Subject
Attributive adjective + - - Subject � Subject epi Un homme heureux
Impersonal - - + Subject � Sentencial Il est inacceptable de commettre des erreurs

indirect cmpl
Impersonal � Subject

Table 5: Redistribution frame for adjectives

Surface realizations
Nominal Clitic Cleft Sentencial Relativized Non-realized

Subject Canonical X Nominal X qui
Inverted Sentencial

Prep-obj X Nominal X X X
Sentencial

A-obj X X Nominal X X X
Sentencial

De-obj X X Nominal X dont X
Sentencial

Prep-obj2 X Nominal X X
De-obj2 X Nominal X dont X
Indirect Sentencial cmpl X
Predicative object Anteposed X

Postposed
Par-Obj X X

Table 6: Surface realization of syntactic functions for adjectives
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Annexe B - Datasheet for Predicative Nouns

Family Example Family Example

n0vN Max prend un bain n0vPN(as1) Max a de la peine a dormir
Max takes a bath Max has difficulty in sleeping

n0vN(an1) Max fait du chantage à Luc s0vN Prendre le thé sur la pelouse fait scandale
Max blackmails Luc Having tea out on the lawn scandalized people

n0vN(den1) Max fait la censure de cette page s0vN(den1) Prendre le thé sur la pelouse fait la joie de Luc
Max censors this page Having tea out on the lawn gives great pleasure to Luc

n0vN(loc1) Max fait un pélerinage à Lourdes s0vPN(den1) Faire du sport est à l’avantage de Max
Max goes on a pilgrimage to Lourdes Doing sport gives an advantage to Max

n0vN(pn1) Max commet un crime contre Luc n0vN(den1)(an2) Max fait le récit de son histoire à Luc
Max commits a crime against Luc Max gives an account of his story to Luc

n0vN(des1) Max a l’espoir de réussir n0vN(den1)(pn2) Max fait la division de 4 par 2
Max hopes he will succeed Max divides 4 by 2

n0vN(ps1) Max fait un effort pour rester calme n0vN(den1)(loc2) Mac fait une expédition de livres en Somalie
Max makes an effort to stay calm Max send books in Somalia

n0vPN(pn1) Max est en colère contre Luc n0vN(pn1)(pn2) Max fait une plaisanterie sur Luc avec Léa
Max is angry with Lux Max makes a joke with Léa on Luc

n0vPN(den1) Max est dans l’ignorance de cet incident n0vN(an1)(des2) Max a donné l’ordre à Luc de partir
Max is unaware of this event Max has ordered Luc to go

Table 7: Predicative nouns families

Construction Redistribution Example
Passive object � subject Un crime est commis par Max contre Luc

subject � par object Un crime contre Luc est commis par Max
Middle subject � empty Un crime se commet contre Luc en 5 minutes

object � subject Un crime contre Luc se commet en 5 minutes
Causative-A subject � empty Léa fait commettre un crime à Max contre Luc

causer � subject
Impersonal Middle subject � empty Il se commet un crime toutes les 5 minutes

Impers � subject
Impersonal Passive subject � par object Il est commis un crime par Max contre Luc

impers � subject Il est commis un crime contre Luc par Max
Nominal phrase object � empty Le crime de Max contre Luc

prep object � cdn

Table 8: Redistribution frame for predicative nouns

Surface realizations
Nominal Clitic Cleft Sentencial Relativized Questionned Non-realized

Subject Canonical X Nominal X qui X
Inverted

Predicative Noun X Nominal que
Prep Obj X Nominal X X X X

A-Obj X X Nominal X X X
De-obj X X Nominal dont X X

Prep-Obj2 X Nominal X X X
A-Obj2 X X Nominal X X X
Indirect X

sentencial cmpl
Par-Obj X Nominal X X

Table 9: Surface realization of syntactic functions for predicative nouns
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Sentences with two subordinate clauses:
syntactic and semantic analyses, underspecified semantic representation
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Abstract

I show that sentences with two subordinate
clauses may receive two syntactic analyses, and
that each syntactic analysis may receive two se-
mantic interpretations. Hence, I put forward
an underspecified semantic representation such
that each syntactic analysis receives only one
underspecified interpretation.

1 Introduction

Sentences with two subordinate clauses occur quite of-
ten in corpora. Theories and tools in Computational Lin-
guistics are available now which allow us to study such
sentences exhaustively, both at the syntactic and semantic
level. It is what I intend to do in this paper, while using
only well-known techniques.

Several sophisticated theories and discourse process-
ing mechanisms have been designed which put forward a
number ofprinciples. This study on sentences with two
subordinate clauses, which constitute one of the simplest
cases of discourses, will question some of these princi-
ples (e.g., semantic dependency structures for discourses
are tree shaped, discourse structure does not admit cross-
ing structural dependencies). It therefore sheds light on
discourse processing in general.

Section 2 focuses on the syntactic analysis of sentences
with one or two subordinate clauses, including their lin-
ear order variants. The syntactic framework I use isLTAG.
I show that sentences with two subordinate clauses may
receive two syntactic analyses. Section 3 focuses on the
semantic analysis of such sentences. The semantic frame-
work I use isSDRT1, although I translate the conditions of
an SDRS into a dependency graph. I show that sentences
with two subordinate clauses may receive four semantic

1SDRTstands for Segmented Discourse Representation The-
ory (Asher and Lascarides, 2003). It is an extension of
DRT, Discourse Representation Theory (Kamp and Reyle,
1993). (S)DRS stands for (Segmented) Discourse Representa-
tion Structure.

dependency structures. Section 4 studies the mapping be-
tween syntax and semantics and shows that each syntac-
tic analysis for sentences with two subordinate clauses re-
ceives two semantic interpretations. Hence the need of an
underspecified semantic representation (henceforthUSR).
Section 5 presents thisUSR. Finally, Section 6 compares
this work withD-LTAG (Webber et al., 2003).

2 Syntax (in LTAG )

2.1 Sentences with one subordinate clause

Syntactically, subordinate clauses are adjuncts. There-
fore in XTAG (XTAG Research Group, 2001) andFTAG

(Abeillé et al., 2000), the English and FrenchLTAG gram-
mars, a subordinate conjunction (Conj) anchors an aux-
iliary tree, with two syntactic sentential (clausal) argu-
ments, the foot node for the matrix clause and a substitu-
tion node for the subordinate clause.

Both in English and French, a subordinate clause may
appear in three different positions relative to the matrix
clause: (i) before the matrix clause separated by a punc-
tuation mark (a comma), the linear order is thenConja
S2, S1, (ii) before the VP surrounded by two commas,
and (iii) after the matrix clause optionally separated by a
punctuation mark, the linear order is thenS1 (,) Conja S2.
Therefore, inFTAG, a given subordinating conjunction
anchors three auxiliary trees which correspond to these
three positions. This is not the case inXTAG, where it
anchors four auxiliary trees, two of them for the sentence
final position: sentence final adjuncts without comma ad-
join at a VP node, while those with a comma adjoin at
the root S of the matrix clause. Let us quote (XTAG Re-
search Group, 2001) p. 152 for the former ones. “One
compelling argument is based on Binding Condition C
effects. As can be seen from examples (1a-c) below,
no Binding Condition violation occurs when the adjunct
is sentence initial, but the subject of the matrix clause
clearly governs the adjunct clause when it is in sentence
final position and co-indexation of the pronoun with the
subject of the adjunct clause is impossible.”

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
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(1) a. Unless shei hurries, Maryi will be late for the
meeting.

b. *Shei will be late for the meeting unless Maryi

hurries.
c. Maryi will be late for the meeting unless shei

hurries.

I agree with the data observed in (1a-c), however my
point is that there would be no difference at all if the sen-
tence final adjunct in (1b-c) were separated by a comma.
Therefore, I see no reason to lay down two different trees
- one adjoining at a VP node, the other one at a S node -
for sentence final adjuncts with or without a comma. As
in FTAG, I assume only one tree (with an optional comma)
for sentence final adjuncts, which adjoins at the root S
of the matrix clause. This solution presents the advan-
tage not to rely heavily on the presence or absence of a
comma, which is sometimes a matter of taste, as in (1c).

Because of lack of room, I leave aside subordinate
clauses which appear before the VP of the matrix clause.
To put it in a nutshell, I consider only two auxiliary trees
for a subordinating conjunctionConja according to the
linear order:β1(Conja) when the subordinate clause is
postposed to the matrix clause, andβ2(Conja) when it
is preposed. Figure 1 shows the auxiliary and derivation
trees for postposed and preposed subordinate clauses2.

2.2 Sentences with two subordinate clauses

A sentenceS1 Conja S2 Conjb S3 receives two syntac-
tic analyses. In the first one, obtained by recursivity and
noted SA1,Conja S2 is an adjunct toS1andConjb S3
an adjunct toS2. In the second one, obtained by adjunct
iteration and noted SA2, bothConja S2andConjb S3are
adjuncts toS1. Figure 2 shows the derived and deriva-
tion trees for these two analyses. For SA2, the derivation
tree is based on multiple adjunctions to the same node, as
proposed in (Schabes and Shieber, 1994). These multiple
adjunctions are ordered (from left to right). The syntactic
ambiguity of sentencesS1 Conja S2 Conjb S3is system-
atic without any comma. On the other hand, sentences
S1 Conja S2, Conjb S3with a comma before the second
conjunction are preferably analyzed as SA2.

Let us examine the possible variants of the canon-
ical linear orderS1 Conja S2 Conjb S3, which corre-
sponds to the case where bothConja andConjb anchor
a postposed tree. For each analysis, it must be exam-
ined what happens (a) whenConja anchors the preposed
treeβ2(Conja) andConjb the postposed oneβ1(Conjb),
(b) symmetrically, whenConja anchorsβ1(Conja) and
Conjb β2(Conjb), (c) and finally when bothConja and

2In a derivation tree, a dashed line indicates adjunction, a
solid line substitution; each line is labeled by the Gorn address
of the argument at which the operation occurs;αi stands for the
LTAG tree forSi.

Conjb anchor a preposed tree. Figure 3 shows the linear
orders for SA1 and SA2 other than the canonical one.

Consider the syntactic ambiguity issue for these vari-
ants. (a2) and (b2) in Figure 3 are both of the formConj
S, S Conj S., with a preposed and a postposed adjunct.
Therefore any sentence of this form receives two syn-
tactic analyses and corresponds to two sentences in the
canonical order (Section 3.2). The variants (a1) and (c2)
are both of the formConj S (,) Conj S, S.The comma
before the second conjunction is obligatory in (c2) and
nearly forbidden in (a1). Therefore, these forms are
nearly unambiguous. The variants (b1) and (c1) corre-
spond to sentences which are syntactically unambiguous.

3 Semantics

3.1 Sentences with one subordinate clause

Following works in SDRT, I use an intermediate level
of representation to determine the logical form of a dis-
course (what is said). This “semantic” level reflects the
discourse structure (how things are said, how the dis-
course is rhetorically organized). This structure plays
an important role, e.g., it constrains both anaphora res-
olution and the attachment of incoming propositions in
understanding.

A nice tool for the semantic level is dependency
graphs. This is what is adopted inRST3, but not inSDRT:
discourse structures, calledSDRSs, are represented as
boxes with a Universe and a set of conditions. Neverthe-
less, it is easy to translate the conditions of anSDRS into
a dependency graph (Danlos, 2004). Therefore, while
adoptingSDRTas a discourse framework, I can use a con-
ventional semantic dependency representation for sen-
tences of the typeS1(,) Conja S2.Namely,Conja denotes
a discourse relation Ra. Ra is a predicate with two argu-
mentsπ1 andπ2, which correspond to the semantic rep-
resentations ofS1andS2respectively. These arguments
are ordered:π1 precedesπ2.

This semantic representation is graph-
ically represented in theDAG besides,
also simply written as Ra(π1, π2).

Ra

π1 π2

3.2 Semantics for linear order variants

We have seen in Section 2.1 that a subordinate clause can
be postposed or preposed. Following works inMTT4, a
trace of the linear order should be recorded in a semantic
dependency representation (giving so a piece of informa-
tion on the communicative structure), however it should

3RST stands for Rhetorical Structure Theory (Mann and
Thompson, 1987). Rhetorical structures correspond roughly to
dependency structures.

4MTT stands for Meaning to Text Theory, a dependency for-
malism for sentences (Mel’cuk, 2001).
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not affect its dependency structure. From this principle,
the position of subordinate clauses should not affect de-
pendency structures:S1(,) Conja S2andConja S2, S1are
both represented as Ra(π1, π2) in whichπ1 precedesπ2.

What happens for a sentence with two subordinate
clauses? Establishing the canonical order with only post-
posed subordinate clauses may generate ambiguities: for
example, a sentenceX of the typeConja S1, S2 Conjb S3,
with a preposed and a postposed adjunct, corresponds in
the canonical order either toY1 = S2 Conja S1 Conjb S3
or to Y2 = S2 Conjb S3 Conja S1. X receives two syn-
tactic analyses: either (a2) - Figure 3 - fromY1 (the first
adjunct is preposed), or (b2) fromY2 (the second adjunct
is preposed). These analyses allow us to computeY1 and
Y2. From the above principle that the position of sub-
ordinate clauses does not affect dependency structures,
X does not yield any otherDAGs thanY1 andY2. As a
consequence, our study on the dependency structures of
sentences with two subordinate clauses can be limited to
the study of such sentences in the canonical order.

3.3 Sentences with two subordinate clauses

We are going to show that sentences with two subordinate
clauses may be interpreted in four different ways. Two
interpretations are found in which one conjunction has
wide scope over the other one, two other ones without
wide scope. The former are represented in tree shaped
DAGs, the latter in non tree shapedDAGs.

This semantics study is based on the following com-
positionality principle. LetDn be aDAG with n leaves
representing the dependency structure of a discourseDn.
If Dp is a sub-DAG of Dn with p leaves,1 < p < n, then
the discourseDp corresponding toDp should be infer-
able from Dn

5.
A) Wide scope ofConja: The wide scope ofConna

= becausein (2a) can be seen in the dialogue in (2b-c) in
which the answer isBecause S2 Connb S36. The semantic
dependency structure of (2a) isDAG (A) in Figure 4. In
this DAG, which is tree shaped, the dependency relations
must be interpreted in the standard way used in mathe-
matics or computer science: the second argument of Ra

is its right daughter, i.e. the tree rooted at Rb which is the
semantic representation ofS2 Conjb S3. This reflects the
fact thatConja has wide scope and is in conformity with
our compositionality principle: (A) includes the sub-DAG

Rb(π2, π3) and S2 Connb S3can be inferred, i.e. (2a) is
true, then it is true thatFred played tuba while Mary was
taking a nap.

5On the other hand, the converse principle is not always true
(Danlos, 2004): if a sub-discourseDp can be inferred fromDn,
it does not always mean that theDAG Dp is a sub-DAG of Dn.

6To indicate that it is stressed when spoken, the wordwhile
is written in capital letters in (2).

(2) a. Mary is in a bad mood because Fred played tuba
WHILE she was taking a nap.

b. - Why is Mary in a bad mood?
c. - Because Fred played tubaWHILE she was tak-

ing a nap.

Whenwhile is not stressed, the question in (2b) may be
given as answer onlyBecause S2. The interpretation of
(2a) corresponds then toDAG (C) presented below. (2a)
when written could be considered as ambiguous with a
scope ambiguity ofbecause. The scope ofbecauseis un-
derspecified in theUSR proposed in Section 5 for (2a).

B) Wide scope ofConjb: The wide scope ofConnb
= in order that/toin (3a) can be seen in the dialogue in
(3b-c) in which the question isWhy S1 Conjb S2? The
semantic dependency structure of (3a) isDAG (B) in Fig-
ure 4. This tree shapedDAG must be interpreted in a way
similar to (A), which reflects thatConjb has wide scope.

(3) a. Fred played tubaWHILE Mary was taking a nap
in order to bother her.

b. - Why did Fred play tubaWHILE Mary was tak-
ing a nap?

c. - In order to bother her.

As for (2a), (3a) when written could be considered as
ambiguous. The scope ofin order that/tois underspeci-
fied in theUSR proposed in Section 5 for (3a).

C) S2 factorized: The clause S2 in (4a) is said to be
factorized since bothS1 Conja S2 = Fred played tuba
while Mary was washing her hairand S2 Conjb S3 =
Mary was washing her hair before getting dressed for her
partycan be inferred from (4a). A similar situation is ob-
served in (4b).

(4) a. Fred played tuba while Mary was washing her
hair before getting dressed for her party.

b. Fred was in a foul humor because he hadn’t
slept well that night because his electric blanket
hadn’t worked.7

In (4a), no conjunction has wide scope over the other
one. Its semantic structure isDAG (C) in Figure 4. This
DAG is not tree shaped:π2 has two parents.

One could argue that tree shapedDAGs (A) and (B)
should not be interpreted in the standard way. This is
argued inRST in which dependency relations in trees are
interpreted with the “nuclearity principle” (Marcu, 1996).
With this principle, the arguments of a discourse relation
can only beleavesof the tree, for example, the second
argument of Ra in (A) is π2, and the first argument of Rb
in (B) is π1. This amounts to interpreting (A) as (C), and

7This discourse is a modified version (includingbecause)
of an example taken in (Blackburn and Gardent, 1998), who
acknowledged that its structure is a “re-entrant graph”.
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(B) as (D) presented below. But then, cases with wide
scope are not represented at all: they are not taken into
account, which is unacceptable. As a consequence, tree
shapedDAGs must be interpreted in the standard way, in
which the arguments of a discourse relation may be either
intermediary nodes or leaves.

It is generally assumed that semantic dependency
structures for discourses should be tree shaped. As a con-
sequence, to avoidDAGs, some authors use trees in which
some predicate-argument relations are given by the nu-
clearity principle, while others are given by the standard
interpretation. Nevertheless, one should not feel free to
use trees relying on a mixed interpretation (the standard
and nuclearity ones), except if the conditions governing
the use of one or the other interpretation can be formally
defined. In (Danlos, 2004), I show that no rule can be laid
down to choose one of these two interpretations. A mixed
interpretation for trees must thus be discarded. Since the
standard interpretation is needed for wide scope cases,
the nuclearity principle should be discarded. As another
consequence, one has to admit that discourse structures
for discourses areDAGs.

D) S1 factorized: The clause S1 in (5) is said to be fac-
torized since bothS1 Conja S2 = Fred prepared a pizza
while it was rainingandS1 Conjb S3 = Fred prepared a
pizza before taking a walkcan be inferred. The semantic
structure of (5) isDAG (D) in Figure 4, which is in con-
formity with our compositionality principle. ThisDAG is
not tree shaped.

(5) Fred prepared a pizza, while it was raining, before
taking a walk.

In discourses analyzed as (D),S3is linked toS1(which
is not adjacent) and not toS2(which is adjacent). There-
fore, these discourses are counter-examples to the adja-
cency principle advocated inRST.

DAG (D) exhibits crossing dependencies. It is thus a
counter-example to the stipulation made by (Webber et
al., 2003), namely “discourse structure itself does not ad-
mit crossing structural dependencies”8.

Summary: A sentence with two subordinate clauses
may receive one of the four interpretations represented in
DAGs (A), (B), (C) and (D). In the next section, we will
see that (A) and (C) are the interpretations of the syntactic
analysis SA1, while (B) and (D) are those of SA2.

These four interpretations are the only possible ones.
In particular, I cannot find any example in whichS3

8Among discourse connectives, (Webber et al., 2003) distin-
guish “structural connectives” (e.g. subordinating conjunctions)
from discourse adverbials includingthen, also, otherwise. They
argue that discourse adverbials do admit crossing of predicate-
argument dependencies, while structural connectives do not. I
emphasize that (5) comprises only structural connectives (sub-
ordinating conjunctions) while its structure exhibits crossing
structural dependencies.

would be factorized, although I wrote all possible exam-
ples I could think of and Laurence Delort, who works on
(French) corpus, could not find anyone neither. The fac-
torization of S3 is represented asDAG (E) in Figure 5.
Note that no compositional syntax-semantics rule could
lead to (E) from the syntactic analyses SA1 and SA2,
which are the only possible ones. More generally, in
(Danlos, 2004), I show that anyDAG with three ordered
leaves other than (A)-(D) is excluded, i.e. does not cor-
respond to coherent discourses with three clauses. For
example,DAG (K) in Figure 5 is excluded. This comes
from the “letf1-right2 principle”, which is a weaker ver-
sion of the adjacency principle9.

4 Mapping between syntax and semantics

We are going to examine the interpretation(s) of the syn-
tactic analyses put forward in Section 2. The criterion to
be used is that of linear order. So, we are going to exam-
ine the linear order(s) for each interpretation (A)-(D).

A) Wide scope ofConja: The linear order variants of
(2a), repeated in (6a), are shown in (6b-d).

(6) a. Mary is in a bad mood because Fred played tuba
while she was taking a nap.

b. Because Fred played tuba while she was taking
a nap, Mary is in a bad mood.

c. Mary is in a bad mood because, while she was
taking a nap, Fred played tuba.

d. Because, while she was taking a nap, Fred
played tuba, Mary is in a bad mood.

These linear order variants correspond to the variants
which are allowed with the first analysis SA1 (see Fig-
ure 3). On the other hand, the variants which are allowed
with SA2 are forbidden: the discourses in (7) do not make
sense (hence the sign #).

(7) a. # Because Fred played tuba, Mary is in a bad
mood while she was taking a nap.

b. # While she was taking a nap, Mary is in a bad
mood because Fred played tuba.

c. # While she was taking a nap, because Fred
played tuba, Mary is in a bad mood.

To conclude, interpretation (A) corresponds to SA1, or
conversely SA1 can be interpreted as (A).

B) Wide scope ofConjb: The linear order variants of
(3a), repeated in (8a), are shown in (8b-d). They corre-
spond to the variants of SA2. I leave it to the reader to

9Recall that the adjacency principle does not hold because
of examples such as (5). In sentences of the typeS1 Conja S2
Conjb S3, the letf1-right2 principle states that the first (resp. sec-
ond) argument of a subordinating conjunction is given by a text
span which occurs on its left (resp. right). This principle ex-
cludes (K) sinceS1 is the only text unit on the left ofConja,
while π1 is not the first argument ofRa.
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check that the variants of SA1 are forbidden. To con-
clude, interpretation (B) corresponds to SA2, or con-
versely SA2 can be interpreted as (B).
(8) a. Fred played tuba while Mary was taking a nap in

order to bother her.
b. While Mary was taking a nap, Fred played tuba

in order to bother her.
c. In order to bother Mary, Fred played tuba while

she was taking a nap.
d. In order to bother Mary, while she was taking a

nap, Fred played tuba.

C) S2 factorizedandD) S1 factorized: When S2 is
factorized, the linear order variants correspond to SA1,
when S1 is factorized, they correspond to SA2, as the
reader can check it.

Summary: A sentence with two subordinate clauses
may receive the syntactic analyses SA1 and SA2, SA1
can be interpreted as (A) or (C), SA2 as (B) or (D). In the
next section, I put forward underspecified semantic rep-
resentations (USRs) such that the syntactic analysis SA1
receives only one underspecified semantic representation,
USR1, which is specified in (A) or (C), and that SA2 re-
ceives onlyUSR2 which is specified in (B) or (D).

5 Underspecified semantic representation

It is now classical to useUSRs for quantifier scope am-
biguities (among other ambiguities). Following works
by (Duchier and Gardent, 2001), I adopt a scope under-
specification formalism based on dominance constraints.
Let us illustrate the overall idea briefly. The clauseev-
ery yogi has a guruis represented (in a simplified way)
as the “tree description” in Figure 6, in which a solid
line represents immediate dominance, a dotted line dom-
inance. Quantifier scopes are underspecified in this tree
description. The dominance constraints are solved in the
trees (a) and (b) in Figure 6 (in both (a) and (b), the root
dominateshas(x, y) ). Quantifier scopes are speci-
fied: in (a) forall(x) has wide scope, in (b) it is
exists(y) . The USR I propose for subordinate con-
junctions follows this overall idea. However, it differs in
two ways: (i) “left-dominance” is used instead of domi-
nance, (ii) constraints are solved inDAGs which may be
not tree shaped.

Left-dominance: It has been seen in Section 3 that the
nuclearity principle is too restrictive (wide scope cases
are not taken into account). It will be seen below that
dominance relations are not restrictive enough. There-
fore, I introduce a new relation, called “left-dominance”,
which is intermediary and defined as follows.

A node X in a tree left-dominates a node Y iff Y is a
daughter of X (immediate dominance) or there exists a
daughter Z of X such that Y belongs to the left-frontier of
the tree rooted at Z.

As an illustration, Ra left-dominatesπ1, Rb andπ2 in
(A), while Rb left-dominates Ra, π1 andπ3 in (B). Left-
dominance is more restrictive than (strict) dominance
(e.g. Ra strictly dominatesπ1, Rb, π2 and alsoπ3 in
(A)) and less restrictive than the nuclearity principle (e.g.
by this principle, Ra dominates only the leavesπ1 andπ2
in (A))10.

Syntax to semantics: Following works in semantics
with LTAG (Candito and Kahane, 1998) (Kallmeyer and
Joshi, 2003), I assume that (i) each elementary tree is
linked to an (underspecified) semantic representation, (ii)
the way the semantic representations combine with each
other depends on the derivation tree. I propose the fol-
lowing rule to link the elementary trees of a subordinate
conjunction to anUSR.

Rule (R1): The USR for β1(Conja) andβ2(Conja)11

in whichConja denotes a discourse relation Ra is the de-
scription of aDAG in which Ra left-dominatesπ1 andπ2,
the semantic representations of the arguments ofConja.
This rule is graphically represented in Figure 7, in which
a dashed-dotted line represents left-dominance.

Let us show how rule (R1) allows us to compute the
right interpretations for the syntactic analyses SA1 and
SA2 depending on their derivation trees.

Interpretations for SA1 : From the derivation tree of
SA1 given in Figure 2, rule (R1) leads toUSR1 given in
Figure 8. The constraints on left-dominance and order
in USR1 are solved inDAGs (A) and (C). (C) is identical
to USR1 except that immediate dominance replaces left-
dominance. In (A), Ra left-dominatesπ2. USR1 cannot
be solved in (B) since, in (B), Rb dominatesπ2 but does
not left-dominate it. On the other hand, in (Duchier and
Gardent, 2001) who use dominance,USR1 can be solved
in (B), which is not in accordance with the data. This is
why I have introduced the notion of left-dominance.

Interpretations for SA2 : From the derivation tree of
SA2 given in Figure 2, rule (R1) leads toUSR2 given in
Figure 8. The order of the multiple adjunctions to the
same node in SA2 is echoed by the order of the leaves
in USR2: π1 precedesπ2 which precedesπ3. The con-
straints on left-dominance and order inUSR2 are solved
in DAGs (B) and (D) - which is correct - but also in (K)
given in Figure 512. However, (K) is excluded because it
does not follow the left1-right2 principle, see note 9.

To conclude, with (R1), SA1 can be interpreted only as
(A) or (C) and SA2 only as (B) or (D), which is correct.

10More formally, the nuclearity principle states that, in a (bi-
nary) tree rooted at R, the arguments of R are theleavesof the
tree which areleft-dominatedby R.

11Recall (Section 3.2) that linear order does not affect depen-
dency structures. So,β1(Conja) andβ2(Conja) are both linked
to the same (underspecified) semantic representation.

12I thank Laura Kallmeyer for drawing my attention on this
point.
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6 Comparison with D-LTAG

This study on sentences with two subordinates clauses
is extended to other discourses. As requested by the re-
viewers, let me compare my approach toD-LTAG (Web-
ber et al., 2003), which extends a sentence level grammar,
namelyXTAG, for discourse processing.

Let us first look at subordinating conjunctions. They
anchorauxiliary trees inXTAG (or FTAG) andinitial trees
in D-LTAG. Why do they anchorinitial trees inD-LTAG?
The authors give the following answer: “One reason for
taking something to be aninitial tree is that its local de-
pendencies can be stretched long-distance”. That is a
wrong argument. One major advantage ofTAG is that
adjunction is possible both in initial and auxiliary trees
(and iteratively). So local dependencies in any tree can
be stretched long-distance. Moreover, as any other ad-
juncts, several subordinate clauses can iteratively modify
the same matrix clause (Section 2.2). One may wonder
how iterativity is taken into account when subordinate
conjunctions anchor initial trees.

Secondly, let us examine the distinction made inD-
LTAG between structural and anaphoric connectives. The
status of some connectives (e.g.,however) is admittedly
not clear and so is determined on empirical grounds, us-
ing crossed structural dependencies as a test. In note 8, I
have emphasized that (5) comprises only structural con-
nectives - subordinating conjunctions are unquestionably
structural connectives inD-LTAG - while its structure ex-
hibits crossing structural dependencies. So the main test
to distinguish structural and anaphoric connectives is not
valid.

D-LTAG defends the idea that there is no gap between
sentence and discourse processing. There exist discrep-
ancies, e.g., discourse adverbials have one argument at
the (syntactic) sentence level and two at the (semantic)
discourse level13. Such discrepancies are handled in the
D-LTAG parsing system (Forbes et al., 2002) by the use
of two passes: one based onXTAG syntactic trees, the
other one onD-LTAG semantic trees. This amounts in
positing two levels as in my approach however without a
well-defined syntax-semantics interface.

Finally, in D-LTAG, the logical form of a discourse is
computed from its derivation tree, a level of representa-
tion which is poor compared toSDRSs, e.g., there is no
notion of Universe which groups the discourse referents.
As said in Section 3.1, a rich semanctic level as the one
proposed inSDRT is necessary for text understanding and
also for text generation (Danlos et al., 2001). Moreover,
the ”anaphoric” behavior of discourse adverbials is seri-
ously taken into account inSDRT. Unfortunately, I have
no room left to discuss this issue.

