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Abstract

State-of-the-art machine translation techniques are
still far from producing high quality translations.
This drawback leads us to introduce an alterna-
tive approach to the translation problem that brings
human expertise into the machine translation sce-
nario. In this framework, namely Computer As-
sisted Translation (CAT), human translators inter-
act with a translation system, as an assistance tool,
that dinamically offers, a list of translations that best
completes the part of the sentence already trans-
lated. In this paper, finite state transducers are
presented as a candidate technology in the CAT
paradigm. The appropriateness of this technique
is evaluated on a printer manual corpus and re-
sults from preliminary experiments confirm that hu-
man translators would reduce to less than 25% the
amount of work to be done for the same task.

1 Introduction

State-of-the-art machine translation techniques are
still far from producing high quality translations.
This drawback leads us to introduce an alternative
approach to the translation problem that brings
human expertise into the machine translation sce-
nario. (Langlais et al., 2000) proposed this idea that
can be illustrated as follows. Initially, the human
translator is provided with a possible translation
for the sentence to be translated. Unfortunately in
most of the cases, this translation is not perfect, so
the translator amends it and asks for a translation
of the part of the sentence still to be translated
(completion). This latter interaction is repeated as
many times as needed until the final translation is
achieved.

The scenario described in the previous para-
graph, can be seen as an iterative refinement of
the translations offered by the translation system,
that without possessing the desired quality, help the
translator to increase his/her productivity. Nowa-
days, this lack of translation excellence is a common
characteristic in all machine translation systems.
Therefore, the human-machine synergy represented
by the CAT paradigm seems to be more promising
than fully-automatic translation in the near future.

The CAT paradigm has two important as-
pects: the models need to provide adequate com-
pletions and they have to do so efficiently to per-
form under usability constrains. To fulfill these two
requirements, Stochastic Finite State Transducers
(SFST) have been selected since they have proved
in the past to be able to provide adequate transla-
tions (Vidal, 1997; Knight and Al-Onaizan, 1998;
Amengual et al., 2000; Casacuberta et al., 2001;
Bangalore and Ricardi, 2001). In addition, efficient
parsing algorithms can be easily adapted in order to
provide completions.

The rest of the paper is structured as follows.
The following section introduces the general setting
for machine translation and finite state models. In
section 3, the search procedure for an interactive
translation is presented. Experimental results are
presented in section 4. Finally, some conclusions
and future work are explained in section 5.

2 Machine translation with finite-state
transducers

Given a source sentence s, the goal of MT is to find
a target sentence t that maximizes:



t = argmax Pr(t | s) = argmax Pr(t,s) (1)
t t

The joint distribution Pr(t, s) can be modeled
by a Stochastic Finite State Transducer 7 (Pic6 and
Casacuberta, 2001):

t = argmax Pr(t,s) ~ argmax Prr(t,s) (2
t t

A Stochastic Finite-State Transducer (SFST)
is a finite-state network whose transitions are la-
beled by three items:

1. asource symbol (a word from the source lan-
guage vocabulary);

2. atarget string (a sequence of words from the
target language vocabulary) and

3. atransition probability.

They have been successfully applied into
many translation tasks (Vidal, 1997; Amengual et
al., 2000; Casacuberta et al., 2001). Furthermore,
there exist efficient search algorithms like Viterbi
(Viterbi, 1967) for the best path and the Recur-
sive Enumeration Algorithm (REA) (Jiménez and
Marzal, 1999) for the n-best paths.

One possible way of inferring SFSTs is the
Grammatical Inference and Alignments for Trans-
ducer Inference (GIATI) technique (the previous
name of this techniqgue was MGTI - Morphic-
Generator Transducer Inference) (Casacuberta et
al., 2004). Given a finite sample of string pairs, it
works in three steps:

1. Building training strings. Each training pair
is transformed into a single string from an ex-
tended alphabet to obtain a new sample of
strings. The “extended alphabet” contains
words or substrings from source and target sen-
tences coming from training pairs.