13There is no such discrepancy for subordinating conjunc-
tions.
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Figure 1: Auxiliary and derivation trees for postposed and preposed subordinate clauses
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Figure 3: Other linear orders for SA1 and SA2
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Figure 6:USR for every yogi has a guru, and representations with quantifier scope specified
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Abstract

This paper introduceswell-orderedderivation
trees and makes use of this concept in a novel
axiomatization of theTAG parsing problem as
a constraint satisfaction problem. Contrary to
prior approaches, our axiomatization focuses
on the derivation trees rather than the derived
trees. Well-ordered derivation trees are our pri-
mary models, whereas the derived trees serve
solely to determine word order.

1 Introduction

Tree Adjoining Grammar (TAG) relates strings with two
kinds of structures: derivation trees and corresponding
derived trees. Derivation trees are more informative than
their corresponding derived trees in the sense that the
derived trees can be reconstructed from them. However,
derivation trees are usually interpreted as unordered trees;
they then cannot be used to formulate theTAG parsing
problem directly, as they do not encode word order infor-
mation.

This paper suggests to interpret derivation trees as
ordered trees. It introduces the notion ofwell-ordered
derivation trees: A derivation tree is called well-ordered
if its nodes stand in the same precedence relation as
the anchors in the corresponding derived tree. Because
TAG can generate non-context-free languages, well-or-
dered derivation trees can be non-projective, i.e., they can
contain “crossing” edges. The main contribution of this
paper is an axiomatization of the exact form of non-pro-
jectivity licensed byTAG operations. It thereby provides a
novel model-theoretic interpretation of theLTAG parsing
problem.

The axiomatization of well-ordered derivation trees is
put into practice in a description-based approach toTAG

parsing, in which the parsing problem of strongly lexical-
ized TAGs1 is interpreted as amodel enumeration prob-

1A TAG is called strongly lexicalized, if each of its elementary
trees contains exactly one anchor.

lem: given a description (a logical formula)φ of the input
string, enumerate all and only those well-ordered deriva-
tion trees that are licensed byφ . Based on earlier work by
Koller and Striegnitz (2002), we show that the solutions
to this problem can in turn be characterised as the solu-
tions of a constraint-satisfaction problem (CSP) on finite
set integer variables, which can be solved by state-of-the-
art constraint technology.

Our approach offers at least two interesting perspec-
tives. First, it enables the encoding ofLTAG grammars as
certaindependency grammars, thereby illuminating the
exact relation between the two formalisms. Second, the
formulation of theLTAG parsing problem as aCSPopens
up a large quantity of existing data to evaluate the con-
straint-based approach to parsing more thoroughly than
what could be done before.

Plan of the paper. In §2, we show how the relation be-
tweenTAG derivation trees and elementary trees can be
formulated as the relation between models and logical
descriptions, and introduce the notion of aTAG satisfia-
bility problem. In §3, we extend satisfiability problems
to parsing problems; we formalize the notion of well-or-
dered derivation trees as the structures under investiga-
tion in these problems, and show how their solutions can
be obtained by solving aCSP. We illustrate this approach
by means of an example in §4. §5 discusses the two per-
spectives of our approach mentioned above. Finally, §6
concludes the paper and presents ideas for future work.

2 TAG Satisfiability Problem

There are two major and constrasting formal perspectives
on parsing: proof-theoretic and model-theoretic. The for-
mer emphasizes the construction of logical derivations,
while the latter more directly states how models sat-
isfy descriptions. The model-theoretic perspective (Cor-
nell and Rogers, 1998) applied to a description-based
specification of parsing problems is often more readily
amenable to constraint-based processing. This is the view
which we adopt for the remainder of this paper.

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.
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As a first step in our description-based approach toTAG

parsing, we formulate theTAG satisfiability problem:

Given a multiset of elementary trees, can they be com-
bined using operations of adjunction and substitution to
form a complete derived tree?

To formally expressTAG satisfiability problems, we in-
troduce the following description language:

φ ::= w : τ | φ ∧φ
′ , (1)

wherew is taken from a set oftree variables, andτ from
a set ofTAG elementary trees of some grammar. We call
w : τ a tree literal. We say thatφ is normal if every tree
variable inφ appears precisely in one tree literal.

It is well-known that the satisfiability problem is equiv-
alent to the existence of aderivation tree, hence the idea
to use derivation trees as models of normalφ descrip-
tions. In order to make this more precise, we need some
definitions:

Let Π be the set of finite paths, i.e. the finite sequences
of positive integers. For simplicity in the following, we
shall identify a node of a tree with the pathπ ∈ Π that
leads to it starting from the root of said tree.

A derivation treeis a tree(V,E) formed from vertices
V and labeled edgesE⊆V×V×Π. A model of a normal
descriptionw1 : τ1∧ . . .∧wn : τn is a derivation tree where
V = {w1, . . . ,wn}2 and such that the following conditions
are satisfied, where we writew1 −π→ w2 for an edge
labeled with pathπ and representing either an adjunction
or a substitution ofτ2 at nodeπ of τ1:

• If wk is the root of the tree, thenτk must be an initial
tree.

• For eachwi , its outgoing edges must all be labeled
with distinct paths, and for each substitution (resp.
adjunction) nodeπ in τi there must be exactly (resp.
at most) oneπ-labeled edge.3

• For each edgew1 −π→ w2, if π is a substitution
(resp. adjunction) node inτ1, thenτ2 must be an ini-
tial (resp. auxiliary) tree.

In order to model lexical ambiguity, the description
language can be extended with a limited form of disjunc-
tion, using for example the following extended language:

φ ::= wk : {τ
k
1, . . . ,τk

nk
} | φ ∧φ

′ ,

where the set is to be interpreted disjunctively.

2Thus setting the interpretation of tree variables to be the iden-
tity substantially simplifies the presentation.

3For expositional simplicity, we do not cover adjunction con-
straints here. If an adjunction node is labeled with an ad-
junction constraint, then the exact well-formedness condi-
tion depends on that particular constraint.

The notion ofTAG satisfiability problem as outlined
above is implicit in (Koller and Striegnitz, 2002), who
formulate the surface realization problem of natural lan-
guagegenerationas the configuration problem of (un-
ordered) dependency trees. A natural question is whether
this treatment can be extended to parsing problems.

Given our formalization ofTAG satisfiability problems,
parsing problems cannot be expressed directly, as the
models under consideration—derivation trees—are un-
ordered trees. In order to express word order, a more natu-
ral class of models are derived trees, as these encode word
order information in a direct way. However, the problem
in using derived trees is that the formalization of the sat-
isfaction relation becomes non-trivial, as the adjunction
operation now requires a more complicated interpretation
of elementary trees—not as atomic entities, but as groups
of nodes that may get separated by material being “glued
in between” by adjunction. If not conditioned carefully,
this might lead to a formalism that is more expressive
thanTAG (Muskens, 2001; Rogers, 2003).

We suggest to solve the problem by considering deriva-
tion trees as being ordered. In the next section, we will
introduce the notion ofwell-ordered derivation trees,
which are possibly non-projective, ordered derivation
trees whose precedence relation agrees with the prece-
dence relation in the corresponding derived tree. This al-
lows for an extension of the description language from (1)
with precedence literals, which can be interpreted on
(well-ordered) derivation trees in a straightforward way.

3 Well-ordered Derivation Trees

Our ambition is to tackle the parsing problem where
word-order is part of the input specification. To this end,
we formulate theTAG parsing problemanalogously to our
earlier definition of theTAG satisfiability problem:

Given anorderedmultiset of elementary trees, can they
be combined using operations of adjunction and substitu-
tion to form a complete derived tree where the respective
anchors are realized in the same order as stipulated by
the input specification?

To formally express the parsing problem, we extend
our description language with precedence literalsw≺w′:

φ ::= w : τ | w≺ w′ | φ ∧φ
′ (2)

wherew≺ w′ means thatw’s anchor must precedew′’s.
For the same reasons as before, the approach that we will
develop for this language will trivially extend to one with
lexical ambiguity.

For the language of (1), the models where valid deriva-
tion trees. Now, however, we must additionally interpret
the precedence literals of (2), which means that we need
an order on the interpretations of the tree variables.
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A derivation tree uniquely determines a derived tree
and moreover uniquely determines a mappingI from each
node π of each elementary treew to its interpretation
I(w,π) as a node of the derived tree. The order that we
are interested in is the one induced by the precedence be-
tween the interpretations of the anchors. More formally,
writing w� for the anchor node inw, we are interested in
the order defined by:

w≺ w′ ≡ I(w,w�)≺ I(w′,w′�) (3)

Thus, we arrive at the notion of awell-ordered derivation
tree: a pair of a derivation tree and of the total order it
induces on the elementary trees.

Unfortunately, we no longer have a simple way to enu-
merate these more complex models, unless we also con-
struct the derived trees. Our contribution in this section
is to show how the total order that we seek can also be
obtained as the solution of aCSP.

3.1 Principles

To talk about order, we will need to talk about the set of
anchors that are interpreted by nodes in the subtree (of
the derived tree) rooted atI(w,π). We write yield(w,π)
for this set.

Assuming for the moment that we can freely use
the notion ofyield, we now show that the well-ordered
derivation trees are precisely the valid derivation trees
that satisfy the two principles ofconvexityandorder:

Principle of convexity. The yield of the root of an ele-
mentary tree is convex. A setS is said to be convex with
respect to a total order≺ if for any x 6∈S, x either precedes
all elements ofSor follows them all.

∀w,w′ ∈V : w′ /∈ yield(w,ε)⇒
w′ ≺ yield(w,ε)∨w′ � yield(w,ε) (4)

where we writex≺ Sas a shorthand for∀y∈ S. x≺ y.
Principle of order. If π1 andπ2 are leaves in elementary
treew andπ1 ≺ π2, then alsoyield(w,π1) ≺ yield(w,π2),
i.e. all anchors belowπ1 precede all anchors belowπ2.

∀w∈V : ∀π1,π2 ∈Π :

π1 ≺ π2∧π1 ∈ leaves(w)∧π2 ∈ leaves(w)⇒
yield(w,π1)≺ yield(w,π2) (5)

It is easy to show that these principles hold at every
point of a TAG derivation. We now show that they suf-
fice to completely determine the order among anchors.
Consider the adjunction example of Figure 1. For brevity,
we omit to say “the yield of”: by (5), we know that
α1 ≺ α2 ≺ α3 andβ1 ≺ β2. The adjunction placesα2 in
the yield of the foot node ofβ . Therefore, again by (5),
we haveβ1 ≺ α2 ≺ β2. Now by (4)β1∪α2∪β2 is con-
vex, thereforeα1 must either precede or follow it. Since
α1 ≺ α2, we must haveα1 ≺ β1. Similarly for α3.

β1 β2α1

α2

α3

π1

π2

π1

π2
β1 β2

α1 α2 α3

Figure 1: Adjunction

3.2 Axiomatization of Yield

Since we assume a strongly lexicalized version ofTAG,
each elementary tree has precisely one anchor. There-
fore, for simplicity, we shall identify an anchor with the
tree variable of the tree literal in which it appears. Thus
yield(w,π) is a set of tree variables (standing for their re-
spective anchors). We are going to show thatyield(w,π)
can also be obtained as the solution of aCSP. In order to
do this, we will need to introduce additional functions.

anchors(w,π) is the set of anchors whose interpreta-
tions coincide withI(w,π). Clearly:

anchors(w,π) =

{
{w} if π is anchor inw

/0 otherwise
(6)

below(w,π) is the set of anchors whose interpretations lie
in the subtrees of the derived tree rooted at the interpreta-
tions of those nodes inw which are strictly dominated by
the nodeπ:

below(w,π) = {yield(w,π ′) | π /+
π
′ in w} (7)

inserted(w,π) concerns nodes where a substitution or ad-
junction has taken place. What isinsertedis theyield of
the tree which is being substituted or adjoined at nodeπ

of elementary treew. We writew−π→ w′ for an edge
in the derivation tree representing a substitution or an ad-
junction ofw′ at nodeπ of w:

inserted(w,π) =

{
yield(w′,ε) if ∃w−π→ w′

/0 otherwise
(8)

Finally, pasted(w,π) concerns foot nodes. Whenw is ad-
joined intow′ at π ′, the subtrees hanging offπ ′ in w′ are
cut out and pasted back under the foot node ofw. Thus:

pasted(w,π) =


below(w′,π ′) if π is foot ofw,

and∃w′ −π ′→ w

/0 otherwise
(9)
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The yield can be obtained by taking the union of these
quantities:

yield(w,π) = anchors(w,π)∪ inserted(w,π)∪
pasted(w,π)∪below(w,π) (10)

The intuition for why this is correct can be outlined with
an analysis by cases:

1. If π is anchor inw, thenanchors(w,π) = {w} and
all other quantities are empty sets.

2. If π is the foot node ofw, then there must be an
adjunctionw′ −π ′→ w and the anchors reachable
from I(w,π) are precisely those reachable from the
material pasted atπ as a result of the adjunction.
anchors, inserted andbelow are all empty.

3. If a substitution has taken place at nodeπ of w, then
π is at least a leaf ofw. The anchors reachable from
I(w,π) are precisely those reachable from the mate-
rial that wasinserted at (w,π). All other quantities
are empty.

4. If an adjunction has taken place at nodeπ of w,
then at leastπ is not an anchor. The anchors reach-
able fromI(w,π) are now precisely those reachable
from the material that was inserted at(w,π). Since
below(w,π) is pasted at the foot node of the mate-
rial that is being inserted, it ends up being included
in inserted(w,π). anchors andpasted are empty.

5. If none of the above applies, then the anchors reach-
able fromI(w,π) are precisely those reachable from
the children ofπ in w, i.e. from below(w,π). All
other quantities are empty.

The definitions of (6,8,9) each contain a case analysis.
In the definition ofanchors(w,π) (6), the case condition
is static:is π the anchor of w or not?Thus the satisfaction
relation can be stated statically, and (6) can be interpreted
as a constraint.

However, (8) and (9) both have conditions which dy-
namically depend on the existence of a substitution or
adjunction dependency in the derivation tree. In order to
arrive at a simpleCSP, we need to slightly refine the for-
mulation to avoid the case analysis. We take advantage of
the fact that there is at most one adjunction (or substitu-
tion) at a given node:

inserted(w,π) = ∪{yield(w′,ε) | w−π→ w′} (11)

Let children(w,π) = {w′ | w−π→ w′}. (Duchier, 2003)
showed how this equation could be reduced to a con-
straint and included in theCSP. Thus we obtain:

inserted(w,π) = ∪{yield(w′,ε) | w′ ∈ children(w,π)}
(12)

Again, as shown in (Duchier, 2003), this equation has
precisely the form required for implementation by these-
lection union constraint. Similarly for pasted we obtain:

pasted(w,π) =


∪{below(w′,π ′) | w∈ parents(w′,π ′)}

if π is foot inw

/0 otherwise
(13)

Given a (normal)TAG parsing problem, we are now
able enumerate its models (the well-ordered derivation
trees) as solutions of aCSP. First, the part of theCSP

which enumerates the derivation trees remains as de-
scribed by Koller and Striegnitz (2002). Second, for each
nodeπ of a treew, we add the constraints (6,7,10,12,13):
this allows us to obtainyield(w,π) as the solution of a
CSP. Finally, we add the constraints corresponding to the
principles of convexity and order, and the ordering con-
straints from the specification of the parsing problem. In
this manner, we obtain aCSPwhich allows us to enumer-
ate all and only thewell-ordered derivation trees.

4 Example

We now show how our axiomatization of yield and the
axiomatic principles derive the correct precedence con-
straints for a sampleLTAG grammar. The grammarG that
we are considering is the following:

S

S

b

A↓

C↓

D↓

S

S

b

A↓

C↓

D↓

S*

A

a

C

c

D

d

α₁: β₁:

α₂: α₃: α₄:

NA NA

G produces the languageL = {anbncndn | n≥ 1}, a lan-
guage not contained in the set of context-free languages.

Given G, the derivation tree for the stringaabbccdd
can be drawn as follows:

2 22 3

23

a a b b c c d d

31

1

α₂ α₂ α₁ β₁ α₃ α₃ α₄ α ₄

(Recall that a labelπ on an edgew1−π→w2 denotes the
path address inw1 at which the substitution or adjunction
of w2 has taken place.) In this tree, all edges except one
correspond to substitutions; the edge from the leftb to the
right b corresponds to the adjunction ofβ1 into α1.

The given drawing of the derivation tree is well-or-
dered: The order of the anchors in it (connected to the
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nodes by vertical dashed lines) corresponds precisely to
the order of the anchors in the corresponding derived tree:

S

S

b

A

C

DS

S

b

A

C

D

a

da

d

c

c

To illustrate the axiomatization of yield, we give the
yields of the elementary trees participating in the deriva-
tion of the stringaabbccddin Figure 2. Each table row
pertains to a pair(w,π) of an elementary treew (identi-
fied by its anchor) and a path addressπ in w, and shows
the setsanchors(w,π), inserted(w,π), pasted(w,π) and
below(w,π), whose union equalsyield(w,π). With re-
spect to the case analysis in the preceding section, each
pair (row) corresponds to one of the cases:4

1. (a1,1), (a2,1), (c1,1) (c2,1), (d1,1) and(d2,1) cor-
respond to the first case (anchor) since for all these
elementary trees, 1 is the address of the anchor. The
same holds for(b1,21) and(b2,22).

2. (b2,22) corresponds to the second case (foot node).
This is the most interesting case, where the anchors
below the adjunction site(b1,2) (i.e. b1 andc2) are
“pasted” at the foot node(b2,22) of b2.

3. (b1,1), (b1,22), (b1,3), (b2,1), (b2,23) and(b2,3)
correspond to the third case (substitution), where
insert(w,π) is the only non-empty set, containing
the yields of the substituted trees.

4. (b1,2) corresponds to the fourth case (adjunction).
This works like substitution.

5. The pairs(w,ε) correspond to the fifth case (else
case) in the case analysis in the preceding section,
where only thebelow(w,π) set is non-empty, con-
taining the yields of the nodes below. The same
holds for(b2,2).

5 Perspectives

The notion of well-ordered derivation trees offers some
interesting perspectives. First, it allows us to encode each
LTAG grammar into an equivalent dependency grammar.
Second, the axiomatization of well-ordered derivation
trees can be transformed into a constraint-based parser
for LTAG in a straightforward way.

4In order to distinguish several occurrences of letters from
each other, we have indexed them.

5.1 TAG and Dependency Grammar

If we ignore word order, derivation trees have a natural
reading as dependency trees: anchors of elementary trees
correspond to lexical entries, substitution and adjunction
edges mirror the lexical entry’s valency.

Koller and Striegnitz (2002) develop this insight and
formulate the surface realization problem of natural lan-
guage generation as a parsing problem in a dependency
grammar with free word order. In their approach, the
dependency grammar lexicon is induced by “reading
off” the valencies of elementary trees: substitution sites
are encoded as obligatory valencies, adjunction sites as
valencies that can be filled arbitrarily often.5 This en-
coding embedsTAG into dependency grammar in that
well-formed dependency trees directly correspond toTAG

derivation trees and, indirectly, derived trees. However,
the embedding is weak in the sense that its correctness of
the encoding relies upon the fact that word order cannot
be specified in the grammar; thus, the encoding cannot be
applied to parsing problems.

The notion of well-ordered derivation trees allows us to
extend the encoding to directly formulate parsing prob-
lems. To this end, we need to (i) specify the local (lin-
ear) order of the substitution valencies of each lexical en-
try, (ii) specify the local dominance relation among va-
lencies and (iii) restrict the class of models to well-or-
dered derivation trees. Both the local order and the local
dominance relations can be read off theLTAG elemen-
tary trees. The restriction of the class of models to well-
ordered derivation trees then guarantees that the locally
specified orderings are consistent with the global order in
the dependency tree.

From other work on the interpretation ofTAG as depen-
dency grammar (Joshi and Rambow, 2003), this encoding
is distinguished by three features:

• It does not stipulate any non-traditional rules to
combine dependency structures, but only uses the
standard “plugging” operation to fill valencies.

• It does not assume nodes in the dependency tree ex-
cept for the nodes introduced by the (anchors of the)
elementary trees.

• It is able to maintain the dependencies associated to
a lexical anchor throughout the derivation. This is
achieved by “hiding” the structure of the (partially)
derived tree in the axiomatization of well-ordered
derivation trees.

5.2 Constraint-based parsing ofLTAG s

To solve the problem of surface realization as depen-
dency parsing, Koller and Striegnitz (2002) successfully

5The encoding is based on a notion of derivation trees where
different auxiliary trees can be adjoined at the same node.
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(w,π) anchors inserted pasted below

(a1,1) {a1} /0 /0 /0
(a2,1) {a2} /0 /0 /0
(c1,1) {c1} /0 /0 /0
(c2,1) {c2} /0 /0 /0
(d1,1) {d1} /0 /0 /0
(d2,1) {d2} /0 /0 /0

(b1,21) {b1} /0 /0 /0
(b2,21) {b2} /0 /0 /0
(b2,22) /0 /0 {b1,c2} /0
(b1,1) /0 {a1} /0 /0

(b1,22) /0 {c2} /0 /0
(b1,3) /0 {d2} /0 /0
(b2,1) /0 {a2} /0 /0

(b2,23) /0 {c1} /0 /0
(b2,3) /0 {d1} /0 /0
(b1,2) /0 {a2,b2,c1,c2,d1} /0 /0
(a1,ε) /0 /0 /0 {a1}
(a2,ε) /0 /0 /0 {a2}
(c1,ε) /0 /0 /0 {c1}
(c2,ε) /0 /0 /0 {c2}
(d1,ε) /0 /0 /0 {d1}
(d2,ε) /0 /0 /0 {d2}
(b1,ε) /0 /0 /0 {a1,a2,b1,b2,c1,c2,d1,d2}
(b2,ε) /0 /0 /0 {a2,b2,c1,c2,d1}
(b2,2) /0 /0 /0 {b1,b2,c1,c2}

Figure 2: Yields in the analysis of stringaabbccdd

employ an existing constraint-based parser for Topolog-
ical Dependency Grammar (Duchier and Debusmann,
2001). In light of the fact that surface realization is an
NP-complete problem, the efficiency of this parser is
quite remarkable. One of the major questions for a de-
scription-based approach toLTAG parsingis, whether the
benign computational properties of existing, derivation-
based parsers forLTAG6 can be exploited even in the con-
straint framework.

We have started work into this direction by implement-
ing a prototypical constraint parser forLTAG, and inves-
tigating its properties. The implementation can be done
in a straightforward way by transforming the axiomati-
zation of well-ordered derivation trees that was given in
Section 3 into a constraint satisfaction problem along the
lines of Duchier (2003). The resulting parser is available
as a module for theXDG system (Debusmann, 2003).

Preliminary evaluation of the parser using the XTAG
grammar shows that it is not competitive with state-of-
the-artTAG parsers (Sarkar, 2000) in terms of run-time;
however, this measure is not the most significant one for
an evaluation of the constraint-based approach anyway.
More importantly, a closer look on the search spaces ex-

6The parsing problem ofLTAG can be decided in timeO(n6).

plored by the parser indicates that the inferences drawn
from the axiomatic principles are not strong enough to
rule out branches of the search that lead to only inconsis-
tent assignments of the problem variables. Future work
needs to closely investigate this issue; ideally, we would
arrive at an implementation that enumerates all well-or-
dered derivation trees for a given input without failure.

One of the benefits of the constraint formulation of de-
pendency parsing given in Duchier (2003) is that it pro-
vides a means of effectively dealing with disjunctive in-
formation, e.g. information introduced by lexical ambi-
guity. The idea is to make the common information in a
set of possible lexical entries available to the constraint
solver as soon as possible, without waiting for one entire
lexical entry from the set to be selected. If e.g. all elemen-
tary trees still possible for a given word are of different
shape, but have the same number of substitution and ad-
junction sites labeled with the same categories—i.e., have
the same valencies—, the constraint solver can configure
the derivation tree before it would need to commit to any
specific candidate tree. The question of whether this tech-
nique can be applied to widen the bottleneck that lexical
ambiguity constitutes forTAG parsing awaits further ex-
ploration. With the encoding presented here, and the large
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grammatical resources forLTAG that it makes available to
the application of constraint parsing, we are at least in the
position now to properly evaluate the effectiveness of the
constraint-based treatment of constructive disjunction.

6 Conclusion

In this paper, we introduced the notion of well-ordered
derivation trees. Using this notion, we presented an ax-
iomatization of theTAG parsing problem with a natural
interpretation as a constraint satisfaction problem. The
main burden lay in the axiomatization of the yield, which
captures the dynamic aspects of aTAG derivation in terms
of declarative constraints.

Contrary to previous approaches, we have shifted the
emphasis away from the derived trees to the derivation
trees. From this perspective, the derivation tree is the cru-
cial ingredient of aTAG analysis, whereas the derived tree
serves solely to constrain word order. This focusing on
the derivation tree brings our approach in closer vicinity
to dependency grammar.

Our approach yields two new avenues for future re-
search. The first is to encodeLTAG grammars into equiv-
alent dependency grammars, and to intensify research on
the relationship betweenTAG andDG. Second, the axiom-
atization of well-ordered derivation trees can be straight-
forwardly transformed into a constraint-based parser for
LTAG. Koller and Striegnitz (2002) have shown that a
similar approach can yield interesting results for gener-
ation, but we have not yet been able to reproduce them
for parsing. To this end, we are moving towards the ab-
stract notion of aconfiguration problemencompassing
the constraint-based processing of bothTAG, DG, and
related frameworks, even semantic ones. We think that
this abstraction eases the search for efficiency criteria for
solving particular configuration problems, and can thus
help us to pin down ways how to do efficient constraint-
basedTAG parsing in particular.
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Abstract

This paper sets up a framework for LTAG (Lex-
icalized Tree Adjoining Grammar) semantics
that brings together ideas from different recent
approaches addressing some shortcomings of
TAG semantics based on the derivation tree.
Within this framework, several sample analyses
are proposed, and it is shown that the frame-
work allows to analyze data that have been
claimed to be problematic for derivation tree
based LTAG semantics approaches.

1 Introduction

An LTAG (Joshi and Schabes, 1997) consists of a fi-
nite set of elementary trees associated with lexical items.
From these trees, larger trees are derived by substitution
(replacing a leaf with a new tree, a so-called initial tree)
and adjunction (replacing an internal node with a new
tree, a so-called auxiliary tree).

The elementary trees of an LTAG represent extended
projections of lexical items and encapsulate all syntac-
tic/semantic arguments of the lexical anchor. They are
minimal in the sense that only the arguments of the an-
chor are encapsulated, all recursion is factored away.
These linguistic properties of elementary trees are for-
mulated in the Condition on Elementary Tree Minimality
(CETM) from (Frank, 1992).

LTAG derivations are represented by derivation trees
that record the history of how the elementary trees are put
together. A derived tree is the result of carrying out the
substitutions and adjunctions. Each edge in the derivation
tree stands for an adjunction or a substitution. The edges
are equipped with Gorn addresses of the nodes where the
substitutions/adjunctions take place.1 See for example

1The root has the address 0, the jth child of the root has
address j and for all other nodes: the jth child of the node with
address p has address p · j.

NP

John

S

NP↓ VP
VP

V
ADV VP∗

laughs
sometimes

derived tree: S

NP VP

John ADV VP

sometimes V

laughs

derivation tree:
laugh

1 2

john sometimes

Figure 1: TAG derivation for (1)

the derivation of (1) in Fig. 1.

(1) John sometimes laughs

Taking into account the minimality of elementary trees
and the fact that derivation steps in TAG correspond to
predicate-argument applications, it seems appropriate to
base LTAG semantics on the derivation tree (Candito and
Kahane, 1998; Joshi and Vijay-Shanker, 1999; Kallmeyer
and Joshi, 2003). However, it has been observed that in
some cases this is problematic since the derivation tree
does not provide enough information to correctly con-
struct the desired semantic dependencies.

The goal of this paper is to bring together ideas from
several recent approaches in order to develop a general
framework for LTAG semantics that allows us to compute
semantic representations on the derivation tree, overcom-
ing some otherwise problematic cases. Within this frame-
work we then sketch several sample analyses.

2 Previous approaches to LTAG semantics

The data that are claimed to be the most problematic for
derivation tree based LTAG semantics (see (Rambow et

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 155-162.



Derivation
tree for (2):

like
wh s

who say
s

think

Desired semantics (simplified):
who(x, think(p, say(j, like(b, x))))

Derivation
tree for (3):

love
s vp

claim seem

Desired semantics (simplified):
claim(p, (seem(love(m, j))))

Figure 2: Problematic derivation trees for semantics

al., 1995; Dras et al., 2004; Frank and van Genabith,
2001; Gardent and Kallmeyer, 2003)) are long-distance
wh-movements as in (2) and interactions of attitude verbs
and raising verbs or adverbs as in (3).

(2) Who does Paul think John said Bill liked?

(3) a. Mary, Paul claims John seems to love
b. Paul claims Mary apparently loves John

The problem of (2) is that in the LTAG analysis, who is
substituted into the wh-NP node of like, say is adjoined to
the lower S node of like and think adjoins to say. Conse-
quently, in the derivation tree (see Fig. 2), there is neither
a link between who and think nor a link between like and
think.2 But in the semantics, we want the think propo-
sition to be the scopal argument of the wh-operator, i.e.,
a link between who and think must be established. This
can be done via the semantics of like but at least some
possibility to link like to think is necessary. In (3), claim
and seem (or apparently resp.) adjoin to different nodes
in the love tree, i.e., they are not linked in the derivation
tree. But the propositional argument of claim is the seems
(apparently resp.) proposition. This case however is less
hard than (2) since one can choose the semantics of like
in such a way that the desired scope orders are obtained
without a direct link between the embedding attitude verb
and the embedded raising verb (adverb resp.). A seman-
tics in the (Kallmeyer and Joshi, 2003) framework is pos-
sible here. Example (2) however poses a serious problem
for derivation tree based approaches.

Several proposals have been made to avoid the prob-
lems that arise when doing semantics based on the deriva-
tion tree:

Instead of using the derivation tree for semantics, one
could try to compute semantics based on the derived tree.

2For the sake of readability, we use names np, vp, r for root,
f for foot, ... for the node positions instead of the usual Gorn
adresses.

Such an approach is pursued in (Frank and van Genabith,
2001). However, their approach makes use not only of
the information available in the derived tree but also of
information about how the elementary trees were put to-
gether, i.e., of information available in the derivation tree.
Therefore, in a sense, their semantics is based on both,
derived and derivation tree. Considering that one of the
guiding linguistic principles of LTAG is semantic mini-
mality of elementary tree, i.e. that the semantics of ele-
mentary trees is non-decomposable, it is more appropri-
ate to link semantic representations to whole elementary
trees and to abstract away (at least to a certain degree)
from the concrete shape of the elementary trees. This
amounts to linking semantic representations to nodes in
the derivation tree.

An alternative proposal for computing semantics only
on the derivation tree is to enrich the derivation tree
with additional links as in (Kallmeyer, 2002a; Kallmeyer,
2002b). In this approach, the derived tree needs not be
considered for computing semantics. The problem with
this proposal is that sometimes it is not clear which link
one has to follow in order to find the value for some se-
mantic variable. Therefore additional rules for ordering
the links for semantic computation are needed. The re-
sult is a rather complex machinery in order to obtain the
dependencies needed for semantics.

More recently, (Gardent and Kallmeyer, 2003) propose
to use the feature unification mechanism in the syntax,
i.e., in the derived tree, in order to determine the val-
ues of semantic arguments. The underlying observation
is that whenever a semantic link in the derivation tree is
missing, it is either a) a link between trees attaching to
different nodes in the same tree (see(3)), i.e., attaching to
nodes that can share features inside an elementary tree,
or b) a link between trees γ1 and γ2 such that γ2 adjoins
to the root of a tree that (adjoins to the root of a tree that
...) attaches to some node µ in γ1 (see (2)). In this case,
indirectly, the top of µ and the top of the root of γ2 unify
and thereby features can be shared. This approach works
in the problematic cases and it has the advantage of using
a well-defined operation, unification, for semantic com-
putation. But it has the disadvantage of using the derived
tree for semantics even though semantic representations
are assigned to whole elementary trees (i.e., to nodes in
the derivation tree) and not to nodes in the derived tree.
Furthermore, the feature structures needed for semantics
are slightly different form those used for syntax since
they contain semantic variables and labels as possible fea-
ture values. Consequently, the number of feature struc-
tures is no longer finite (in contrast to feature-based TAG
(FTAG) as defined in (Vijay-Shanker and Joshi, 1988))
and therefore the generative capacity of the formalism is
extended. In other words, a more powerful formalism is
used for syntax just because it is needed for the specific
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semantic features.3

In order to separate more neatly between syntax with
feature structures linked to nodes in the derived tree and
semantics where semantic representations are linked to
nodes in the derivation tree, we propose in the following
to incorporate semantic feature structures in the deriva-
tion tree. Formally, this means just extracting the seman-
tic features used in (Gardent and Kallmeyer, 2003) from
the derived trees and putting them in a semantic feature
structure linked to the semantic representation of the tree
in question. Of course one still has to link semantic fea-
tures to specific node positions in the elementary tree,
e.g., in order to make sure that syntactic argument po-
sitions get correctly linked to the corresponding semantic
arguments.

3 LTAG semantics with semantic
unification

3.1 Semantic feature structures

Semantic representations are as defined in (Kallmeyer
and Joshi, 2003) except that they do not have argument
variables: they consist of a set of formulas (typed λ-
expressions with labels) and a set of scope constraints. A
scope constraint is an expression x ≥ y where x and y are
propositional labels or propositional variables (these last
correspond to the holes in (Kallmeyer and Joshi, 2003)).
Each semantic representation is linked to a semantic fea-
ture structure. Semantic feature structures are typed fea-
ture structures, the type of the whole feature structure is
sem. The definition of the feature structures is as follows:
• a feature structure of type sem consists of features 0

(the root position), 1, 2, ..., 11, 12, ... for all node
positions that can occur in elementary trees (finite for
each TAG), the values of these features are of type tb

(for ‘top-bottom’)
• a feature structure of type tb consists of a T and a

B feature (top and bottom) whose values are feature
structures of type bindings

• a feature structure of type bindings consists of a fea-
ture I whose values are individual variables, a feature
P whose values are propositional labels, etc.

3.2 Semantic unification

Semantic composition consists only of feature unifica-
tion. It corresponds to the feature unifications in the syn-
tax that are performed during substitutions and adjunc-

3A similar approach is (Stone and Doran, 1997) where, as in
(Gardent and Kallmeyer, 2003), each elementary tree has a flat
semantic representation, the semantic representations are con-
joined when combining them and variable assignments are done
by unification in the feature structures on the derived tree. But
there is no underspecification, and the approach is less explicit
than (Gardent and Kallmeyer, 2003).

l1 : laugh( 1 )










NP

[

T
[

I 1

]

]

VP

[

T
[

P 2

]

B
[

P l1
]

]











np vp

john(x) l2 : sometimes( 3 ), 3 ≥ 4

[

R

[

T
[

I x
]

]

] 







R

[

B
[

P l2
]

]

F

[

T
[

P 4

]

]









Figure 3: Semantic representations for (1) John some-
times laughs

tions and the final top-bottom unifications in the derived
tree. In the derivation tree, elementary trees are replaced
by their semantic representations plus the corresponding
semantic feature structures. Then, for each edge in the
derivation tree from γ1 to γ2 with position p:
• The top feature of position p in γ1 and the top feature

of the root position in γ2, i.e., the feature structures
γ1.p.T and γ2.0.T are identified,

• and if γ2 is an auxiliary tree, then the bottom feature
of the foot node of γ2 and the bottom feature of posi-
tion p in γ1, i.e., (if f is the position of the foot node in
γ2) the feature structures γ1.p.B and γ2.f .B are iden-
tified.

Furthermore, for all γ in the derivation tree and for all
positions p in γ such that there is no edge from γ to some
other tree with position p: the T and B features of γ.p are
identified.

By these unifications, some of the variables in the se-
mantic representations get values. In the end, after having
performed these unifications, the union of all semantic
representations is built. The result is an underspecified
representation.4

3.3 A sample derivation

As an example consider the analysis of (1): Fig. 3
shows the semantic representations and the semantic fea-
ture structures of the three elementary trees involved in
the derivation.

4For combining feature structure, we adopt an operational
way in this paper because this is general practice in LTAG. I.e.,
unification is an operation on actual structures. Viewing feature
structures as descriptions and thinking of unification as find-
ing a consistent model (see, e.g., (Johnson, 1994)), is of course
possible as well. But then one needs additional constraints that
reflect the identifications performed during substitution, adjunc-
tion and top-bottom feature structure unification.

157













NP

[

T 10

[

I 1

]

]

VP

[

T 11

[

P 2

]

B 12

[

P l1
]

]











np vp


R

[

T 10

[

I x
]

B 10

]



















R

[

T 11

B 11

[

P l2
]

]

F

[

T 12

[

P 4

]

B 12

]















Figure 4: Semantic unification for (1)

The different unifications lead to the feature value
identities in Fig. 4. This gives the identities 1 = x,
2 = l2, and 4 = l1, which results in the following se-
mantic representation:

(4) l1 : laugh(x), john(x), l2 : sometimes( 3 ),
3 ≥ l1

In the end, appropriate disambiguations must be found.
These are assignments for the remaining variables, i.e.,
functions that assign propositional labels to propositional
variables, respecting the scope constraints (Kallmeyer
and Joshi, 2003). The disambiguated representation is
then interpreted conjunctively. (4) has only one disam-
biguation, namely 3 → l1. This leads to john(x) ∧

sometimes(laugh(x)).

4 Alternative ways of obtaining scope
constraints

Instead of stating explicit scope constraints of the form
x ≥ y, one could imagine two other possibilities: either i)
not using any scope constraints at all and obtaining scope
by identifying propositional variables and propositional
labels by unification during the derivation, or ii) obtaining
scope constraints from the final top-bottom unification in-
stead of stating them explicitely, i.e., not doing real top-
bottom unification but adding instead a constraint top ≥

bottom whenever a node has not been used for attaching
other elementary trees. These alternatives are illustrated
in Fig. 5 and 6.

Possibility i) has the obvious problem that is does not
allow for underspecified representations, which means
that in cases of scope ambiguities the number of repre-
sentations one would have to generate would explode.
Possibility ii) looks more interesting. In Fig. 5 for ex-
ample, the B feature of position 2 in laugh is unified with
the (empty) B feature of position 2 in sometimes so that
in the result, there is a node with T [P 3 ] and B [P l1].
From this node, the desired scope constraint 3 ≥ l1 can

l1 : laugh( 1 )










NP

[

T
[

I 1

]

]

VP

[

T
[

P 2

]

B
[

P l1
]

]











np vp

john(x) l2 : sometimes( 3 )

[

R

[

T
[

I x
]

]

] 







R

[

B
[

P l2
]

]

F

[

T
[

P 3

]

]









Result:

john(x), l1 : laugh(x),
l2 : sometimes(l1)

Figure 5: Alternative i): Analysis of (1) without scope
constraints

be obtained. One problem with ii) is that in some cases
one might need the original final top-bottom unification,
so one would have to distinguish between cases where a
scope constraint has to be added (these are perhaps the
cases of P features) and cases where usual unification is
done. But even more problematic is that in some cases,
it is not possible to obtain all scope constraints one needs
by the final top-bottom mechanism. Examples are cases
where two quantifier scope parts attach to the same node
as in (5).

(5) someone likes everybody

Following (Kallmeyer and Joshi, 2003), we suppose that
the contribution of a quantifier consists of an NP initial
tree (the predicate argument part) and a separate auxiliary
tree with just one S node (the scope part). The analysis
of (5) with possibility ii) is sketched in Fig. 7. The scope
constraints one wants to obtain are 1) those that place the
proposition coming with the noun in the restriction of the
quantifiers, i.e., 4 ≥ l3 and 8 ≥ l5, 2) those that place
the like proposition in the nuclear scope of the quantifiers,
i.e., 5 ≥ l1 and 9 ≥ l1, and 3) those that limit the scope
of the quantifier inside the sentence the quantifier attaches
to, i.e., 1 ≥ l2 and 1 ≥ l4.5 For 1) and 2), corresponding
top and bottom feature have to be put on some node, in
Fig. 7 they are on positions N and L (for the lexical an-
chor) of the NP tree. However, this is very arbitrary, they
are not really related to these nodes. Therefore, it is much
more appropriate to state the constraints in a general way

5The last constraints are important to make sure that in
examples as Mary thinks John likes everybody the embedded
quantifier cannot take scope over thinks.
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









S∗

NP

someone











S

NP VP

like NP











S∗

NP

everybody











l1 : like( 2 , 3 )




















R

[

T
[

P 1

]

]

NP1

[

T

[

I 2

P l1

]

]

NP2

[

T

[

I 3

P l1

]

]





















r np1 np2 r

l2 : some(x, 4 , 5 ) l4 : every(y, 8 , 9 )
[

R

[

B
[

P l2
]

]

] [

R

[

B
[

P l4
]

]

]

l3 : person(x) l5 : person(y)























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



R
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T
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]

]

N





T
[
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]

B
[

P l3
]





L





T
[

P 5

]

B
[

P 7

]


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
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


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]

]

N


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T
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]

B
[
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]


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

T
[

P 9

]

B
[

P 11

]


























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


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Figure 7: Problematic case for possibility ii): Analysis of (5)

l1 : laugh( 1 )






NP

[

T
[

I 1

]

]

VP

[

B
[

P l1
]

]







np vp

john(x) l2 : sometimes( 3 )
[

R

[

T
[

I x
]

]

] 







R

[

B
[

P l2
]

]

F

[

T
[

P 3

]

]









Result:
l1 : laugh(x), john(x),
l2 : sometimes( 3 ), 3 ≥ l1

Figure 6: Alternative ii): scope constraints from top-
bottom unification

and to link them only to the semantic representation with-
out linking them to any node. The constraints 3) have to
come from the scope tree, i.e., they have to be linked to
its root since this is the only node in these trees. But this
is not possible since in the course of the derivation, the
bottom parts of all scope parts attaching to the same node
unify because of the unifications done during adjunction.
In Fig. 6 for example this means that [P l2] and [P l4] are
unified, which leads to a failure.

Because of these considerations we decided not to
choose possibilities i) or ii) but to state scope constraints

explicitely in the semantic representations and use se-
mantic unification with final top-bottom unification as de-
scribed above.

5 Comparison to Gardent & Kallmeyer

Among the approaches to LTAG semantics mentioned in
the beginning of this section, (Gardent and Kallmeyer,
2003) is the closest to our framework.

Obviously, everything one can do in the approach pro-
posed in (Gardent and Kallmeyer, 2003) can be directly
transformed into the approach presented here. An advan-
tage of our approach is that semantic feature structures
are linked to whole elementary trees and therefore they
offer the possibility to define global features for eleme-
nary trees. So far we have not exploited this in this pa-
per but it obviously might be useful, for example for the
MAXS and MINP features in section 6.

A problem of (Gardent and Kallmeyer, 2003) is that,
as already mentioned, in order to do semantics using the
feature structures in the syntax, an arbitrary number of
possible feature values needs to be allowed, since the
number of labels and individual variables occurring in
a sentence cannot be limited in a general way. Conse-
quently the number of possible feature structures is no
longer finite and therefore, in contrast to standard FTAG
(Vijay-Shanker and Joshi, 1988), the formalism is no
longer equivalent to TAG. This means that semantic fea-
tures are slightly different from those needed for syntax
in terms of formal properties. Therefore, it is more ap-
propriate to separate them from syntactic features and to
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link them to whole semantic representations (i.e., to link
them to whole elementary trees). This is what the ap-
proach described above does: instead of increasing the
formal power of the syntactic formalism, the extra power
needed for semantics is added to the semantic represen-
tations, i.e., to nodes in the derivation tree.

A further important difference is that we do not use ex-
plicit holes h1, h2, . . . besides propositional variables. In-
stead, the propositional variables that remain after having
performed all unifications are understood as being holes
in the sense of previous LTAG semantics approaches.
This simplifies the formal framework considerably.

6 Sample analyses

6.1 Quantifiers

(6) everybody laughs

For quantificational NPs as in (6) we propose the anal-
ysis shown in Fig. 8. This allows us to obtain the scope
constraints mentioned above: the NP proposition is in the
restriction of the quantifier because of 4 ≥ l3. Further-
more, the following must be guaranteed: 1. the proposi-
tion to which a quantifier attaches must be in its nuclear
scope and 2. a quantifier cannot scope higher than the
next finite clause. The first constraint must result from
the combination of the lower part of the quantifier (the
NP tree) and the tree to which it attaches.6 We intro-
duce a feature MINP to pass the proposition of a tree to an
embedded quantifier. The second constraint must result
from the adjunction of the scope part of the quantifier.
We use a feature MAXS (‘maximal scope’) that passes
an upper limit for scope from a verb tree to an adjoin-
ing scope tree. E.g., see Fig. 8 for the analysis of (6). It
leads to the following unifications: 6 = 2 (adjunction of
the scope part), 1 = x and 7 = l1 (substitution of the
predicate-argument part, and 3 = l1 (final top-bottom
unification). The result is (7) which has just one disam-
biguation: 2 → l2, 4 → l3, 5 → l1.

(7)
l1 : laugh(x),
l2 : every(x, 4 , 5 ), l3 : person(x)
2 ≥ l1, 2 ≥ l2, 4 ≥ l3, 5 ≥ l1

Note that this analysis of quantifiers differs crucially
form what is proposed in (Gardent and Kallmeyer, 2003)
where quantifiers do not have a separate scope part. This
separate scope part allows us to account for various con-
straints for quantifier scope.7

6This is particularly clear in examples with quantificational
NPs that are embedded in other quantificational NPs as consid-
ered in (Joshi et al., 2003). Here, the minimal nuclear scope of
the embedded NP depends on the embedding NP and not on the
verb tree.

7(Joshi et al., 2003) derive for example constraints for rela-
tive quantifier scope in so-called inverse linking configurations
from the way the scope parts combine.
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Figure 8: Analysis of (6)

6.2 Attitude verbs

(8) Mary thinks John laughs

The analysis of attitude verbs such as thinks in (8) is
shown in Fig. 9. The propositional argument of think
(variable 3 ) is the MAXS value of the embedded verb
(MAXS of the top of the foot node). This means that quan-
tifiers or adverbs attaching to the lower verb cannot scope
over thinks.8 The adjunction leads to 3 = 1 .

(9) Mary thinks John likes everybody

In (9), wide scope of everybody over thinks should be
disallowed. If its scope part attaches to the S node of
likes, then the scope is blocked by the MAXS value of
likes. Consequently, everybody cannot have scope over
thinks because thinks takes the MAXS proposition of likes
as its argument. However, we have to make sure that
the scope part of everybody cannot attach higher, i.e., to
thinks.

In general, we allow scope parts to adjoin higher. But,
following (Joshi et al., 2003), the compositions must be
such that one or more already derived trees or tree sets
attach (by substitution or adjunction) to one single ele-
mentary tree. If only the NP tree of everybody attaches to
like, there are only two possible continuations and both
lead to an incorrect derivation for (9). The first possible

8Some counterexamples to finite clause boundness are ana-
lyzed nowadays as cases of illusive scope (Fox and Sauerland,
1996).
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Figure 9: Analysis of (8)

continuation is to adjoin the scope part of everybody to
thinks. Then the derived like tree also must be added to
thinks since it is part of the same derived tree set, i.e.,
thinks would have a substitution node instead of a foot
node. This however is problematic for the analysis of
long-distance dependencies in LTAG. The second possi-
ble continuation is that thinks attaches to like simultane-
ously with the lower everybody part. But then the scope
part has to find some other node than the S node of thinks
in order to attach to it. There is no other S node be-
sides those coming from thinks or like, so this possibility
does not work either. Consequently, one has to adjoin the
scope part to the like S node.

6.3 Problems for derivation based semantics

Now let us come back to the examples (2) and (3) men-
tioned in the beginning, repeated here as (10) and (11):

(10) Who does Paul think John said Bill liked?

(11) a. Mary, Paul claims John seems to love
b. Paul claims Mary apparently loves John

For an analysis of (10) we refer to (Romero et al.,
2004) in this volume. An analysis of (11b) is shown in
Fig. 10, (11a) is analyzed in the same way. We analyze
raising verbs similar to adverbs (see sometimes in Fig. 3).
They are in a sense inserted between the top and bottom
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Figure 10: Analysis of (11b)

P values of the node to which they adjoin. They scope
over the lower proposition. By unification, the proposi-
tion introduced by the topmost adverb/raising verb is the
P value of the root of the verb tree which is below the
MAXS proposition. Therefore, in (11b), the attitude verb
claim takes scope over the adverb.

Furthermore, the problem of multiple modifiers as in
(12) is also often discussed as an example where the TAG
derivation tree does not give the semantic dependencies
one needs (see, e.g., (Schabes and Shieber, 1994; Rogers,
2002)). These cases are difficult for a derivation tree
based semantics because only the adjective that is closest
to the modified noun attaches to the noun, all adjectives
that are further to the left attach to the adjective on their
right. However, all adjectives equally take the variable
provided by the noun as their argument.

(12) roasted red pepper

As shown in Fig. 11, in our approach the arguments of
the three predicates, pepper, red and roasted can be easily
unified such that they all refer to the same individual.

7 Conclusion

In this paper we introduced an LTAG semantics frame-
work based on the derivation tree. We use feature struc-
ture unification on the derivation tree as semantic com-
position operation, similar to the syntactic features on the
derived tree that are used in TAG. Within this framework,
we proposed an account of quantificational NPs, adverbs,
raising verbs and attitude verbs, and we have shown that
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we can analyze the examples considered in the literature
as problematic for derivation tree based LTAG semantics
approaches.
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Abstract

Junction Grammar (JG) combines junction op-
erators, multiple linked syntax/semantics trees,
and flexible traversal algorithms. The multi-
ple tree and flexible ordering characteristics of
MC-TAG and other TAG extensions are some-
what analogous. This paper proposes that these
similarities can be integrated to form a new
approach, JG-TAG. Relevant aspects of both
theories and the proposed new model are dis-
cussed in turn, and representative examples are
sketched.

1 Introduction

This paper presents an enhanced version of Tree Adjoin-
ing Grammar (TAG) that can create trees based on Junc-
tion Grammar (JG), a linguistic theory that was proposed
in the mid-1960’s. The JG tree structures discussed in this
paper represent syntactic/semantic structures with node
joining operators, multiple linked trees and flexible tree
traversal algorithms that recode the concepts of a sen-
tence into a separate articulation tree. Adding junctions
and multiple linked trees to Multiple Component TAG
(MC-TAG) and other enhancements results in a formal-
ism that can capture more sophisticated sentence rela-
tionships using fewer TAG trees than would otherwise
be required. With the advantages that TAG’s expanded
domain of locality provides, an enhanced TAG-like sys-
tem for JG could also provide an improved platform for
computational linguistic applications of JG.

2 Theoretical background

2.1 Overview of Junction Grammar

Junction Grammar (JG) is a linguistic theory proposed in
the 1960’s (Lytle, 1971; Lytle, 1974; Lytle, 1985; Melby,

1985) that is still being pursued. The theory was devel-
oped as a reaction to early Transformational Grammar
and challenged many of the basic assumptions that TG
was based upon (Lytle, 1979). Early applications of JG
have included machine translation (Gibb, 1970; Billings,
1972; Gessel, 1975; Lytle, 1975; Melby, 1978) includ-
ing the development of a JG transfer language between
source and target languages (Melby, 1974); speech syn-
thesis (Melby, 1976; Millett, 1976); and second language
instruction (Olsen and Tuttle, 1973). More recent ef-
forts have involved PC-based grammar checking (Lytle
and Mathews, 1986), automatic holistic scoring of essays
(Breland and Lytle, 1990), and secondary school English
grammar teaching (Millett and Lytle, 2004).

Junction Grammar challenged the notion that a ba-
sic grammar involves simple concatenation of strings via
phrase structure rewrite rules. A fundamental premise of
Junction Grammar is that JG operators (and their asso-
ciated operands) constitute the basic building blocks of
grammar. A well-defined process specifies operators and
their appropriate application. The basic operator names
and their symbols are: conjunction (&), adjunction (+),
subjunction ( � ), and interjunction (a combination of ad-
junction and subjunction). Two types of JG trees involv-
ing these operators are discussed in this paper: concept
trees and articulation trees. Nodes in concept trees have
a basic category label (N, V, A or P), predicate/phrase la-
bel (PN, PV, PA, or PP) or sentence/clause label (SN, SV,
SA, or SP).

Figure 1 shows the JG concept tree for a simple sen-
tence involving JG conjunction and adjunction. The for-
mer is used for coordinating conjunctions (e.g. and, or,
but) and the arithmetic operators and their lexicalizations
such as plus (hence &+). JG adjunction joins verbs or
prepositions to their objects and phrases to their subjects.

The JG subjunction operator is perhaps the most flex-
ible of the junction operators. Subjunction is used for
determiners, quantifiers, complements, relative structures

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.
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Figure 1: A binary application of the JG conjunction op-
erator for the sentence Two plus/and two equals four. The
SV node is a (verbal) sentence and the PV node is a (ver-
bal) predicate.

and modifiers. It can also be subdivided into specialized
operators that show the direction of information process-
ing in the sentence. For an illustration, consider the fol-
lowing sentence:

(1) It surprised me that the three children ate the
vegetables that I cooked.

and its associated JG concept tree in Figure 2. The word
three selects three elements of the class children, and the
junction has a single dash to the right in the direction of
the noun class node. The determiner the retrieves a spe-
cific discourse-salient instance of three children. This re-
trieval function is shown by the equal sign to the left of
the junction pointing to the determiner.

Figure 2 illustrates a second basic premise of Junc-
tion Grammar. JG allows for multiple tree structures un-
like other theories that associate all trees structures under
a single root. JG keeps complement structures such as
. . . that the children ate the vegetables . . . in the same
tree structure with the subjunction operator, thus provid-
ing interoperability between sentence and noun. Using
interjunction, JG allows for multiple intersecting trees for
modifiers and relative structures via links, thus avoiding
the need for empty categories and allowing a distinct con-
trast between complements and modifiers.

A third basic premise of JG is that trees can be or-
dered and lexicalized using flexible traversals guided
by language-specific lexical ordering and hiatus (word
deletion) rules. A JG concept tree represents syntac-
tic/semantic information about the utterance that defines
the syntactic and semantic relationships among the ba-
sic word concepts. The “goto” instructions and circled
numbers in Figure 2 show lexical ordering rules that dif-
fer from the default left-to-right depth-first traversal algo-
rithm. The complement clause . . . that the three children
ate the vegetables . . . is co-referent with the pronoun it,
but the traversal of this clause is delayed until after the
main clause is processed. Another ordering of the same

sentence and same tree structure without lexicalizing the
pronoun it, could be That the three children ate the veg-
etables surprised me. The JG tree would not change for
that ordering, except that the pronoun it would be anno-
tated as hiatused (another language-specific lexical rule
in JG) by including parentheses.

The traversal processing for the trees in Figure 2 would
thus be as follows:

1. Start processing at main SV node at top of figure.

2. Process left-to-right order to the subject N node and
output it at the first N node of the rule

�
������� � .

3. Order discontinuously the complement
�

�����
structure by going to ordering point #1, just above
the PV node.

4. Process the PV left-to-right and output surprised me.

5. Now return to the unprocessed nodes in the subject
by going to ordering point #2, by the embedded SV.

6. Order the SV left-to-right and output words . . . that
the three children ate the vegetables that . . . . The
relative pronoun that now triggers the processing of
the subordinate SV structure. After going to the
linked node, go to ordering point #3 at the top of
the relative clause SV.

7. Process the relative clause in the default left-to-right
order and output I cooked. The relative pronoun has
already been marked as processed and at this point
the entire tree has been processed.

In fact, the concept tree traversal specified above does
not directly produce an output word string. Instead, fol-
lowing another foundational principle of JG, some con-
cept tree information is recast into an articulation tree.
The flexible traversal described above constructs such a
tree, which encodes prosodic, phonological, and graphi-
cal information necessary for spoken or written language
production. The basic JG operators in an articulation tree
specify and relate breath groups and suprasegmental in-
formation; its nodes are of category H or W (for prosodic
and lexical content respectively). Figure 3 shows concept
and articulation trees for the following sentence:

(2) Which job has Sally declined?

Relevant traversal processing for the concept tree in
Figure 3(a) is as follows, where lexicalization means
mapping content appropriately into the articulation tree:

1. Start processing at the main SV node.

2. The ordering rule attached to the top node checks
below the SV for a lexical entry with a 	�

�����
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Figure 2: JG subjunction, adjunction and interjunction: a sentence with a relative clause shared across matrix and
dependent clauses (via subjunction and adjunction respectively). Lexical ordering is also specified.

feature attached. Therefore, go to the N node dom-
inating the N node with the Which lexical entry la-
beled with the ordering point #1.

3. Lexicalize Which job and then return back up the
tree go ordering point #2.

4. In Junction Grammar trees the “modalizer” extend-
ing to the left of the PV level is the point where aux-
iliary verbs such as has are lexicalized.

5. Go to ordering point #3 and continue using normal
left-to-right order to finish processing the rest of the
tree that has not yet been visited. Sally declined is
lexicalized.

In combination with the basic junction operators dis-
cussed earlier, the basic JG rules and constraints are able
to describe a wide variety of linguistic structures. Fig-
ure 4 shows a table of possible JG linguistic structures
for a portion of the interjunction general rule template� � ����� � � and � 
 ����� �	� � or ��
 
 ����� ����
 ,
where X varies over N, V, PV, and SV and Y varies over
V and P and Z varies over V, A, P, and N.

This sketch of part of the JG theory focuses on only
two of the four possible levels; consideration of the other
levels is beyond the scope of this paper. It should be

noted that JG parsers and/or generators have been imple-
mented for a wide variety of languages including English,
French, Spanish, German, Portuguese, Russian, Chinese,
and Japanese.

2.2 Overview of TAG

Tree adjoining grammars (TAG) have provided a theo-
retical framework for linguistic description and natural
language processing that has been shown to be superior
to simply using rules of a context free grammar (CFG)
due in large part to the extended context or “domain of
locality” that TAG provides (Abeillé and Rambow, 2000;
XTAG Research Group, 2001). With its lexicalized na-
ture and its detailed syntax/semantics interface, LTAG
(Lexical TAG) facilitates a straightforward representation
of important data such as subcategorization frames for
verb classes used in parsing. Appropriate usage of lexical
entries is formalized by LTAG trees that not only derive a
standard surface level parse tree but also a derivation tree
that represents semantic and thematic role relationships
for the sentence. Enhancements to TAG have included
multicomponent TAG (MC-TAG) that allows for simulta-
neous linked operations on two or more trees into the de-
rived tree to successfully derive parse trees for examples
like “picture-NP extraction”. To address the many com-
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(a) (b)

Figure 3: Two JG trees for a sentence: the JG concept tree3(a), which is traversed to create the articulation tree 3(b).

binations of orders possible in languages such as German,
a free order TAG (FO-TAG) variation was developed that
did not force a strict left-to-right processing of all nodes
of the derived tree (Becker et al., 1991; Rambow and Lee,
1994) Further enhancements of MC-TAG have included
VMC-TAG that allows for non-simultaneous adjunction
of multiple component trees to better describe free word
order languages (Rambow and Lee, 1994). D-Tree Gram-
mars (DTG) adjusted the basic TAG operations of substi-
tution and adjunction to become subsertion and sister ad-
junction in order to separate complementation and modi-
fication operations and correct inaccuracies in the TAG
derivation tree for topicization and to handle word or-
der for wh- extraction sentences for Kashmiri (Rambow
et al., 1995). In machine translation applications, syn-
chronous TAG (S-TAG) is used to represent linked source
and target language sets of trees that represent required
transfer operations while translating between the two lan-
guages (Harbusch and Poller, 2000).