2. Inferring a (stochastic) regular grammar.
Typically, smoothed n-gram is inferred from
the sample of strings obtained in the previous
step.

3. Transforming the inferred regular grammar
into a transducer. The symbols associated

to the grammar rules are transformed into
source/target symbols by applying an ade-
quate transformation, thereby transforming the
grammar inferred in the previous step into a
transducer.

The transformation of a parallel corpus into
a corpus of single sentences is performed with the
help of statistical alignments: each word is joined
with its translation in the output sentence, creating
an “extended word”. This joining is done taking
care not to invert the order of the output words. The
third step is trivial with this arrangement. In our
experiments, the alignments are obtained using the
GIZA software (Och and Ney, 2000; Al-Onaizan et
al., 1999), which implements IBM statistical mod-
els (Brown et al., 1993).

3 Interactive search

The concept of interactive search is closely related
to the CAT paradigm. This paradigm introduces the
new factor t, into the general machine translation
equation (Equation 1). t, represents a prefix in the
target language obtained as a result of the interac-
tion between the human translator and the machine
translation system.

As a side effect of this reformulation, the op-
timization defined in Equation 3 is performed over
the set of target suffixes rather than the set of com-
plete target sentences. Thence, the goal of CAT in
the finite-state transducer framework is to find a pre-
diction of the best suffix t,, given a source sentence
s, a prefix of the target sentence t, and a SFST 7

iy, = agmaxPr(ts | s t,) = argmax Pr(tyt,, s) ~
s t.
~ argmaxPrr(t,ts,9) 3
t.

A transducer can be understood as a weighted
graph in which every path is a possible source-target
sentence pair represented in a compact manner.
Given a source sentence s to be translated, this sen-
tence is initially employed to define a set of paths in
the transducer, whose sequence of source symbols
is compatible with the source sentence. Equation 3
is just defining the most probable path (target suffix
t,) among those that are compatible, having tpasa
target prefix.
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Figure 1: Resultant word graph given the source sentence “cargue el papel”

The search for this path (the product of the
probabilities associated with its edges is maximum)
is performed according to the Viterbi decoding over
the set of paths that were compatible with the source
sentence. The concatenation of the target symbols
of this best path will give place to the target sentence
(translation).

The solution to the search problem has been
devised in two phases. The first one copes with the
extraction of a word graph W from a SFST T given
a source sentence s. A word graph represents the
set of paths whose sequence of source symbols is
compatible with the source sentence s.

The second phase involves the search for the
best translation over the word graph W. To be
more precise, in the present work the concept of
best translation has been extended to a set of best
translations (n-best translations). This search can be
carried out efficiently taking into account not only
the a posteriori probability of a given translation t,
but also the minimum edit cost with respect to the
target prefix. The way in which this latter criterium
is integrated in the search process will be explain in
section 3.2.

3.1 Word-graph derivation

A word graph represents the set of all possible trans-
lations for a given source sentence s that were em-
beded in the SFST 7. The derivation of the word
graph is performed by intersecting the SFST T
with the source sentence s defining a subgraph in
T whose paths are compatible with the source sen-
tence.

Interactive search can be simplified signif-
icantly by using this representation of the set of
target sentences, since the inclusion of edit cost

operations along with the search procedure intro-
duces some peculiarities that can be solved effi-
ciently in the word graph. An example of word
graph is shown in Figure 1.

3.2 Search for n-best translations given a
prefix of the target sentence

The application of this type of search is aimed at
the core of CAT. In this paradigm, given a source
sentence s, the human translator is provided with a
list of n translations, also called n-best translations.
Then, the human translator will proceed to accept a
prefix of one of these n-best translations as correct,
appending some rectifications to the selected prefix.
This new prefix of the target sentence t, together
with the source sentence s will generate a new set
of best translations that will be again modified by
the human translator. This process is repeated as
many times as neccessary to achieve the desired fi-
nal translation.

Ideally, the task would be to find the target
suffix t, that maximizes the probability a posteriori
given a prefix t, of the target sentence and the in-
put sentence. In practice, however, it may happen
that t, is not present in the word graph W. The
solution is to use not t, but a prefix t, that mini-
mizes the edition distance with t, and is compatible
with W. Therefore, the score of a target transla-
tion t = t, t, is characterized by two functions, the
edit cost between the target prefix t, and the opti-
mal prefix t, found in the word graph W and the a
posteriori probability of ts (Pr(ts | t,)). In order
to value more significantly those translations that
were closer to the user preferences, the list of n-
best translations has been prioritized using two cri-
teria: first, the minimum edit cost and then, by the a



posteriori probability.

The algorithm proposed to solve this search
problem is an adapted version of the Recursive Enu-
meration Algorithm (REA) described in (Jiménez
and Marzal, 1999) that integrates the minimum edit
cost algorithm in the search procedure to deal with
words, introduced by the user, that are not present
in the word graph. This algorithm consists of two
parts:

e Forward search that calculates the 1-best path
from the initial state to every state in the
word graph W. Paths in the word graph are
weighted not only based on their a posteriori
probability, but also on their edit cost respect
to the target sentence prefix.

To this purpose, ficticious edges have been in-
serted into the word graph to represent edition
operations like insertion, substitution and dele-
tion. These edition operations have been in-
cluded in the word graph in the following way:

— Insertion: An insertion edge has been
“inserted” as a loop for each state in the
word graph with unitary cost.

— Deletion: A deletion edge is "added”
for each arc in the word graph having
the same source and target state than its
sibling arc with unitary cost.

— Substitution: Each arc in the word graph
is treated as a substitution edge whose edit
cost is proportional to the levenshtein dis-
tance between the symbol associated with
this arc and the word prefix employed to
traverse this arc during the search. This
substitution cost is zero when the word
prefix matches the symbol in the word
graph arc.

e Backward search that enumerates candidates
for the k-best path along the (& — 1)-best path.
This recursive algorithm defines the next best
path that arrives at a given state ¢ as the next
best path that reaches ¢’ plus the arc leaving
from ¢ to ¢. If this next best path arriving at
state ¢’ has not been calculated yet, then the
next best path procedure is called recursively
until a 1-best path is found or no best paths are
found.

To reduce the computational cost of the
search, the beam-search technique (Ney et al., 1992)
has been implemented. During the word graph
construction, two beam coefficients were employed
to penalize those edges leading to backoff states
over those ones arriving at normal states. Finally,
a third beam coefficient controls how far in terms of
number of edition operations a hypothesis.

4 Experimental results
4.1 Corpus features

The corpus employed to perform experiments was
the Xerox corpus (SchlumbergerSema S.A et al.,
2001). It involves the translation of technical Xe-
rox manuals from English to Spanish, French and
German and vice-versa. Some statistics about the
data used for training and test purposes are shown
in Table 1.

4.2 Sample session

A TT2 interactive prototype, which uses the
searching techniques presented in the previous sec-
tions, has been implemented. The user is able to
customized this prototype in different ways: num-
ber of suggested translations, length in number of
words of these suggestions, etc. In the example be-
low, the number of suggestions is five and the length
of these suggestions has not been bound.

Example 1 This example shows the functionality
and the interaction between the TT2 prototype and
a translator through a translation instance from En-
glish to Spanish for a given sentence drawn from
the Xerox corpus. For better understanding of this
example the reference target sentence is given be-
low:

Reference target sentence: Instalacion
de controladores de impresora y
archivos PPD.

Source sentence: Installing the Printer Drivers and
PPDs.

Hypothesis 0.0: Instalacion del los controladores
de impresién y archivos PPD adaptados.

Hypothesis 0.1: Instalacion del los controladores
de impresién y ver los archivos PPD.



Table 1: Features of Xerox Corpus: training, vocabulary and test sizes measured in thousands of words.

SIM: Currently used “reversible” preprocessing.
RAW: Original corpus without preprocess.