3 Comparative analysis

The most obvious similarity between JG and TAG is their
use of multiple tree structures. TAG initial and auxiliary
trees can define basic lexical options such as subcatego-
rization frames for verbs along with their allowed auxil-
iary verbs and modifiers. JG represents modifier struc-
tures using subordinate tree structures. However, while
the output of a TAG derivation is a standard tree diagram
for a given sentence plus an associated derivation tree,
the JG trees represent the final syntax/semantic represen-
tation of the sentence. JG applications have created JG
trees by processing a grammar of allowed JG rules plus
language-specific lexical ordering and other algorithms.

Even though the JG interjunction rule pairs give some
expanded domain of locality over single rules, JG has do-
main of locality limitations similar to context free gram-
mars (CFG) and could greatly benefit from the mildly
context sensitive grammar advantages that an LTAG ap-
proach could provide. TAG adjunction constraints and
feature information are similar to JG lexical features that
select basic JG rule groups via algorithms that might ap-
ply, for example, for a specific verb family. However,
JG applications have relied more on specialized program-
ming accompanying basic JG rules rather than being able
to use forests of linked trees to implement lexicalized ap-
plications such as what a TAG approach would provide.

Because JG separates the syntax/semantics representa-
tion from the ordered words ready to articulate, many of
the complexities of TAG trees can be simplified. The JG
approach does put language-specific ordering and other
lexical rules into algorithms that operate on the JG syn-
tax/semantics trees, a deliberate tradeoff for not describ-
ing both syntax and order directly in tree structures. How-
ever, as the various TAG and variant systems have been
developed, amazingly complex trees are needed to allow
for all of the possible variations in word order for Ger-
man, Korean or Kashmiri. A similar set of trees for JG
parallel with a MC-TAG or DTG system would not re-
quire explicit encoding of multiple word order variations
and hence the number of trees would be reduced.

Figure 5 summarizes some of these similarities and dif-
ferences between JG and TAG.

3.1 JG-TAG

Because of their similarities, TAG and JG could conceiv-
ably be combined into a new JG-TAG approach. A parser
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Subjunction rule Adjunction rule
in main tree in subordinate tree Sample output text

N � N/l = N V + N/l = PV The mouse that the cat chased (got away).
N � N/l = N PV + N/l = SV The cat that chased the mouse (lives next door).
N � N/l = N PA + N/l = SA The tall elephant . . .
N � N/l = N P + N/l = PP The ladder upon which (I was standing) . . .
N � N/l = N PP + N/l = SP The boy from Atlanta . . .
N � N/l = N PN + N/l = SN Harry, the class clown, . . .
V � V/l = V PA + V/l = SA He looked up (the number).
V � V/l = V PP + V/l = SP (He) dropped (the paint) into the burning cauldron.

PV � PV/l = PV PA + PV/l = SA (He) went quickly (into the city).
PV � PV/l = PV PP + PV/l = SP (The city) needed water for survival.
SV � SV/l = SV PA + SV/l = SA Unfortunately, . . .
SV � SV/l = SV PP + SV/l = SP Without a doubt, . . .

Figure 4: Some basic JG relationships via interjunction; nodes are linked via the /1 annotation.

Multiple linked trees:

� JG: syntax/semantics tree representation(s) for a sentence

� TAG: grammar is represented in multiple trees but output is single parse tree plus derivation tree

Expanded domain of locality:

� JG: interjunction rule pairs but still context-free

� TAG: initial and linked auxiliary trees with adjunction constraints, mildly context sensitive with LTAG

Syntax, semantics and language-specific ordering:

� JG: separation of syntax/semantics from lexical ordering; more complex algorithms attached to rules but with
simplified trees

� TAG: variations on TAG for complex word order but more complex and numerous trees required

Figure 5: JG and TAG: contrasts involving similar features.

could then be developed following TAG’s XTAG model.
Because JG representations have separate trees (Lytle,
1979) for syntax/semantics vs. ordered output words,
such a system would be simplified from standard XTAG
with fewer trees needed for a complete grammar.

The first enhancement needed to create a JG-TAG sys-
tem would be to attach a junction operator to each non-
terminal node. We will represent this junction attached
right to the end of the node label. Because the subjunction
operator is the “ � ” character, JG-TAG would also need
to change the foot node sign from a “ � ” to a “#”. Even
though a subjunction operator would not be attached to a
foot node, we will also propose another use of the “#”
in another enhancement. Generalizing junctions allow
for creation of an arbitrary number of conjuncts without
spawning new nonterminal nodes. Figure 6 shows how
bears could be added to the conjunction rule for lions and
tigers. In this case the auxiliary tree would use the foot

node indicator “#” attached to the non-terminal N node.
The output tree shows the result of this n-ary adjunction
capability. The lexicalization of and in these sentences
is assured by the conjunction operator for the noun non-
terminal node.

Another enhancement for JG-TAG is to allow for sub-
ordinate tree structures and their creation and processing.
This is where the capabilities of MC-TAG are essential.
One auxiliary tree would create the relative pronoun node
on the side of the main clause and the other auxiliary tree
would create the mirror node on the subordinate relative
clause side. To avoid confusion with subscripts that are
used in trace nodes in standard theory trees, we propose
that the link number between these mirrored linked nodes
be a superscript. Figure 7 illustrates this process with
the sample working tree for the sentence The cat caught
a mouse. The two MC-TAG trees would operate on the
working tree by first adjoining with the node for cat and
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Figure 6: Adjoining trees in JG-TAG to form a three-node
conjunction concept tree.

then creating the subordinate relative clause, linked by
the superscript “1” with the main tree. The tree that ad-
joins into the main clause to create the

� � � � � rule
would be defined as an auxiliary tree and the subordinate
clause would be defined as an elementary tree in order
to create the new tree. The SV node of the main clause
would also be marked as the starting point for processing
the resulting JG tree forest. The overall process would be
as follows:

1. The left JG-TAG auxiliary tree will left-adjoin with
the cat node to create a

� � ����� � � subtree with
cat and that associated with the nodes.

2. The right JG-TAG elementary tree that/1 the dog
chased will then be added to the working tree forest
and the relative pronoun noun node with the super-
script link stays linked with the N/1 node in the main
working tree.

3. The resulting new working tree has the main tree,
where processing of the tree would begin, marked
as the start tree (the cat that/1 caught a mouse).

4. The subordinate tree is accessed during tree traversal
by going from the main clause mirrored link to the
subordinate clause.

3.2 JG-TAG: prospects and challenges

Early NLP applications of JG used junction rules plus
specialized programming to examine rule contexts for
triggering language-specific transfer or lexical rules. Cur-
rently JG tree processing programs are limited to a propri-
etary control language used inside recent applications. A
JG-TAG system would allow a standard XTAG-like sys-
tem to be developed that could provide a parsing capabil-

ity for JG trees, allowing wider access and easier com-
parisons with existing systems using other theories.

Another benefit of such a system would be its ability to
represent a greater portion of the grammar of a language
with fewer TAG trees. For example, if the JG concept
tree in Figure 3 were represented in JG-TAG, only one
tree would be needed to cover both cases where the sub-
stituted noun nodes include a “+WH” feature or not. This
same tree could also work for nonstandard orderings of
an SVO sentence as OSV.

A JG-TAG system would provide an excellent frame-
work to represent subcategorization frames for different
verb classes using supertag trees. TAG has always ex-
celled in providing context sensitivity to a basic rule sys-
tem and a lexicalized JG grammar implementation would
allow JG structures that have previously been represented
programmatically to be described in a more easily visu-
alized and maintainable data structure format. The verb
class JG-TAG trees would also simplify the lexical rules
by attaching them to specific verbs and allowing them to
be limited to the context of a specific verb.

One of the exercises in creating such a system would
involve the format of lexical rules that would be at-
tached to the JG-TAG trees. Each JG-like rule in the
tree specifies left-to-right, right-to-left or discontinuous
ordering. Recall that the JG approach involves in-situ
wh-elements and a specific traversal order without cre-
ating target nodes for movement. Thus the algorithm
for deciding traversal would reflect, but not implement,
movement. The documentation and implementation pa-
pers for the JG ordering algorithms and transfer language
used in an early machine translation project could be a
good starting point for a JG-TAG system (Melby 1974,
Gessel 1975).

Another challenge would be matching and using fea-
tures attached to JG nodes with the TAG feature capabili-
ties. TAG unification features that prevent more than one
tense-bearing verb to be attached usually would be imple-
mented by JG lexical agreement rules. However, the fea-
ture unification approach from TAG provides a straight-
forward manner to keep track of main and auxiliary verbs
and their inflections as a sentence is created from the tree.

Mandatory, optional and null adjunction constraints
allow the relationships between the various TAG tree
sets to be carefully defined, linked together and main-
tained. Expert rule systems generally need these kinds of
constraints in order to assure tractable development and
maintenance. These same capabilities would be very ad-
vantageous to link together JG tree fragments that would
define a working grammar for a particular language.

The power of the MC-TAG trees that encapsulate
semantic relationships would then output not just a
surface ordered derived tree but an order-independent
syntax/semantics representation less dependent on the
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Figure 7: JG-TAG MC trees for a relative clause; the top working tree is operated on by the JG-TAG multicomponent
tree that would attach the relative structure at the appropriate node and subordinate tree. The N node is structure-shared
between the trees; superscripts specify inter-tree links.

derivation tree for semantic relationships. The JG trees
are not at as low a semantic level as the derivation tree
but provide structure related to the original utterance (e.g.
active vs. passive) and are very rich in specific syntax and
semantic relationships (e.g. themes and verb classes with
thematic roles (Millett, 1975)) between the concepts of
the utterance. Comparative and quantifier structures have
a particularly rich semantic structure in JG (Lytle 1985)
and a JG-TAG system could facilitate comparison of the
capabilities of a JG-based text-understanding application
to other standard approaches. A JG-TAG system could
also provide a standardized application and coding frame-
work for using Junction Grammar.

4 Conclusions

As TAG formalisms have been applied to natural lan-
guages, their advantages over context-free phrase struc-
ture rules have become more apparent. Many useful re-

finements to the basic TAG formalism have supported
a wide variety of structures. Meanwhile JG embodies
rather different assumptions than do traditional theories:
a separation of linguistic data via conceptual and artic-
ulation trees, junction operators on non-terminal nodes,
multiple-linked tree structures, and flexible traversal of
lexical rules. The appreciable overlap of approaches with
TAG and JG has prompted this discussion on combining
the benefits of both theoretical systems to represent and
process Junction Grammar trees. The advantages of the
mildly context sensitive lexical JG-TAG system proposed
in this paper can expand the domain of locality for JG
trees, simplify lexical rules by attaching them to supertag
class trees and draw on the extensive NLP experience us-
ing TAG based systems to benefit JG. TAG could likely
also benefit from junctions, ordering, and multiple tree
enhancements from Junction Grammar.
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Abstract

We present a method to approximate a LTAG
grammar by a CFG. A key process in the ap-
proximation method is finite enumeration of
partial parse results that can be generated dur-
ing parsing. We applied our method to the
XTAG English grammar and LTAG grammars
which are extracted from the Penn Treebank,
and investigated characteristics of the obtained
CFGs. We perform CFG filtering for LTAG by
the obtained CFG. In the experiments, we de-
scribe that the obtained CFG is useful for CFG
filtering for LTAG parser.

1 Introduction

Recently, lexicalized grammars such as Lexicalized Tree
Adjoining Grammar (LTAG) (Schabes et al., 1988) and
Head-Driven Phrase Structure Grammar (HPSG) (Pollard
and Sag, 1994) have attracted much attention in prac-
tical application context (Deep Thought Project, 2003;
Kototoi Project, 2001; Kay et al., 1994; Carroll et al.,
1998). However, inefficiency of parsing with those gram-
mars have prevented us from adopting them for practi-
cal usage. Especially in the LTAG framework, although
many studies proposed parsers that are theoretically effi-
cient (Vijay-Shanker and Joshi, 1985; Schabes and Joshi,
1988; van Noord, 1994; Nederhof, 1998), we do not at-
tain any practical LTAG parser that runs efficiently with
large-scale hand-crafted grammars such as the XTAG En-
glish grammar (XTAG Research Group, 2001).

Yoshinaga et al. (Yoshinaga et al., 2003) demonstrated
that a drastic speed-up of LTAG parsing can be achieved
when a LTAG grammar is compiled into a HPSG (Yoshi-
naga and Miyao, 2002) and a CFG filtering technique for
HPSG-Style grammar (Kiefer and Krieger, 2000; Tori-
sawa et al., 2000) is applied to the obtained HPSG. In ex-
periments with the XTAG English grammar, they found
that an HPSG parser with CFG filtering (Torisawa et
al., 2000) outperformed a theoretically efficient LTAG

parser (Sarkar, 2000) in terms of empirical time complex-
ity. Although their approach does not guarantee the theo-
retical bound of parsing complexity,O(n6) for a sentence
of lengthn, the empirical results of their CFG filtering are
still satisfactory.

In this paper, we propose a novel context-free approxi-
mation method for LTAG by reinterpreting the method by
Yoshinaga et al. in the context of LTAG parsing. A fun-
damental idea is to enumerate partial parse results that
can be generated during parsing. We assign CFG non-
terminal labels to the partial parse results, and then regard
their possible combinations as CFG rules.

In order to investigate the characteristics of CFGs pro-
duced by our method, we applied our method to two kinds
of LTAG grammars. One is the XTAG English gram-
mar, which is a large-scale hand-crafted LTAG, and the
other is LTAG grammars extracted from Penn Treebank
Wall Street Journal by the grammar extraction method de-
scribed in (Miyao et al., 2003). Then, we compare pars-
ing speed of a CKY parser using the obtained CFG with
parsing speed of an existing LTAG parser.

The remainder of the paper is organized as follows.
Section 2 introduces background of our research. Sec-
tion 3 describes our approximation method. Section 4
reports experimental results with the two kinds of LTAG
grammars.

2 Background

2.1 Lexicalized Tree-Adjoining Grammar (LTAG)

An LTAG consists of a set of tree structures, which are as-
signed to words, calledelementary trees. A parse tree is
derived by combining elementary trees using two gram-
mar rules calledsubstitution and adjunction. Figure 1
shows elementary trees for“I”, “run” and“can”, and
depicts how they are combined by substitution and ad-
junction.

Substitution replaces a leaf node of an elementary tree
by another elementary tree whose root node has the same
label as the leaf node. In Figure 1, the leaf node labeled
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Figure 1: LTAG: elementary trees, substitution and ad-
junction

“NP” of α1 is replaced byα2, which has a root node la-
beled “NP.”

Adjunction replaces an internal node of an elementary
tree by another elementary tree whose root node and one
leaf node called afoot node have the same label as the
internal node. In Figure 1, the internal node labeled “VP”
of α1 is replaced byβ2, which has a root node and a foot
node labeled “VP.”

2.2 CFG filtering

CFG filtering (Harbusch, 1990; Maxwell III and Kaplan,
1993; Torisawa and Tsujii, 1996) is a parsing scheme that
filters out impossible parse trees using a CFG extracted
from a given grammar prior to parsing. In CFG filtering,
we first perform an off-line extraction of a CFG from a
given grammar, (Context-free (CF) approximation). By
using the obtained CFG we can compute efficiently the
necessary condition for parse trees the original grammar
could generate. Parsing using the obtained CFG as a fil-
ter comprises two phases (Figure 2). In the first phase,
we parse a sentence by the obtained CFG. In this phase,
the necessary condition represented by the CFG acts as
a filter of parse trees. In the second phase, using the
whole constraints in the original grammar, we examine
the generated parse trees, and eliminate overgenerated
parse trees.

The performance of parsers with CFG filtering de-
pends on the degree of the CF approximation (Yoshinaga
et al., 2003). If CF approximation is good, the number
of overgenerated parse trees is small. Thus, the key to
achieve efficiency in LTAG parsing is to maintain gram-
matical restrictions in CFG as efficiently as possible. The
more of the grammatical constraints in the given gram-
mar the obtained CFG captures, the more effectively we
can restrict the search space.

There are existing CFG filtering techniques for
LTAG (Harbusch, 1990; Poller and Becker, 1998). These
techniques extract CFG rules by simply dividing elemen-
tary trees into branching structures as shown in Figure 3.
Since the obtained CFG can capture only local constraints

lexicalized grammar

Input
“I can run”

off-line
extraction
of CFG

parsing
by

CFG

overgenerated
parse trees

parsing
by the

lexicalized
grammar

correct
parse trees

Figure 2: CFG filtering

S

CFG rules

NP VP

VP V NP
V NP

S

NP VP

Figure 3: The existing CF approximation for LTAG

given in the elementary trees, we must examine many
global constraints in the second phase.

CFG filtering techniques have also been developed for
HPSG (Torisawa and Tsujii, 1996; Torisawa et al., 2000;
Kiefer and Krieger, 2000). CFG rules are extracted by
applying grammar rules to lexical entries and by enumer-
ating partial parse results (sign) that can be generated dur-
ing parsing (in Figure 4). The obtained CFG can capture
global constraints given in the lexical entries, because the
generated partial parse results preserve the whole con-
straints given in the lexical entries.

As Yoshinaga et al. demonstrated using HPSG-style
grammar converted from LTAG, finite enumeration of
partial parse results produces a better CFG filter than the
existing CF approximation for LTAG because of its abil-
ity to capture the global constraints. In the paper, we
re-interpret CF approximation of HPSG by Yoshinaga’s
method (Yoshinaga et al., 2003).

3 CF Approximation algorithm for LTAG

In this section, we describe an algorithm of our CF ap-
proximation of LTAG. In the following, we first describe
an approximation of LTAG which consists only of single-
anchored elementary trees. We then describe an approx-
imation of general LTAG which includes multi-anchored
elementary trees.

In Section 3.1, we introduce a basic idea in our method.
In Section 3.2, we explain our method in detail. In Sec-
tion 3.3, we explain the way of applying our method to
LTAG which comprises multi-anchored elementary trees.
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Figure 4: The existing CF approximation for HPSG

3.1 Basic Idea

The fundamental idea of our approximation method is to
enumerate partial parse results that can be generated dur-
ing parsing. We obtain a CFG by assigning CFG non-
terminal labels to the partial parse results, and regard-
ing bottom-up derivation relationships between the par-
tial parse results as CFG rules.

By recursively applying substitution and adjunction
to elementary trees, we enumerate partial parse results
derivable by LTAG. We adopt one of the existing mode,
head-corner traversal (van Noord, 1994) (Figure 5), to
recursively apply grammar rules.

In the first step of head-corner traversal, an elementary
tree is taken as input and a directed path from an anchor
node calledhead-corner to the root node is defined in a
certain manner. The path traverses along all the nodes in
the elementary tree. Then, grammar rules are incremen-
tally applied to each node along the path.

We assign a non-terminal label of CFG to a subtree.
A labeled subtree must include all information for enu-
meration. We determine this subtree as follows. A tree
is divided into two parts, at the node to which we are ap-
plying a grammar rule (Figure 6). The “lower” part of
the tree is a subtree below the node to which we are ap-
plying a grammar rule. The “upper” part consists of the
nodes to which we will apply grammar rules in the rest
of enumeration. We need only the “upper” part of the
tree that includes all information necessary in the rest of
the enumeration process. In this paper, we call the node
to which we are applying a grammar rule aprocessing
node, and we call the upper part of a tree anactive par-
tial tree. CFG non-terminal labels are assigned to each
active partial tree.

By assigning CFG non-terminals to generated active
partial trees, we obtain CFG rules as bottom-up deriva-
tion relationships between them. In Figure 7, the fol-
lowing CFG rules are obtained:G → A F, F → E,
E → D E, D → B andE → C.
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according to the path shown by the dotted line. 

Figure 5: head-corner traversal
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Figure 6: Division of a tree into two parts

3.2 Algorithm

Table 1 shows pseudo-code of our approximation algo-
rithm. The algorithm takes LTAGG as input and outputs
a CFGG′.

We start by explaining the top-level function
‘‘extract cfg from ltag.’’ The function
iteratively picks up two active partial parse trees from
the set of active partial trees generated so far, and
applies possible grammar rules. Whenever a new active
partial parse tree is generated, we assign a new CFG
non-terminal label and add it to the set. In case that
new partial parse results have not been added during one
iteration, we exit withG′, which is the resulting CFG.

The function‘‘apply rules’’ applies the gram-
mar rules to two active partial trees, and change the pro-
cessing node to the next node. We apply unary rule in
line 5, substitution in line 8, and adjunction in line 12.

Let us consider the extraction of CFG from LTAG de-
fined in Figure 1. Figure 7 shows the extraction pro-
cess. The initial active partial treesA, B andC originate
from α1, α2, andβ1. In the first iteration in the func-
tion ‘‘extract cfg from ltag’’, two partial ac-
tive trees,D and E, and two CFG rules,D → B and
E → C are extracted. In the second iteration, one partial
active tree,F and two CFG rules,E → D E andF → E
are extracted. In the third iteration, one partial active tree,
G, and one CFG rule,G → A F are extracted.

When substitution is applied to an active partial tree,
the size of the parent’s active partial tree is smaller than
child’s active partial trees. Thus, the number of gener-
ated active partial trees is finite, and the number of non-
terminal labels in the obtained CFG is finite as well. In
other words, if the CFG rules comprise only substitutions,
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Table 1: The pseudo code of our algorithm

INPUT: G /* LTAG */
OUTPUT: G′ /* CFG */

Tn: /* a set of all active partial trees for nth iteration generated so far */
NTn: /* a set of new active partial trees for nth iteration */

Initialize:
Tn := φ
NT1 := etree(G)
G′ := φ
n := 1

1: procedure extract cfg from ltag(G)
2: begin
3: while ( NTn �= φ )
4: Tn := Tn−1∪NTn
5: foreach ntn in ( NTn )
6: foreach tn in ( Tn )
7: NT := apply rules( tn, ntn )
8: NTn+1 = NT ∪NTn+1
9: end foreach
10: end foreach
11: n++
12: end while
13: return G′
14: end extract cfg from ltag

1: procedure apply rules(t1, t2)
2: begin
3: NT := φ
4: if ( sibling( c node( t1 ) == nil ) ) /* if we cannot apply grammar rules */
5: NT = unary( t1 )
6: G′ = make rule( t1, NT ) ∪ G′
7: else if ( sibling( c node( t1 ) ) == ‘‘subst’’ ) /* if we can apply substitution */
8: NT = substitute( t2, t1 )
9: G′ = make rule( t2, t1 ) ∪ G′
10: else if ( sibling( c node( t1 ) ) == ‘‘foot’’ ) /* if we can apply adjunction */
11: if ( depth foot( t1 ) == 1 || count adjoing( t1 ) <= LIMIT )
12: NT = adjoin( t1, t2 )
13: G′ = make rule( t2, t1 ) ∪ G′
14: if ( depth foot( t1 ) >= 2 && count adjoing( t1 ) > LIMIT )
15: NT = ∗
16: G′ = make rule( t2, t1 ) ∪ G′
17: end if
18: end if
19: return NT
20: end apply rules

etree: To return the elementary trees with head-corner paths.
c node: To return the processing node of the argument.
unary: To return an active partial tree with the node

which we will apply the grammar rules after.
make rule: To return the CFG rule of arguments
substitute: To apply the rule and to return new active partial tree,

if we can apply the grammar rule of substitution to the arguments,
adjoin: To apply the rule and to return new active partial tree,

if we can apply the grammar rule of adjunction to the arguments.
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Figure 7: Approximation of LTAG to CFG

LTAG can be converted to CFG in finite size.
We must be careful about the depth of a foot node of

an auxiliary tree when adjunction is applied to an active
partial tree. If the depth of a foot node is one, active par-
tial tree becomes the same as one of the two active partial
trees to which adjunction are applied. If the depth of a
foot node is two or more, parent’s active partial tree takes
a form of a combination of two active partial trees (Fig-
ure 8). This means that the number of active partial trees
increases infinitely, if there are some auxiliary trees with
a foot node at depth two or more.

In order to prevent the infinite increase of active partial
trees, we count the number of the applications of adjunc-
tion which generates new active partial trees, and assign
a special non-terminal “∗” to active partial trees when the
number of the applications reach a certain threshold. We
then add CFG rules,∗ → X ∗ and∗ → ∗ X for all non-
terminal labels “X” in order to guarantee that the resulted
CFG can generate all parse trees that LTAG can generate.
By using these rules, resulted CFG always generate parse
trees which are derivable by the given grammar. Thus the
obtained CFG can be used as a filter.

3.3 Extention to LTAG including multi-anchored
trees

Our method can be applied to LTAG with elementary
trees which contain only one anchor. It is the reason that
the path from a head node to a root node becomes set-
tled uniquely. The above approximation algorithm a han-
dle general LTAG with multi-anchored trees by simply
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Figure 9: compiling XTAG English grammar

converting those trees into single anchored trees. When
a grammar includes multi-anchored elementary trees, we
simply replace an anchor node of them by a node to which
can be applied a grammar rule of substitution (e.g.TO in
Figure 9), and add a new elementary tree (e.g.TO-“to”
in Figure 9).

4 Experiments

In order to observe the characteristics of CFG obtained
by our method, we performed three experiments. In Sec-
tion 4.1, we apply our method to the XTAG English
grammar. In Section 4.2, we apply our method to LTAG
grammars of various size extracted from a corpus, and
investigate the relation between the size of LTAG gram-
mars and the specification of the obtained CFG. In Sec-
tion 4.3, we examine the characteristics of the obtained
CFG in terms of the parsing speed, and compare the pars-
ing speed of a CKY parser using the obtained CFG with
the parsing speed of an existing LTAG parser.

4.1 Experiment on threshold value of adjunction

We applied our algorithm to the XTAG English grammar.
In Table 2, we show the obtained CFG approximation of
the XTAG English grammar. In this experiment, we var-
ied threshold value of times of adjunction, which gener-
ates a new active partial tree, 0.
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Table 2: approximating the XTAG English grammar by
CFG

# of elementary trees of XTAG 924
# of terminal labels 924
# of non-terminal labels 2,779
# of rules 31,503

Even if the threshold is small, an obtained CFG is use-
ful for parsing, because we hardly perform an adjunction
using an auxiliary tree with a foot node with the depth
of two or more in LTAG parsing. The maximum number
of the possible rules is 2,779× (924+2,779)+2,779×
(924+ 2,779)× (924+2,779)= 370338,116,519,448.
Our method produced 31,503 rules (about 0.00008% of
all possible ones). Thus our method is efficient with re-
spect to avoiding meaningless increase of the number of
CFG rules. The small percentages means that obtained
CFG is excellent as a filter.

4.2 Experiment on Various Size of LTAG

We extracted LTAG grammars from Section 02-06, 02-
11, 02-16, and 02-21 of Penn Treebank Wall Street Jour-
nal (Table 3), and applied our method to the LTAG gram-
mars.

We investigated the relation between the size of termi-
nal labels, the size of non-terminal labels, and the size of
CFG rules (Table 4). The increase of the number of non-
terminal labels is slower than the increase of the number
of terminal labels. Thus, our method is applicable for a
larger LTAG than the LTAG which we used for this ex-
periment.

4.3 Comparing our method to an existing LTAG
parser

We investigated parsing performance of the obtained
CFG.

We selected sentences which consists of 15 or less
words from Section 23 of Penn Treebank Wall Street
Journal, and experimented on parsing the sentences by
two ways. One way is an existing LTAG parser with the
XTAG English grammar. The other way is a CKY parser
with the obtained CFG from the XTAG English grammar
with threshold 1. The reason why we used the sentences
which consists of 15 or less words is that existing LTAG
parser is too slow to parse longer sentences.

Figure 10 and Figure 11 show the performances of an
existing LTAG parser (Sarkar, 2000) and a CKY parser
with the obtained CFG respectively. The CKY parsing is
fast enough to employ a CFG filter. For longer sentences,
it is expectable that our algorithm is effective.

5 Concluding Remarks and Future
direction

In this paper, we showed an approximating method of
LTAG by CFG. A specification of a CFG obtained from
the XTAG English grammar shows that our method is ef-
ficient in the number of CFG rules. In addition, we com-
pared parsing performance between the existing LTAG
parser and the CKY parser with CFG which is obtained
from automatically extracted LTAG grammars. The com-
parison showed that the obtained CFG is useful for CFG
filtering for a LTAG parser. We will implement CFG fil-
tering for a LTAG parser, and verify the efficiency of CFG
filtering with our approximated CFG.
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Abstract

We explore the possibility of accounting for
scrambling patterns in German using multi-
dimensional grammars. The primary desir-
able characteristic of this approach is that it
employs elementary structures with a single
uniform component and combining operations
which operate at a single point in the derived
structure. As a result, we obtain an analysis
that is much closer in spirit to ordinary TAG
and to the intuitions of TAG based linguistics.
Ultimately, we obtain an account in which the
variations in word order are consequences of
variations of a small set of structural parame-
ters throughout their ranges.

1 Introduction

The difficulty of accounting for the phenomenon of
scrambling, the apparently arbitrary order in which ar-
guments can occur in subordinate clauses in German, has
been one of the primary motivations for exploration of ex-
tensions to TAG (Rambow, 1994; Kulick, 2000; Rambow
et al., 1995; Rambow et al., 2001; Becker et al., 1991).
The issue is not generation of the string sets—in most ac-
counts these are actually context-free—but rather doing
so within a derivational framework in which lexical heads
and their arguments are introduced simultaneously. This
idea that elementary structures should include all and
only a single thematic domain (Frank, 2002) is generally
taken to be the foundation of TAG based linguistic theo-
ries. Among other things, it insures that every elemen-
tary structure is semantically coherent and that deriva-
tions maintain that coherence. Under these assumptions,
it has been shown that scrambling is beyond the gener-
ative power of ordinary TAG and, in full generality, be-
yond even set-local multicomponent TAG (Becker et al.,
1992).

Generally, extensions to TAG intended to accom-
modate scrambling involve factorization of elementary

structures either into tree sets or into trees with more or
less independent regions accompanied by a modification
of the combining operation to interleave these regions in
the derived tree. In this paper, following the lead of our
exploration of similar issues in TAG accounts of English
raising phenomena (Rogers, 2002), we explore one il-
lustrative pattern of scrambling using multi-dimensional
grammars (Rogers, 2003). The primary desirable char-
acteristic of this approach is that it employs elementary
structures with a single uniform component and combin-
ing operations which operate at a single point in the de-
rived structure. As a result, we obtain an analysis that
is much closer in spirit to ordinary TAG and to the intu-
itions of TAG based linguistics. Ultimately, we obtain an
account in which the variations in word order are conse-
quences of variations of a small set of structural parame-
ters throughout their ranges.

We should be clear at the outset that even though our
primary motivation is a desire to preserve the fundamen-
tal tenets of standard TAG theories of syntax, our goal
is not a linguistically complete account of scrambling, or
even one that is linguistically motivated beyond the goal
of maintaining semantically coherent elementary struc-
tures and derivations. Rather, we intend to show how
the formal power of the multi-dimensional grammars can,
potentially, support such an account. We look only at
one particular case of scrambling, but we believe that this
case illustrates the relevant formal issues. These results
suggest that scrambling phenomena of any concrete de-
gree of complexity can be handled at some level of the
multi-dimensional grammar hierarchy. We close the pa-
per with some speculation about what such a result might
have to say about the nature of limits on the acceptability
of scrambling as its complexity increases.

2 A Formalized Instance of Scrambling

The case we examine, taken directly from Joshi, Becker
and Rambow (Joshi et al., 2000) (also (Becker et
al., 1991)), involves scrambling within a matrix clause
headed by a verb that subcategorizes for two NPs and an
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May 20-22, 2004, Vancouver, BC, CA.
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Figure 1: Class A) NP
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S with that embedded S headed by a verb that subcatego-
rizes for three NPs, one of which is a PRO subject. This
formalizes as


����
NP

����
NP

� ���
NP

�
� � NP

���� V � V ��� �
a permutation �

where NP

��
and NP

� �
are the first and second argument

of the matrix verb and NP

�� and NP
�� are the arguments,

other than PRO, of the embedded clause.
There are 24 permutations of the four NP arguments.

We divide these into six classes (where � ��� and � ��� each
vary over 1,2):

A) NP
� �
NP

	 �
NP


� NP
� � V � V �

B) NP

� NP

� �
NP

	 �
NP

� � V � V �
C) NP


� NP
� � NP

� �
NP

	 �
V � V �

D) NP
� �
NP


� NP
� � NP

	 �
V � V �

E) NP

� NP

� �
NP

� � NP
	 �
V � V �

F) NP
� �
NP


� NP
	 �
NP

� � V � V �
.

3 Class A)—CF Structures

Class A) is the canonical structure with, potentially, the
arguments extracted within their own clauses. Standard
TAG accounts treat the matrix clause as an auxiliary tree
adjoining at the root of the embedded clause. Follow-
ing Rogers (1998) and Rogers (1999) we interpret TAG
as a sort of Context-Free Grammar over trees. Just as

CFG productions can be interpreted as local (height one)
trees expanding a root node to a string yield with the
derivation process splicing these together to form deriva-
tion trees, TAG auxiliary trees can be interpreted as local
three-dimensional structures expanding a root node to a
tree yield with the TAG derivation process splicing these
together to form three-dimensional derivation structures.

These derivation structures correspond exactly to the
derivation trees normally associated with TAG, with the
exception that the derived structure (in this case a tree)
can be obtained from it by restricting to nodes of max-
imal depth (in the third dimension) in a way analogous
to taking the string yield of a CFG derivation tree. The
intuition behind these structures is that TAG expresses a
hierarchical decomposition of trees analogous to the hi-
erarchical decomposition of strings that those trees repre-
sent.

It is important not to misconstrue this notion of “di-
mension.” While it may be convenient to visualize these
structures as having actual extent in the third dimen-
sion, they are, fundamentally, just graphs with multi-
sorted edges and, hence, dimensionless. The three dimen-
sions correspond to linear precedence, ordinary domina-
tion and domination of the “adjoining” sort. These are
not arbitrary or independent. As they represent recursive
hierarchical decomposition, each edge relation is “tree-
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like” and descendants of a node along a given dimension
inherit the relationships of that node in all smaller dimen-
sions in the same way that linear precedence is inherited
by the nodes in a subtree. (See Rogers (2003).)

Here, the adjunction of the matrix tree at the root of
the embedded tree attaches the root of the three dimen-
sional structure representing the former at the S node in
the (tree) yield of the latter. (See Figure 1.) The up-
per pair of structures represent the base structures, the
lower pair the structures with a locally extracted argu-
ment. Each of the four variations of Class A) is obtained
from one of the four combinations of these four struc-
tures. We have followed Rogers (2002) in treating the
subject as if it were adjoined, in some sense, at the root of
the VP. This is done, here, for purely formal reasons—it
will provide the structural flexibility we will need to de-
rive the more complex scrambling patterns. We carry this
structural configuration through in treating extraction; we
assume that extracted arguments attach in a similar fash-
ion to the root of the S.

Note that there is potential ambiguity in taking the tree
yield of these structures in that the yield of one compo-
nent might attach at any of the leaves of the yield of the
component which immediately dominates it. In TAG, of
course, this is resolved by designating one of the leaves
as the foot with all splicing being done at the foot. Here
we designate the foot by marking the spine of the compo-
nents with doubled lines. We carry this through in higher
dimensions, as well; each elementary structure, in each
dimension, has a spine leading from its root to a foot
node in its yield. Two of the four resulting tree yields
are shown on right of the figure.

Since adjunction at the root has the same effect as
substitution, this is effectively a context-free structure.
As shown schematically in the figure, the (two dimen-
sional) yields of the two structures are simply concate-
nated. Note that, as in the standard TAG accounts, addi-
tional recursion is accommodated by adjoining additional
subordinating structures at the root of what is here the
matrix structure.

4 Classes B) and C)—Ordinary
Adjunction

In Classes B) and C), the arguments of V � are wrapped
around those of V



, as shown at the bottom of Figures 2

and 3. This is the pattern corresponding to adjunction
proper. Class B) can be obtained by extracting either
NP



� , NP

�� then adjoining the matrix structure at the foot
of the yield of the extracted NP structure (the point be-
tween the extracted element and the original S node).
As usual, this has the effect of splitting the tree yields
of the subordinate structure into two factors and inserting
the tree yield of the matrix structure between them. Note

that all that distinguishes this class from Class A) is the
third-dimensional foot node of the embedded structure,
which is, itself, determined by the form of the extracted
NP structure.

Class C) is nearly identical. We extract both of the
arguments of V � and adjoin, again, at the point between
the extracted elements and the original S node.

Note that in both these cases, the scrambling can apply
recursively by attaching additional auxiliary structures at
the tree yield of the first. If this is attached at the node
corresponding to the root of the yield of that structure,
in the manner of Class A), the effect is only to move the
arguments scrambled out of the more deeply embedded
clauses across the new clause. If, on the other hand, it
is attached at the foot of the yield of the extracted NP
structure, in the manner of Classes B) and C), then the
effect will be to scramble additional arguments out of the
intermediate clause.

5 Class D)—Higher-Order Adjunction

Class D) is the first of the configurations that cannot be
obtained by ordinary adjunction. Here the arguments of
V



and V � don’t simply nest one inside the other, but,

rather interleave in the way shown schematically on the
top left of Figure 4. Since the sequences of labels along
the spines of TAG tree sets must form CF languages,
such “cross-serial” configurations cannot be generated by
TAGs. They can, however, be generated if we add an-
other level of hierarchical decomposition. Grammars at
this level yield tree sets with TAL spine languages (cor-
responding to the third level of Weir’s Control Language
Hierarchy (Weir, 1992)). A schematic representation of
the general embedding pattern provided at this level is
given in Figure 5.

To employ this nesting pattern we adopt four-
dimensional structures and take the matrix structure to,
again, attach between the extracted structure and the orig-
inal S, but now along the fourth dimension. (Figure 4.)
This has the result of splitting the three-dimensional yield
of the embedded structure into two factors and inserting
the three-dimensional yield of the matrix structure be-
tween them. Given the third-dimensional foot of the ma-
trix structure, the “upper” factor of the embedded struc-
ture is, effectively, adjoined between the two arguments
of the matrix structure which is, in turn adjoined at the
root of the “lower” factor. (As shown at the bottom of the
figure.) The effect on the tree yield is exactly as if the
(two-dimensional) matrix tree had been factored into two
components, one adjoining at the root of the embedded
tree and one properly along its spine. (As shown at the
right.)

It should be noted that with this configuration we can
account for all the variations of Classes A) through D) by
varying the position of the foot of the matrix structure and
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the point at which it attaches to the embedded structure.
(See Figure 6.)

6 Classes E) and F) and a Unified Account

The nesting pattern of Class E) (Figure 7) requires the
embedded tree to be factored into three components, not
just two. This can still be obtained with multi-component
adjoining in a manner similar to that of Class D), with
both components of the matrix structure adjoining prop-
erly along the spine of the embedded tree. While this
pattern is also obtainable in the four-dimensional gram-
mars, it necessarily uses the upper half of the VP compo-
nent, which, for the sake of consistency, we would rather
not do. Consequently, we again add another hierarchical
relationship and lift to the fifth level, taking the two argu-
ments of V � to be extracted via the fourth relation rather
than the third. Class F) can be treated similarly, with the
exception that one of the arguments is extracted along the
third relation, the other along the fourth. (Figure 8.)

This variation between Classes E) and F) leads to an
account in which all six classes are derivable within a
single basic structure, shown in Figure 9. Here there are
six parameters of variation:

1. The position of the fourth-dimensional foot of the
matrix structure.

2. Whether one or both arguments of V



are extracted
along the fourth relation.

3. and 4. The position of the three-dimensional feet of
the matrix and embedded structures.

5. and 6. And, finally, the relative nesting of the ex-
tracted NPs in each structure.

This gives 96 combinations but as the word-order vari-
ations are exhaustive, they generate only the 24 distinct
configurations of the six classes of structures.

7 Arbitrarily Complex Scrambling

While no level of the multi-dimensional grammar hierar-
chy can capture scrambling of arbitrary complexity, there
is no bound on the number of tree factors that can be
interleaved at some level of this hierarchy. In general,
grammars at the

�	��

level factor the tree yields of the el-

ementary structures into �
��
 �

fragments, with the tree
yield of the result of adjoining one into another being
split into �

��
������
regions from the initial structure in-

terleaved with �
��
��

regions from the auxiliary structure.
(Figure 10 gives the pattern for the fifth level.) Conse-
quently, scrambling of any concrete degree of complexity
can be captured at some level of the hierarchy, although
it is not clear that this can necessarily be done in an plau-
sibly “uncontrived” way.

In Joshi et al. (2000), Joshi, Becker and Rambow note
that the boundary of general acceptability in scrambling,
roughly two levels of embedding, coincides with what
can be handled by tree-local MCTAG. This leads them to
suggest that this boundary may actually be competence
based, rather than performance based as is usually as-
sumed. Here we have additional flexibility. In choos-
ing the level of the competence grammar in the multi-
dimensional hierarchy, we set the boundary on the com-
plexity of the scrambling we admit. On the other hand,
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given that the level of the grammar corresponds to the
number of hierarchical relations we use in encoding the
structure of the utterances, one could make a plausible
argument that the level of the grammar might be deter-
mined by performance considerations, such as working
memory limitations. In this way one might arrive at an
account of the limits on the complexity of scrambling
that was simultaneously performance based—a conse-
quence of bounds on working memory—and competence
based—a consequence of the complexity of the grammars
which can be processed within those bounds.
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Abstract

This papers presents a compositional seman-
tic analysis of interrogatives clauses in LTAG
(Lexicalized Tree Adjoining Grammar) that
captures the scopal properties of wh- and non-
wh-quantificational elements. It is shown that
the present approach derives the correct seman-
tics for examples claimed to be problematic
for LTAG semantic approaches based on the
derivation tree. The paper further provides an
LTAG semantics for embedded interrogatives.

1 Introduction.

Following (Karttunen, 1977), an interrogative clause Q
expresses a function from possible situations (or worlds)
to the set of true answers to that question Q in that situ-
ation. For example, the interrogative clause (1) has the
meaning (2), where who contributes the

�
-quantification�����

person � ���	��

��� . In a situation
��


where Pat, Al, Kate
and nobody else called,

� ��� � ��
���� � equals the set (3).

(1) who called?

(2) � � 
 ����� ��� � 
 ��������
person � ���	� 
 ��� ����� � � call � ���	�����

(3) � � � � call � pat
�	���

, � � � call � al
�	���

, � � � call � kate
�	���"!

The aim of this paper is to develop a compositional
semantic analysis of interrogative clauses in LTAG, with
two goals: (i) the main goal is to capture the scopal prop-
erties of quantificational elements within the question,
and (ii) the secondary goal is to achieve the correct se-
mantics for interrogatives embedded under e.g. know.

The scope data concerning goal (i) are the following.
When an interrogative clause contains a wh-element and
a non-wh quantificational element, as in (4), the seman-
tic contribution of who must be outside the proposition

headed by � � , whereas the semantic contribution of ev-
erybody must be inside that proposition, as shown in (5).1

(4) (John knows) who likes everybody

(5) (John knows) � � 
 �#��� ��� � 
 ��$�����
person � ���	� 
 �%� ���&� � � ')( � person �*( �	���+ like � ��� ( �	�����,�

Note that, when we have more than one wh-phrase and
more than one non-wh-quantifier, the non-wh-quantifiers
can yield difference scope configurations among them-
selves (and so can the wh-phrases among themselves,
trivially). But all the wh-phrases must take scope above
the � � proposition and all the non-wh-quantifiers must
take scope below it. This is illustrated in (6), which has
the readings (7)-(8), but not e.g. the readings (9)-(10).

(6) (John knows) who seemed to introduce who to ev-
erybody

(7) (John knows) � ��
 �#��� ��� ��
���$���)� ( � person � ���	��
���� person �-( �	��
��� ���.� � � seem �/� ��0 � ')1 � person �-1 �	��02�+ introduce � ��� ( � 1 �	��03�4�/�5�����
(8) (John knows) � ��
 �#��� ��� ��
���$���)� ( � person � ���	��
���� person �-( �	��
���76 ���.� � � ')1 � person �81 �5���+ seem �8� ��0 � introduce � ��� ( � 1 �5��03�4�/�5���4�
(9) (John knows) � ��
 �#��� ��� ��
���$�����

person � ���	��

�%� ���&� � � � ( � person �*( �	����
seem �8� � 0 � '%1 � person �-1 �	� 0 �+ introduce � ��� ( � 1 �	��03�4�/�5�����,�

(10) (John knows) � � 
 �#��� ��� � 
 ��$���)� ( � person � ���	� 
 ��� person �-( �	� 
 �� '%1 � person �81 �5��
��+ ���.� � � seem �/� ��0 � introduce � ��� ( � 1 �	��02�����	�����
1We leave aside the so-called pair-list readings arising when

everybody c-commands the trace of the wh-phrase and a special
absorption operation takes place (Chierchia, 1993).

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.
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laugh

np vp
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Figure 1: Derivation for (13)

With respect to goal (ii), we need to construct a ques-
tion meaning that will be able to combine with a question
taking verb like know. In the end, a sentence like (11)
must receive the truth-conditions in (12). The expression��� ��� � ��
�� in (12) stands for the set of doxastic alterna-
tives of John in

��

, that is, for the set of possible situa-

tions
��0

that conform to John’s beliefs in
��


. The formula
(12) states that we are in a situation

��

such that, for all of

John’s belief alternatives
��0

in
��


and for all propositions
� , ��� � �who called

� � � ��0 � iff �	� � �who called
� � � ��
�� .

(11) John knows who called.

(12) � ��
 � ' ��0 
 � ��� ��� � ��
�� ' �
� 
�� ���� �����
person � ���	��02��� ��� ��02��� ���.� � � call � ���	������ � ���

person � ���5��
���� ��� ��

��� ���.� � � call � ���	�����,�
2 Semantic unification

For LTAG semantics, we use the semantic unification
framework described in (Kallmeyer and Romero, 2004)
that is very close to (Gardent and Kallmeyer, 2003): We
do compositional semantics on the derivation tree, i.e.,
each elementary tree has a semantic representation and
the derivation tree indicates how to do semantic computa-
tion. Semantic representations are equipped with seman-
tic feature structures. Semantic representations are sets
of formulas (typed � -expressions with labels) and scope
constraints. A scope constraint is an expression

��� (
where

�
and ( are propositional labels or propositional

variables. Semantic feature structures have features P for
all node positions � that can occur in elementary trees.2

The values of these features are feature structure that con-
sist of a T and a B feature (top and bottom) whose values
are feature structures with features I for individual vari-
ables, P for propositional labels and S for situations.

Semantic composition consists of unification: In the
derivation tree, elementary trees are replaced by their se-
mantic representations and their semantic feature struc-
tures. Then, for each edge from ��� to ��� with position � :

2For the sake of readability, we use names np, vp, ... for the
node positions instead of the usual Gorn adresses.

�����
laugh � �  !""""""#

NP $ T % I � &('
VP

!# T % P ) &
B % P � � &+*,

*.------,
np vp

john �0/  � ) � seem � 1  , 1 2 34
R $ T % I / & '65 !""""# R $ B % P � ) & '

F $ T % P 3 &(' * ----,
Figure 2: Semantics for (13)

1. the T feature of position � in � � and the T feature of the
root of ��� are identified, and 2. if ��� is an auxiliary tree,
then the B feature of the foot node of ��� and the B feature
of position � in �7� are identified. Furthermore, for all �
occurring in the derivation tree and all positions � in �
such that there is no edge from � to some other tree with
position � : the T and B features of � .� are identified. By
these unifications, some of the variables in the semantic
representations get values. Then, the union of all seman-
tic representations is built which yields an underspeci-
fied representation. Finally, appropriate disambiguations
must be found, i.e., assignments for the remaining propo-
sitional variables that respect the scope constraints in the
sense of (Kallmeyer and Joshi, 2003). The disambiguated
representations are interpreted conjunctively. As an ex-
ample, Fig. 1 and 2 show the derivation and the semantics
for (13).

(13) John seems to laugh

The feature identities because of unification are � ��
, � �98 � , : �98 � which leads to (14). There is only

one disambiguation, ; + 8 � which yields the semantics
john � � ��� seem � laugh � � � � .3

(14)
���<�

laugh �0/  , john �0/  , � ) � seem � 1  ,1 2 � �
3 Scopal properties of wh-phrases

3.1 Quantificational NPs

Following previous approaches ((Kallmeyer and Joshi,
2003; Joshi et al., 2003) and also (Kallmeyer and
Romero, 2004)), we assume that quantifiers as everybody

3For simplification, in (14) situation variables are omitted.
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in (15) have a multicomponent set containing an auxiliary
tree that contributes the scope part and an initial tree that
contributes the predicate argument part. Fig. 3 illustrates
this approach.

(15) everybody laughs

��� �� S �
NP

everybody

� ��
��

S

NP VP

laughs� ���
laugh � � � )  !""""""#

NP

4
T $ I �

P
� � ' 5

VP

4
B $ P � �

S ) '65
* ------,

s np� ) � every �0/ � 1 � 3  � 1 � person �0/ � �  ,1 2 � 1 � 3 2 	!""# R

!"# T

!# I x
P 	
S

� *, * -, * --,
Figure 3: Analysis of (15)

The analysis in Fig. 3 leads to the feature identities� � ��� 
 � 8 � . As a result one obtains (16). There
is one disambiguation, ; + 8 ; � : + 8 � , that yields the
semantics every � ��� person � ��� � � � laugh � ��� � � � .
(16)

� � �
laugh �0/ � )  , � ) � every �0/ � 1 � 3  ,� 1 � person �0/ � �  , 1 2 � 1 � 3 2 ���

Following (Percus, 2000), situation variables in verbs
must be locally bound, and situation variables in NPs can
be non-locally bound by any situation binder in the sen-
tence (e.g. by know in (4)). In the current example (15),
the situation variable � in the verb laugh and the situa-
tion variable

�
in everybody will default to

� 

(the situ-

ation of the whole proposition), since there is no situa-
tion binder in the formula. This yields the final semantics
every � ��� person � ���	��

� � laugh � ���	��

��� .
3.2 Wh-phrases as quantifiers

Consider again example (4) who likes everybody? and its
Karttunen-style semantics in (5), repeated as (17) below.
To achieve this result in LTAG, we propose the derivation
and the semantics in Fig. 4. The crucial ingredients are
as follows.

(17) (John knows) � ��
 �#��� ��� ��
���$�����
person � ���	��

�%� ���&� � � ')( � person �*( �	�
�#��
��+ like � ��� ( �	�����,�

The semantic representation for the interrogative ele-
mentary tree of like must include all the semantic infor-
mation in (5) except for

� ���
person � ���	��

��� –coming from

who– and ')( � person �-( �	�
�#��
���� –coming from everybody.
Since the wh- and non-wh-quantificational elements must
have scope over different portions of the formula, the se-
mantic representation of the interrogative tree for like is
split into several separate subformulae, each with its own
label and with constraints guaranteeing the correct scopal
configuration among them. First, it contains the formula8 ��� like � � � � � ; � , shared by all the family trees for like.
Second, it contributes the formula 8 �����7� � � � � , which
will take scope over 8 � , given that � � : and that

� � 8 �
(by identification of T and B features in positions S and
VP respectively) and given the scope constraint : � �

.
Finally, the interrogative tree for like contributes the ex-
pression � ; ������� 
 , with scope over 8 � due to the scope
constraint


 � 8 � . (Note that � ; is not a propositional for-
mula and hence cannot be interpreted as conjoined with
the rest. See section 4 and footnote 6 on this issue.)

What we need to achieve with respect to scope is that
all quantificational NPs take scope under � and over 8 � ,
and that all wh-phrases take scope under



and over 8 �

We propose a multi-component analysis of wh-phrases
parallel to that of quantificational NPs, with the only dif-
ference that the scope part of a wh-quantifier adjoins to S’
whereas the scope part of a non-wh-quantifier adjoins to
S, as shown in Fig. 3. This parallel treatment is appropri-
ate since the scope of wh-quantifiers is not strictly related
to their surface positions, e.g., in situ wh phrases can take
wide scope. We then define a “scope window” for wh-
and non-wh-quantificational NPs by using two semantic
features linked to the two parts of the multi-component:
MAXS is linked to the S* or S’* part and gives the upper
limit of the scope window, and P is linked to the NP-part
and determines the lower limit of the scope window. In
the case of everybody in Fig. 4, the value of MAXS is � ; ,
then � ; � : (by adjunction to S in like tree), and finally: � � (by T/B unification in S of likes). The value of
everybody’s lower limit P is � � , and � � � 8 � (by sub-
stitution into position NP in like tree). This gives us the
desired result � � 8 � � 8 � , where 8 � introduces the ' -
quantification corresponding to everybody.4 The case of
who is parallel. Its MAXS feature, in the S’* part, has the
value � , and � � 


(by adjunction to S’). Its lower limit
feature P, in the NP part, has the value ��� , and � � � 8 �
(by substituion into position WH of like tree). This yields
the desired scope


 � 8 : � 8 � , where 8 : corresponds to

4See also (Kallmeyer and Romero, 2004) for further moti-
vation of the MAXS feature for quantifiers.
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����� ����
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NP VP
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����� ����
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� ����
����

� � �
like � � � ) � 1  ,� ) ���������
	 �

,� 1 �
�
��	 � � �  �� 	 ,3 2 � � 	 2 � )

!""""""""""""""""""""""""""""""""""""#
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!"# B
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S �
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P
� ) ' 5
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�
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'
B
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�
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S

� ) *,
* -----,
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!"""# T $ P �
S

� ) '
B $ P � �

S 1 '
* ---,

NP

4
T $ I )

P
��� ' 5

* ------------------------------------,
s’ wh s np� 3 � some �0/ � � � � �  � 2 � 3 � 	 � person �0/ � � �  � 2 � 	 � � � 2 �6� � � �

every ��� � � 3 � � 	  ,� 1 2 � � � � � person ��� � � �  � 3 2 � � � � 	 2 � �4
S’ $ B % MAXS

� &.' 5 !"# WH

!# T % P �6� &
B % I x

& *, * -, 4
S $ B % MAXS

� 1 &.'65 !"# NP
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B % I y

& *, * -,
Figure 4: Derivation and derivation tree with semantics for (4) who likes everybody
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the
�

-quantification of who. Hence, by defining an upper
limit feature MAXS and a lower limit feature P for wh-
and non-wh-quantifiers, we can obtain the right scopal
configurations.

The semantic representation one obtains for (4) is (18):

(18)

� � �
like �0/ � � � �  ,� ) � ��� ��� 	 � � � 1 �
�
� 	 � � �  �� 	 ,� 3 � some �0/ � � � � �  , � 	 � person �0/ � � �  ,� � �
every ��� � � 3 � � 	  , � � � person ��� � � �  ,� 2 ��� � 	 2 � )	 2 � 3 , � 2 � 	 � � � 2 � )� 2 � �

,
� 3 2 � � � � 	 2 � �

As intended, (18) allows only one disambiguation,
namely


 + 8 : , � + 8 
 , � 
 + 8 � , � + 8 � ,� : + 8 � , � 
 + 8 � . The situation indices

and � � default to

��

and the value of � � re-

mains underspecified (it could be
� 


or
�
). This

leads to � ; � �#��� ��� � 
 � � some � ��� person � ���	� 
 � � � �
� � � every �*( � person �-( �5�
�#� 
 � � like � ��� ( �	����� � .
3.3 Multiple wh-questions

A more complex example is (6) who seemed to intro-
duce who to everybody, where two wh-quantifiers (one
of them in situ) interact with a raising verb and a non-
wh-quantifier. In order to treat in situ wh-quantifiers cor-
rectly, it must be possible to obtain the minimal scope of
wh-quantifiers from any NP substitution node. Therefore,
in NP substitution nodes we have to provide both, the
minimal scope of wh-quantifiers and the minimal scope
of non-wh-quantifiers. In the case of like in Fig. 4 for ex-
ample, the minimal scope of who is 8�� while the minimal
scope of everybody is 8 � . We will use the feature WP for
the first and the feature P for the second. For example,
at the object substitution node in the tree for introduce in
Fig. 5 we put a P value (as before) and additionally a WP

value in case a wh-quantifier is added.
The derivation of (6) who seemed to introduce who to

everybody and its semantic analysis are shown in Fig. 5.
The raising verb in (6) adjoins to the VP node. This
means that its label l � will become the value of the top P

feature
�

of the VP node, which is below the MAXS fea-
ture : for non-wh-quantifiers (see the constraint : � �
in the semantics of introduce in Fig. 5). The scope trees
of the wh-quantifiers adjoin both to the S’ node, i.e.,
their scopes are limited by the MAXS value



of the root.

And, because of the WP features, both wh-quantifiers take
scope over the proposition l � containing � , equated in
turn with the non-wh MAXS value : ( � = : by T/B uni-
fication in S of introduce). Consequently, we obtain the
following scope orders: the two wh-quantifiers have both
scope over seem and everybody, but the scope order of
the raising verb and the non-wh-quantifier is unspecified.

3.4 Long-distance wh-dependencies

In long-distance wh-dependencies as (19) one also wants
to obtain an interpretation where the wh-quantifier takes
scope over all verbs in the sentence while providing
the argument of the most embedded verb. Such exam-
ples have always been claimed to be problematic for
derivation tree based LTAG semantics approaches (see
(Kallmeyer and Romero, 2004) and the literature cited
there).

(19) Who does Paul think John said Bill liked?

����� ����
S’ �
NP

who

� ����
����

S’

NP � S

NP � VP

liked NP

�
S

NP � VP

think S �
S

NP � VP

say S �
Figure 6: Derivation of (19)

The syntactic analysis of (19) (see (Kroch, 1987)) is
shown in Fig. 6, and the combination of like, say and
think in the semantics is shown in Fig. 7. Each of the at-
titude verbs takes the bottom MAXS proposition of the S
node as its argument and it gives a larger proposition with
a new (higher) bottom MAXS value. In the end, the high-
est of these MAXS values is unified with the top MAXS of
the S node (i.e., with � ). Therefore, all attitude verbs are
embedded under the top MAXS value of the S node of like
which is in the scope of any wh-quantifier added to like.
In this way the correct scope analyses for wh-quantifiers
in long-distance dependencies are obtained. The initial
NP tree of such a quantifier is of course as before sub-
stituted for the corresponding argument position in like
which leads to the correct predicate argument dependen-
cies.