PERPLEXITY: Measure how well a language model describes the test set.

EN/ES EN/DE EN/FR
RAW  SIM RAW  SIM RAW  SIM
TRAINING 600/700 6007700 | 600/500 500/600 | 6007700 5007400
VOCABULARY 26/30 8/11 | 25/27 8/10 | 25/37 8/19
TEST 8/9  8/10 | 9/10 11/12 | 11/10 12/12
PERPLEXITY (3-gram) | 107/60  48/33 | 93/169  51/87 | 193/135  73/52

Hypothesis 0.2: Instalacién de la los controladores
de impresion y archivos PPD adaptados.

Hypothesis 0.3: Instalacién de la los controladores
de impresion y ver los archivos PPD.

Hypothesis 0.4: Instalacién de la esta los contro-
ladores de impresion y ver los archivos PPD.

User interaction 0: Hypothesis 0.2 is selected and
the cursor is positioned at the beginning of the
word “los”. Then, the translator would type
the character “c”, that is, the next character in
the reference target sentence.

Prefix 0: Instalacién de c

Hypothesis 1.0: Instalacion de c los controladores
de impresion y archivos PPD adapatados.

Hypothesis 1.1: Instalacion de c los controladores
de impresion y ver los archivos PPD.

Hypothesis 1.2: Instalacién de c esta los contro-
ladores de impresion y archivos PPD adapata-
dos.

Hypothesis 1.3: Instalacién de c esta los contro-
ladores de impresion y ver los archivos PPD.

Hypothesis 1.4: Instalaciéon de controladores de
impresion y fax y en archivos PPD adapatados.

User interaction 1: Hypothesis 1.4 is selected and
the cursor is positioned between the character
”s” and ”’i”" of the word “impresién”. Then, the
translator would type the next character in the
reference target sentence: “0”.

Prefix 1: Instalacibn de controladores de im-
preso

Hypothesis 2.0: Instalacion de controladores de
impresora y archivos PPD adaptados.

Hypothesis 2.1: Instalacion de controladores de
impresora y ver los archivos PPD.

Hypothesis 2.2: Instalacion de controladores de
impresora/fax y ver los archivos PPD.

Hypothesis 2.3: Instalacion de controladores de
impresora/fax y archivos PPD adaptados.

Hypothesis 2.4: Instalacion de controladores de
impresora y fax de CentreWare y ver los
archivos PPD.

User interaction 2: Hypothesis 2.0 is selected and
the cursor is positioned at the end of the word
”PPD”, The translator would just need to add
the character .”.

Prefix 2: Instalacion de controladores de impre-
sora y archivos PPD.

Hypothesis 3.0: Instalacion de controladores de
impresora y archivos PPD.

Hypothesis 3.1: Instalacion de controladores de
impresora y archivos PPD.:

Hypothesis 3.2: Instalacion de controladores de
impresora y archivos PPD..

Hypothesis 3.3: Instalacion de controladores de
impresora y archivos PPD...

Hypothesis 3.4: Instalacion de controladores de
impresora y archivos PPD...

User interaction 3 : Hypothesis 3.0 is selected
and the user accepts the target sentence.



Final hypothesis: Instalacién de controladores de
impresora y archivos PPD.

4.3 Translation quality evaluation

The assessment of the techniques presented in sec-
tion 3 has been carried out using three measures:

1. Translation Word Error Rate (TWER): It is
defined as the minimum number of word
substitution, deletion and insertion operations
to convert the target sentence provided by the
transducer into the reference translation. Also
known as edit distance.

2. Character Error Rate (CER): Edit distance in
terms of characters between the target sentence
provided by the transducer and the reference
translation.

3. Key-Stroke Ratio (KSR): Number of key-
strokes that are necessary to achieve the
reference translation plus the acceptance key-
stroke divided by the number of running
characters.

4. BiLingual Evaluation Understudy (BLEU)
(Papineni et al., 2002): Basically is a function
of the k-substrings that appear in the hypothe-
sized target sentence and in the reference target
sentence.