3.5 Comparison with other approaches to the scope
of wh-phrases

The Karttunen-style semantic tradition ((Lahiri, 1991),
(Chierchia, 1993), among many others), within the Mon-
tagovian Formal Semantics framework, draws the dis-
tinction between wh-scope and non-wh-scope by basing
the semantics on the derived tree and using different se-
mantic types for the relevant nodes. The S node has the
propositional type � s,t � , and the semantics of non-wh-
quantificational elements operates on functions of that
type. The S’ node (or, more specifically, the C’ node) has
the type � s, ��� s,t � ,t ����� corresponding to functions
from situations to sets of propositions, and wh-quantifiers
must combine with functions of such type. This derives
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����� ����
S’ �
NP

who
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to introduce to NP �
����� ����
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� ����
����

� � �
introduce � � � ) � 1 � 3 �  ,� ) � ��� ���
	 �
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� & ' 5
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4
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4
T $ P )6)
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Figure 5: Abriged derivation and derivation tree with semantics (without quantifier everybody) for (6) who seemed to
introduce who to everybody
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�
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' 5
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4
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4
B $ MAXS
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S
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4
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S s”
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Figure 7: Abriged derivation tree and semantics for (19)

the effect that all wh-quantifiers must scope over all the
non-wh-quantifiers.

A comparable approach using semantic features is de-
veloped in (Ginzburg and Sag, 2000), who make an on-
tological distinction between states-of-affairs (SOAs) and
propositions. A verb introduces a SOA, which is the orig-
inal building block from which later one builds proposi-
tions, questions, outcomes and facts. The idea is that a
non-wh-quantifier has a SOA as its nuclear scope, and a
wh-phrase has a proposition as its nuclear scope. Hence,
wh-phrases necessarily have wider scope than non-wh-
quantifiers in their clause.

The present approach provides an account of the scopal
properties of wh- and non-wh-quantifiers within a ’flat’
semantics framework in the style of MRS (Copestake et
al., 1999) without invoking finer ontological distinctions.
The semantic contribution of each elementary and aux-
iliary tree is a set of formulae (type t, the extensional
version of propositions). Such a flat approach simplifies
the design of algorithms for semantic computation as ex-
plained in (Copestake et al., 1999). Since the semantic
material that will end up in the nuclear scope of a wh-
and non-wh-quantifier is invariably introduced as a for-
mula, no type distinction can be made to which the sco-

pal properties of wh- and non-wh-quantifiers could relate.
Furthermore, no ontological distinction between state-of-
affairs and propositions is used to make scope follow
from selectional properties. Instead, the present account
proposes to define appropriate scope windows using the
features MAXS, P and WP and feature unification.5

4 Embedded interrogatives

We have seen that the elementary tree for verbs includes
formulae with situation arguments, e.g. 8 � � laugh � � � � �
in Fig. 3 and 8 � � introduce � � � � � ; � : 
 � in Fig. 5. When
no operator binds that variable, it defaults to the utterance
situation

��

, as we saw for � in laugh in (16), section 3.1.

Otherwise, the situation variable must be bound by some
operator, using feature unification: e.g., : 
 is bound by
the ' ��0 -quantifiction introduced by seems in Fig. 5 ( : 
 ���0

by adjunction of seems to VP).
In the case of � ; � ����� ��� 
 � � 
 in an interrogative verb

tree, we also have a situation variable



that, if unbound,
will default to

��

, as noted for (18). The issue is how this

situation variable becomes bound when the interrogative
clause is embedded under, e.g., know. Note that, in the fi-
nal semantics for John knows who called in (12), repeated
as (20) below, the semantic contribution of the embed-
ded interrogative has to be used twice, once evaluated for
the doxastic situation

� 0
and once for the utterance situa-

tion
��


. But, if we take � ; ������� ��� 
 �$� 

in any of the

derivations above and we simply perform feature unifica-
tion to the extent that


 � ��0
, � ; will invariably amount

to �#��� ��� ��0 ��� 

all the times it is used. The question is,

thus, how to achieve the effect that



is replaced by
��0

in
one occurrence of the formula and by

��

in another.

(20) � ��
 � ' ��0 
 � ��� ��� � ��
�� ' �
� 
�� ���� �����
person � ���	��02��� ��� ��02��� ���.� � � call � ���	������ � ���

person � ���5��
���� ��� ��

��� ���.� � � call � ���	�����,�

S

NP � VP

knows S’ �
�

S’ �
NP � S

NP VP

� likes NP �
Figure 8: Derivation of (4)

Our analysis of (4) John knows who likes everybody is
given in Fig. 8 and Fig. 9. To obtain the desired effect,
we propose that the semantics of the verb tree for know
includes a � ��0 0 that will bind



in both occurrences of

5A third approach treats wh-phrases, along with indefinites,
as open formulae whose variable is bound by an unselective
binder (Berman, 1991). As we treat indefinites as contributing
their own quantificational force, we do the same for wh-phrases.
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Figure 9: Abriged derivation tree and semantics for (4)

� ; . This is achieved by adding the situation feature S



at the S’ position of interrogative like, which will unify
with the feature S

��0 0
at the foot of know. As a result,

within 8 � of know we have the newly created expression
� � 0 0 ����� ��� � 0 0 �#� 
 , arising from � � 0 0 � ��� and from ��� � � ;
by adjunction of know to the S’ of like. Then, 8 � includes
the new � -expression twice: once it applies it to the dox-
astic sitation

�
, and once it combines it with the situation

index � � . Index � � (and � � below) is left unbound and
will thus default to the situation

��

of the whole propo-

sition. Finally, by substitution of John, � 
 is identified
with

�
. The result of the computation is given in (21).6

(21)

john �0/  , � ��� like �0/ � � � �  � ) � ��� ��� 	 �
, � 1 � �
��	 � � � � �  � 	 ,� 3 � some �0/ � � � � �  , � 	 � person �0/ � � �  ,� � �

every ��� � � 3 � � 	  , � � � person ��� � � �  � � � every � � � � � ��� /�� � � �  �� � � � � ��� � � 	 � 1  � �  � � �  � � ��� � � 	 � 1  � � �  � � �  �  ,� 2 ��� � 	 2 � ) , 	 2 � 3 , � 2 � 	 � � � 2 � )� 2 � �
,
� 3 2 � � � � 	 2 � �

5 Conclusion

In sum, we have proposed an account for the seman-
tics of wh-questions in LTAG that captures the different

6In the case of direct questions � , we can assume that their
truth-conditional content amounts to the proposition expressed
by I want to know � . For weaker degrees of exhaustivity of
direct and embedded questions compatible with the present ap-
proach, see (Beck and Rullmann, 1999) and (van Rooy, 2003).

scope properties of wh- and non-wh-quantifiers and that
derives the adequate semantics for embedded interroga-
tive clauses.
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Abstract

This paper presents the mappings between the
syntactic information of our broad-coverage
domain-independent verb lexicon, VerbNet, to
Xtag trees. This mapping between complemen-
tary resources allowed us to increase the syn-
tactic coverage of our verb lexicon by capturing
transformations of the basic syntactic descrip-
tion of the verbs present in VerbNet. In addi-
tion, having these two resources mapped allows
the semantic predicates present in our lexicon
to be used to disambiguate Xtag verb senses.

1 Introduction

The limited availability of large-scale lexical resources
has restricted natural language applications to specific
domains. We propose to fill this gap by creating Verb-
Net (Kipper et al., 2000a; Dang et al., 2000), a freely
available broad-coverage verb lexicon. VerbNet includes
mappings to other known resources so that they can be
used as extensions of each other.

VerbNet is a domain-independentverb lexicon with ex-
plicit syntactic and semantic information for over 4,000
English verbs. The verbs are organized in classes ac-
cording to Levin’s classification (Levin, 1993). In or-
der to retain common syntactic and semantic properties
for all members of a class, our verb classes are hierar-
chically organized, with 74 new subclasses added to the
original classes. The syntactic frames represent the sur-
face structure of constructions such as transitives, intran-
sitives, prepositional phrases, resultatives, and other al-
ternations listed in Levin.

The verbs in our lexicon have been mapped to Word-
Net (Miller, 1985; Fellbaum, 1998) and more recently to
FrameNet (Baker et al., 1998). The syntactic coverage
of VerbNet has been tested against the frames found in

PropBank (Kingsbury and Palmer, 2002) through a sys-
tematic mapping between the two resources. The syntac-
tic frames in our verb lexicon account for over 78% exact
matches to the frames found in PropBank (Kipper et al.,
2004).

A natural extension of VerbNet’s syntactic frames
is to incorporate the possible transformations of each
frame. The Xtag grammar (XTAG Research Group,
2001) presents a large existing grammar for English verbs
that accounts for just that richness of constructions. Map-
ping our syntactic frames to the Xtag trees greatly in-
creases the robustness of our resource by capturing such
transformations.

2 Levin Classes

Levin verb classes (Levin, 1993) are based on the abil-
ity of a verb to occur in pairs of syntactic alternations
which preserve the intended meaning. The fundamental
assumption of Levin classes is that the syntactic behavior
of verbs is a direct reflection of the underlying semantics.
This is a not uncontroversial thesis in its strongest form,
but it is indisputable that meaning can have great predic-
tive ability. Hale and Keyser (1987) discuss the predictive
ability of lexical semantic knowledge using the archaic
whaling termgally, which might be interpreted to mean
seeor possiblyfrighten. Depending on the assumption
made about galley’s meaning, speakers can make con-
flicting judgments about the verb’s syntactic behavior.
For the speaker interpreting it to meansee,the middle
construction is disallowed “*Whales gally easily” (paral-
leling “Whales see easily”), while for the speaker who in-
terprets it asfrighten, the middle construction is allowed.
For an example from Levin, consider the classes of the
break verbs and thecut verbs which are similar in the
ability of their members to participate in the transitive
and middle constructions. Additionally,breakverbs may
appear in the simple intransitive construction whilecut
verbs may appear in the conative construction. The ex-
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planation given by Levin is that thecut verbs describe a
series of actions with the goal of separating some entity
into pieces. Whether the goal is achieved or not, the ac-
tion can still be performed, as recognized by “John cut at
the loaf.” For the break verbs, the verb specifies the man-
ner that a resultant change of state occurs. The action of
breaking cannot be attempted if no result is achieved and
so these verbs disallow “*John broke at the window”.

3 VerbNet

VerbNet is a verb lexicon with syntactic and semantic
information for English verbs, referring to Levin verb
classes (Levin, 1993) to construct the lexical entries. It
exploits the systematic link between syntax and seman-
tics that motivates these classes, and thus provides a clear
and regular association between syntactic and semantic
properties of verbs and verb classes (Kipper et al., 2000a;
Dang et al., 2000). Each node in the hierarchy is char-
acterized extensionally by its set of verbs, and intension-
ally by syntactic and semantic information about the class
and a list of typical verb arguments. The argument list of
each entry consists of thematic labels and possible selec-
tional restrictions on the arguments expressed using bi-
nary predicates. The syntactic information in each verb’s
entry maps the list of thematic arguments to the deep-
syntactic arguments of that verb (normalized for voice al-
ternations, and transformations). The semantic predicates
list the participants during various stages of the event de-
scribed by the syntactic frame.

The syntactic frames act as a short-hand description for
the surface realizations allowed for the members of the
class. They describe constructions such as transitive, in-
transitive, prepositional phrase complement, resultative,
and a large set of Levin’s alternations. A syntactic frame
consists of the verb itself, the thematic roles in their pre-
ferred argument positions around the verb, and other lex-
ical items which may be required for a particular con-
struction or alternation. Additional restrictions may be
further imposed on the thematic roles (quotation, plural,
infinitival, etc.). Examples of syntactic frames areAgent
V Patient(e.g., John hit the ball),Agent V at Patient(e.g.,
John hit at the window), andAgent V Patient[+plural]
together(e.g., John hit the sticks together).

The semantic information for the verbs is expressed
as a conjunction of semantic predicates, such asmotion,
contact, transferinfo. For the same verb, each different
alternation typically has a slightly different set of seman-
tic predicates, although there is usually a substantial over-
lap within a class. The predicates can take arguments
over the verb complements, as well as over implicit exis-
tentially quantified event variables.

4 Compositional Semantics for VerbNet

Several attempts have been made to use LTAG derivation
trees to compute compositional semantics. Stone and Do-
ran (1997) describe a system for incorporating semantics
into TAG trees by a system that simultaneously constructs
the semantics and syntax of a sentences using LTAGS.
Each lexical item anchors a tree or family of trees and
associates with each tree a logical form representing the
semantic and pragmatic information for that lexical item
and tree. The meaning of a sentence is computed by the
conjunction of the meaning of the elementary trees used
in the derivation.

Joshi and Vijay-Shanker (1999) and Kallmeyer and
Joshi (1999) describe the semantics of the derivation tree
as a set of attachments to trees. For each attachment, the
semantics are defined as a conjunction of formula in a flat
semantic notation. They provide an explicit methodology
for composing semantic representations.

Kipper et al (2000) present a method for deriving com-
positional semantic interpretations from sentences using
VerbNet. The mappings discussed here are a step closer
to that proposal.

5 Extending VerbNet with XTAG

VerbNet, while providing an explicitly constructed verb
lexicon with syntax and semantics, offers limited syntac-
tic coverage since it describes only the declarative frame
for each syntactic construction or alternation. The Xtag
grammar, on the other hand, is a lexical resource with
well-characterized syntactic descriptions for lexical items
but makes no distinctions between verb senses and cur-
rently has contains no explicit semantics. An obvious
way to extend VerbNet’s syntactic coverage is to incor-
porate the coverage of Xtag, accounting for the possi-
ble transformations of each declarative frame. Presum-
ably, transformations of VerbNet’s syntactic frames are
recoverable by mapping onto elementary trees of TAG
tree families. Then, for any verb in VerbNet each the-
matic role can be mapped to an indexed node in the basic
syntactic tree and the selectional restrictions on VerbNet
thematic roles to features on the nodes. In addition to in-
creasing the coverage of VerbNet, this provides us with a
pre-existing parser for computing derived and derivation
trees to which our semantic predicates can be added and
therefore sense distinctions can be made more explicit.

5.1 Mapping VerbNet frames to XTAG

Each frame in VerbNet is described by 4 components: 1)
a brief text description (such asTransitive, Resultative),
2) an example sentence, 3) a syntactic frame, 4) a seman-
tic description using a set of semantic predicates. Text
descriptions and syntactic frames are very much interre-
lated, but the text description is independent of the roles
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assigned to the verb’s arguments. These text descriptions
consist of both primary and secondary descriptions which
were made completely consistent for the whole VerbNet
lexicon prior to these mappings. Examples of primary
descriptions includeTransitive, Material/Produce Alter-
nation, and Ergative. Secondary descriptions provide ad-
ditional information about the semantics and/or syntax.
These might specify the types of prepositional phrases
that a verb may take or the existence of restrictions on
a complement (often secondary descriptions are used to
distinguish between different types of sentential comple-
ments). Examples (1) and (2) show how the first three
components of VerbNet frames are described:

(1) Material/Product Alternation Intransitive (Mate-
rial Subject)
“That acorn will grow into an oak tree.”
Material V Prep(into) Product

(2) Material/Product Alternation Intransitive (Prod-
uct Subject)
“An oak tree will grow from that acorn.”
Product V Prep(from out of) Material

Because secondary descriptions sometimes refer to
variants of a frame that correspond in Xtag to an en-
tirely different tree family than the original frame, it is
necessary to consider both these descriptions in order to
uniquely identify frames. For instance the Benefactive
Alternation in VerbNet has two variants as shown in ex-
amples (3) and (4):

(3) Benefactive Alternation (for variant)
“Martha carved a piece of wood for the baby”
Agent V Material Prep(for) Beneficiary

(4) Benefactive Alternation (double object)
“Martha carved the baby a toy out of a piece of
wood”
Agent V Beneficiary Product Prep(from out of)
Material

In the current Xtag grammar example (3) corresponds
to the tree family of Ditransitives with a PP complement
(Tnx0Vnx1pnx2), derived from the simple Transitive tree
family with the PP anchored byfor adjoined into the tree
at the VP node, whereas example (4) corresponds to the
Ditransitive tree family (Tnx0Vnx2nx1). VerbNet how-
ever can only discriminate between the two frames with
both the primary and secondary descriptions. Each syn-
tactic frame, then, is assumed to be uniquely specified
by its primary and secondary descriptions. Generally, the
VerbNet syntactic frame specified by a full description
corresponds to the surface syntactic realization of an Xtag
elementary tree. Mappings between VerbNet syntactic
frames and Xtag tree families were done manually, using

the latest frozen release of the XTAG grammar and the
latest version of VerbNet. Each VerbNet syntactic frame
was mapped to a corresponding Xtag tree family, with the
index of the tree family recorded in the VerbNet entry. In
theory we should be able to annotate each unique Verb-
Net syntactic frame with a mapping to an Xtag elemen-
tary tree. However, there currently are two impediments
to doing this:

1. Many VerbNet syntactic frames specify surface re-
alizations of trees that would not be regarded as initial
trees in the Xtag framework (though it is possible to re-
gard them as such by violating certain fundamental as-
sumptions of the grammar). The canonical example is
where VerbNet includes as part of a frame a PP that Xtag
would analyze as an adjunct.

2. Not all VerbNet syntactic frames correspond to an
Xtag elementary tree.

The first issue includes certain verbs appearing in the
Induced Actionalternation, for example, and many of the
transitive frames that additionally specify a path PP to in-
dicate the direction of the action. In Example (5) the Xtag
grammar analyzes ’over the fence’ as an adjunct, this
analysis is based on the fact that this PP is optional for
the grammaticality of the sentence. Consequently, verbs
taking this frame should map to the Transitive tree fam-
ily, the tree corresponding to the VerbNet frame’s overt
syntax being derived by adjunction into the elementary
tree of the auxiliary tree of ’over the fence.’ As an exam-
ple, consider the two frames in (5) and (6), both of which
have PP adjuncts under the Xtag analysis:

(5) Induced Action (with accompanied motion and
path PP)
“Tom jumped the horse over the fence”
Agent V Theme Prep[+spatial] Location

(6) Transitive (+ path PP)
“Jackie accompanied Rose to the store” Agent V
Theme Prep[+loc OR +path]

This is similarly an issue with intransitives followed
by a PP. Xtag grammar guidelines specify that no verb
should appear both in Tnx0v (the tree family for purely
intransitive verbs that can be followed by a prepositional
phrase but do not require one to be grammatical) and also
in Tnx0Vpnx1 (the tree family for intransitive verbs that
must be followed by a prepositional phrase to be gram-
matical). In VerbNet many verbs participate in theCona-
tive Alternation, in which the a transitive frame alternate
with an intransitive frame in which the NP object is re-
placed with a PP fronted by ’at.’ Examples (7) and (8)
show a conative frame in VerbNet and its transitive equiv-
alent respectively:

(7) Conative
“Carol cut at the bread”
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Agent V at Patient

(8) Basic Transitive
“Carol cut the bread”
Agent V Patient

While most of the VerbNet verbs that take the conative
do not have intransitive forms that are grammatical when
not followed by a PP, many can appear in such frames.
For example, the verbscut, hack, hew, scrape, scratch,
shovel, and dustconstitute a partial listing of the verbs
taking the conative and that can also appear as bare in-
transitives. There remains the question, then, of how the
conative alternation should be handled by VerbNet. In
instances such as these, as we are interested merely in
recovering the various transformationally related forms
of frames, we simply ignore the constraints of the Xtag
grammar, in the case of (5) and (6) mapping to the ele-
mentary tree anchoring tree family Tnx0Vnx1Pnx2, the
tree family of verbs taking an NP complement followed
by a PP complement headed by a particular preposition.
In the case of (7) and (8), mapping to Tnx0Vpnx1, the
tree family of intransitives with PP complements.

With regard to the second of these considerations, not
all VerbNet syntactic frames correspond to some Xtag el-
ementary tree. A number of VerbNet classes contain syn-
tactic frames that specify multiple adjuncts. As a case in
point consider VerbNet classturn-26.6 , with mem-
bersalter, metamorphose, transform, transmute, change,
convert, and turn. Each of these can appear in the two
frames presented in (9) and (10):

(9) Causative/Inchoative Alternation (causative, +
Material + Product)
“The witch turned him from a prince into a frog”
Agent V Patient Prep(from) Material Prep(into)
Product

(10) Causative/Inchoative Alternation (inchoative, +
Material + Product)
“He turned from a prince into a frog”
Patient V Prep(from) Material Prep(into) Product

In the Xtag grammar, the frame presented in (9)
corresponds to no elementary tree of any tree family.
One might disagree over what elementary tree it is de-
rived from. For instance, (9) can be seen as a tran-
sitive sentence with PP adjuncts (and thus belonging
to tree family Tnx0Vnx1), as a ditransitive taking a
PP complement with another PP adjunct (tree family
Tnx0Vnx1pnx2), or as a resultative with a PP anchor and
an additional PP adjunct (and thus belonging to tree fam-
ily TRnx0Vnx1Pnx2). Similarly, the frame presented in
(10) can be seen as either an intransitive sentence with op-
tional PP adjuncts (Tnx0V), or as a resultative with erga-
tive verb and PP anchor (TREnx1VPnx2). In the current

version of VerbNet we have 18 syntactic frames that fall
into this category. Some of these are frames that have
been added to VerbNet during attempts at expanding syn-
tactic coverage. Others, such as themiddle construction,
are based on the original alternations proposed by Levin.
Currently, these frames are also mapped to the Xtag ele-
mentary tree from which they are derived, but it is noted
that they are not initial trees. In the future, some of these
frames may be removed (in the cases where they are not
crucial to characterizing the structure of classes) and for
others, it should be specified if they are derived from an
initial tree.

5.2 Coverage

As of the latest release of VerbNet, there are 196 unique
frames (as distinguished by primary and secondary de-
scription). Of these, all but 18 correspond exactly to
some Xtag elementary tree (the exceptions are discussed
above). For these 168 VerbNet syntactic frames that map
exactly to an Xtag elementary tree, only 16 of the 57 Xtag
elementary trees were used. A detailed inspection on
the 41 Xtag tree families with no corresponding VerbNet
frame, revealed that 22 of them deal with small clauses,
8 with idiomatic expressions, and 9 with other various
classes. However, some of VerbNet’s syntactic frames
quite simply are not able to be parsed by the Xtag gram-
mar. The current Xtag analysis for PPs analyzes PP com-
plements with an expanded PP structure rather than as a
PP substitution node contrasts these approaches. This is
done as expansion of the PP makes the NP node of the
PP available to the metarules for creating the trees for ex-
traction so that sentences such as (12) are derivable from
(11).

(11) Jill placed her handbag on the table.

(12) What 1 did Jill put her handbag on t1?

However, Xtag’s explicit realization of NPs in comple-
ment PPs precludes handling of incidences of exhaustive
PP substitution. Thus, Xtag does not handle verbs that
take an exhaustive PP such as ’here’ (or ’there,’ ’some-
where,’ etc) as an argument. As such, sentences such as
(13) currently cannot be handled, and therefore certain
frames in VerbNet (namely, the Transitive (+ here/there))
construction simply have no Xtag mapping.

(13) I spooned the sauce there.

6 Conclusion

We presented a detailed account of our mappings be-
tween our broad-coverage verb lexicon with explicit se-
mantics, VerbNet, and a syntactically rich lexical re-
source, the Xtag grammar. By incorporating the trans-
formations of the basic frames from Xtag to our syntactic
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frames in VerbNet we are able to greatly increase the ro-
bustness of our resource by indirectly providing a much
larger syntactic coverage. In addition to increasing the
coverage of VerbNet, these mappings supply us with a
pre-existing parser for computing derived and derivation
trees to which our semantic predicates can be associated
thus helping the task of verb sense disambiguation.

Acknowledgements

This research was partially supported by NSF Grants IIS-
9900297, IIS-0325646, DARPA Tides Grant N66001-00-
1-891 and ACE Grant MDA904-00-C-2136.

References

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. InProceed-
ings of the 17th International Conference on Compu-
tational Linguistics (COLING/ACL-98), pages 86–90,
Montreal. ACL.

Hoa Trang Dang, Karin Kipper, and Martha Palmer.
2000. Integrating compositional semantics into a
verb lexicon. InProceedings of the Eighteenth In-
ternational Conference on Computational Linguis-
tics (COLING-2000), Saarbr¨ucken, Germany, July-
August.

Christiane Fellbaum, editor. 1998. WordNet: An
Eletronic Lexical Database. Language, Speech
and Communications. MIT Press, Cambridge, Mas-
sachusetts.

Kenneth Hale and Samuel Jay Keyser. 1987.A view from
the Middle. Lexicon Project Working Papers 10, MIT,
Cambridge, MA.

Aravind K. Joshi and K. Vijay-Shanker. 1999. Com-
positional Semantics with Lexicalized Tree-Adjoining
Grammar: How Much Under-Specification Is Nec-
essary? . InProceedings of the Third Interna-
tional Workshop on Computational Semantics (IWCS-
3), pages 131–145, Tilburg, The Netherlands, January.

Laura Kallmeyer and Aravind K. Joshi. 1999. Under-
specified Semantics with LTAG . InProceedings of
Amsterdam Colloquium on Semantics.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. InProceedings of the 3rd In-
ternational Conference on Language Resources and
Evaluation (LREC-2002), Las Palmas, Canary Islands,
Spain.

Karin Kipper, Hoa Trang Dang, and Martha Palmer.
2000a. Class-based construction of a verb lexicon.
In Proceedings of the Seventh National Conference on
Artificial Intelligence (AAAI-2000), Austin, TX, July-
August.

Karin Kipper, Hoa Trang Dang, William Schuler, and
Martha Palmer. 2000b. Building a class-based verb
lexicon using tags. InProceedings of the Fifth Inter-
national Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+5), pages 147–154, Paris,
France, May.

Karin Kipper, Benjamin Snyder, and Martha Palmer.
2004. Extending a verb-lexicon using a semantically
annotated corpus. InProceedings of the 4th Interna-
tional Conference on Language Resources and Evalu-
ation (LREC-04), Lisbon, Portugal.

Beth Levin. 1993. English Verb Classes and Alterna-
tion, A Preliminary Investigation. The University of
Chicago Press.

George Miller. 1985. Wordnet: A dictionary browser. In
Proceedings of the First International Conference on
Information in Data, Waterloo, Ontario.

Matthew Stone and Christine Doran. 1997. Sentence
Planning as Description Using Tree Adjoining Gram-
mar. InProceedings of ACL-EACL ’97, Madrid, Spain.

XTAG Research Group. 2001. A lexicalized tree adjoin-
ing grammar for english. Technical Report IRCS-01-
03, IRCS, University of Pennsylvania.

198



Nondeterministic LTAG Derivation Tree Extraction

Libin Shen
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

libin@linc.cis.upenn.edu

Abstract

In this paper we introduce a naive algorithm for
nondeterminisctic LTAG derivation tree extrac-
tion from the Penn Treebank and the Proposi-
tion Bank. This algorithm is used in the EM
models of LTAG Treebank Induction reported
in (Shen and Joshi, 2004). Given the trees in
the Penn Treebank with PropBank tags, this
algorithm generates shared structures that al-
low efficient dynamic programming in the EM
models.

1 Introduction

In recent years, the statistical approach has been success-
fully used in natural language processing (NLP). No mat-
ter which statistical model people use, a generative model
or statistical machine learning, large corpora are always
needed to train the models. For example, after the in-
troduction of the Penn Treebank (PTB) (Marcus et al.,
1994), a serial of improvements has been achieved on nat-
ural language parsing and shallow parsing tasks. In the
field of Lexicalized Tree Adjoining Grammar (LTAG),
the statistical approach has also been successfully em-
ployed in many LTAG-based NLP tasks, such as LTAG
parsing (Chiang, 2000; Shen et al., 2003) and Supertag-
ging (Joshi and Srinivas, 1994).

However, the lack of very large corpora based on
LTAG prevents the statistical approach from being widely
used in the field of LTAG. As we know, very large cor-
pora are crucial to statistical NLP. In previous works, peo-
ple managed to induce LTAG style grammars and LTAG
based corpora from the PTB, and use them in their appli-
cations.

Joshi and Srinivas (1994) first implemented a supertag
corpus by extracting it from the PTB, using heuristic
rules. Due to various limitations of this system, extracted
supertags of the words in a sentence cannot always be
successfully put together. Xia (2001) and Chen (2001)
described deterministic systems that extract LTAG-style

grammars from PTB. In their systems, thehead per-
colation table (Magerman, 1995) and the PTB func-
tional tags were used to solve ambiguities in extraction.
Chiang (2000) reported a similar method to extract an
LTAG like treebank from PTB, and used it in a statistical
parser. Shen et al. (2003) employed a similar technique
to induce an LTAG treebank, to be used in a parse rerank-
ing system.

In these LTAG grammar and treebank induction sys-
tems, deterministic rules were used to solve the ambi-
guities in the elementary tree extraction process. How-
ever, it is clear that deterministic rules are not enough to
solve ambiguity in extraction, especially in the case of the
argument-adjunct distinction (Paola and Leybold, 2001).

2 A Statistical Model

In (Shen and Joshi, 2004), we have proposed a sta-
tistical model for LTAG Treebank induction using the
Expectation-Maximization (EM) algorithm (Dempster et
al., 1977). The EM Algorithm is a general iterative
method of search to find the maximum-likelihood esti-
mate of the parameters of the hidden data from the ob-
served data.

If we take the PTB as the observed data, then the
LTAG derivation trees for the PTB trees can be treated
as the hidden data. Then our goal is the find out the hid-
den structures, or LTAG derivation trees, with maximum-
likelihood. Similar idea was previously employed in
(Chiang and Bikel, 2002) in statistical parsing.

In (Shen and Joshi, 2004), several EM models were
proposed for LTAG Treebank induction. In these models,
linguistic knowledge is used to overcome EM’s weakness
that EM cannot guarantee to find a global optimum. By
using linguistic knowledge, we can not only start the EM
iteration from the point close to the global optimum in
the first iteration, but also limit the search space of hidden
derivation trees in the following rounds.

However in that paper, we did not give the details on
how to employ the linguistic knowledge to constrain the
search space. In this paper, we will introduce a novel

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
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algorithm that searches the space the derivation trees,
respecting the linguistic constraints and maintaining the
ambiguities in elementary tree extraction, for each given
PTB tree. In this section, we first analyze the ambiguities
existing in LTAG elementary tree extraction from PTB,
and then we illustrate the linguistic information to be used
in nondeterminisctic derivation extraction.

2.1 Ambiguities

Our analysis is mainly based on the work of (Xia, 2001)
and (Chen, 2001). There are two kinds of ambiguities in
LTAG elementary tree extraction, which arehead compe-
tition andargument-adjunct distinction.

Given a deduction rule of Context Free Grammar
(CFG) in the PTB, we need to find out which item on
the right hand side of the rule is thelexical headof the
item on the left hand side. For example, for rule VP→ V
NP, V is the head of VP. In (Xia, 2001) and (Chen, 2001),
the so called head percolation table (Magerman, 1995) is
used to determine the head item of each CFG rule in the
PTB. Following the lexical heads in a tree, we can get the
spines of elementary trees.

Argument-adjunct distinction is mainly to distinguish
the arguments and adjuncts of a predicate. In (Xia, 2001)
and (Chen, 2001), argument-adjunct distinction is solved
with respect to the constituent tags and function tags in
the PTB.

In their systems, these two kinds of ambiguities are
solved deterministically as we described above. How-
ever, there exists a lot ambiguities that can not been
solved easily. For example, in the sentence... was named
a nonexecutive director of this British industrial con-
glomerateextracted from the PTB, the NP dominating
director has a function tag PRD, which means predicate.
In this case there exists a head competition betweendi-
rectorandnamed. As far as argument-adjunct distinction
is concerned, the ambiguities are ubiquitous, which can
only be solved with a lexicon, i.e. the hand-crafted XTAG
English Grammar (XTAG-Group, 2001), with statistical
methods.

2.2 Linguistics Information

2.2.1 Penn TreeBank

The input of our algorithm is a full bracketed PTB tree,
as shown in Figure 1. The structure information is the
main source of derivation tree extraction. We can simply
regard a PTB tree as a derived tree in LTAG.

Besides the structure information, The Penn Treebank
provides more information useful in LTAG derivation tree
extraction, such as special information for the predicate-
argument structures. Although the PTB does not try to
distinguishargumentsand adjuncts, and treats them as
arguments in general, it assigns functional tags for these
arguments which help to to distinguish arguments and

TOP
S

NP-SBJ
NP

NNP Pierre
NNP Vinken

, ,
ADJP

NP
CD 61
NNS years

JJ old
, ,

VP
MD will
VP

VB join
NP

DT the
NN board

PP-CLR
IN as
NP

DT a
JJ nonexecutive
NN director

NP-TMP
NNP Nov.
CD 29

. .

Figure 1: PTB tree

adjuncts. For example, in Figure 1, functional tagSBJ
means subject,TMP means temporal phrase, andCLR
means closely related. This information was used in pre-
vious LTAG extraction systems and will also be used in
our system too.

2.2.2 PropBank
We will also use the Penn Proposition Bank (Prop-

Bank) (Kingsbury and Palmer, 2002) in our LTAG deriva-
tion tree extraction algorithm. The PropBank provides
more information on the predicate-argument structures
for the PTB data.

In the PropBank, each predicate is assigned with a tag
of major sensedefined on usage of the predicate. Each
argument of this predicate is assigned with an argument
ID with respect to themajor senseof this predicate, as
shown in Figure 2. We will use the argument tags in our
extraction algorithm too.

What is worth mentioning is that, like the PTB, the
PropBank does not distinguish arguments and adjuncts,
and both are called arguments in the PropBank. Using
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TOP
S

[join:0_0_0:ARG0]NP-SBJ
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NNP Pierre
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[join:5_0_0:ARGM]NP-TMP
NNP Nov.
CD 29

. .

Figure 2: PTB tree with PropBank tags

the PropBank tags, we can easily get all the arguments
and adjuncts of a given predicate, but how to distinguish
them is still a problem. This is the reason why we in-
troduce the nondeterminisctic method in derivation tree
extraction. The EM algorithms in (Shen and Joshi, 2004)
are supposed to find out the global optimum over various
selections.

3 Nondeterministic Derivation Tree
Extraction

In this paper we will propose an algorithm to main-
tain the ambiguities in elementary tree extraction. For a
given PTB tree, the derivation tree candidates serve as the
search space used in the EM algorithm. A naive way is
to represent all the candidate derivation trees one by one.
However, a more efficient way to do this is to use shared
structures. Therefore, we need an efficient way to repre-
sent all the LTAG derivation trees that meet the linguistic
constraints, given a PTB tree. Then the EM algorithm can
re-estimate expectation over all derivation tree candidates

with less computational complexity by inside-outside al-
gorithm as described in (Shen and Joshi, 2004).

3.1 Idea

We first give the idea of the extraction algorithm. The ex-
traction consists of two phases, the bottom-up head com-
petition phase and the top-down argument-adjunct dis-
tinction phase.

In the head-competition phase, we visit all the nodes
throughout a PTB tree from bottom and look for the head
candidates for every internal node. For each internal
node, there will be several head candidates with respect
to different triggering rules. For example, in the exam-
ple given above,... was named a nonexecutive director of
this British industrial conglomerate, either the VP node
anchored onnamedor the NP node anchored ondirec-
tor can be the head of the main S node with respect to
different analyses.

If any head candidate is selected as the head for the
parent node, the rest children nodes serve as

• a leaf node to which an initial tree substitutes,

• a leaf node to which an auxiliary tree adjoins, or

• an internal node of the elementary tree for the head
node.

No matter what it will be, these elementary trees are
beneath the elementary tree for the head node, in any
derivationtree for this PTB tree. Thus, we can use shared
structure to represent all these situations; each non-head
child nodes can be used in three way as described above.

To sum up, for each head candidate, we can use anin-
dexstructure to represent all the possible sub-structures
beneath this elementary tree in the derivation tree, and
this indexstructure will be further used for one or several
times by the upper nodes. So the goal of the head com-
petition phase is to search for all the head candidates for
each internal node and to generate anindexstructure the
represent all the sub-structures beneath this point.

In the argument-adjunct distinction phase, we visitin-
dexstructures in a top-down style, starting from thein-
dex structures of the root node. Keeping track of the
head child, we first get the spine of the elementary for
the main predicate. Then we use linguistic information to
get all the possible operations with which other sub-trees
are attached to the sister nodes on different levels along
the spine. The possible attachment methods, i.e. sub-
stitution, adjunction or internal node, are recorded in the
index structures. Then we do argument-adjunct distinc-
tion recursively on all the subtrees rooted on these sister
nodes.

Now we explain what anindexstructure is. Each node
in a PTB tree is associated with a set ofindexstructures.
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An indexstructure stores the following information: its
lexical head, a set of attachment points, and a set of the
references of index structures of attached subtrees.

After the head competition phase and argument-
adjunct distinction phase, we get a shared forest com-
posed ofindexstructures, with which we can get all the
possible derivation trees of a PTB tree as well as the cor-
responding elementary trees.

3.2 Algorithm

The following algorithm is used to find all candidate
derivation trees and store them in shared structures. The
input is a PTB tree with PropBank tags, and the result of
the algorithm is a shared forest that represents all candi-
date derivation trees for this input PTB tree.

1. head competition (noden)

1.1 if (head-comp-done) return;

1.2 for each child ofn, call head competition;

1.3 look for the candidate heads using linguistic
constraints;

1.4 for each candidate, generate anindexstructure
and associate it withn;

1.5 head-comp-done = true;

2. argument-adjunct distinction (noden)

2.1 if (arg-adj-done) return;

2.2 for eachindexstructure ofn, for each attach-
ment candidate

• refine attachment types;
• call argument-adjunct distinction on the at-

tached subtree;

2.3 arg-adj-done = true;

3.3 Example

Figure 3 shows the results after head competition. For
this case, there is no ambiguity on head competition, so
there is only one output. Otherwise shared structures are
used to represent all the results.

It is shown in Figure 3 that the result of the head com-
petition does not distinguish arguments and adjuncts. The
ambiguities are maintained in the single output in this
case. Specifically, the PP subtree anchored onascan be
either an argument or an adjunct. So do the NP subtrees
for the subject, the object and the temporal phrase.

After the argument-adjunct distinction phase, ambigui-
ties on the subject, the object and the temporal phrase are
solved with respect to the templates defined on context,
in a way similar to (Xia, 2001; Chen, 2001). However,
the argument-adjunct ambiguity on the PP node is still
maintained in the final output of the algorithm.

TOP
[join:2_0_0:rel]S

[join:0_0_0:ARG0]NP-SBJ
%NP

NNP Pierre
%NNP Vinken

, ,
ADJP

NP
CD 61
%NNS years

%JJ old
, ,

%[join:2_0_0:rel]VP
[join:1_0_0:ARGM]MD will
%[join:2_0_0:rel]VP

%[join:2_0_0:rel]VB join
[join:3_0_0:ARG1]NP

DT the
%NN board

[join:4_0_0:ARGM]PP-CLR
%IN as
NP

DT a
JJ nonexecutive
%NN director

[join:5_0_0:ARGM]NP-TMP
NNP Nov.
%CD 29

. .

Figure 3: PTB tree with head annotated.% stands for
head

3.4 Discussion

In the previous sections, we did not cover the following
two special situations in derivation tree extraction.

• Auxiliary predicate

• Coordination

In order to handle auxiliary predicate structure, we
introduce a stack structure to maintain a head chain as
described in (Chen, 2001). Since we have used the
PropBank tags, we can easily recognize the predicate-
argument relation between an argument associated with
a sister node and a head in the stack.

Coordination is another important case in derivation
extraction. In our current implementation, we use the
first item in a coordination phrase as the head, and treat
the rest items as adjuncts. For example, in the phrasered
and blue, red is the head,blue attaches toand, andand
adjoins tored. We are still working on the treatment of
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coordination. One solution is to follow the approach de-
scribed in (Sarkar and Joshi, 1996).

Theoretically, the number of theindexstructures grows
exponentially with respect to the height of a tree. How-
ever, our experiments show that it does not grow that fast,
thanks to the linguistic constraints used in head competi-
tion.

By using rich PropBank features, we can almost solve
the ambiguities in head competition. The only thing that
we need to take care of is the different analyses of head
word in PropBank and LTAG. In some cases, PropBank
and LTAG select different words as head. However, this
problem can be solved with templates. For example, in
the following example,thoughtis the head for the whole
sentence in PropBank, whilecomeis the head in LTAG
analysis.

• John thought Mary didn’t come yet.

4 Experiments

The nondeterminisctic LTAG derivation extraction algo-
rithm was used in the EM models reported in (Shen and
Joshi, 2004). With the algorithm given in that paper,
about 12,000 elementary trees were extracted from the
Penn Treebank. The experiments in (Shen and Joshi,
2004) showed that the number of the elementary trees
was reduced to about 10,000 with several rounds of EM
training.

It also noted in (Shen and Joshi, 2004) that some sim-
ple EM models reported in that paper prefer elementary
trees of lower frequency, which is undesirable for gram-
mar extraction. In our future research, we will incorpo-
rate the hand crafted XTAG English Grammar (XTAG-
Group, 2001) in the EM models. Some XTAG Gram-
mar based EM models were proposed in (Shen and Joshi,
2004) as future work.

5 Conclusions

In this paper we have introduced a naive algorithm for
nondeterminisctic LTAG derivation tree extraction from
the Penn Treebank and the PropBank, which is an ex-
tension of the deterministic methods in (Xia, 2001) and
(Chen, 2001). The algorithm will be used in the EM mod-
els of LTAG Treebank Induction. The shared structures
generated by this nondeterminisctic algorithm allow effi-
cient expectation computation via dynamic programming
in the EM algorithm.
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Abstract

The proper linguistic representation of ellipsis
has been a source of debate for years (Han-
kamer and Sag, 1976), with ellipsis theories
broadly categorizable as being eithersyntac-
tic or semantic, depending on whether or not
an elided constituent is held to contain articu-
lated syntactic structure. In this paper, I com-
bine ideas from both syntactic and semantic
theories in order to (1) account for the data
that suggest there is syntactic structure within
elided constituents, and (2) do so in a manner
that preserves one of the prime advantages of
existing semantic theories, namely straightfor-
ward declarative and procedural intepretations.
This is accomplished by stating both seman-
tic and syntactic identity conditions on ellipsis.
The syntactic condition is formulated within
a desription theory approach to grammar, as
in the formalisms proposed in (Vijay-Shanker,
1992), (Rambow et al., 2001) and (Muskens,
2001).

1 Introduction

The proper linguistic representation of ellipsis has been
a source of debate for years (Hankamer and Sag, 1976),
with ellipsis theories broadly categorizable as being ei-
ther syntactic or semantic, depending on whether or not
an elided constituent is held to contain articulated syn-
tactic structure. Recently the scales have tipped strongly
in favor of syntactic approaches (see (Kennedy, 2003) for
an overview). For example, the data in (1) ((Ross, 1969);
see (Merchant, 2001) for extensive discussion) show that
the wh-remnant of IP ellipsis (“sluicing”) must bear the
same case marking as its correlate in the antecedent, in
those languages with overt case marking.

(1) (a) Er
He

will
wants

jemandem
someone.dat

schmeicheln,
flatter,

aber
but

sie
they

wissen
know

nicht
not

wem.
who.dat.

‘He wants to flatter someone, but they don’t
know whom’

(b) Er
He

will
wants

jemanden
someone.acc

loben,
praise,

aber
but

sie
they

wissen
know

nicht
not

wen.
who.acc.

‘He wants to praise someone, but they don’t
know who’

Other data strongly suggesting that elided constituents
contain internal syntactic structure include filler-gap con-
structions, where the gap is contained in the elided con-
stituent (2a). Such cases include island violations (2b).

(2) (a) John greeted every person who Bill did.
(b) * John greeted every person who Bill

wondered why Sam did.

Facts such as these are difficult to account for in a
purely semantic theory of ellipsis resolution, such as the
one proposed in (Dalrymple et al., 1991). Given the
strong evidence for the existence of syntactic structure
within elided constitutents, the question arises of how to
correctly infer the required syntactic structure, since this
structure is not directly associated with overt phonologi-
cal material.

In this paper, I will sketch an analysis of ellipsis
employing the mechanisms of a description theory ap-
proach to grammar, such as in the D-Tree Grammar
(DTG)(Vijay-Shanker, 1992) and D-Tree Substitution
Grammar (DSG) (Rambow et al., 2001) formalisms. A
description approach to grammar, in combination with a
number of other assumptions, provides the right means
for both declaratively characterizing the syntactic struc-
ture that exists within an elided constituent and for a pro-
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cedural interpretation that transparently leads to an incre-
mental processing model.

2 Background

2.1 Semantic approaches to ellipsis

Existing semantic approaches to ellipsis resolution, such
as the ones in (Dalrymple et al., 1991) and (Egg and Erk,
2002) are attractive because they provide a good account
of a variety of semantic phenomena (including interac-
tions with scope ambigiuites and anaphora), and they
have both a declarative and and a procedual interpreta-
tion. However, these analyses have paid scant attention
to the syntactic data mentioned above, and have failed to
provide an adequate account of the syntax-semantics in-
terface for sentences containing elided constituents. For
example, in (Egg and Erk, 2002), the auxiliary verb left
behind by VP ellipsis is treated as a kind of pro-verb,
which “discharges” the ellipsis potential of an antecedent
clause. The question remains as to why constituents con-
taining these “pro-verbs” show evidence of having further
underlying syntactic structure, as shown in (2).

The most influential of the semantic approaches to
ellpsis has been the higher-order unification approach
proposed in (Dalrymple et al., 1991). Here, the semantic
representation of a clause containing an ellipsis (the “tar-
get” clause) contains a higher-order variable (3a), and this
variable receives a value by solving an ellipsis equation
(3b) involving the antecedent (or “source”) clause.

(3) From (Dalrymple et al., 1991):

(a) S ∧ R(T1, ..., Tn)
(b) R(S1, ..., Sn) = S

In (3a), the elided utterance is represented as contain-
ing a free variable R, which is applied to the semantic val-
ues of the target elements which are parallel to a sequence
of elements contained in the source utterance. Solving
the equation in (3b) using higher-order unification causes
R to become bound to a lambda expression, which can
then be applied to the semantic values of the target par-
allel elements to construct a semantic representation for
the target utterance as a whole. A simple example of how
this works is shown in (4).

(4) (a) George listened to Beethoven’s Ninth, and
Sam did too.

(b) listen(george, b9th)∧ R(sam)
(c) R(g) = listen(george, b9th)

(d) {R → λx.listen(x, b9th)}
(e) listen(sam, b9th)

In (4a) the parallel elements are ’George’ and ’Sam’,
the semantic representation of source and target are

shown in (4b), and the desired solution for the equation
(4c) is given in (4d). Applying the lambda expression in
(4d) to the semantic value of ’Sam’ provides the (intu-
itively correct) meaning (4e) for the target containing the
VP ellipsis.

While applying (3) to (4a) does derive the correct
meaning, it provides no independent, compositionally de-
termined representation of the semantics of the target
clause containing the ellipsis, and no indication of the
syntactic structure associated with the ellipsis clause. In
(Gardent, 1999) and (Gardent, 2000) this defect is par-
tially remedied. She demonstrates how replacing (3) with
the equational setup in (5) both extends the empirical
scope of the HOU account and provides a more princi-
pled account of the compositional semantics of elliptical
sentences.

(5) From (Gardent, 1999):

(a) S = C(X1, ..., Xn)
(b) T = C(Y1, ..., Yn)

In the approach of (Gardent, 1999), the semantics of
the source and target sentences are derived from the nor-
mal compositional semantic construction process. An
elided constituent is represented semantically with a free
variable of the proper type, i.e. the type it would nor-
mally receive based on its syntactic category. This dif-
ferentiates her analysis from the one in (Dalrymple et al.,
1991). Futhermore, there are two equations (5a,b) rather
than one (3b), which together introduce a free variable C
representing the common background relation shared by
the source and target clauses. Resolving these equations
causes the free variable introduced by ellipsis to be re-
solved as a side effect. Thus, ellipsis resolution is driven
by the general process of establishing a redundancy rela-
tion between two clauses in a discourse. How this works
for sentence (4a) is shown in (6).

(6) (a) listen(george, b9th)∧ R(sam)
(b) C(george) = listen(george, b9th)
(c) C(sam) = R(sam)
(d) {C → λx.listen(x, b9th), R →

λx.listen(x, b9th)}
For this particular example, the approaches of (Dal-

rymple et al., 1991) and (Gardent, 1999) obtain the same
result. However, as explained in (Gardent, 1999) and
(Gardent, 2000) the equational setup in (5) not only pro-
vides a clearer picture of the syntax-semantics interface,
it also opens the door to using the HOU analysis to ex-
plain other phenomena, such as focus, deaccenting, and
strict/sloppy readings in both ellipsis and non-ellipsis
contexts.

While (5) improves on (3), it still leaves open the ques-
tion of how to syntactically represent elided constituents
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which appear to contain internal syntactic structure, as
shown in (1) and (2) above. In what follows I will adopt
the equations in (5) as a semantic condition on ellipsis
representations. However, I will augment it with a syn-
tactic condition, which will be used to generate syntac-
tic structure within elided constituents, and I will show
how the syntactic and semantic conditions can be made
to work together.

2.2 Syntactic approaches to ellipsis

Syntactic approaches to ellipsis start with the idea that
elided constituents contain full syntactic structure at
some level of a syntactic representation. They differ on
which level of representation the syntactic structure is
present. For example, in (Lobeck, 1995) and (Chung et
al., 1995) an elided constituent is initially syntactically
null, and receives syntactic structure by copying it from
the antecedent clause at the level of LF. However, such
“copying” approaches to ellipsis run into some of the
same problems as semantic approaches to ellipsis, since
special mechanisms need to be posited in order to account
for the connectivity effects shown in (1) and (2). For ex-
ample, (Chung et al., 1995) posit three separate special
ellipsis operations (“recycling”, “merger”, and “sprout-
ing”) for this reason1.

The other tack taken by syntactic approaches is to
posit full syntactic structure at initial levels of syntac-
tic representation, generated in the normal fashion (Ross,
1969) (Merchant, 2001). The difference between elided
and non-elided constituents is that elided constituents
have no overt PF material associated with them. Such
“PF-deletion” approaches have the advantage that they
straightforwardly account for the connectivity effects
shown in (1) and (2).

The most successful and extended defence of the
PF-deletion approach to ellipsis is given by (Merchant,
2001). In his analysis, PF-deletion is triggered by a syn-
tactic feature on heads, labelled “E”. When a head con-
tains this feature, it instructs the PF component of syntax
to ignore its complement, i.e., the complement receives
no PF interpretation. Futhermore, the E-feature is as-
sociated with a semantic identification condition. This
condition in essence states that the focus semantic val-
ues of the antecedent and ellipsis constituents must be
semantically equivalent2 (cf. (Rooth, 1992)). By stat-
ing this condition in terms of semantic entailment, (Mer-
chant, 2001) avoids some of the problems associated with
syntactic approaches that require syntactic isomorphism
between source and target sentences (e.g., (Fiengo and
May, 1994)), as illustrated in (7) and (8) (from (Merchant,

1Some empirical problems with the (Chung et al., 1995) ap-
proach are detailed in (Merchant, 2001)

2This is a simplification of the actual statement of this con-
dition

2001)).

(7) (a) Abby was reading, but I don’t know what.

(b) Ben called – guess when!

(8) (a) They arrested Alexi, though hei thought they
wouldn’t

(b) They arrested
[the guy who lives over the garage]i, though
hei thought they wouldn’t.

(c) *Hei thought they wouldn’t arrest Alexi.

(d) *Hei thought they wouldn’t arrest
[the guy who lives over the garage]i.

Examples (7a) and (7b) show that a wh-trace can ap-
pear in an elided constituent even when no corresponding
syntactic argument appears in the antecedent. The exam-
ples in (8) show that Condition-C violations do not oc-
cur in ellipsis clauses, counter to what would be expected
were the elided constituent to be completely isomorphic
to its antecedent.

Due to the success of this PF-deletion theory of el-
lipsis, and in particular its ability to account for both
connectivity effects as well as the kind of syntac-
tic“mismatches” shown in (7) and (8), I adopt much of
its outline. One significant drawback, however, is that the
theory (as stated) does not lead transparently to a process-
ing model for ellipsis, unlike the semantic approaches
outlined above. In particular, the formulation of the se-
mantic identification condition given in (Merchant, 2001)
leaves it unclear as to how a processor is to generate the
requisite ellipsis-internal syntactic structure. The goal of
the rest of this paper is to combine the demonstrated em-
pirical advantages of the PF-deletion approach with the
formal advantages of the HOU approach.

3 Analysis

Here is a brief outline of the phonological, syntactic, and
semantic components of my analysis. First, (descrip-
tions of) elementary trees are anchored by lexical items
which consist of bundles of syntactic and semantic fea-
tures, but not of phonological features. Phonological fea-
tures are added independently by a set of “spell-out rules”
(cf. (Halle and Marantz, 1993)(Ackema and Neeleman,
2003)), which map from bracketed sequences of syntactic
feature bundles to sequences of bundles of phonological
features. Second, loosely following (Merchant, 2001),
certain syntactic categories (in English, NP, VP, and IP)
may optionally bear an E-feature, which triggers spell-
out rules that generate the empty string. Third, again fol-
lowing (Merchant, 2001), I will associate the E-feature
with a semantic constraint on the content of the elided
constituent. Unlike (Merchant, 2001), however, the se-
mantic constraint is formulated in terms of the equations
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in (5). Additionally, I associate asyntactic identity con-
dition with the E-feature, which regulates the syntactic
structures appearing within elided constituents.3 Com-
bining the semantic and the syntactic conditions has the
advantage that they together provide a declarative char-
acterization of the syntax and semantics of ellipsis. It is
also straightforward to assign these conditions a procedu-
ral interpretation. In the rest of this paper, I further elab-
orate the three components of my analysis and conclude
with some open problems that require further research.

3.1 Syntax of Ellipsis

Here is a simple sluicing example:

(9) (a) John flattered someone, but I don’t know who.
(b) source: IP

DP

John

VP

V

flatter

DP

someone

(c) target: CP

DP

who

IP[+E]

???

Of particular interest here is the tree in (9c), repre-
senting a (partial) syntactic analysis of the target ellipsis
clause. Note that the IP node in this tree bears the E-
feature, which means that its PF content is absent. How-
ever, by hypothesis, the underlying syntactic structure is
not. It is for this reason that the question marks appear
under IP. The question here is how to generate the re-
quired syntactic structure, while avoiding some of the
problems associated with approaches that require syn-
tactic isomorphism with the source clause (Rooth, 1992)
(Fiengo and May, 1994).

Imagine that (9c) is output by a parser, and represents a
description of what the parser has seen so far. Assuming
a lexicalized grammar (Joshi and Schabes, 1991), the DP
slot into which the wh-phrase has been substituted must
be part of an elementary tree anchored by some (missing)
lexical item. I propose that we add this missing informa-
tion to the tree description in (9c) through an application
of the constraint in (10).4

3This syntactic identity condition has the effect of con-
straining the possible meanings that can be associated with the
elided constituent. These syntactic constraints therefore play a
role similar to the one played by “syntactic presuppostions” in
(Ginzburg, 1999).

4In (10), I borrow some terminology from (Muskens, 2001).
Thenegative lexical anchor of the root node r of a treeτ1 (de-
noted byα−(root(τ1))) is the lexical anchor of the substitution
node n of treeτ2 into which treeτ1 is substitued.

(10) Letpar(T ) be the set of constituents in the target
ellipsis clause that are parallel to a set of
constituentspar(S) in the source clause. For each t
∈ par(T ) and matching s∈ par(S), α−(root(t)) =
α−(root(s))

In (9c) assume that the DP dominating ’who’ in the
target is matched with the DP dominating ’someone’ in
the source. The negative lexical anchor of ’someone’ is
’flatter’. Therefore, to satisfy constraint (10) in (9c), we
must select an elementary tree from the lexicon that is an-
chored by ’flatter’, and which is compatible with the ex-
isting description of the target ellipsis clause in (9c). The
elementary tree in (11a) fits the bill.5 We add the descrip-
tion representing this elementary tree to the desription of
the target clause already generated by the parser, result-
ing in (11b), which contains syntactic structure derived
within the ellipsis site.

(11) (a) CP

DP IP

IP

DP VP

V

flatter

DP

t

(b) CP

DP

who

IP[+E]

IP

DP VP

V

flatter

DP

t

It is important to note that the syntax inside the ellip-
sis in (11) is incomplete, in the technical sense defined in
(Rambow et al., 2001). That is, there are frontier nodes
that are labelled with non-terminal symbols (i.e., substi-
tution nodes). The constraint in (10) says nothing about
these nodes. There are a couple of ways to approach this
issue. First, one might posit another syntactic constraint
which “fills in” these empty argument positions with pro-
nouns of the appropriate sort. This would be play a role
similar to that of the “Vehicle Change” analysis proposed
in (Fiengo and May, 1994). Another way to approach this

5Here I am using the standard notation where solid lines in-
dicate immediate dominance, and dotted lines indicate (possibly
non-immediate) dominance.
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issue is to allow the positions to remain unfilled. Nor-
mally, it is forbidden for a non-terminal to remain on the
fringe of a derived tree at the end of a derivation. Lin-
guistically, this can be viewed as a consequence of PF
requirements and of the requirement of full interpretation
of syntactic structure. However, in the case of ellipsis,
PF requirements are fulfilled by mapping the elided struc-
ture to an empty string, and the structure containing the
ellipsis receives full interpretation by solving the ellipsis
equations (as described below). Hence the need to fill the
argument slots with lexical material disappears.

The current approach can also handle examples of VP
ellipsis. This includes VP ellipsis from which a wh-
phrase has been extracted, as shown in (12).

(12) (a) George claims to speak French, but I don’t
know which language Susan does.

(b) source:
IP

DP

George

VP

V

claim

IP

DP

PRO

I’

I

to

VP

V

speak

DP

French

(c) target: CP

DP

which language

IP

DP

Susan

I’

I

does

VP[+E]

???

(d) IP

DP I’

I VP

V

claim

IP

(e) CP

DP IP

IP

DP VP

V

speak

DP

t

(f)
CP

DP

which lang

IP

DP

Susan

I’

I

does

VP[+E]

V

claim

IP

IP

DP VP

V

speak

DP

t

In (12), the target contains multiple ellipsis remnants
(’which language’ and ’Susan’), which match parallel
elements in the source clause (’French’ and ’George’).
Employing condition (10) allows us to add the elemen-
tary tree descriptions in (12d) and (12e) to the desription
shown in (12c). The resulting tree description is shown
in (12f).

Another case of sluicing is shown in (13) (this time,
only the syntactic structure of the target clause is shown,
after applying (10)).

(13) (a) George claims to speak an exotic language,
but I don’t know which one.

(b) target: CP

DP

which one

IP[+E]

IP

DP VP

V

speak

DP

t

This example is notable because the matrix verb in the
source clause is entirely unrepresented in the target, un-
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like the previous two examples. The issue of how to as-
sign this ellipsis the correct semantics despite this fact is
addressed in the next section.