These experiments were perfomed with 3-
gram transducers based on the GIATI technique. On
the leftmost column appears the language pair em-
ployed for each experiment, English (En), Spanish
(Es), French (Fr) and German (De). The main two
central columns compare the results obtained with
1-best translation to 5-best translations. When using
5-best translations, that target sentence out of these
five, that minimizes most the correspondent error
measure is selected. The results are shown in Ta-
ble 2.

The best results were obtained between En-
glish and Spanish language pairs, in which the hu-
man translator would need to type less than 25% of
the total reference sentences. In other words, this
would result in a theoretically factor of 4 increase in
the productivity of human translators. In fact, pre-
liminary subjective evaluations have received pos-
itive feedback from professional translators when
testing the prototype.

Table 2: Results for the Xerox Corpus comparing
1-best to 5-best translations

3-gram (1-best) 3-gram (5-best)
RAW | KSR CER TWER KSR CER TWER
En-Es | 26.0 29.1 423 | 234 244 372
EsEn | 274 331 501 241 249 427
En-Fr | 537 554 775 | 493 487 705
Fr-En | 540 556 742 | 499 494 688
En-De | 59.4 612 824 540 54.7 76.6
DeEn | 526 603 779 | 480 534 727

Furthermore, in all cases there is a clear and
significant improvement in error measures when
moving from 1 to 5-best translations. This gain in
translation quality dimishes in a log-wise fashion as
the number of best translations increases. However,
the number of hypotheses should be limited to the
user capability to skim through the candidate trans-
lations and decide on which one to select.

Table 3 presents the results obtained on a
simplified version of the corpus. This simplification
consists on tokenization, case normalization and
the substitution of numbers, printer codes, etc. by
their correspondent category labels.

Table 3: Results for the Xerox Corpus comparing
1-best to 5-best translations

3-gram (1-best) 3-gram (5-best)
SIM WER CER BLEU| WER CER BLEU
En-Es | 31.8 247 0.67 |268 203 0.71
EsEn | 343 278 062 |270 204 0.69
En-Fr | 642 488 043 |572 428 045
Fr-En | 59.2 485 042 |536 425 045
En-De | 721 553 032 |658 491 0.35
DeEn | 647 539 036 |584 477 0.39

Pair of languages as English and French
presents somewhat higher error rates, as is also the
case between English and German, reflecting the
complexity of the task faced in these experiments.

5 Conclusions and future work

Finite-state transducers have been successfully
applied to CAT. These models can be learnt from
parallel corpora. The concept of interactive search
has been introduced in this paper along with some



efficient techniques (word graph derivation and n-
best) that solve the parsing problem given a prefix
of the target sentence under real-time constraints.

The results show that the 5-best approach
clearly improves the quality of the translations, with
respect to the 1-best approximation.

The promising results achieved in the first ex-
periments provide a new field in machine transla-
tion still to be explored, in which the human ex-
pertise is combined with machine translation tech-
niques to increase productivity without sacrifying
high-quality translation.

Finally, the introduction of morpho-syntactic
information or bilingual categories in finite-state
transducers, are topics that leave an open door to
future research. As well as some improvements in
the search algorithms to reduce the computational
cost of finding a path in the word graph with the
minimum edit cost.

Acknowledgments

The authors would like to thank all the reasearchers
involved in the TT2 project who have contributed to
the development of the methodologies presented in
this paper.

This work has been supported by the Euro-
pean Union under the IST Programme (IST-2001-
32091).

References

Yaser Al-Onaizan, Jan Curin, Michael Jahr,
Kevin Knight, John Lafferty, Dan Melamed,
Franz J. Och, David Purdy, Noah Smith, and
David Yarowsky. 1999. Statistical machine
translation: Final report. Workshop on lan-
guage engineering, Johns Hopkins Univer-
sity, Center for Language and Speech Pro-
cessing, Baltimore, MD, USA.