3.2 Semantics of Ellipsis

As noted above, I adopt (5) from (Gardent, 1999) as the
semantic condition on ellipsis. More accurately, (5) is
to be viewed as a general redundancy condition on two
clauses entering into a discourse relation, and when ap-
plied to a clause containing an ellipsis, the ellipsis is re-
solved as a side effect. How this works for (9) is shown
in (14).

(14) (a) flatter(j, f(person)) = C(f(person))
(b) flatter(x, g(person)) = C(g(person))
(c) {C → λy.f latter(j, y), x → j}

The left hand sides of the equations in (14a) and
(14b) contain (simplified) semantic representations of the
source and target clauses, respectively.6 Note that the
fringe non-terminal DP in (11b) is represented in the
(14b) as a free variable. This variable is resolved by solv-
ing the equations, as shown in (14c)

The resolution of (12) proceeds in a similar fashion, as
shown in (15).

(15) (a) claim(g, speak(g, fr)) = C(g, fr)
(b) claim(s, speak(x, f(lang))) =

C(s, f(lang))
(c) {C → λyλz.claim(y, speak(y, z)), x → s}

Once again, the fringe non-terminal DP in (12f) is
translated as a free variable, which gets resolved by solv-
ing the equations in (15c).

More challenging is (13). Here we must say something
more in order to derive the correct semantics, due to the
fact that the matrix verb of the source is absent from the
syntactic representation of the target. For this case, it is
possible to take advantage of the fact that the two IPs
in the target syntactic representation are related to each
other by a dominance relation (as indicated by the dot-
ted line), rather than an immediate dominance relation.
For cases such as these, (Pinkal, 1996) proposes the con-
straint in (16).

(16) For each pair of nodesPi andPj for which the
dominance relation is stated, we add the constraint
Xi = C(Xj). [whereXi is the semantic value of
Pi, Xj is the semantic value ofPj , and C is a free
higher-order variable]

Applying (16) to (13b) allows us to derive the seman-
tic representation on the left hand side of the equation in
(17b). Solving the equations then proceeds as normal in
(17c)

6The parallel elements are represented as choice functions.

(17) (a) claim(g, speak(g, f(lang)) = C(f(lang)))
(b) R(speak(x, h(lang))) = C(h(lang))
(c) {C → λy.claim(g, speak(g, y)), x →

g, R → λP.claim(x, P )}
Of course the analysis of (13b) goes through only if

we do not conflate the two IPs in this representation, as
would occur for example if we applied the “reading off”
algorithm in (Rambow et al., 2001). There are both tech-
nical and conceptual issues here that remain to be taken
care of.

3.3 Phonology of Ellipsis

Some mechanism is required in order to prevent the
phonological realization of lexical items contained in
elided constituents. If elided constituents contain syntac-
tic structure, and syntactic structures are anchored to lex-
ical items, then an elided constituent contains at least one
lexical item, as for example in (11b). One possible means
for ensuring that such lexical items remain unpronounced
is to assume that they do not contain phonological mate-
rial at the relevant level of representation. Instead, lex-
ical items consist of sets of syntactic and semantic fea-
tures only. It will then be necessary to formulate a theory
for how these features are “spelled-out” (cf. (Halle and
Marantz, 1993)(Ackema and Neeleman, 2003)). The the-
ory might consist of a set of mapping rules from syntactic
representations to phonological representations. These
mapping rules could be made sensitive to the presence or
absence of the hypothesized E-feature. A schematic for-
mulation of an “ellipsis” spell-out rule is shown in (18).
This mapping schema simply states that an XP bearing
the E-feature is mapped to the empty string at PF.

(18) [XP+E ] �→ ε (where XPε{NP,VP,IP})

For now this remains merely a rough sketch of how
an account of the phonology of ellipsis could be made to
work. Clearly much more needs to be said to make this
component of the analysis precise.

4 Conclusion

In this paper, I have sketched an analysis of ellipsis which
combines ideas from PF deletion theories with ideas from
semantic theories. This combination of ideas is enabled
by adopting a description approach to grammar, as in the
formalisms proposed in (Vijay-Shanker, 1992), (Rambow
et al., 2001) and (Muskens, 2001). This has resulted in
an approach that can handle some cases of ellipsis where
there is evidence for syntactic structure within the elided
constituent. The approach also lends itself to a straight-
forward procedural interpretation, making it possible to
develop an expicit processing algorithm, once it has been
made sufficiently explicit.
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However, many technical and conceptual issues remain
to be resolved, such as how it is possible to licence incom-
plete tree descriptions under ellipsis. Empirical issues re-
main as well. Here, I discuss only one example. The evi-
dence for syntactic structure within ellipsis is more com-
plicated than has been suggested above. It turns out that
IP ellipsis can repair island violations (Ross, 1969)(Mer-
chant, 2001), while VP ellipsis does not. This is shown
in (19) and (20) (from (Merchant, to appear)).

(19) (a) They want to hire someone who speaks a
Balkan language, but I don’t remember which.

(b) * I don’t remember which (Balkan language)
they want to hire someone who speaks.

(c) Bob ate dinner and saw a movie that night, but
he didn’t say which.

(d) * He didn’t say which movie he ate dinner and
saw that night.

(20) (a) * Abbey does want to hire someone who
speaks Greek, but I don’t remember what kind
of language she doesn’t.

(b) * They got the president and 37 Democratic
Senators to agree to revise the budget, but I
can’t remember how many Republican ones
they didn’t.

The challenge here is to generate sufficient syntactic
structure for the VP ellipsis cases in (20) to account for
the island violations, yet in a manner that doesn’t gener-
ate island violations for the IP ellipsis cases in (19). Ac-
counting for this puzzle provides a challenge for any uni-
fied theory of ellipsis constructions, including the present
one. Doing so remains a goal for future research.
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Abstract

Generating elementary trees for wide-coverage
Lexicalized Tree Adjoining Grammars (LTAG)
is one of the great concerns in the TAG project.
We know that the Korean LTAG developed in
(Han C.-H. et al., 2000) was not sufficient to
handle various syntactic structures. Therefore,
a Korean Meta-Grammar (KMG) is proposed
to generate and maintain a large number of ele-
mentary tree schemata. Describing Korean MG
with more precise tree families and with class
encoding Korean syntactic properties leads to a
larger coverage capacity for Korean LTAG.

1 Motivations for this work

The first development of LTAG Korean Grammar
(KTAG) was proposed in (Han C.-H. et al., 2000). Few
grammars for Korean exist, the one for TAG is quite small
with limited coverage. Our goal is to generate a wider-
coverage KTAG, using a now well-established grammar
development technique. We propose using the Meta-
Grammar for KTAG :

a) The MG was successfully used to generate wide-
coverage grammars for French and medium size TAG for
Italian (Candito 1996; Candito 1999), within the FTAG
project at the Univ. of Paris 7 (Abeillé, 2002). So the
use of the MG to generate real-size grammars has already
been established1 .

b) In addition, the MG was also used to generate wide-
coverage grammars for frameworks like LFG (Clement
and Kinyon, 2003). This stronly suggests that the MG
is more portable to non-TAG frameworks, unlike other
approaches such as Metarules

1For French, the MG is also used for the syntax of nouns and
adjectives (see (Barrier and Barrier, 2003);(Barrier and Barrier,
2004))

c) The MG was also used to generate test-suite sen-
tences for German (Kinyon and Rambow, 2003), as well
as a medium-size grammar for German (Gerdes, 2002).
This specific use of the MG for text-generation shows
over-generation is not a real issue. i.e., not more than for
any standard grammar development technique2. More-
over, the MG is particularly appropriate to handle rela-
tively “free-word order” languages such as Korean and
German, because of underspecification. This mechanism
is used for handling phenomena such as scrambling.

2 What is a Meta Grammar

The notion of Meta Grammar (MG) was originally pre-
sented to automatically generate wide-coverage TAGs for
French and Italian, using a hierarchical-level and com-
pact layer of linguistic description which imposes a gen-
eral organization for the syntactic information, shared
by the different elementary tree families, in a three di-
mensional inheritance network. The elementary struc-
tures of a MG are the classes organized in the Inheri-
tance Graph. The classes in a graph order from more
general classes to more specific classes, e.g., the class
TRANSITIVE-VERB inherits information from one gen-
eral class VERB. The three dimensional hierarchies in a
MG represent the following information (Candito, 1999):

• In Dimension 1, each terminal class encodes an ini-
tial sub-categorization, i.e., a list of arguments as-
sociated with a given head with an initial syntactic
function for each, e.g., a subject and an object for a
transitive verbal anchor.

• In Dimension 2, each terminal class encodes a list
of final function, i.e., a possible change in the initial
grammatical function from dimension 1, including
the possibility to increase or decrease the number
of syntactic functions to be realized, e.g., adding an

2Even the 5000 tree FTAG was successfully used in the G-
TAG text generation project

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 211-218.



argument for the causative, and erasing an argument
for passive with no agent.

• In Dimension 3, each terminal class encodes the sur-
face realization of a final syntactic function. The
category and the word order are selected.

Each class in the hierarchy is associated with a partial
description of a tree. These partial descriptions of trees,
called quasi-trees, encodefather, dominance, equality
and precedencerelations between tree nodes. A well-
formed tree is generated by inheriting information from
exactly one terminal class from dimension 1, one termi-
nal class from dimension 2, andn terminal classes from
dimension 3. For instance, in order to generate the ele-
mentary tree forBy whom will Mary be accompanied ?,
a MG compiler creates one crossing class which is in-
herited from astrict-transitiveclass in dimension 1, from
a personal-full-passiveclass in dimension 2, and from a
Wh-questioned-By-complementclass in dimension 3.

3 Hierarchical Descriptions in Korean
Meta-Grammar (KMG) for LTAG

The Korean LTAG (Han C.-H. et al., 2000) consists of
15 tree families (see Fig.(1)). The 289 elementary trees

Tree Families
8 for Verbs Tnx0V, Tnx0nx1V,

Tnx0nxp1V, Tnx0nxp1nx2V
Tnx0s1V, Tnx0nxp1s2V,
Tnx0nxNOM1V, Tnx0nx1CO

3 for Adjectives Tnx0A, Tnx0nxp1A, Tnx0nxNOM1A
4 for Structures Declarative and Relative Constructions,

Gerund and Adverbial Clauses

Figure 1: Tree Families in (Han C.-H. et al., 2000)

have been created. Han C.-H. et al, 2000 said that it
was expected to increase the number of elementary trees
in order to handle more syntactic phenomena : passive,
causative, resultative, light verb construction, coordina-
tion construction, and scrambling. In particular, the most
important concern about the coverage capacity for a Ko-
rean grammar is the ability to handle the scrambling phe-
nomenon. Because free-word order probably leads to an
enormous expansion in the number of elementary trees
due to permutations of arguments.

3.1 Initial Syntactic Functions in KMG

Lexicalized TAG elementary trees represent extended
projections of lexical items and encapsulate all syntac-
tic arguments of a lexical anchor. We describe the initial
subcategorization frames for Korean verbs, which will be
encoded in each elementary tree. Tree families proposed
here cover those of (Han C.-H. et al., 2000).

Before representing initial subcategorization frames,
we explain the linguistic choice for KMG : As defec-
tive verbs, auxiliary verbs, causative and/or passive auxil-
iary verbs, raising verbs are not represented by sentential
structures, i.e., they have a reduced projection to VP and
not to S. We use the syntactic category SNP (sentential
noun phrase) for the complex noun phrase, and the syn-
tactic category GNP (gerund noun phrase) for the gerund
construction. When sentential clauses appear in an ar-
gument position, they become either like complex noun
phrases as in (1), or like gerund noun phrases as in (2).
Head items in SNP and GNP take a case marker such as a
lexical head noun in NP3. SNP and GNP behave as nouns
as a whole. But in contrast to NP nodes, modifiers for
nouns can not adjoin at a SNP (complex NP) or a GNP
(gerund NP) node. We have specified SNP↓ and GNP↓
nodes in tree families of predicates for which subcatego-
rize.

Complex NPs are represented by an initial tree, whose
root node is SNP. It is anchored by the head dependant
noun and it has a substitution node S for the clause that
modifies the head noun in Fig. 2(a). Gerund NPs are rep-
resented by an initial tree, whose root node is GNP, that
is anchored by the head verb that represents appropriate
subcategorization frames in Fig. 2(b).

(1) Minho-ga [snp yaksok-e neujossda-n-sasil-eul]
Minhonom appointmentpp be.lateadn.FACT.acc

arassda.
realize
‘Minho realizes that he is late for the appointment’

(2) Minho-ga [gnp sakwa-reul meok-gi-reul]
Minhonom appleacc eatnominalizer.acc

silheohanda.
dislike
‘Minho does not like to eat apples.’

SNP

S↓ NP

N♦
(a) Initial Tree SNP

GNP

S

NP1↓ VP

V♦
(b) Initial Tree GNP
(intransitive)

Figure 2: Trees that anchor complex and gerund NPs

We have defined 26 tree families for verbs (see Tab.
(5)), and 9 tree families for the adjectives are defined (see
Tab.(5)). We know that, in Korean, the syntactic func-
tions of an argument are assigned by the markers. I.e., an

3i.e., a head noun in a complex NP and a head verb in gerund
NP inflected with a nominalizer marker (-gi/-eum) are inflected
with one of the case markers.
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argument function will be fixed depending on the marker
taken by an argument. For example, in order to realize
the bare nounMinho as a subject in a sentence, this bare
noun ‘Minho’ is marked with the nominative case-i/-ga,
e.g.,Minho-gaas a subject. According to our subcate-
gorization frames, we proposed 10 initial syntactic func-
tions to realize each constituent in its phrase-structure in
the surface realization dimension.

1. nom1function for the subject argument

2. nom2function for the second subject argument in
the double nominative construction, which can not
be permuted, and for the causee with nominative in
the causative

3. acc1function for the object argument

4. acc2function for the second object argument in the
double accusative construction, which can not be
permuted and can not be promoted to a subject po-
sition in a passive

5. datfunction for the dative argument

6. obli1 function for the obligatory argument marked
by a postposition

7. obli2 function for the facultative argument marked
by a postposition

8. advfunction for the adverbial argument

9. loc function for the locative argument of movement
verbs

10. noun-scompfunction for the complex noun phrase
and for the gerund.

3.2 Redistribution of Functions in KMG

The initial functions for a predicate can be changed by
a series of redistribution of functions. The passive and
causative constructions determine the redistribution of
grammatical functions (Suh J. -S., 1996; Lee S. -O.,
1999).

Passive : Korean has two passive types. -i) A pred-
icate is inflected with one of passive morphemesi, hi,
ri, gi . This is the morphological passive as in (3). -ii)
A predicate is realized with a passive auxiliary verb-eo
jida, -ge doetaas in (4). This is the analytical passive.

(3) a. saengjwi-ga goyangi-reul mureossda.
mousenom catacc bit
‘A mouse bit a cat.’

b. goyangi-ga saengjwi-ege murieossda.
catnom mousepp be.bitten
‘A cat was bitten by a mouse.’

(4) a. saramdeul-i geu norae-reul pureunda.
peoplenom that songacc sing
‘The people sing this song.’

b. geu norae-ga saramdeul-e uihae bur-yeo jinda.
that singnom peoplepp is.sung
‘This song is sung by the people.’

Two tree schemata are proposed for the Korean passive
construction in Fig.(3). The tree schema (Fig.3(a)) repre-
sents the structure for the morphological passive. This
elementary tree is anchored by a morphological passive
verb. The tree schema (Fig.3(b)) represents the struc-
ture for the syntactical passive which contains two ver-
bal anchor nodes : the one is for a main verb, and the
other is for a passive auxiliary verb. The subject in the
active becomes the agent marked with a postposition in
the passive. An additionalagent function is used for
agent. The initialnom1 function for subject changes into
an additionalagent function. Concerning the subject
in the passive, in Korean, not only the accusative argu-
ment, but the argument marked with an other postposition
can be promoted to a subject position, e.g., theMinho-
egeseo, the NP marked by a postposition is promoted to
the subject position in the passive (5b). So an additional
patient function waits foracc1 or obli functions,
whose arguments take the PATIENT feature in the the-
matique relation with respect to its predicate.

(5) a. keu namja-ga Minho-egeseo jigab-eul
that mannom Minhopp purseacc

ppaesassada.
stole
‘That man stole a purse from Minho.’

b. Minho-ga keu namja-hante jigab-eul
Mihonom that manpp purseacc

ppaesassgieossda.
be.stolen
‘Minho had his purse stolen by that man’

In KMG, in order to represent the morphological pas-
sive sentence as in (5b), in redistribution dimension, the
Morph.nom1-agent-patient-nom1terminal class is used.
This class inherits information from thenom1→ agent
class for the demotion of the subject, from thepatient
→ nom1 class for the promotion to subject, and from the
Morph. class for morphological passive type. In the sur-
face realization dimension, the sentence (5b) is generated
with the tree schema (Fig. 3(a)).

Causative: Likewise in the passive construction, Ko-
rean has two different causative forms4. -i) One is a mor-
phological causative: a predicate is inflected by one of
morphemesi, hi, ri, gi, u, gu, chuas in (7), -ii) The
other type is a syntactical causative: the main verb is
followed by a causative auxiliary verb-ge(-dorok) hada,

4Examples ((7) and (8)) are causative sentences of (6).
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S

NP1 ↓ VP

NP0 ↓ VPmor♦

(a) Morphological Passive

S

NP1 ↓ VP

VP VPaux

NP0 ↓ V♦

(b) Analytical Passive

Figure 3: Tree Schemata for Passive

manteulda, sikidaas in (8). In causative construction,
the causer is a new argument. Thenom1 function is as-
signed to this new argument for the subject realization
in causatives. Concerning the causee, it can be marked
by various markers, e.g., causees with dative in (7(a) and
8(a)), the causee with nominative in (8b). There are con-
straints for causee realizations in Korean. For example,
the nominative causee never appears in the morphologi-
cal causative such as in (7b), while it can be accepted in
the syntactical causative such as in (8b). Because the an-
alytic causative construction contains two verbs (the ma-
trix verb and the auxiliary verb), except for the subject
of the causative auxiliary verb, we can also expect that
another subject in the sentence will appear in addition to
the matrix verb. That is why the nominative marker can
be accepted.

(6) Sumi-ga yak-eul meokneunda.
Suminom medicineacc takes
‘Sumi takes medicine.’

(7) a. Minho-ga Sumi-ege yak-eul moginda.
Minhonom Sumidat medicineacc takeMcau

‘Minho makes Sumi take medicine.’

*b. Minho-ga Sumi-ga(Suminom) yak-eul moginda.

(8) a. Minho-ga Sumi-ege yak-eul mok-ge handa.
Minhonom Sumidat medicineacc takeAux.cau

b. Minho-ga Sumi-ga(Suminom) yak-eul mok-ge handa.

In causatives, the sentence meaning is changed accord-
ing to causee markers5 We can consider that the function

5For a more detailed explanation about the relationship be-
tween the sentence meaning and causee markers, see (Yoon
S.-W., 2003). For instance, the causation with the nominative
causee such as (9a) is permissive, whereas the causation with
the accusative causee such as (9b) is coercive.

(9) a. Minho-ga Sumi-ga ga-dorok haessda.
Minhonom Suminom goAux.cau

Minho made Sumi go

b. Minho-ga Sumi-reul(Sumiacc) ga-dorok haessda.

for causee depends on the transitivity of the embedded
verb, and on the causative form. We propose the follow-
ing constraints for the causee :

Intransitivity Transitivity
Suffix Acc1 Acc1, Dat [animate]
Aux Nom1, Acc1, Nom1, Acc1,

Dat [animate] Dat [animate],Obli

Table 1: Functions of causee in Korean Causative

According to the redistribution of the initial subject
function (nom1), we have various terminal classes for
the causative. Tree schemata are proposed for the Ko-
rean causative construction in Fig.(4) : The monoclausal
structure is recommended for morphological causatives,
in which the nominative causee is not accepted, and
in which the rest except the causer forms one con-
stituent. Bi-clausal structures are recommended for com-
plex causatives, in which the causee can be represented
with the nominative or with other markers, and in which
the sentence meaning is changed according to the mark-
ers of the causee.

3.3 Surface Realization in KMG

For syntactic realizations, three general classes are used
: non-realization is used for empty constituents,
and thepre-verbal is used for canonical position re-
alizations. It can also cover the questioned element real-
ization because Korean does not have awh- movement,
and thepost-verbal is used for constituents of cleft,
relative construction and extraposition.
non-realization: Korean freely allows empty ar-

guments as in (10). In order to represent empty argu-
ments, elementary trees whose argument NPs are associ-
ated withε are used.

(10) ε ε ilkeossda.
ε ε read
‘(I/you/he/we/they) read (it/them)

pre-verbal : This class is used for argument ap-
pearances before their predicates that have a syntactical
dependance in a clause. For example, when a normal sub-
ject argument is realized, a nominal argument appears in
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S

NPc↓ VP

NP0 ↓ NP1 ↓ VP
VCmor♦

(a) Mono-clausal for Morphological Causative

S

NPc↓ VP

S VCaux

NP0nom↓ VP

NP1 ↓ V♦

S

NPc↓ VP

NP0 ↓ VP

VP VCaux

NP1 ↓ V♦

(b) Bi-clausal for Analytical Causative

Figure 4: Tree Schemata for Causative

front of the verb with a nominative marker-ga/ -i as in
(11a), and it permutes with other constituents in a clause,
i.e., local scrambling as in (11b). By under-specifying re-
alization positions withpre-verbal, elementary trees
for permutations of arguments before a predicate are au-
tomatically generated. The local scrambling can be han-
dled with the KMG.

(11) a. Minho-ga chaek-reul ilkeossda.
Minhonom chaekacc read
‘Minho read a book.’

b. chaek-reulMinho-ga ilkeossda.

It will be the same for pronoun subjectsna (I), neo
(you), geunyeo (she), geu (he), uri (we), neohui (you), and
the interrogative pronouns subjects(nu(gu): who, mueos:
what). Therefore, we use the same tree schemata for a
verb with a simple subject, for a verb with an interroga-
tive subject, and for a verb with a pronominal subject.

Concerning a direct object realization and other
oblique object realizations, whether they are nominal,
pronoun, interrogative pronoun or sentential, they are
identical to the realization of the subject.
post-verbal: This class is used for argument ap-

pearances after their predicates that have a syntactical de-
pendance in a clause, i.e.,Extrapositionor Korean inver-
sion. Not only nominal elements as in (12a), but senten-
tial elements can also be extraposed as in (12b). Likewise
for local scrambling, by under-specifying realization po-
sitions with thepost-verbal class, we obtain elemen-
tary trees for extraposed elements - even elementary trees
for the permutation among extraposed elements.

(12) a. Minho-ga t johahanda, [ Sumi-reul]t
Minhonom likes Sumiacc

‘Minho likes Sumi.’

b. John-i t malhaessda,
Johnnom t said
Minho-ga Sumi-reul johahan-dago.
[Minhonom Sumiacc likecomp]t
‘John said that Minho liked Sumi.’

We also use thispost-verbal class for realizations
of relative constructions. Relative clauses are NP mod-
ifiers in which an argument position is empty. For in-
stance, a subject argument position is empty in the rel-
ative clause of (14). We can consider that there is an
empty element after the main verb, which corresponds to
this empty-subject argument, and which is syntactically
related to the relative clause, e.g.,saram(person)in (14).
We call this a relativized-subject. By adjoining an auxil-
iary tree representing the relativized-subject to a NP, the
NP is modified by a relative with an empty-subject6. In
KMG, the relative modification comes about through the
post-verbal class.

(14) [s Sumi-hanteseo satang-eul eot-eun] (saram)
Sumipp candyacc getrel (person)

‘(person) [ who gets a candy from Sumi.]’

In the same way, thepost-verbal class is used for
clefted-arguments in cleft sentence. In order to represent
the relativized-subject in (14), and the clefted-subject in
(15), tree schemata are proposed in Fig.(5). The tree fam-
ily for the relativized-subject is represented is by the aux-
iliary tree with the foot node NP. The tree family for the
clefted-subject is selected by the copulari as the main
verb and a sentential noun phrase (SNP) as the subject.

(15) [s satang-eul meok-eun] saram-eun (saram) ida.
candyacc eatadn persontop (person) be

‘It is (person) who ate the candy.’

we can see in (Yoon S.-W., 2003) more detailed expla-
nations about linguistic organizations and about the rela-
tionship among the classes in KMG.

6The modified NP is now semantically associated with the
empty-subject in the relative. The same NP can be modified by
an auxiliary tree representing a relativized-object :

(13) [s Sumi-ga johaha-neun] (saram)
Suminom likerel (person)

‘(person) [ whom Sumi likes]’

215



NP

S NP0
∗

NP1↓ VP
V♦

S

SNP VP

S↓ NP NP0↓ Co
N♦

(saram-eun)

Figure 5: Tree Schemata for relativized and clefted-subject

4 Implementations

The implementation for Korean Meta Grammar is work-
ing with the Meta Grammar compiler maintained by B.
Gaiffe (Gaiffe et al., 2002). A more specific status will
be reported. Korean is a language with a very produc-
tive morphological system. In order to handle the mor-
phology with a Korean Meta-Grammar, a MG gener-
ates tree templates, the morphology is encoded in the
form of a dictionary of inflected terms like the French
Meta-Grammar (Abeilĺe and Candito, 2000). The han-
dling for unbounded dependency phenomena,e.g., non-
local scrambling, is one of non-resolved problems with a
MG compiler. We propose to use a compiler adapted by
the new TAG variant, Tree-local MC TAG with shared
nodes(RSN MC TAG), that is used to handle the un-
bounded dependency phenomena in free-word order vari-
ation (see (Kallmeyer and Yoon, 2004)).

5 Conclusion

We offer to develop and implement a wide-coverage
LTAG Korean Grammar using a meta-grammar. The 26
tree families for verbs and 9 tree families for adjectives
are proposed for Korean LTAG. With the hierarchical
grammar, various syntactic phenomena can be covered
in a Korean MG. For example, the auxiliary verb con-
structions, the nominal and/or sentential complements,
the raising verb and/or the control verb constructions, the
passive and/or causative constructions, and the relative
and/or cleft constructions are handled. Furthermore, by
suggestingpre-verbalandpost-verbalclasses in the syn-
tactic realization dimension, we can also deal with the
Korean local scrambling and the (simple) extraposition.
The first evaluation for KMG is promising, but more has
to improve the lexical coverage by increasing the lexical
database, and the grammar coverage by refining the con-
straints on agrammatical syntactic constructions.
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Tree Families for verbs Examples
n0V Minho-ga janda.

Minho is sleeping.
n0ad1V Sonyo-ga yeppeuge saengkyeossda.

The girl looks beautiful.
n0pn1ad2V Minho-ga Sumi-hante mulyehage kunda.

Minho is being rude to Sumi.
n0acc1V Minho-ga sakwa-reul meokneunda.

Minho is eating an apple.
n0acc1adv2V Minho-neun geu gangaji-reul josimseuleopge darueossda.

Minho is stroking his puppy.
n0acc1ACC2V Minho-ga Sumi-reul pal-eul japassda.

Minho is taking Sumi by the arm.
n0dat1V Minho-ga Sumi-ege malhanda.

Minho is speaking to Sumi
n0acc1dat2V Minho-ga sakwa-reul Sumi-ege jueossda.

Minho gave an apple to Sumi.
n0pn1V ceongbo-ga yeoreo chwulcheo-robuteo giinhada.

The information originates from various sources.
n0acc1pn2V Minho-neun Sumi-reul geunyeo innaesim-edaehae chinchanhassda.

Minho admired Sumi for her patience.
n0dat1pn2V Minho-neun Sumi-ege jigeum sanghwang-edaehae seolmyeonghassda.

Minho explained this situation to Sumi.
n0n1CO Minho-ga uisa ida.

Minho is a doctor.
n0NOM1V Minho-ga kyosu-ga doeossda.

Minho became a professor.
sn0V mulgeon-e haja-ga issda-neun sasil-i deureonassda.

A default revealed itself in the product.
sn0acc1V Sumi-ga tteonassda-n geos-i Minho-reul goerophinda.

The fact that Sumi went out upsets Minho.
sn0acc1adv2V gangaji-ga jugossda-n sasil-i Minho-reul seulpeuge mandeunda.

The fact that the puppy died makes Minho sad.
sn0pn1V Minho-ga eolida-neun-geos-i baesimwon pankyeo-e yeongyangjueossda.

The fact that Minho was young influenced on the jury’s decision.
n0sacc1V Minho-neun Sumi-ga jigap-eul humchi-n sasil-eul arassda.

Minho noticed that Sumi had stolen his wallet.
n0s1V Minho-neun chakhage cheosinhaess-dago saenggakhanda.

Minho thinks that he behaved very wisely.
n0dat1s2V Minho-ga Sumi-ege yeonghwakwan-e gasseoss-dago malhaessda.

Minho told to Sumi to go to the movies.
n0pn1s2V Minho-neun sijang-euro saengseon-eul sa-ro hyanghassda.

Minho moved to buy fish to the market.
n0acc1s2pn3V Minho-ga Sumi-reul saengseon-eul sa-ro sijang-euro ponaessda.

Minho sent Sumi to buy fish (at the market)
n0acc1s2V Minho-neun i nonjeungdeul-eul deol seoldeukjeoi-rago saenggakhanda.

Minho doen’t find these arguments very convincing.
n0s1Vc Minho-neun honja jip-e namgess-dago gyeolsimhaessda.

Minhonom decides to leave alone at home.
n0dat1s2Vc Minho-ga Sumi-ege Inho-wa tteona-rago kangyohaessda.

Minho forced Sumi to leave with Inho.
n0pn1s2Vc Minho-ga Sumi-wa jadongcha-reul guipha-gilo hapuipoassda.

Minho confers with Sumi to buy a car.

Table 3: Tree Families for verbal anchors in KMG
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