Juan C. Amengual, José M. Benedi, Asuncién
Castano, Antonio Castellanos, Victor M.
Jiménez, David Llorens, Andrés Marzal,
Moisés Pastor, Federico Prat, Enrique Vidal,
and Juan M. Vilar. 2000. The EuTrans-I
speech translation system. Machine Transla-
tion, 15:75-103.

S. Bangalore and G. Ricardi. 2001. A finite-state
approach to machine translation. In Second
Meeting of the North American Chapter of

the Association for Computational Linguis-
tics.

Peter F. Brown, Stephen Della Pietra, Vincent
J. Della Pietra, and Robert L. Mercer. 1993.
The mathematics of statistical machine trans-
lation: Parameter estimation. Computational
Linguistics, 19(2):263-312.

Francisco Casacuberta, David Llorens, Carlos
Martinez, Sirko Molau, Francisco Nevado,
Hermann Ney, Moisés Pastor, David Picd,
Alberto Sanchis, Enrique Vidal, and Juan M.
Vilar. 2001. Speech-to-speech translation
based on finite-state transducers. In Interna-
tional Conference on Acoustic, Speech and
Signal Processing, volume 1. IEEE Press,
April.

Francisco Casacuberta, Hermann Ney, Franz J.
Och, Enrique Vidal, Juan M. Vilar, Ser-
gio Barrachina, Ismael Garcia-Varea, David
Llorens, Carlos Martinez, Sirko Molau, Fran-
cisco Nevado, Moisés Pastor, David Pic6, and
Alberto Sanchis. 2004. Some approaches
to statistical and finite-state speech-to-speech
translation. Computer Speech and Language,
18:25-47.

Victor M. Jiménez and Andrés Marzal. 1999. Com-
puting the k shortest paths: a new algorithm
and an experimental comparison. InJ. S. Vit-
ter and C. D. Zaroliagis, editors, Algorithm
Engineering, volume 1668 of Lecture Notes
in Computer Science, pages 15-29, London,
July. Springer-Verlag.

Kevin Knight and Yaser Al-Onaizan. 1998. Trans-
lation with finite-state devices. In E. Hovy
D. Farwell, L. Gerber, editor, Machine Trans-
lation and the Information Soup: Third Con-
ference of the Association for Machine Trans-
lation in the Americas, volume 1529, pages
421-437, Langhorne, PA, USA, October.
AMTA’98.

Philippe Langlais, George Foster, and Guy La-
palme. 2000. Unit completion for a
computer-aided translation typing system.
Machine Translation, 15(4):267-294.

Hermann Ney, Dieter Mergel, Andreas Noll, and
Annedore Paeseler. 1992. Data driven orga-
nization for continuous speech recognition.
In IEEE Transactions on Signal Processing,
volume 40, pages 272-281.

Franz J. Och and Hermann Ney. 2000. Improved
statistical alignment models. In ACLOO,



pages 440-447, Hong Kong, China, October.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for au-
tomatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting of
the Association for Computational Linguis-
tics, pages 311-318, Philadelphia.

David Pic6 and Francisco Casacuberta. 2001.
Some statistical-estimation methods for
stochastic finite-state transducers. Machine
Learning, 44:121-142, July-August.

SchlumbergerSema S.A, Instituto Tecnol6gico
de Informatica, Rheinisch Westfalische
Technische Hochschule Aachen Lehrstul
fir Informatik VI, Recherche Appliquée
en Linguistique Informatique Laboratory
University of Montreal, Celer Soluciones,
Société Gamma, and Xerox Research Centre
Europe. 2001. TT2. TransType2 - computer
assisted translation. Project technical annex.

Enrique Vidal. 1997. Finite-state speech-to-speech
translation. In Int. Conf. on Acoustics Speech
and Signal Processing (ICASSP-97), proc.,
Vol.1, pages 111-114, Munich.

Andrew Viterbi. 1967. Error bounds for convolu-
tional codes and a asymtotically optimal de-
coding algorithm. IEEE Transactions on In-
formation Theory, 13:260-269.



